JP2003027054A - Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same - Google Patents

Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same

Info

Publication number
JP2003027054A
JP2003027054A JP2001214179A JP2001214179A JP2003027054A JP 2003027054 A JP2003027054 A JP 2003027054A JP 2001214179 A JP2001214179 A JP 2001214179A JP 2001214179 A JP2001214179 A JP 2001214179A JP 2003027054 A JP2003027054 A JP 2003027054A
Authority
JP
Japan
Prior art keywords
phosphor
alkaline earth
earth metal
vacuum ultraviolet
blue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001214179A
Other languages
Japanese (ja)
Inventor
Kohei Matsuda
康平 松田
Takayuki Hisamune
孝之 久宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Original Assignee
Kasei Optonix Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd filed Critical Kasei Optonix Ltd
Priority to JP2001214179A priority Critical patent/JP2003027054A/en
Publication of JP2003027054A publication Critical patent/JP2003027054A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Luminescent Compositions (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alkaline earth metal aluminosilicate phosphor which highly efficiently emits blue to bluish green light when excited with a vacuum ultraviolet ray of a wavelength of 200 nm or shorter, to provide a method for producing the same, and to provide a luminescent element excitable with a vacuum ultraviolet ray. SOLUTION: There are provided the vacuum-ultraviolet-ray-excitable alkaline earth metal aluminosilicate phosphor which contains at least one alkaline earth metal element selected from the group consisting of Ba, Sr, and Ca, an Al element, an Si element, and an Eu element and emits a blue to bluish green light when excited with the vacuum ultraviolet ray of the wavelength of 200 nm or shorter, the method for producing the same, and the vacuum-ultraviolet- ray-excitable luminescent element.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、波長200nm以
下の真空紫外線によって励起され、主に青色から青緑色
の発光を示すアルカリ土類金属のアルミノ珪酸塩蛍光体
及びその製造方法、並びに前記蛍光体を用いた蛍光膜を
具備した真空紫外線励起発光素子に関する。
TECHNICAL FIELD The present invention relates to an alkaline earth metal aluminosilicate phosphor which is excited by vacuum ultraviolet rays having a wavelength of 200 nm or less and emits mainly blue to blue green light, a method for producing the same, and the above phosphor. The present invention relates to a VUV-excited light-emitting device equipped with a fluorescent film using.

【0002】[0002]

【従来の技術】近年、Ar、Xe、He、Ne等の希ガ
ス又はそれらの混合ガスをガラスなどの外囲器に封入
し、その希ガスの放電によって放射される真空紫外線に
より、外囲器の内部に形成した蛍光膜を励起して発光さ
せる真空紫外線励起発光素子の開発が盛んに行われてい
る。
2. Description of the Related Art In recent years, rare gases such as Ar, Xe, He and Ne or a mixed gas thereof are enclosed in an envelope such as glass and the envelope is exposed by vacuum ultraviolet rays emitted by the discharge of the rare gas. The development of a VUV-excited light-emitting device that excites the fluorescent film formed inside the device to emit light is actively being carried out.

【0003】その一例がスキャナーの読みとり用光源等
に使われる細管ランプである。ランプ用の細管にはX
e、Xe−He、Xe−Ne、Xe−He−Ne等の希
ガスが封入されており、その管の内面には真空紫外線励
起用蛍光体からなる蛍光膜が形成されている。例えば管
の両端に設けられた電極から電気エネルギーを印加する
と、セル内に希ガス放電が起こり、真空紫外線が放射さ
れる。この真空紫外線により蛍光体が励起されて可視光
を発する。蛍光体は赤、青、緑の単色の物と3色を混合
したものが用いられる。蛍光体は、赤色蛍光体として
(Y,Gd)BO3:Eu、緑色蛍光体としてLaPO
4 :Ce,Tb、青色蛍光体としてBaMgAl
1017:Eu、青緑色蛍光体として(Ba,Sr)Mg
Al1017:Eu,Mn等が使用される。
One example is a thin tube lamp used as a light source for reading in a scanner. X for thin tubes for lamps
A rare gas such as e, Xe-He, Xe-Ne, or Xe-He-Ne is enclosed, and a fluorescent film made of a fluorescent substance for exciting vacuum ultraviolet rays is formed on the inner surface of the tube. For example, when electric energy is applied from electrodes provided at both ends of the tube, a rare gas discharge occurs in the cell, and vacuum ultraviolet rays are emitted. The vacuum ultraviolet rays excite the phosphor to emit visible light. As the phosphor, a mixture of three colors of monochromatic materials of red, blue and green is used. The phosphors are (Y, Gd) BO 3 : Eu as a red phosphor and LaPO as a green phosphor.
4 : Ce, Tb, BaMgAl as blue phosphor
10 O 17 : Eu, (Ba, Sr) Mg as blue-green phosphor
Al 10 O 17 : Eu, Mn, etc. are used.

【0004】真空紫外線励起発光素子のその他の例とし
てプラズマデイスプレイパネル(以下、「PDP」とい
う)がある。PDPは、原理的には真空紫外線励起の細
管ランプを小さくした、異なる3色のランプをマトリッ
クス状又はストライプ状に並べたものと考えることがで
きる。換言すると、狭い放電空間(以下、「セル」とい
う)をマトリックス状又はストライプ状に配置したもの
である。各セルには電極が設けられ、各セルの内側に蛍
光体を塗布した蛍光膜が形成されており、各セル内には
Xe,Xe−Ne等の希ガスが封入されている。電極か
ら電気エネルギーが印加されると、セル内に希ガス放電
が起こり真空紫外線が放射される。この真空紫外線によ
り蛍光体が励起され、可視光を発し、この発光によって
画像が表示される。
Another example of the VUV-excited light emitting device is a plasma display panel (hereinafter referred to as "PDP"). In principle, the PDP can be considered to be a matrix tube or a stripe array of lamps of different three colors in which a capillary tube excited by vacuum ultraviolet rays is made small. In other words, the narrow discharge spaces (hereinafter referred to as "cells") are arranged in a matrix or stripes. An electrode is provided in each cell, a phosphor film coated with a phosphor is formed inside each cell, and a rare gas such as Xe or Xe—Ne is sealed in each cell. When electric energy is applied from the electrodes, a rare gas discharge is generated in the cell and vacuum ultraviolet rays are emitted. This vacuum ultraviolet ray excites the phosphor to emit visible light, and an image is displayed by this emission.

【0005】フルカラーPDPの場合、真空紫外線励起
により赤、青、緑に発光する蛍光体をマトリックス状又
はストライプ状に塗り分けることにより、フルカラーの
表示を行うことができる。この場合、例えば赤色蛍光体
として(Y,Gd)BO3 :Eu、緑色蛍光体としてZ
2 SiO4 :Mn、青色蛍光体としてBaMgAl 10
17:Eu等が使用される(「電子材料誌」1997年
12月号、工業調査会発行)。
In the case of full color PDP, vacuum ultraviolet ray excitation
The red, blue, and green phosphors in a matrix or
By applying it in stripes, the full color
The display can be done. In this case, for example, red phosphor
As (Y, Gd) BO3: Eu, Z as green phosphor
n2SiOFour: Mn, BaMgAl as blue phosphor Ten
O17: Eu and others are used ("Electronic Material Magazine" 1997
December issue, published by Industrial Research Council).

【0006】これらの蛍光体中、主にPDP用の青色発
光蛍光体として用いられるBaMgAl1017:Eu
や、蛍光ランプの演色性向上のための青緑色発光蛍光体
として使用されている(Ba,Sr)MgAl1017
Eu,Mn等のアルミン酸塩蛍光体は真空紫外線で励起
すると高輝度の発光を呈し、従来より代表的な真空紫外
線励起発光素子の青色乃至青緑色発光蛍光体として実用
されている。
Among these phosphors, BaMgAl 10 O 17 : Eu which is mainly used as a blue light emitting phosphor for PDP.
And (Ba, Sr) MgAl 10 O 17 used as a blue-green light emitting phosphor for improving the color rendering of fluorescent lamps:
Aluminate phosphors such as Eu and Mn emit light with high brightness when excited by vacuum ultraviolet rays, and have been practically used as blue to blue-green phosphors of typical vacuum ultraviolet ray excited light emitting devices.

【0007】しかし、これらのアルミン酸塩蛍光体は真
空紫外線励起発光素子を製造する際に、蛍光膜形成時の
ベーキング工程において熱劣化を起こし、蛍光体の粉体
としての輝度を維持できなかったり、また、長時間にわ
たって真空紫外線の照射を受けると発光輝度の低下(輝
度劣化)を起こすため、紫外線励起発光素子として動作
中に、経時的な発光輝度の低下を来すなどの欠点を有し
ていた。それ故、真空紫外線で励起されたときに高輝度
の青色乃至青緑色発光を呈するアルミン酸塩蛍光体に代
わる新たな真空紫外線励起用蛍光体の開発が望まれてい
る。
However, these aluminate phosphors are not able to maintain the brightness of the phosphor powder as powder due to thermal deterioration in the baking process during the formation of the phosphor film when manufacturing a VUV-excited light emitting device. In addition, when it is irradiated with vacuum ultraviolet rays for a long time, the emission luminance is reduced (luminance deterioration), so it has the drawback that the emission luminance decreases over time during operation as an ultraviolet excitation light emitting element. Was there. Therefore, it is desired to develop a new phosphor for exciting VUV light, which replaces the aluminate phosphor that emits blue to blue-green light with high brightness when excited with VUV light.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記の課題
を解決し、波長200nm以下の真空紫外線励起により
高効率に青色若しくは青緑色に発光するアルカリ土類金
属のアルミノ珪酸塩蛍光体及びその製造方法、並びにこ
の蛍光体を用いた蛍光膜を備えた真空紫外線励起発光素
子を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention has solved the above-mentioned problems, and an aluminosilicate phosphor of an alkaline earth metal which efficiently emits blue or blue-green light by excitation with vacuum ultraviolet rays having a wavelength of 200 nm or less and a phosphor thereof. It is intended to provide a manufacturing method and a VUV-excited light-emitting device provided with a fluorescent film using this phosphor.

【0009】[0009]

【課題を解決するための手段】本発明者らは、酸素酸塩
系の種々の蛍光体を合成し、波長200nm以下の真空
紫外線を照射して青色或いは青緑色発光の有無とその発
光強度の程度を調べ、鋭意検討を重ねた結果、アルカリ
土類金属のアルミノ珪酸塩を母体結晶とし、これにEu
元素を付活することにより、ピーク波長が400〜50
0nmの発光を示す蛍光体を得ることができ、この蛍光
体を蛍光膜として用いることにより高効率に青色から青
緑色に発光する真空紫外線励起発光素子が得られること
を見出し、本発明を完成した。本発明の構成は以下のと
おりである。
The inventors of the present invention have synthesized various phosphors of oxyacid salt system and irradiate them with vacuum ultraviolet rays having a wavelength of 200 nm or less to determine whether blue or blue-green light is emitted and its emission intensity. As a result of investigating the degree and conducting extensive studies, an aluminosilicate of an alkaline earth metal was used as a host crystal, and Eu was added to this.
By activating the element, the peak wavelength is 400 to 50.
The inventors have found that a phosphor showing 0 nm emission can be obtained, and that a vacuum ultraviolet ray excited light emitting device that emits blue to blue green light with high efficiency can be obtained by using this phosphor as a phosphor film, and completed the present invention. . The configuration of the present invention is as follows.

【0010】(1) Ba、Sr及びCaの群から選択され
る少なくとも1種のアルカリ土類金属元素とAl元素と
Si元素とEu元素とをそれぞれ含有し、波長200n
m以下の真空紫外線で励起すると青色若しくは青緑色に
発光することを特徴とする真空紫外線励起用アルカリ土
類金属のアルミノ珪酸塩蛍光体。
(1) It contains at least one alkaline earth metal element, Al element, Si element and Eu element selected from the group consisting of Ba, Sr and Ca, and has a wavelength of 200 n.
An aluminosilicate phosphor of alkaline earth metal for vacuum ultraviolet ray excitation, which emits blue or blue-green light when excited by vacuum ultraviolet ray of m or less.

【0011】(2) 前記アルカリ土類金属のアルミノ珪酸
塩蛍光体が、下記一般式で表され、波長200nm以下
の真空紫外線で励起すると青色若しくは青緑色に発光す
ることを特徴とする真空紫外線励起用アルカリ土類金属
のアルミノ珪酸塩蛍光体。 (M1-x Eux )O・aAl2 3 ・bSiO2 (但し、上記式中、MはBa,Sr及びCaの群から選
択される少なくとも1種のアルカリ土類金属元素を表
し、x=0.02〜1.0、a=0.9〜1.1、,b
=1.8〜2.2の条件を満たす数である)
(2) Vacuum-ultraviolet ray excitation, characterized in that the alkaline earth metal aluminosilicate phosphor is represented by the following general formula and emits blue or blue-green light when excited by vacuum ultraviolet ray having a wavelength of 200 nm or less. Alkaline earth metal aluminosilicate phosphor for use. (M 1-x Eu x ) O · aAl 2 O 3 · bSiO 2 (wherein, M represents at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca, and x = 0.02-1.0, a = 0.9-1.1, b
= A number satisfying the conditions of 1.8 to 2.2)

【0012】(3) 前記アルカリ土類金属のアルミノ珪酸
塩蛍光体は、その結晶系が単斜晶系若しくは三斜晶系で
ある結晶を主相とすることを特徴とする前記(1) 又は
(2) に記載の真空紫外線励起用アルカリ土類金属のアル
ミノ珪酸塩蛍光体。
(3) The alkaline earth metal aluminosilicate phosphor has a main phase of a crystal whose crystal system is a monoclinic system or a triclinic system.
The alkaline earth metal aluminosilicate phosphor for exciting VUV light according to (2).

【0013】(4) Ba、Sr及びCaの群から選択され
る少なくとも1種のアルカリ土類金属元素とAl元素と
Si元素とEu元素とをそれぞれ含有する、波長200
nm以下の真空紫外線で励起されて青色若しくは青緑色
に発光するアルカリ土類金属のアルミノ珪酸塩蛍光体の
製造方法において、蛍光体原料をフッ素化合物の存在下
で焼成することを特徴とする真空紫外線励起用アルカリ
土類金属のアルミノ珪酸塩蛍光体の製造方法。 (5) 前記フッ素化合物がフッ化アンモニウム、フッ化ア
ルミニウム及びフッ化リチウムの群から選択される少な
くとも1種であることを特徴とする前記(4) 記載の真空
紫外線励起用アルカリ土類金属アルミノ珪酸塩の製造方
法。
(4) A wavelength of 200 containing at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca, an Al element, a Si element and a Eu element, respectively.
In the method for producing an alkaline earth metal aluminosilicate phosphor that emits blue or blue-green light when excited by vacuum ultraviolet light having a wavelength of nm or less, the vacuum ultraviolet light is characterized in that the phosphor material is fired in the presence of a fluorine compound. Method for producing aluminosilicate phosphor of alkaline earth metal for excitation. (5) The alkaline earth metal aluminosilicic acid for VUV excitation according to (4), wherein the fluorine compound is at least one selected from the group consisting of ammonium fluoride, aluminum fluoride and lithium fluoride. Method for producing salt.

【0014】(6) 外囲器の内部に蛍光膜を有し、前記外
囲器内に封入された希ガスの放電によって発生する、波
長200nm以下の真空紫外線により励起して前記蛍光
膜を発光させる真空紫外線励起発光素子において、前記
蛍光膜が、前記(1) 〜(3) のいづれか一つに記載のアル
カリ土類金属のアルミノ珪酸塩蛍光体を含有することを
特徴とする真空紫外線励起発光素子。
(6) The envelope has a fluorescent film inside, and the fluorescent film emits light by being excited by vacuum ultraviolet rays having a wavelength of 200 nm or less generated by the discharge of the rare gas enclosed in the envelope. In the VUV-excited light-emitting device, the fluorescent film contains the VUV-excited luminescence characterized by containing the alkaline earth metal aluminosilicate phosphor according to any one of (1) to (3). element.

【0015】[0015]

【発明の実施の形態】本発明の蛍光体は、Ba、Sr及
びCaの群から選択される少なくとも一種のアルカリ土
類金属とAl元素とSi元素とをそれぞれ構成元素とす
るアルカリ土類金属のアルミノ珪酸塩を母体結晶とし、
これに付活剤のEu元素を含むアルカリ金属のアルミノ
珪酸塩蛍光体であり、波長200nm以下の真空紫外線
を吸収し、ピーク波長が400〜500nmの青色から
青緑色の光を高効率で放射するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The phosphor of the present invention comprises at least one alkaline earth metal selected from the group consisting of Ba, Sr and Ca and an alkaline earth metal having Al and Si as constituent elements. Aluminosilicate as a host crystal,
It is an alkali metal aluminosilicate phosphor containing Eu as an activator, absorbs vacuum ultraviolet rays having a wavelength of 200 nm or less, and emits blue to blue-green light having a peak wavelength of 400 to 500 nm with high efficiency. It is a thing.

【0016】本発明のアルカリ土類金属のアルミノ珪酸
塩蛍光体を製造するには、Ba、Sr及びCaの群か
ら選択される少なくとも一種のアルカリ土類金属元素、
Al元素、Si元素、及びEu元素のそれぞれの
酸化物、炭酸塩、硝酸塩、蓚酸塩等を、前記各元素の化
合物を該化合物中の前記各元素の構成比が所望の化学組
成となるように秤量し、十分に混合して蛍光体原料を調
製する。これをアルミナ坩堝等の耐熱容器に充填して、
1100〜1600℃の範囲の温度で昇降温時間を含め
て2〜40時間かけて一回以上焼成し、得られた焼成物
を分散させ、水洗し、乾燥し、篩分するなど、蛍光体の
製造時の後処理工程として採用される通常の後処理方法
を経て製造することができる。ただし、焼成のうち少な
くとも一回は還元性雰囲気で行うことが望ましい。ま
た、好ましい焼成条件は、還元性雰囲気のもとで115
0〜1500℃で昇降温時間を含めて2〜40時間焼成
することである。
In order to produce the alkaline earth metal aluminosilicate phosphor of the present invention, at least one alkaline earth metal element selected from the group of Ba, Sr and Ca,
The oxides, carbonates, nitrates, oxalates, etc. of Al element, Si element, and Eu element are used so that the composition ratio of each element in the compound becomes a desired chemical composition. Weigh and mix well to prepare a phosphor raw material. Fill this into a heat-resistant container such as an alumina crucible,
It is fired at a temperature in the range of 1100 to 1600 ° C. once or more for 2 to 40 hours including the temperature raising / lowering time, and the obtained fired product is dispersed, washed with water, dried, sieved, and the like. It can be manufactured through a usual post-treatment method adopted as a post-treatment step during production. However, it is desirable that at least one of the firing is performed in a reducing atmosphere. The preferable firing conditions are 115 in a reducing atmosphere.
That is, firing is performed at 0 to 1500 ° C. for 2 to 40 hours including the temperature raising and lowering time.

【0017】本発明の特徴の1つは、蛍光体原料中に、
反応促進剤であるフラックスとしてフッ素化合物を混合
して焼成することであり、フッ素化合物の中でも特にフ
ッ化アンモニウム、フッ化アルミニウム、及びフッ化リ
チウムの群から選択される少なくとも1種が本発明の真
空紫外線励起用アルカリ土類金属のアルミノ珪酸塩蛍光
体を製造するためのフラックスとしてより好ましい。こ
れにより、主相が単斜晶系若しくは三斜晶系の結晶が形
成され、高効率の青色から青緑色の発光を示すようにな
る。
One of the features of the present invention is that the phosphor raw material contains
That is, a fluorine compound is mixed and baked as a flux which is a reaction accelerator, and at least one selected from the group of ammonium fluoride, aluminum fluoride, and lithium fluoride among the fluorine compounds is the vacuum of the present invention. It is more preferable as a flux for producing an aluminosilicate phosphor of an alkaline earth metal for ultraviolet ray excitation. As a result, monoclinic or triclinic crystals are formed as the main phase, and highly efficient blue to blue-green light is emitted.

【0018】本発明のアルカリ土類金属のアルミノ珪酸
塩蛍光体は、単斜晶系若しくは三斜晶系の結晶を主相と
するものである。その組成式は(M1-x Eux )O・a
Al 2 3 ・bSiO2 (式中、MはBa,Sr及びC
aの群から選択される少なくとも1種のアルカリ土類金
属元素を表し、x=0.02〜1、a=0.9〜1.
1、b=1.8〜2.2の範囲の数である、以下同様で
ある。)で表され、その結晶の主相が単斜晶系若しくは
三斜晶系であるとき、真空紫外線励起による青色から青
緑色発光の強度の強い蛍光体を得ることができるので好
ましい。
Alkaline Earth Metal Aluminosilicates of the Invention
The salt phosphor has a monoclinic or triclinic crystal as the main phase.
To do. Its composition formula is (M1-xEux) Oa
Al 2O3・ BSiO2(Where M is Ba, Sr and C
at least one alkaline earth gold selected from the group a)
Represents a genus element, x = 0.02-1, a = 0.9-1.
1, b is a number in the range of 1.8 to 2.2, and so on.
is there. ), The main phase of the crystal is monoclinic or
When it is a triclinic system, it changes from blue to blue due to vacuum ultraviolet excitation.
Since it is possible to obtain a phosphor with a high green emission intensity,
Good

【0019】この組成の蛍光体は、例えばアルカリ土類
金属元素MがBaでa=1、b=2の場合、蛍光体の母
体は組成式がBaAl2 Si2 8 (=BaO・Al2
3・2SiO2 )と表され、この母体結晶のBa位の
一部を付活剤である2価のEuで置換することにより発
光するものである。なお、この蛍光体の発光色は、付活
剤であるEuの置換量を増やすにしたがって、青色から
青緑色へと変化する。通常、蛍光体中の付活剤濃度を高
くしすぎると、濃度消光と呼ばれる発光効率が低下する
現象が見られるが、本発明の蛍光体においては、この濃
度消光は見られず、Eu置換量を変化させることにより
高効率の青色から青緑色の発光を示す蛍光体を得ること
ができる。ただし、Eu置換量が少なすぎると、発光中
心の量が不足し、発光強度が低下する。Eu置換量を変
えて上記の蛍光体を製造して真空紫外線励起下での発光
強度を調べたところ、Eu置換量(x値)を0.02≦
x≦1の範囲に調整したときに、特に高効率に青色から
青緑色の発光を示すことを見いだした。なお、Eu置換
量(x値)のより好ましい範囲は0.1≦x≦1であ
る。
In the phosphor of this composition, for example, when the alkaline earth metal element M is Ba and a = 1 and b = 2, the matrix of the phosphor has a composition formula of BaAl 2 Si 2 O 8 (= BaO.Al 2
O 3 · 2SiO 2 ), and it emits light by substituting a part of the Ba position of this host crystal with divalent Eu as an activator. The emission color of this phosphor changes from blue to blue-green as the substitution amount of Eu as an activator increases. Usually, when the concentration of the activator in the phosphor is too high, a phenomenon called concentration quenching in which the luminous efficiency is reduced is observed, but in the phosphor of the present invention, this concentration quenching is not observed, and the Eu substitution amount It is possible to obtain a highly efficient phosphor that emits blue to blue-green light by changing. However, if the amount of substitution of Eu is too small, the amount of emission centers will be insufficient, and the emission intensity will decrease. When the above phosphors were manufactured by changing the Eu substitution amount and the emission intensity under the vacuum ultraviolet ray excitation was examined, the Eu substitution amount (x value) was 0.02 ≦.
It has been found that blue to blue-green light emission is exhibited particularly efficiently when adjusted to a range of x ≦ 1. A more preferable range of the Eu substitution amount (x value) is 0.1 ≦ x ≦ 1.

【0020】本発明の蛍光体の結晶系は、JCPDSと
蛍光体のX線回折データを比較することにより確認でき
る。図1に、組成式が(Ba0.9 Eu0.1 )Al2 Si
2 8 である本発明の蛍光体の粉末回折X線スペクトル
を示す。このスペクトルはJCPDSが発表している単
斜晶系のBaAl2 Si2 8 のデータと同一のパター
ンとなっている。
The crystal system of the phosphor of the present invention can be confirmed by comparing the X-ray diffraction data of JCPDS with that of the phosphor. In FIG. 1, the composition formula is (Ba 0.9 Eu 0.1 ) Al 2 Si
2 shows a powder diffraction X-ray spectrum of a phosphor of the present invention which is 2 O 8 . This spectrum has the same pattern as the data of monoclinic BaAl 2 Si 2 O 8 announced by JCPDS.

【0021】図2は、組成式が(Ba0.9 Eu0.1 )A
2 Si2 8 である本発明の蛍光体の真空紫外線領域
から紫外線領域に渡る励起スペクトルを例示した図であ
る。図2の横軸は、この蛍光体に照射された真空紫外線
及び紫外線の波長であり、縦軸の相対量子効率は、各波
長の真空紫外線及び紫外線を照射したときの蛍光体の発
光強度及び120〜300nmの波長範囲において一定
の量子効率を持つサリチル酸ナトリウムの発光強度を測
定し、サリチル酸ナトリウムの発光の量子効率を100
としたときの相対値として示したものである。
FIG. 2 shows that the composition formula is (Ba 0.9 Eu 0.1 ) A.
l is a phosphor diagram illustrating an excitation spectrum over the UV range from vacuum ultraviolet ray region of the present invention which is a 2 Si 2 O 8. The horizontal axis of FIG. 2 represents the vacuum ultraviolet rays and the wavelengths of the ultraviolet rays with which this phosphor is irradiated, and the relative quantum efficiency of the vertical axis is the emission intensity of the phosphor when irradiated with the vacuum ultraviolet rays and ultraviolet rays of each wavelength, and 120. The emission intensity of sodium salicylate having a constant quantum efficiency in the wavelength range of up to 300 nm is measured, and the emission quantum efficiency of sodium salicylate is 100%.
Is shown as a relative value.

【0022】図2から明らかなように、本発明の蛍光体
は、波長200〜300nmの紫外線波長域の外に、波
長120〜200nmの真空紫外線波長域においても高
い量子効率を維持していることがわかる。
As is clear from FIG. 2, the phosphor of the present invention maintains a high quantum efficiency in the wavelength range of 120 to 200 nm in the vacuum ultraviolet wavelength range as well as in the ultraviolet wavelength range of 200 to 300 nm. I understand.

【0023】図3は、Eu濃度(x値)の異なる本発明
のアルカリ土類金属アルミノ珪酸塩蛍光体の1つであ
る、アルミノ珪酸バリウム蛍光体〔(Ba1-x Eux
Al2Si2 8 〕を波長が146nmの真空紫外線で
励起したときの各発光スペクトルを示したものであり、
図中、曲線a,b,c,d及びeはそれぞれ、Eu濃度
(x値)が0.02、0.10、0.30、0.50及
び0.90である場合のスペクトルである。このように
アルミノ珪酸バリウム蛍光体(Ba1-x Eux )Al2
Si2 8 は、付活剤Eu濃度(x値)の増加と共に発
光スペクトルのピーク波長が長波長側にシフトし、深青
色から青緑色へと変わる。
FIG. 3 is a barium aluminosilicate phosphor [(Ba 1-x Eu x ), which is one of the alkaline earth metal aluminosilicate phosphors of the present invention having different Eu concentrations (x values).
[Al 2 Si 2 O 8 ] is each emission spectrum when excited by vacuum ultraviolet light having a wavelength of 146 nm,
In the figure, curves a, b, c, d and e are spectra when the Eu concentration (x value) is 0.02, 0.10, 0.30, 0.50 and 0.90, respectively. Thus, the barium aluminosilicate phosphor (Ba 1-x Eu x ) Al 2
With Si 2 O 8 , the peak wavelength of the emission spectrum shifts to the long wavelength side as the activator Eu concentration (x value) increases, and changes from deep blue to blue green.

【0024】なお、例示していないが、本発明のEu付
活アルカリ土類金属アルミノ珪酸塩蛍光体を真空紫外線
で励起するときの発光スペクトルはアルカリ土類金属元
素がBa以外であっても、その発光スペクトルは図3に
例示したスペクトルとほぼ同様の発光スペクトルを有
し、Eu濃度(x値)の増加と共に発光スペクトルのピ
ーク波長が長波長側にシフトし、発光色が変わることが
分かった。
Although not illustrated, the emission spectrum of the Eu-activated alkaline earth metal aluminosilicate phosphor of the present invention when excited by vacuum ultraviolet rays is as follows even if the alkaline earth metal element is other than Ba. The emission spectrum has almost the same emission spectrum as that illustrated in FIG. 3, and it was found that the peak wavelength of the emission spectrum shifts to the long wavelength side as the Eu concentration (x value) increases, and the emission color changes. .

【0025】本発明の真空紫外線励起発光素子は、上記
のアルカリ土類金属のアルミノ珪酸塩蛍光体を含有した
蛍光膜を外囲器の内部に形成したものである。その蛍光
膜は次のようにして製造される。まず、上記のアルカリ
土類金属のアルミノ珪酸塩蛍光体とエチルセルロース、
ニトロセルロース、ポリエチレンオキサイド、アクリル
樹脂等のバインダー樹脂と、更に、粘度調整のための、
水、酢酸ブチル、ブチルカルビトール、テルピネオール
等の溶媒とを混合し、十分に混練して蛍光体ペースト組
成物を調製する。その蛍光体ペーストは外囲器の内部に
塗布し乾燥した後、ベーキングして外囲器の内部に蛍光
体塗布膜を形成する。
The VUV-excited light-emitting device of the present invention has a phosphor film containing the above-described alkaline earth metal aluminosilicate phosphor formed inside an envelope. The fluorescent film is manufactured as follows. First, the alkaline earth metal aluminosilicate phosphor and ethyl cellulose,
Binder resin such as nitrocellulose, polyethylene oxide, acrylic resin, and further for viscosity adjustment,
A phosphor paste composition is prepared by mixing water, a solvent such as butyl acetate, butyl carbitol, and terpineol, and thoroughly kneading. The phosphor paste is applied to the inside of the envelope, dried, and then baked to form a phosphor coating film inside the envelope.

【0026】蛍光体の輝度及び色度の測定をするための
蛍光体サンプルは、直径15mm、深さ1mmの凹みを
有するセルに蛍光体粉末を押し詰めてガラス板でその表
面を平らにならして平滑面を形成し、その平滑面に14
6nmの真空紫外線を照射して発光させ、その時の色度
及び発光輝度を測定した。青色蛍光体の輝度はその発光
色(色度点のy値)に比例して大きく変化する。発光色
y値の異なる蛍光体間の発光効率を比較する簡便な方法
として輝度をy値で割った(輝度/y)値(以降、刺激
和と呼ぶ)で比較することが一般に行われている。そこ
で本発明においても、蛍光体間の発光効率は刺激和を使
って比較する。
The phosphor sample for measuring the brightness and chromaticity of the phosphor is prepared by pressing the phosphor powder into a cell having a recess having a diameter of 15 mm and a depth of 1 mm and flattening the surface with a glass plate. To form a smooth surface, and
A 6 nm vacuum ultraviolet ray was irradiated to emit light, and the chromaticity and emission luminance at that time were measured. The brightness of the blue phosphor greatly changes in proportion to the emission color (y value of the chromaticity point). As a simple method for comparing the luminous efficiencies between phosphors having different emission color y values, it is common practice to compare the luminance by dividing the luminance by the y value (luminance / y) value (hereinafter referred to as stimulus sum). . Therefore, also in the present invention, the luminous efficiency between the phosphors is compared using the stimulus sum.

【0027】[0027]

【実施例】次に実施例により本発明を説明する。 (実施例1) BaCO3 0.98 モル Eu2 3 0.01 モル Al2 3 0.926モル SiO2 2 モル AlF3 0.148モル 上記の蛍光体原料を十分に混合し、アルミナ坩堝に充填
し、還元雰囲気中で、最高温度1300℃で昇降温時間
を含め24時間かけて焼成した。この焼成物を分散、水
洗、乾燥、篩分の各処理を施し、組成が(Ba0.98Eu
0.02)Al2 Si2 8 のEu付活アルミノ珪酸塩蛍光
体を得た。この蛍光体のCuKα1の特性X線による粉
末回折X線スペクトルを測定したところ、図1に示した
蛍光体とほぼ同じパターンを示し、蛍光体は単斜晶系を
主相にしていることが確認された。
The present invention will be described below with reference to examples. (Example 1) BaCO 3 0.98 moles Eu 2 O 3 were mixed thoroughly 0.01 mole Al 2 O 3 0.926 mol SiO 2 2 mol AlF 3 0.148 moles above phosphor materials, an alumina crucible And was fired in a reducing atmosphere at a maximum temperature of 1300 ° C. for 24 hours including a temperature raising / lowering time. The fired product was dispersed, washed with water, dried, and sieved to give a composition of (Ba 0.98 Eu).
A 0.02 ) Al 2 Si 2 O 8 Eu-activated aluminosilicate phosphor was obtained. The powder diffraction X-ray spectrum of the characteristic X-ray of CuKα1 of this phosphor was measured, and it was confirmed that the phosphor showed almost the same pattern as the phosphor shown in FIG. 1 and that the phosphor had a monoclinic system as the main phase. Was done.

【0028】この蛍光体に波長146nmの真空紫外線
を照射して発光色度を調べた。色度座標値はx=0.1
51、y=0.080であった。また、この蛍光体の輝
度を測定した。その輝度を基にした刺激和値(輝度/
y)を100とし、以降の実施例における蛍光体の発光
の刺激和はこれを基準とした相対刺激和値で表した。
This phosphor was irradiated with vacuum ultraviolet rays having a wavelength of 146 nm to examine the emission chromaticity. The chromaticity coordinate value is x = 0.1
51 and y = 0.080. In addition, the brightness of this phosphor was measured. Sum of stimuli based on the brightness (brightness /
y) was set to 100, and the stimulus sum of the luminescence of the phosphors in the following examples was expressed as a relative stimulus sum value based on this.

【0029】(実施例2〜8)使用した原料化合物と、
その配合比を表1のように変更してEu付活量を変化さ
せた以外は、実施例1と同様にして実施例2〜8のEu
付活アルミノ珪酸塩蛍光体を得た。実施例2〜8の各蛍
光体の組成は表2に示した。また、実施例2〜8の蛍光
体のCuKα1の特性X線による粉末回折X線スペクト
ルを測定したところ、実施例2〜8の蛍光体は全て単斜
晶系を主相にしていることが確認された。
(Examples 2 to 8) The starting material compounds used,
Eu of Examples 2 to 8 was performed in the same manner as in Example 1 except that the compounding ratio was changed as shown in Table 1 to change the Eu activation amount.
An activated aluminosilicate phosphor was obtained. The compositions of the phosphors of Examples 2 to 8 are shown in Table 2. Further, the powder diffraction X-ray spectra of the phosphors of Examples 2 to 8 by characteristic X-ray of CuKα1 were measured, and it was confirmed that all of the phosphors of Examples 2 to 8 had a monoclinic system as the main phase. Was done.

【0030】実施例2〜8のEu付活アルミノ珪酸塩蛍
光体に対し、実施例1と同一条件で、146nmの真空
紫外線を照射したときの、発光の色度座標値と、実施例
1の蛍光体の発光の刺激和を100としたときの相対刺
激和を各蛍光体の発光色度値(x値及びy値)と共に表
2に示した。
The Eu-activated aluminosilicate phosphors of Examples 2 to 8 were irradiated with vacuum ultraviolet rays of 146 nm under the same conditions as in Example 1, and the chromaticity coordinate values of the emission and the chromaticity coordinate values of Example 1 were measured. Table 2 shows the relative sum of stimuli when the sum of the stimuli of luminescence of the phosphors was 100, together with the luminescence chromaticity values (x value and y value) of each phosphor.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】(実施例9〜16)使用した原料化合物
と、その配合比を表3のように変更した以外は、実施例
1と同様にして実施例9〜16のEu付活アルミノ珪酸
塩蛍光体を得た。実施例9〜16の各蛍光体の組成は各
蛍光体の発光色度値(x値及びy値)と共に表4に示し
た。実施例9〜16の蛍光体のCuKα1の特性X線に
よる粉末回折X線スペクトルを測定したところ、実施例
9〜15の蛍光体は単斜晶系を有するバリウムアルミノ
珪酸塩とストロンチウムアルミノ珪酸塩の固溶体を主相
とし、実施例16の蛍光体は単斜晶系のストロンチウム
アルミノ珪酸塩の結晶になっていることが確認できた。
図4(a)は実施例16のストロンチウムアルミノ珪酸
塩蛍光体{(Sr0.9 Eu0.1 )Al2 Si2 8 }の
粉末回折X線スペクトルである。
Examples 9 to 16 Eu-activated aluminosilicate fluorescent materials of Examples 9 to 16 were prepared in the same manner as in Example 1 except that the starting compounds used and the compounding ratios thereof were changed as shown in Table 3. Got the body The composition of each phosphor of Examples 9 to 16 is shown in Table 4 together with the emission chromaticity values (x value and y value) of each phosphor. The powder diffraction X-ray spectra of the phosphors of Examples 9 to 16 by characteristic X-ray of CuKα1 were measured, and the phosphors of Examples 9 to 15 were composed of barium aluminosilicate and strontium aluminosilicate having a monoclinic system. It was confirmed that the solid solution was the main phase and the phosphor of Example 16 was a monoclinic strontium aluminosilicate crystal.
FIG. 4A is a powder diffraction X-ray spectrum of the strontium aluminosilicate phosphor {(Sr 0.9 Eu 0.1 ) Al 2 Si 2 O 8 } of Example 16.

【0034】実施例9〜16のEu付活アルミノ珪酸塩
蛍光体に対し、実施例1と同一条件で、146nmの真
空紫外線を照射したときの、発光の色度座標値と、実施
例1の蛍光体の発光の刺激和を100とした時の相対刺
激和を各蛍光体の発光色度値(x値及びy値)と共に表
4に示した。
The Eu-activated aluminosilicate phosphors of Examples 9 to 16 were irradiated with vacuum ultraviolet rays of 146 nm under the same conditions as in Example 1, and the chromaticity coordinate values of light emission and that of Example 1. Table 4 shows the relative sum of stimuli with the stimulus sum of luminescence of the phosphor being 100, together with the luminescence chromaticity values (x value and y value) of each phosphor.

【0035】[0035]

【表3】 [Table 3]

【0036】[0036]

【表4】 [Table 4]

【0037】(実施例17〜24)使用した原料化合物
と、その配合比を表5のように変更した以外は、実施例
1と同様にして実施例17〜24のEu付活アルミノ珪
酸塩蛍光体を得た。実施例17〜24の各蛍光体の組成
は各蛍光体の発光色度値(x値及びy値)と共に表6に
示した。実施例17〜24の蛍光体のCuKα1の特性
X線による粉末回折X線スペクトルを測定したところ、
実施例17〜24の蛍光体は単斜晶系のバリウムアルミ
ノ珪酸塩と三斜晶系のカルシウムアルミノ珪酸塩の混晶
体になっていることが確認された。図4(b)に、実施
例24の(Ca0.9 Eu0.1 )Al2Si2 8 の粉末
回折X線スペクトルを例示した。
(Examples 17 to 24) Eu-activated aluminosilicate fluorescent materials of Examples 17 to 24 were prepared in the same manner as in Example 1 except that the starting compounds used and the compounding ratios thereof were changed as shown in Table 5. Got the body The composition of each phosphor of Examples 17 to 24 is shown in Table 6 together with the emission chromaticity values (x value and y value) of each phosphor. When the powder diffraction X-ray spectra by the characteristic X-rays of CuKα1 of the phosphors of Examples 17 to 24 were measured,
It was confirmed that the phosphors of Examples 17 to 24 were a mixed crystal of monoclinic barium aluminosilicate and triclinic calcium aluminosilicate. FIG. 4B illustrates the powder diffraction X-ray spectrum of (Ca 0.9 Eu 0.1 ) Al 2 Si 2 O 8 of Example 24.

【0038】実施例17〜24のEu付活アルミノ珪酸
塩蛍光体に対し、実施例1と同一条件で、146nmの
真空紫外線を照射したときの、発光の色度座標値と、実
施例1の蛍光体の発光の刺激和を100とした時の相対
刺激和を各蛍光体の発光色度値(x値及びy値)と共に
表6に示した。
The Eu-activated aluminosilicate phosphors of Examples 17 to 24 were irradiated with vacuum ultraviolet rays of 146 nm under the same conditions as in Example 1, and the chromaticity coordinate values of the emitted light and the value of Example 1. Table 6 shows the relative sum of stimuli when the sum of stimuli of luminescence of the phosphors was 100, together with the luminescence chromaticity values (x value and y value) of each phosphor.

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【表6】 [Table 6]

【0041】 (実施例25) BaCO3 0.9 モル Eu2 3 0.05 モル Al2 3 1 モル SiO2 2 モル LiF 0.480モル 原料化合物の配合比を上記のように変更した以外は、実
施例1と同様にして実施例25の組成(Ba0.9 Eu
0.1 )Al2 Si2 8 のEu付活アルミノ珪酸塩蛍光
体を得た。この蛍光体のCuKα1の特性X線による粉
末回折X線スペクトルを測定したところ、ほぼ単斜晶系
であることが確認された。
Example 25 BaCO 3 0.9 mol Eu 2 O 3 0.05 mol Al 2 O 3 1 mol SiO 2 2 mol LiF 0.480 mol Other than changing the compounding ratio of the raw material compounds as described above In the same manner as in Example 1 except that the composition of Example 25 (Ba 0.9 Eu
0.1 ) An Eu-activated aluminosilicate phosphor of Al 2 Si 2 O 8 was obtained. When the powder diffraction X-ray spectrum of CuKα1 of this phosphor was measured by a characteristic X-ray, it was confirmed to be almost monoclinic.

【0042】この蛍光体に対し、実施例1と同一条件で
波長146nmの真空紫外線を照射したところ、発光の
色度座標値はx=0.157、y=0.109であっ
た。さらに、実施例1の蛍光体の発光の刺激和を100
としたときの、発光の相対刺激和は146であった。
When this phosphor was irradiated with vacuum ultraviolet rays having a wavelength of 146 nm under the same conditions as in Example 1, the emission chromaticity coordinate values were x = 0.157 and y = 0.109. Further, the stimulus sum of the luminescence of the phosphor of Example 1 is set to 100.
The sum of relative stimuli of luminescence was 146.

【0043】 (実施例26) BaCO3 0.9 モル Eu2 3 0.05 モル Al2 3 1 モル SiO2 2 モル NH4 F 0.336モル 原料化合物の配合比を上記のように変更した以外は、実
施例1と同様にして実施例26の組成(Ba0.9 Eu
0.1 )Al2 Si2 8 のEu付活アルミノ珪酸塩蛍光
体を得た。この蛍光体のCuKα1の特性X線による粉
末回折X線スペクトルを測定したところ、ほぼ単斜晶系
であることが確認された。
Example 26 BaCO 3 0.9 mol Eu 2 O 3 0.05 mol Al 2 O 3 1 mol SiO 2 2 mol NH 4 F 0.336 mol The compounding ratio of the raw material compounds was changed as described above. Except that, the composition of Example 26 (Ba 0.9 Eu) is obtained in the same manner as in Example 1.
0.1 ) An Eu-activated aluminosilicate phosphor of Al 2 Si 2 O 8 was obtained. When the powder diffraction X-ray spectrum of CuKα1 of this phosphor was measured by a characteristic X-ray, it was confirmed to be almost monoclinic.

【0044】この蛍光体に対し、実施例1と同一条件で
波長146nmの真空紫外線を照射したところ、発光の
色度座標値はx=0.150、y=0.087であっ
た。さらに、実施例1の蛍光体の発光の刺激和を100
としたときの、発光の相対刺激和は148であった。
When this phosphor was irradiated with vacuum ultraviolet rays having a wavelength of 146 nm under the same conditions as in Example 1, the chromaticity coordinate values of the emitted light were x = 0.150 and y = 0.087. Further, the stimulus sum of the luminescence of the phosphor of Example 1 is set to 100.
Was 148, and the relative stimulation sum of luminescence was 148.

【0045】 (比較例1) BaCO3 0.9 モル Eu2 3 0.05 モル Al2 3 1 モル SiO2 2 モル 原料化合物の配合比を上記のように変更した以外は、実
施例1と同様にして比較例1の組成(Ba0.9
0.1 )Al2 Si2 8 のEu付活アルミノ珪酸塩蛍
光体を得た。この蛍光体のCuKα1の特性X線による
粉末回折X線スペクトルを測定したところ、ほぼ六方晶
系であることが確認された。
Comparative Example 1 BaCO 3 0.9 mol Eu 2 O 3 0.05 mol Al 2 O 3 1 mol SiO 2 2 mol Example 1 except that the compounding ratio of the raw material compounds was changed as described above. The composition of Comparative Example 1 (Ba 0.9 E
An Eu-activated aluminosilicate phosphor of u 0.1 ) Al 2 Si 2 O 8 was obtained. The powder diffraction X-ray spectrum of this phosphor with CuKα1 characteristic X-ray was measured, and as a result, it was confirmed to be almost hexagonal.

【0046】この蛍光体に対し、実施例1と同一条件で
波長146nmの真空紫外線を照射したところ、主たる
発光は波長370nmをピークとした紫外発光となり、
発光の色度座標値はx=0.199、y=0.166で
あった。
When this phosphor was irradiated with vacuum ultraviolet rays having a wavelength of 146 nm under the same conditions as in Example 1, the main emission was ultraviolet emission having a peak wavelength of 370 nm,
The chromaticity coordinate values of the emitted light were x = 0.199 and y = 0.166.

【0047】[0047]

【発明の効果】本発明は、上記の構成を採用することに
より、波長200nm以下の真空紫外線によって励起さ
れると高輝度の青色若しくは青緑色の発光を示すアルカ
リ土類金属のアルミノ珪酸塩蛍光体を提供することがで
き、真空紫外線励起発光素子の蛍光膜に適用することに
よって優れた青色から青緑色発光の真空紫外線励起発光
素子の提供を可能にした。
EFFECTS OF THE INVENTION The present invention, by adopting the above-mentioned constitution, exhibits an alkaline earth metal aluminosilicate phosphor that emits blue or blue-green light with high brightness when excited by vacuum ultraviolet rays having a wavelength of 200 nm or less. It is possible to provide a VUV-excited light-emitting device that emits excellent blue to blue-green light by applying it to the fluorescent film of the VUV-excited light-emitting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】組成式が(Ba0.9 Eu0.1 )Al2 Si2
8 である本発明の蛍光体の粉末回折X線スペクトルであ
る。
FIG. 1 has a composition formula of (Ba 0.9 Eu 0.1 ) Al 2 Si 2 O.
9 is a powder diffraction X-ray spectrum of the phosphor of the present invention which is No. 8 ;

【図2】組成式が(Ba0.9 Eu0.1 )Al2 Si2
8 である本発明の蛍光体の真空紫外線〜紫外線の波長領
域における励起スペクトルである。
FIG. 2 is a composition formula of (Ba 0.9 Eu 0.1 ) Al 2 Si 2 O.
FIG. 8 is an excitation spectrum in the wavelength range from vacuum ultraviolet rays to ultraviolet rays of the phosphor of the present invention which is No.

【図3】Eu濃度の異なる本発明の各アルミノ珪酸塩蛍
光体を真空紫外線で励起した時の発光スペクトルであ
る。
FIG. 3 is an emission spectrum when each aluminosilicate phosphor of the present invention having a different Eu concentration is excited by vacuum ultraviolet light.

【図4】組成式が(Sr0.9 Eu0.1 )Al2 Si2
8 である本発明の蛍光体(曲線a)及び組成式が(Ca
0.9 Eu0.1 )Al2 Si2 8 である本発明の蛍光体
(曲線b)の粉末回折X線スペクトルである。
FIG. 4 is a composition formula of (Sr 0.9 Eu 0.1 ) Al 2 Si 2 O
8 of the present invention (curve a) and the composition formula is (Ca
3 is a powder diffraction X-ray spectrum of the phosphor of the present invention (curve b) which is 0.9 Eu 0.1 ) Al 2 Si 2 O 8 .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01J 61/44 H01J 61/44 N Fターム(参考) 4H001 CF02 XA08 XA13 XA14 XA20 XA38 XA56 YA63 5C040 GG08 KA20 KB08 KB28 MA10 5C043 AA07 CC09 DD28 EB04 EC16 EC20 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01J 61/44 H01J 61/44 NF term (reference) 4H001 CF02 XA08 XA13 XA14 XA20 XA38 XA56 YA63 5C040 GG08 KA20 KB08 KB28 MA10 5C043 AA07 CC09 DD28 EB04 EC16 EC20

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Ba、Sr及びCaの群から選択される
少なくとも1種のアルカリ土類金属元素とAl元素とS
i元素とEu元素とをそれぞれ含有し、波長200nm
以下の真空紫外線で励起すると青色若しくは青緑色に発
光することを特徴とする真空紫外線励起用アルカリ土類
金属のアルミノ珪酸塩蛍光体。
1. At least one alkaline earth metal element, Al element and S selected from the group of Ba, Sr and Ca.
Each contains i element and Eu element, and has a wavelength of 200 nm.
An alkaline earth metal aluminosilicate phosphor for exciting vacuum ultraviolet rays, which emits blue or blue-green light when excited by the following vacuum ultraviolet rays.
【請求項2】 前記アルカリ土類金属のアルミノ珪酸塩
蛍光体が、下記一般式で表され、波長200nm以下の
真空紫外線で励起すると青色若しくは青緑色に発光する
ことを特徴とする真空紫外線励起用アルカリ土類金属の
アルミノ珪酸塩蛍光体。 (M1-x Eux )O・aAl2 3 ・bSiO2 (但し、上記式中、MはBa,Sr及びCaの群から選
択される少なくとも1種のアルカリ土類金属元素を表
し、x=0.02〜1.0、a=0.9〜1.1、,b
=1.8〜2.2の条件を満たす数である)
2. A vacuum ultraviolet ray excitation, wherein the alkaline earth metal aluminosilicate phosphor is represented by the following general formula and emits blue or blue green when excited by vacuum ultraviolet ray having a wavelength of 200 nm or less. Alkaline earth metal aluminosilicate phosphor. (M 1-x Eu x ) O · aAl 2 O 3 · bSiO 2 (wherein, M represents at least one alkaline earth metal element selected from the group consisting of Ba, Sr and Ca, and x = 0.02-1.0, a = 0.9-1.1, b
= A number satisfying the conditions of 1.8 to 2.2)
【請求項3】 前記アルカリ土類金属のアルミノ珪酸塩
蛍光体は、その結晶系が単斜晶系若しくは三斜晶系であ
る結晶を主相とすることを特徴とする請求項1又は2に
記載の真空紫外線励起用アルカリ土類金属のアルミノ珪
酸塩蛍光体。
3. The alkaline earth metal aluminosilicate phosphor has as a main phase a crystal whose crystal system is a monoclinic system or a triclinic system. An alkaline earth metal aluminosilicate phosphor for excitation by vacuum ultraviolet ray as described above.
【請求項4】 Ba、Sr及びCaの群から選択される
少なくとも1種のアルカリ土類金属元素とAl元素とS
i元素とEu元素とをそれぞれ含有する、波長200n
m以下の真空紫外線で励起されて青色若しくは青緑色に
発光するアルカリ土類金属のアルミノ珪酸塩蛍光体の製
造方法において、蛍光体原料をフッ素化合物の存在下で
焼成することを特徴とする真空紫外線励起用アルカリ土
類金属のアルミノ珪酸塩蛍光体の製造方法。
4. At least one alkaline earth metal element, Al element and S selected from the group consisting of Ba, Sr and Ca.
Wavelength 200n containing i element and Eu element, respectively
In the method for producing an alkaline earth metal aluminosilicate phosphor that emits blue or blue-green light when excited with vacuum ultraviolet light of m or less, the vacuum ultraviolet light is characterized in that the phosphor material is fired in the presence of a fluorine compound. Method for producing aluminosilicate phosphor of alkaline earth metal for excitation.
【請求項5】 外囲器の内部に蛍光膜を有し、前記外囲
器内に封入された希ガスの放電によって発生する、波長
200nm以下の真空紫外線により励起して前記蛍光膜
を発光させる真空紫外線励起発光素子において、前記蛍
光膜が、請求項1〜3のいづれか一項に記載のアルカリ
土類金属のアルミノ珪酸塩蛍光体を含有することを特徴
とする真空紫外線励起発光素子。
5. The fluorescent film is provided inside the envelope, and the fluorescent film is caused to emit light by being excited by vacuum ultraviolet rays having a wavelength of 200 nm or less generated by discharge of a rare gas enclosed in the envelope. A VUV-excited light-emitting device, wherein the phosphor film contains the alkaline earth metal aluminosilicate phosphor according to any one of claims 1 to 3.
JP2001214179A 2001-07-13 2001-07-13 Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same Pending JP2003027054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001214179A JP2003027054A (en) 2001-07-13 2001-07-13 Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001214179A JP2003027054A (en) 2001-07-13 2001-07-13 Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same

Publications (1)

Publication Number Publication Date
JP2003027054A true JP2003027054A (en) 2003-01-29

Family

ID=19049042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001214179A Pending JP2003027054A (en) 2001-07-13 2001-07-13 Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same

Country Status (1)

Country Link
JP (1) JP2003027054A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019375A1 (en) * 2003-08-21 2005-03-03 Sumitomo Chemical Company, Limited Phosphor and vacuum ultraviolet excited light emitting element
JP2006064982A (en) * 2004-08-26 2006-03-09 Nippon Flour Mills Co Ltd Clay composition, manufacturing method therefor and molding kit
EP1900790A1 (en) * 2005-04-08 2008-03-19 National Institute of Advanced Industrial Science and Technology Stress luminescent material, process for producing the same, composite material containing the stress luminescent material, and matrix structure of the stress luminescent material
CN102863954A (en) * 2011-07-08 2013-01-09 海洋王照明科技股份有限公司 Europium-doped calcium silicate luminescent material and preparation method and application thereof
CN107011895A (en) * 2017-05-26 2017-08-04 厦门科煜光电有限公司 A kind of preparation method of blue-green LED luminescent material
CN116875303A (en) * 2023-06-02 2023-10-13 常熟理工学院 Aluminate-based red luminescent material and preparation method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845480A (en) * 1971-10-07 1973-06-29
JPS61145278A (en) * 1984-12-19 1986-07-02 Nichia Kagaku Kogyo Kk Phosphor
JP2001181622A (en) * 1999-12-24 2001-07-03 Kasei Optonix Co Ltd Europium activated compound oxide fluorescent substance
JP2001303039A (en) * 2000-04-18 2001-10-31 Konica Corp Inorganic fluorescent substance and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845480A (en) * 1971-10-07 1973-06-29
JPS61145278A (en) * 1984-12-19 1986-07-02 Nichia Kagaku Kogyo Kk Phosphor
JP2001181622A (en) * 1999-12-24 2001-07-03 Kasei Optonix Co Ltd Europium activated compound oxide fluorescent substance
JP2001303039A (en) * 2000-04-18 2001-10-31 Konica Corp Inorganic fluorescent substance and method for producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005019375A1 (en) * 2003-08-21 2005-03-03 Sumitomo Chemical Company, Limited Phosphor and vacuum ultraviolet excited light emitting element
JP2006064982A (en) * 2004-08-26 2006-03-09 Nippon Flour Mills Co Ltd Clay composition, manufacturing method therefor and molding kit
JP4616595B2 (en) * 2004-08-26 2011-01-19 日本製粉株式会社 Clay composition, method for producing the same, and kit for modeling
EP1900790A1 (en) * 2005-04-08 2008-03-19 National Institute of Advanced Industrial Science and Technology Stress luminescent material, process for producing the same, composite material containing the stress luminescent material, and matrix structure of the stress luminescent material
EP1900790A4 (en) * 2005-04-08 2008-09-17 Nat Inst Of Advanced Ind Scien Stress luminescent material, process for producing the same, composite material containing the stress luminescent material, and matrix structure of the stress luminescent material
CN102863954A (en) * 2011-07-08 2013-01-09 海洋王照明科技股份有限公司 Europium-doped calcium silicate luminescent material and preparation method and application thereof
CN102863954B (en) * 2011-07-08 2014-05-21 海洋王照明科技股份有限公司 Europium-doped calcium silicate luminescent material and preparation method and application thereof
CN107011895A (en) * 2017-05-26 2017-08-04 厦门科煜光电有限公司 A kind of preparation method of blue-green LED luminescent material
CN107011895B (en) * 2017-05-26 2019-04-09 厦门科煜光电有限公司 A kind of preparation method of blue-green LED luminescent material
CN116875303A (en) * 2023-06-02 2023-10-13 常熟理工学院 Aluminate-based red luminescent material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4396016B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
JPH101666A (en) Aluminate salt fluorescent substance, its production and vacuum ultraviolet light-exciting light-emitting element
JP3775377B2 (en) Manganese-activated aluminate phosphor, method for producing the same, and vacuum ultraviolet-excited light emitting device
JP2000303065A (en) Phosphor for vacuum ultraviolet ray, phosphor paste composition and luminescent element excited by vacuum ultraviolet ray
JP2003027054A (en) Aluminosilicate phosphor excitable with vacuum ultraviolet ray, method for producing the same, and vacuum-ultraviolet-ray-excitable luminescent element using the same
JP4157324B2 (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP4046542B2 (en) Calcium silicate / magnesium phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP3856356B2 (en) Phosphor paste composition and vacuum ultraviolet light-excited light emitting device
JP4032173B2 (en) Phosphor and light emitting device
JP4146173B2 (en) Bivalent metal silicate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device using the same
JP2004231786A (en) Phosphor and light-emitting device
JP4517783B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
JP2004131677A (en) Divalent metal silicate phosphor, method for producing the same, and phosphor paste composition and vacuum ultraviolet light-excited light-emitting element by using the same
JPH09157644A (en) Aluminate fluorescent substance, its production and discharge apparatus using the same fluorescent substance
JP4244265B2 (en) Aluminate phosphor, phosphor paste composition, and vacuum ultraviolet light-excited light emitting device
JP2007099909A (en) Mixed phosphor, phosphor paste composition and vacuum ultraviolet light-excited light emitting element
JP4601241B2 (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP2002294230A (en) Aluminosilicate phosphor for vacuum ultraviolet excitation and vacuum ultraviolet-excited light-emitting element obtained using the same
JP4517781B2 (en) Rare earth boroaluminate phosphor and light emitting device using the same
JP2004231930A (en) Bivalent metal silicate phosphor, its production method as well as phosphor paste composition and vacuum ultraviolet ray-excited light emitting element using the phosphor
JP2004026922A (en) Fluorescent substance for vacuum ultraviolet light excitation light emission element
JP4014442B2 (en) Alkaline earth aluminate phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP4147915B2 (en) Blue phosphor for vacuum ultraviolet light-emitting device
JP4232559B2 (en) Phosphor for vacuum ultraviolet light-emitting device
JP2004091538A (en) Vacuum ultraviolet light-exciting fluorescent substance and light-emitting element

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070830

A621 Written request for application examination

Effective date: 20080704

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A977 Report on retrieval

Effective date: 20110609

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110614

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A02