WO2005080023A1 - Process for producing cast item - Google Patents

Process for producing cast item Download PDF

Info

Publication number
WO2005080023A1
WO2005080023A1 PCT/JP2005/002893 JP2005002893W WO2005080023A1 WO 2005080023 A1 WO2005080023 A1 WO 2005080023A1 JP 2005002893 W JP2005002893 W JP 2005002893W WO 2005080023 A1 WO2005080023 A1 WO 2005080023A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
aggregate
aggregate mixture
water
core
Prior art date
Application number
PCT/JP2005/002893
Other languages
French (fr)
Japanese (ja)
Inventor
Yusuke Kato
Toshihiko Zenpo
Norihiro Asano
Masahiko Nagasaka
Kazuyuki Nishikawa
Original Assignee
Sintokogio, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio, Ltd. filed Critical Sintokogio, Ltd.
Priority to AT05710586T priority Critical patent/ATE509714T1/en
Priority to CN200580005550.1A priority patent/CN1921969B/en
Priority to EP05710586A priority patent/EP1721689B1/en
Priority to JP2006510291A priority patent/JP3948490B2/en
Priority to US10/590,354 priority patent/US20070137825A1/en
Publication of WO2005080023A1 publication Critical patent/WO2005080023A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/005Removing cores by vibrating or hammering

Definitions

  • the present invention relates to a method for producing a product, and more particularly to a method for producing a product using a mold that can be easily removed instead of a conventional shell molding process.
  • a shell mold process As a conventional method for producing a light alloy preform, for example, as described in JP-A-5-26148, a shell mold process is known.
  • a binder for the shell mold process a binder containing a phenol-formaldehyde resin is used.
  • the sand coated with the binder is blown into a heated molding die, and the binder coated on the filled sand is cured by the heat of the die.
  • articulate aggregate refers to one or more of silica sand, zircon, sand, olivine sand, chromite sand, alumina sand, mullite sand, artificial sand, and the like. Consisting of To taste.
  • cooling period of the object is a period during which the object is cooled below the temperature at which the object is cooled to such an extent that the object is not deformed even when the object is removed from the finished mold. Is shown.
  • the object is cooled to a temperature lower than the solution heat treatment temperature of about 520 ° C but higher than the normal cooling temperature of 70 to 111 ° C, for example, 300 ° C. Indicates the rejected period.
  • a method for producing a animal comprising:
  • an aggregate mixture by mixing at least one kind of particulate aggregate, at least one kind of water-soluble binder, and water, stirring the aggregate mixture and foaming; and a step of foaming the aggregate mixture.
  • the water in the filled aggregate mixture is evaporated to solidify the aggregate mixture, and a mold is formed by the particulate aggregate, and
  • the mold III formed by the particulate aggregate is preferably a core III mold.
  • the other type II (main type II) may be a mold or a sand type.
  • the "completed mold” includes a combination of a main mold and at least one molded mold (core mold) molded with particulate aggregate.
  • core mold molded mold
  • the components of the finished mold can include elements necessary for pouring in addition to the main mold and the core mold.
  • the method of the present invention for producing a product may further include a step of recovering the particulate aggregate and a step of regenerating the collected particulate aggregate. It is preferable that the collected and regenerated particulate aggregate is reused in the molding of a rectangular shape.
  • the step of collecting and regenerating the particulate aggregate is mechanical regeneration.
  • the metal may be an aluminum alloy material, a magnesium alloy material, a copper alloy material, or the like.
  • the heat treatment may be T6 treatment or T7 treatment.
  • the step of removing the mold ⁇ is a step of adding vibration to the mold ⁇ . This includes, for example, applying an impact force equal to or less than IMpa to Type III for less than 30 seconds at less than 30 Hz within 5 to 20 minutes after pouring.
  • a method for producing a substance provided by another aspect of the present invention includes a step of forming an aggregate mixture by mixing a particulate aggregate, at least one water-soluble binder, and water;
  • the aggregate mixture is agitated and foamed, and the foamed aggregate mixture is filled into a molding space for type III, and the moisture in the filled aggregate mixture is evaporated to solidify the aggregate mixture.
  • the method includes a step of removing the core mold from the solid during the cooling of the solid after the molten metal is solidified, and a step of performing a T6 or T7 heat treatment on the aluminum alloy.
  • the at least one water-soluble binder is at least one of polybutyl alcohol and a derivative thereof, or at least one of starch and a derivative thereof.
  • FIG. 1 is a flow chart schematically showing each step of the method for producing a product according to the present invention.
  • the aggregate mixture foamed in the previous step is filled in a space for mold making and solidified.
  • At least one or more molded molds are combined with a counterpart mold (main mold) to produce a completed mold (third (assembly) process) 3).
  • the core mold is removed from the solid and removed from the solid (fifth (mold removing) step 5).
  • the finished product is manufactured by subjecting the product to a heat treatment (sixth (heat treatment) step 6).
  • the particulate aggregate is at least one of silica sand, zircon, sand, olivine sand, chromite sand, alumina sand, mullite sand, artificial sand, and the like.
  • the water-soluble binder it is preferable to use a binder having water solubility at room temperature.
  • a water-soluble binder having water solubility at room temperature can form an aggregate mixture without heating, so that the time and energy required for heating the binder and the particulate aggregate can be saved. This is an advantage of the present invention as opposed to coated sand production in a conventional shell mold process.
  • the water-soluble binder used in the present invention is preferably one or both of polyvinyl alcohol or a derivative thereof, which is a water-soluble binder, and starch or a derivative thereof, but is not limited thereto.
  • the water-soluble binder can be easily volatilized or decomposed, the core-type can be easily removed from the solidified solid of the molten metal in the fifth (removal) step 5 described later.
  • the water-soluble binder is preferably contained in an amount of 0.1 to 5.0 parts by weight based on the particulate aggregate.
  • Such at least one water-soluble binder, at least one type of particulate aggregate, and water are mixed to form an aggregate mixture.
  • the aggregate mixture becomes whipped cream-like.
  • the moisture in the aggregate mixture filled in the mold-forming space is removed.
  • a hollow core type (core type) made of particulate aggregate is formed due to foaming in the previous step.
  • This hollow mold has a porosity of 3% to 60%.
  • the thickness of the hollow mold is, for example, about 40 mm
  • the water-soluble binder is agglomerated by 50% or more in the mold surface layer between the mold surface and the depth of 10 mm. That is, in the hollow mold made of the foamed aggregate mixture, the air bubbles dispersed in the aggregate mixture and the water contained in the binder are gathered in the center of the mold, and the water is evaporated to obtain the water. At the center of the mold, the packing density of the aggregate is low.
  • a finished mold can be formed by combining at least one core mold made of particulate aggregate with a main mold (a mating mold).
  • the main mold ⁇ may be a mold or a sand mold made of, for example, particulate aggregate.
  • a mold is adopted as the main mold and a low-pressure mold is applied.
  • the method of the present invention is not limited to low-pressure molding, and can be applied to other processes such as reverse pressure molding, die casting, and gravity mold molding.
  • the material of the molten metal to be poured into the completed mold is, in the present embodiment, a force which is an anoremium alloy.
  • a force which is an anoremium alloy.
  • Other light metal alloys other than those described above Alternatively, it may be a non-ferrous alloy (for example, a magnesium alloy or a copper alloy).
  • iron, steel, or an iron-based metal alloy may be used. However, when an iron-based metal is used, it would be desirable to apply a coating material to the core type.
  • step 5 during the cooling period (a period in which the object is cooled to a temperature lower than the temperature at which the object was cooled so that the object was not deformed even when the object was removed from the completed mold). ) Remove the core type from the animal.
  • ⁇ during the cooling period '' when the material of the molten metal in the fourth (pour) step 4 is an aluminum alloy is lower than the solution treatment temperature of about 520 ° C in the T6 treatment of the aluminum alloy, This is a period during which the animal is cooled to a temperature higher than the normal cooling temperature of 70 to 111 ° C, for example, 300 ° C.
  • the heat treatment in the sixth (heat treatment) step 6 is a T6 treatment, a T7 treatment, or another heat treatment.
  • a recovery process 7 for recovering core ⁇ type particulate aggregate (core sand) and a core lump a crushing process 8 for crushing a core lump, and mechanically regenerating the collected particulate aggregate
  • the recovered and regenerated particulate aggregate can be reused for core III molding.
  • Particulate aggregate Silica sand (Flaty sand) 100 parts by weight
  • Water-soluble binder Polyvier alcohol IP— 05 Nippon vinegar (Poval) 0.8 parts by weight
  • Crosslinking agent Butanetetracarboxylic acid (Likacid II-W, manufactured by Shin Nihon Rika) 0.2 parts by weight 100 parts by weight of an aggregate mixture having the composition shown in Table 1 and 6 parts by weight of water are mixed, stirred, kneaded and foamed. Then, a whipped cream-like aggregate mixture ⁇ was obtained.
  • Butanetetracarboxylic acid Likacid II-W, manufactured by Shin Nihon Rika
  • Particulate aggregate Silica sand (Flaty sand) 100 parts by weight
  • Water-soluble binder Polybutyl alcohol FL-05 Nippon Vinegar Bi ', manufactured by Poval 0.2 parts by weight, starch (Dextrin ND-S, manufactured by Nichisei Danigaku) 1.0 part by weight, and cunic acid (manufactured by Fuso Chemical) ) 0.4 parts by weight
  • a heating device required in the step of manufacturing a resin-coated sand in the conventional shell mold process and a deodorizing device for removing harmful gas generated by heating the resin are required. ,.
  • this mold is assembled with another mold to make a completed mold (third (assembly) step 3).
  • the core mold was incorporated into the main mold of the low-pressure molding apparatus, and a finished mold was manufactured to prepare for pouring.
  • the molten metal was poured into the completed mold No. 4 (fourth (pouring) step 4).
  • a molten aluminum alloy material AC4C (at a temperature of 720 ° C.) was poured from below using a low-pressure forming apparatus (not shown). The temperature of 720 ° C of the molten metal volatilizes or decomposes the binder, so that the removal of the core mold in the next step becomes easy.
  • the core ⁇ type was completely removed by applying an impact force of IMpa or less to a 350 ° C animal by light vibration at 20Hz for less than 20sec to remove the sand. Also, according to the experiment, in the time within 5 to 20 minutes after pouring, even if the sand was removed by applying an impact force of less than IMpa at less than 30 Hz for less than 30 seconds, the core-to-metal type was completely removed from the material.
  • the core-to-metal type was completely removed from the material.
  • the substance is subjected to a heat treatment.
  • (6th (heat treatment) step 6 the gate and burrs of the object are removed before the heat treatment of the object, but may be carried out after the heat treatment.
  • a core sand recovery step 7, a crushing step 8, and a mechanical regeneration step 110 shown in FIG. 1 may be added.
  • the particulate aggregate and the core lump are collected only from the core ⁇ , so that the collected and regenerated particulate aggregate is converted into the mold ⁇ . It can be easily reused.
  • FIG. 2 (Prior Art) shown for comparison is a process diagram of a conventional method of manufacturing a product using a shell mold process described in the above-mentioned Japanese Patent Application Laid-Open No. 5-261478.
  • a vegetable manufacturer heats a commercially available resin-coated sand to form a core mold (12), and replaces the molded core mold with another mold.
  • the core mold is removed from the mold using a sand dropping furnace (15), and the fish is sufficiently cooled (16).
  • the sand is completely removed by a knockout process (17), and the fish is heat-treated ( 18).
  • the core sand including the core lump is recovered from the knockout step 17, the heat treatment step 18 and the subsequent steps (19).
  • the recovered core sand is subjected to crushing, roasting, and mechanical regeneration of the core mass at a resin-coated sand mill, which is usually a different place from the place where the recovery step is performed. .
  • the fifth step (removal of type III) 5 can be achieved by a simple step, for example, sand removal by light vibration since the type III collapses easily.
  • the conventional method (Fig. 2) which does not easily disintegrate the mold (1), requires removal of the mold (15), sufficient cooling of the material (16), and knockout process (17) to remove the mold. Further, the method of the present invention does not require roasting 21 in the recovery and regeneration of the conventional method.
  • FIG. 3 is a graph showing the relationship between temperature and time in the fifth (5-type removal) step 5 and the sixth (heat treatment) step 6 of the embodiment of the present invention.
  • FIG. 4 shown for comparison is a similar graph of a conventional step corresponding to the ⁇ removal and heat treatment steps in the method of the present invention.
  • step 16 in Fig. 2 After sufficient cooling of the animal (step 16 in Fig. 2), sand removal by the knockout step is performed (step 17 in Fig. 2). The temperature was rising again. For this reason, as shown in FIG. 4, it takes time for cooling, and also requires time and energy for reheating for heat treatment.
  • FIG. 1 is a process chart of a method for producing a product according to the present invention.
  • FIG. 2 is a process chart of a conventional method of manufacturing a product using a shell mold process.
  • FIG. 3 is a graph showing a relationship between temperature and time of a substance in a mold removal and heat treatment step of the present embodiment.
  • FIG. 4 is a graph corresponding to the step of FIG. 3 and similar to FIG. 3 showing a step of a conventional technique using a shell mold process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)
  • Glass Compositions (AREA)

Abstract

A process for producing a cast item with the use of a mold capable of easily crumbling. There is provided a process comprising the step of mixing together a granular aggregate, at least one type of water-soluble binder and water to thereby obtain an aggregate mixture and agitating the aggregate mixture to thereby effect foaming. This aggregate mixture is capable of suppressing undesirable gas generation at the time of mold formation or melt casting. Further, there is provided a process comprising the step of filling a space for mold formation with the foamed aggregate mixture and evaporating water from the charged aggregate mixture to thereby solidify the aggregate mixture, thus accomplishing mold formation; the step of assembling the mold with another mold into a final mold; the step of casting a melt in the final mold; the step of, during the period of cooling of cast item after melt solidification, removing the mold from the cast item; and the step of performing heat treatment of the cast item.

Description

明 細 書  Specification
铸物の製造方法  Food production method
技術分野  Technical field
[0001] 本発明は錡物の製造方法に関し、特に従来のシェルモールドプロセスに代えて、 除去が容易な錡型を用レ、る錡物の製造方法に関する。  [0001] The present invention relates to a method for producing a product, and more particularly to a method for producing a product using a mold that can be easily removed instead of a conventional shell molding process.
背景技術  Background art
[0002] 従来の軽合金铸物の製造方法としては、例えば特開平 5 - 261478号公報に記載 されたように、シェルモールドプロセスが公知である。このシェルモールドプロセスの バインダーとしては、フエノールーホルムアルデヒド系の樹脂を含むものが採用されて いる。このバインダーで被覆した砂を加熱された造型用金型に吹き込み充填し、充填 した砂に被覆されたバインダーを金型の熱により硬化させている。  [0002] As a conventional method for producing a light alloy preform, for example, as described in JP-A-5-261478, a shell mold process is known. As the binder for the shell mold process, a binder containing a phenol-formaldehyde resin is used. The sand coated with the binder is blown into a heated molding die, and the binder coated on the filled sand is cured by the heat of the die.
[0003] し力 ながら、このようなシェルモールドプロセスにおレ、ては、注湯後の中子铸型が 比較的に硬いので、この中子铸型を崩壊させて铸物から除去するためには、中子铸 型に大きな衝撃力を付与するノックアウト工程を必要とする。このノックアウト工程をな すためには、铸物の熱処理前に铸物を充分に冷却する必要がある。また、 IMpa以 上の比較的に大きな衝撃力を 10Hz以上で lOsec以上与えても 70 80%程度の砂 落ししかできないので、熱処理期間中やその後にも、崩壊後の中子錡型の残滓であ る中子砂及び中子塊が铸物に残存してしまう。従ってそれらの再度の除去が要求さ れることもある。更に、铸物から除去した中子塊を再生するためには、焙焼を必要と することが多い。  [0003] However, in such a shell mold process, since the core mold after pouring is relatively hard, it is necessary to disintegrate the core mold and remove it from the animal. This requires a knockout step of applying a large impact force to the core type. In order to perform this knock-out process, it is necessary to sufficiently cool the animal before heat-treating the animal. In addition, even if a relatively large impact force of IMpa or more is applied at 10 Hz or more for 10 sec or more, only 70-80% of the sand can be washed off. Some core sand and core lump will remain on the animal. Therefore, they may need to be removed again. Further, in order to regenerate the core mass removed from the fish, roasting is often required.
[0004] 更に、シェルモールドプロセスにおいては、金型の熱によりバインダーを硬化させる 際には揮発ガスの発生を伴う。このような揮発ガスは、不快な臭気を伴い、特にホル ムァノレデヒド、フエノール、アンモニアなどのガスは人体に悪影響を及ぼす。  [0004] Further, in the shell mold process, when the binder is cured by the heat of the mold, generation of volatile gas is accompanied. Such volatile gases have an unpleasant odor, and gases such as formanolaldehyde, phenol, and ammonia have an adverse effect on the human body.
[0005] 従って従来のシェルモールドプロセスに代えて、铸型の除去が容易であり、揮発ガ スの発生を抑制する铸物の製造方法が望まれる。  [0005] Therefore, instead of the conventional shell mold process, there is a demand for a method for producing a varnish that can easily remove the mold and suppress generation of volatile gas.
[0006] 本明細書にぉレ、て「粒子状骨材」とは、珪砂、ジルコン、砂、オリビン砂、クロマイト 砂、アルミナ砂、ムライト砂、人工砂等のうちの 1種或いは 2種以上から成るものを意 味する。 [0006] In the present specification, the term "particulate aggregate" refers to one or more of silica sand, zircon, sand, olivine sand, chromite sand, alumina sand, mullite sand, artificial sand, and the like. Consisting of To taste.
[0007] 本明細書にぉレ、て「溶湯が凝固後」とは、溶湯が凝固し硬化した後をレ、う。この温度 はプロセスや溶湯材質により異なっている。  [0007] In the present specification, "after the molten metal is solidified" means after the molten metal has been solidified and hardened. This temperature differs depending on the process and the material of the molten metal.
[0008] 本明細書において「錡物の冷却期間中」とは、完成錡型から铸物を取り出しても変 形しない程度に铸物が冷却された温度よりも低く铸物を冷やしている期間を示す。例 えば、アルミニウム合金の T6処理では、溶体化処理温度である約 520°Cよりも低いが 通常の冷却温度である 70乃至 111°Cよりも高い温度、例えば、 300°Cまで錡物を冷 却している期間を示す。  [0008] In the present specification, "during the cooling period of the object" is a period during which the object is cooled below the temperature at which the object is cooled to such an extent that the object is not deformed even when the object is removed from the finished mold. Is shown. For example, in T6 treatment of aluminum alloys, the object is cooled to a temperature lower than the solution heat treatment temperature of about 520 ° C but higher than the normal cooling temperature of 70 to 111 ° C, for example, 300 ° C. Indicates the rejected period.
[0009] 本発明の一つの局面によれば铸物の製造方法が与えられ、この方法は、铸物の製 造方法であって、  [0009] According to one aspect of the present invention, there is provided a method for producing a animal, the method comprising:
少なくとも 1種類の粒子状骨材、少なくとも 1種類の水溶性バインダー、及び水を混 合することにより骨材混合物を形成し、この骨材混合物を攪拌して発泡させる工程と 発泡させた骨材混合物を铸型造型用空間に充填し、充填した骨材混合物中の水 分を蒸発させて骨材混合物を固化させ、前記粒子状骨材により铸型を造型する工程 と、  Forming an aggregate mixture by mixing at least one kind of particulate aggregate, at least one kind of water-soluble binder, and water, stirring the aggregate mixture and foaming; and a step of foaming the aggregate mixture. Is filled in a mold forming space, the water in the filled aggregate mixture is evaporated to solidify the aggregate mixture, and a mold is formed by the particulate aggregate, and
この粒子状骨材により造型された造型铸型に対して、相手方の铸型を組み合わせ て完成铸型を製作する工程と、  A step of manufacturing a completed mold by combining the mold of the other party with the mold formed by the particulate aggregate;
前記完成铸型に溶湯を注湯する工程と、  Pouring the molten metal into the finished mold,
前記溶湯が凝固後の铸物の冷却期間中に前記铸物から前記造型铸型を除去する 工程と、  Removing the molding mold from the molten metal during the cooling period of the solidified solid;
前記铸物を熱処理する工程とを含む。  Heat treating the solid.
[0010] 粒子状骨材により造型された造型铸型は好ましくは中子铸型である。この場合、相 手方の錡型(主型錡型)は金型でもよぐ砂型でもよい。  [0010] The mold III formed by the particulate aggregate is preferably a core III mold. In this case, the other type II (main type II) may be a mold or a sand type.
[0011] 本明細書において「完成錡型」とは、主铸型と、粒子状骨材により造型された少なく とも 1つの造型錡型(中子錡型)との組み合わせからなり、溶湯を注湯可能な铸型を 意味する。従って完成錡型の構成要素は、主錡型と中子錡型の他に、注湯に必要な 要素も含み得る。 [0012] 本発明の铸物の製造方法においては、粒子状骨材を回収工程と、その回収した粒 子状骨材を再生する工程とを更に含んでもよい。回収して再生した粒子状骨材を铸 型の造型に再び使用することが好ましい。 [0011] In the present specification, the "completed mold" includes a combination of a main mold and at least one molded mold (core mold) molded with particulate aggregate. Means hot water type 铸. Accordingly, the components of the finished mold can include elements necessary for pouring in addition to the main mold and the core mold. [0012] The method of the present invention for producing a product may further include a step of recovering the particulate aggregate and a step of regenerating the collected particulate aggregate. It is preferable that the collected and regenerated particulate aggregate is reused in the molding of a rectangular shape.
[0013] 本発明の一実施形態によれば、粒子状骨材を回収して再生する工程は機械的な 再生である。  [0013] According to one embodiment of the present invention, the step of collecting and regenerating the particulate aggregate is mechanical regeneration.
[0014] 铸物はアルミニウム合金铸物としてもよぐ又はマグネシウム合金铸物、或いは銅合 金铸物その他としてもよい。  [0014] The metal may be an aluminum alloy material, a magnesium alloy material, a copper alloy material, or the like.
[0015] 熱処理は T6処理若しくは T7処理としてもよレ、。 [0015] The heat treatment may be T6 treatment or T7 treatment.
[0016] 本発明の一実施形態によれば、錡型を除去する工程は、錡型に対して振動をカロえ る工程である。これは例えば、注湯後 5分乃至 20分以内の時間において、錡型に対 して IMpa以下の衝撃力を 30Hz未満で 30sec未満与えることを含む。  According to one embodiment of the present invention, the step of removing the mold る is a step of adding vibration to the mold 錡. This includes, for example, applying an impact force equal to or less than IMpa to Type III for less than 30 seconds at less than 30 Hz within 5 to 20 minutes after pouring.
[0017] 本発明の他の局面により与えられる錡物の製造方法は、粒子状骨材、少なくとも 1 種類の水溶性バインダー、及び水を混合することにより骨材混合物を形成する工程 と、  [0017] A method for producing a substance provided by another aspect of the present invention includes a step of forming an aggregate mixture by mixing a particulate aggregate, at least one water-soluble binder, and water;
この骨材混合物を攪拌して発泡させ、発泡させた骨材混合物を铸型造型用空間に 充填し、充填した骨材混合物中の水分を蒸発させて骨材混合物を固化させ、中子铸 型を造型する工程と、  The aggregate mixture is agitated and foamed, and the foamed aggregate mixture is filled into a molding space for type III, and the moisture in the filled aggregate mixture is evaporated to solidify the aggregate mixture. A process of molding
中子铸型と金型铸型とを組み合わせて完成铸型にする工程と、  A step of combining a core mold and a mold mold into a finished mold,
完成铸型にアルミニウム合金の溶湯を注湯する工程と、  Pouring the molten aluminum alloy into the finished mold,
溶湯が凝固後の铸物の冷却期間中に铸物から中子铸型を除去する工程と、 アルミニウム合金铸物を T6又は T7熱処理する工程とを含む。  The method includes a step of removing the core mold from the solid during the cooling of the solid after the molten metal is solidified, and a step of performing a T6 or T7 heat treatment on the aluminum alloy.
[0018] 少なくとも 1種類の水溶性バインダーは、ポリビュルアルコールとその誘導体との少な くとも一方、或いは、澱粉とその誘導体との少なくとも一方である。 [0018] The at least one water-soluble binder is at least one of polybutyl alcohol and a derivative thereof, or at least one of starch and a derivative thereof.
発明を実施するための好ましい形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 図 1の工程図には本発明に係る铸物の製造方法の各工程を概略的に示してある。 FIG. 1 is a flow chart schematically showing each step of the method for producing a product according to the present invention.
この工程図に沿って先ず本発明の铸物の製造方法の原理について説明する。  First, the principle of the method for producing a product of the present invention will be described with reference to the process chart.
[0020] 図 1において、第 1に、少なくとも 1種類の粒子状骨材、少なくとも 1種類の水溶性バ インダー及び水を混合して骨材混合物を形成して、これを攪拌することにより発泡さ せる (第 1 (調製)工程 1)。 [0020] In FIG. 1, first, at least one kind of particulate aggregate, at least one kind of water-soluble binder and water are mixed to form an aggregate mixture, and the mixture is stirred to form a foam. (First (preparation) step 1).
[0021] 第 2に、前工程で発泡させた骨材混合物を铸型造型用空間に充填して固化させて[0021] Secondly, the aggregate mixture foamed in the previous step is filled in a space for mold making and solidified.
、粒子状骨材力 なる铸型を造型する (第 2 (造型)工程) 2)。 Then, a mold having a granular aggregate strength is formed (second (molding) step) 2).
[0022] 第 3に、この造型された少なくとも 1つ以上の造型铸型(中子铸型)を相手方錡型( 主型)に組み合わせて、完成錡型を製作する(第 3 (組立)工程 3)。 Third, at least one or more molded molds (core molds) are combined with a counterpart mold (main mold) to produce a completed mold (third (assembly) process) 3).
[0023] 第 4に、この完成铸型に溶湯を注湯する(第 4 (注湯)工程 4)。 Fourth, a molten metal is poured into the completed mold No. 4 (fourth (pour) step 4).
[0024] 第 5に、溶湯が凝固後の錡物の冷却期間中に、この铸物から中子錡型を铸物から 除去して抜型する (第 5 (抜型)工程 5)。 Fifth, during the cooling period of the solid after the molten metal has solidified, the core mold is removed from the solid and removed from the solid (fifth (mold removing) step 5).
[0025] 第 6に、この铸物を熱処理する(第 6 (熱処理)工程 6)ことにより、完成品の錡物が製 造される。 Sixth, the finished product is manufactured by subjecting the product to a heat treatment (sixth (heat treatment) step 6).
[0026] 図 1の各工程について更に詳しく説明する。  Each step of FIG. 1 will be described in more detail.
[0027] 第 1 (調製)工程 1におレ、て、粒子状骨材としては、珪砂、ジルコン、砂、オリビン砂、 クロマイト砂、アルミナ砂、ムライト砂、人工砂等のうちの少なくとも 1種類以上を用いる  [0027] In the first (preparation) step 1, the particulate aggregate is at least one of silica sand, zircon, sand, olivine sand, chromite sand, alumina sand, mullite sand, artificial sand, and the like. Use above
[0028] 水溶性バインダーとしては、常温にて水分可溶性を有するものを用いることが好ま しい。常温で水分可溶性を有する水溶性バインダーは、加熱することなく骨材混合物 を形成できるので、バインダー及び粒子状骨材を加熱するために要する時間やエネ ルギを節約できる。これは、従来のシェルモールドプロセスにおけるコーテッドサンド 製造とは対照的な本発明の利点である。本発明に用いる水溶性バインダーは、水溶 性バインダーであるポリビニルアルコール又はその誘導体と、澱粉又はその誘導体と の何れか一方、又はその両方が好ましいが、これに限定されるものではなレ、。この水 溶性バインダーは容易に揮発または分解させることができるので、後の第 5 (抜型)ェ 程 5においては、溶湯の凝固した錡物から中子铸型を容易に除去できる。なお、水溶 性バインダーは、粒子状骨材に対し 0. 1乃至 5. 0重量部含有されることが好ましい。 As the water-soluble binder, it is preferable to use a binder having water solubility at room temperature. A water-soluble binder having water solubility at room temperature can form an aggregate mixture without heating, so that the time and energy required for heating the binder and the particulate aggregate can be saved. This is an advantage of the present invention as opposed to coated sand production in a conventional shell mold process. The water-soluble binder used in the present invention is preferably one or both of polyvinyl alcohol or a derivative thereof, which is a water-soluble binder, and starch or a derivative thereof, but is not limited thereto. Since the water-soluble binder can be easily volatilized or decomposed, the core-type can be easily removed from the solidified solid of the molten metal in the fifth (removal) step 5 described later. The water-soluble binder is preferably contained in an amount of 0.1 to 5.0 parts by weight based on the particulate aggregate.
[0029] このような少なくとも 1種類の水溶性バインダーと、少なくとも 1種類の粒子状骨材と 、水とを混合して骨材混合物を形成する。これを攪拌することにより発泡させると、骨 材混合物はホイップクリーム状になる。  [0029] Such at least one water-soluble binder, at least one type of particulate aggregate, and water are mixed to form an aggregate mixture. When this is foamed by stirring, the aggregate mixture becomes whipped cream-like.
[0030] 第 2 (造型)工程 2においては、铸型造型用空間に充填した骨材混合物中の水分を 蒸発させて骨材混合物を固化させると、前工程における発泡に起因して、粒子状骨 材からなる中空の中子铸型(中子铸型)が造型される。この中空铸型は、空孔率が 3 %乃至 60%である。また、中空铸型の厚みが例えば約 40mmの場合、水溶性バイン ダ一は、铸型の表面と 10mm深さとの間の铸型表面層に 50%以上凝集している。即 ち、発泡させた骨材混合物による中空錡型では、骨材混合物中に分散した気泡及び バインダーの含有する水分が錡型中心部に集まっているので、その水分を蒸発させ ることにより、铸型中心部においては骨材の充填密度が低くなる。 [0030] In the second (molding) step 2, the moisture in the aggregate mixture filled in the mold-forming space is removed. When the aggregate is solidified by evaporation, a hollow core type (core type) made of particulate aggregate is formed due to foaming in the previous step. This hollow mold has a porosity of 3% to 60%. When the thickness of the hollow mold is, for example, about 40 mm, the water-soluble binder is agglomerated by 50% or more in the mold surface layer between the mold surface and the depth of 10 mm. That is, in the hollow mold made of the foamed aggregate mixture, the air bubbles dispersed in the aggregate mixture and the water contained in the binder are gathered in the center of the mold, and the water is evaporated to obtain the water. At the center of the mold, the packing density of the aggregate is low.
[0031] 第 3 (組立)工程 3においては、粒子状骨材よりなる少なくとも 1つの中子錡型に、主 型铸型 (相手方铸型)を組み合わせて完成錡型を構成することができる。主型錡型は 金型でもよぐ或いは例えば粒子状骨材よりなる砂型でもよい。本実施形態において は、主型錡型として金型を採用し、低圧錡造を適用する。しかしながら、金型铸型を 採用する場合には、本発明の方法は、低圧錡造に限らず、逆圧錡造、ダイキャスト、 重力金型铸造などの他の処理にも適用可能である。  [0031] In the third (assembly) step 3, a finished mold can be formed by combining at least one core mold made of particulate aggregate with a main mold (a mating mold). The main mold 錡 may be a mold or a sand mold made of, for example, particulate aggregate. In the present embodiment, a mold is adopted as the main mold and a low-pressure mold is applied. However, when a mold and a mold are adopted, the method of the present invention is not limited to low-pressure molding, and can be applied to other processes such as reverse pressure molding, die casting, and gravity mold molding.
[0032] 第 4 (注湯)工程 4におレ、て、完成铸型に注湯する溶湯材質は、本実施形態ではァ ノレミニゥム合金である力 これに限定されるものではなぐ他の軽金属合金又は非鉄 合金 (例えばマグネシウム合金又は銅合金)としてもよい。これに代えて、铸鉄、铸鋼 、或いは鉄系金属合金を用いてもよい。但し鉄系金属を用いる場合には、中子铸型 に塗型材を塗布することが望ましレ、であろう。  In the fourth (pouring) step 4, the material of the molten metal to be poured into the completed mold is, in the present embodiment, a force which is an anoremium alloy. Other light metal alloys other than those described above Alternatively, it may be a non-ferrous alloy (for example, a magnesium alloy or a copper alloy). Alternatively, iron, steel, or an iron-based metal alloy may be used. However, when an iron-based metal is used, it would be desirable to apply a coating material to the core type.
[0033] 第 5 (抜型)工程 5において、冷却期間中(完成铸型から铸物を取り出しても変形し ない程度に铸物が冷却された温度よりも更に低い温度へ铸物を冷却する期間)に铸 物から中子铸型を除去する。ここで第 4 (注湯)工程 4における溶湯材質がアルミユウ ム合金である場合の「冷却期間中」とは、アルミニウム合金の T6処理における溶体化 処理温度である約 520°Cよりも低いが、通常の冷却温度である 70乃至 111°Cよりも 高い温度、例えば、 300°Cまで铸物を冷却している期間である。  [0033] In the fifth (unmolding) step 5, during the cooling period (a period in which the object is cooled to a temperature lower than the temperature at which the object was cooled so that the object was not deformed even when the object was removed from the completed mold). ) Remove the core type from the animal. Here, `` during the cooling period '' when the material of the molten metal in the fourth (pour) step 4 is an aluminum alloy is lower than the solution treatment temperature of about 520 ° C in the T6 treatment of the aluminum alloy, This is a period during which the animal is cooled to a temperature higher than the normal cooling temperature of 70 to 111 ° C, for example, 300 ° C.
[0034] アルミニウム合金の場合には、第 6 (熱処理)工程 6における熱処理は、 T6処理、 T7 処理その他の熱処理である。  [0034] In the case of an aluminum alloy, the heat treatment in the sixth (heat treatment) step 6 is a T6 treatment, a T7 treatment, or another heat treatment.
[0035] 水溶性バインダーとして、ポリビュルアルコール若しくはその誘導体、又は澱粉若し くはその誘導体を用いることにより、バインダーを含む粒子状骨材混合物を混練して 調整する調製工程 1においても、中子铸型を造型する造型工程 2においても不快な ガス臭は生じなかった。 [0035] By using polybutyl alcohol or a derivative thereof or starch or a derivative thereof as the water-soluble binder, a particulate aggregate mixture containing the binder is kneaded. No unpleasant gas odor was generated in the preparation step 1 for adjustment and the molding step 2 for molding the core III mold.
[0036] また、造型された中子铸型に溶湯を注湯する注湯工程 4に際し、溶湯の熱でバイン ダ一が加熱されても、中子铸型からの不快な臭気ゃ不所望な揮発性ガスの発生は 認められなかった。  [0036] In addition, in the pouring step 4 in which the molten metal is poured into the molded core 铸, even if the binder is heated by the heat of the molten metal, unpleasant odor from the core 铸 undesired. No volatile gas was generated.
[0037] 図 1に示すように本発明の錡物の製造方法には、第 6 (熱処理)工程 6に続き、必要 に応じて以下の工程を更に追加してもよい。即ち、中子铸型の粒子状骨材(中子砂) 及び中子塊を回収する回収工程 7、中子塊を破砕する破砕工程 8、及び、回収した 粒子状骨材を機械的に再生する機械式再生工程 9である。回収して再生した粒子状 骨材は中子錡型の造型に再び使用することができる。  As shown in FIG. 1, following the sixth (heat treatment) step 6, the following steps may be further added to the method for producing a product of the present invention, if necessary. That is, a recovery process 7 for recovering core 铸 type particulate aggregate (core sand) and a core lump, a crushing process 8 for crushing a core lump, and mechanically regenerating the collected particulate aggregate This is the mechanical regeneration process 9 to be performed. The recovered and regenerated particulate aggregate can be reused for core III molding.
[0038] 図 1の工程図を参照して、本発明の铸物の製造方法の特定の実施形態について 説明する。但し、ここに示した材料名は例示の目的のために示すものであり、本発明 を限定するものではない。  [0038] A specific embodiment of the method for producing a product of the present invention will be described with reference to the process chart of Fig. 1. However, the material names shown here are for illustrative purposes, and do not limit the present invention.
[0039] 本実施形態の第 1工程 (調製工程) 1においては、以下のように二種類の骨材混合 物 A及び Bを得た。  [0039] In the first step (preparation step) 1 of the present embodiment, two types of aggregate mixtures A and B were obtained as follows.
[0040] 表 1 骨材混合物 A  [0040] Table 1 Aggregate mixture A
粒子状骨材:珪砂 (フラタリーサンド) 100重量部  Particulate aggregate: Silica sand (Flaty sand) 100 parts by weight
水溶性バインダー:ポリビエルアルコール IP— 05 日本酢ビ 'ポバール製) 0. 8重 量部  Water-soluble binder: Polyvier alcohol IP— 05 Nippon vinegar (Poval) 0.8 parts by weight
架橋剤:ブタンテトラカルボン酸(リカシッド ΒΤ— W 新日本理化製) 0. 2重量部 表 1に示す組成からなる骨材混合物 100重量部と水 6重量部とを混合、攪拌、混練 して発泡させ、ホイップクリーム状の骨材混合物 Αを得た。  Crosslinking agent: Butanetetracarboxylic acid (Likacid II-W, manufactured by Shin Nihon Rika) 0.2 parts by weight 100 parts by weight of an aggregate mixture having the composition shown in Table 1 and 6 parts by weight of water are mixed, stirred, kneaded and foamed. Then, a whipped cream-like aggregate mixture Α was obtained.
[0041] 表 2 骨材混合物 B Table 2 Aggregate mixture B
粒子状骨材:珪砂(フラタリーサンド) 100重量部  Particulate aggregate: Silica sand (Flaty sand) 100 parts by weight
水溶性バインダー:ポリビュルアルコール FL—05 日本酢ビ 'ポバール製) 0. 2重 量部、澱粉 (デキストリン ND—S 日澱ィ匕学製) 1. 0重量部、及びクェン酸 (扶桑化学 製) 0. 4重量部  Water-soluble binder: Polybutyl alcohol FL-05 Nippon Vinegar Bi ', manufactured by Poval 0.2 parts by weight, starch (Dextrin ND-S, manufactured by Nichisei Danigaku) 1.0 part by weight, and cunic acid (manufactured by Fuso Chemical) ) 0.4 parts by weight
表 2に示す組成からなる乾燥した骨材混合物 100重量部と、水 6重量部とを混合、 攪拌、混練して発泡させ、ホイップクリーム状の骨材混合物 Bを得た。 Mix 100 parts by weight of the dried aggregate mixture having the composition shown in Table 2 with 6 parts by weight of water, The mixture was stirred, kneaded and foamed to obtain a whipped cream-like aggregate mixture B.
[0042] なお、本実施形態の調製工程 1では、従来のシェルモールドプロセスのレジンコー テッドサンドを製造する工程で必要な加熱装置や、レジンの加熱によって生じる有害 ガスを除去する脱臭装置は必要なレ、。  [0042] In the preparation step 1 of the present embodiment, a heating device required in the step of manufacturing a resin-coated sand in the conventional shell mold process and a deodorizing device for removing harmful gas generated by heating the resin are required. ,.
[0043] 次いで、 250°Cに保持されている铸型造型用金型(図示せず)のキヤビティ(図示 せず)内に、調製工程 1で得られた 2種類のホイップクリーム状の骨材混合物 A及び B を別々に加圧充填し、 1分間保持し、骨材混合物中の水分を気化し、固化させた後、 铸型造型用金型のキヤビティ内から中子錡型を取り出した(第 2 (造型)工程 2)。  Next, the two types of whipped cream-like aggregates obtained in the preparation step 1 were placed in a cavity (not shown) of a mold (not shown) for molding at a temperature of 250 ° C. Mixtures A and B were separately pressure-filled and held for 1 minute to evaporate and solidify the water in the aggregate mixture, and then the core 錡 was removed from the cavity of the 铸 molding die ( Second (molding) step 2).
[0044] 既に説明したように、この錡型を他の錡型と組み立て、完成铸型にする(第 3 (組立) 工程 3)。ここで本実施形態の組立工程 3においては、低圧錡造装置の主型金型に 中子铸型を組み込んで、完成铸型を製作し、注湯準備をなした。  As described above, this mold is assembled with another mold to make a completed mold (third (assembly) step 3). Here, in the assembling step 3 of the present embodiment, the core mold was incorporated into the main mold of the low-pressure molding apparatus, and a finished mold was manufactured to prepare for pouring.
[0045] この完成铸型に溶湯を注湯した(第 4 (注湯)工程 4)。本実施形態ではアルミニウム 合金铸物 AC4Cの溶湯(温度 720°C)を低圧铸造装置(図示せず)を用いて下方から 注湯した。溶湯の 720°Cの温度は、バインダーを揮発又は分解させるので、次工程 の中子铸型の除去が容易になる。  The molten metal was poured into the completed mold No. 4 (fourth (pouring) step 4). In the present embodiment, a molten aluminum alloy material AC4C (at a temperature of 720 ° C.) was poured from below using a low-pressure forming apparatus (not shown). The temperature of 720 ° C of the molten metal volatilizes or decomposes the binder, so that the removal of the core mold in the next step becomes easy.
[0046] 溶湯が凝固した後の铸物の冷却期間中に、この铸物から中子铸型を除去した (第 5  [0046] During the cooling period of the solid after the solidification of the molten metal, the core was removed from the solid (No. 5).
(抜型)工程 5)。従来のシェルモードプロセスにおいては、铸物から中子铸型を崩壊 させて除去するためには、铸物を充分に冷却した後に、铸型に対して大きな衝撃力 を与える必要があった。本発明の方法によれば、崩壊性が高い中子铸型を用いてい るので、中子铸型を铸物から除去するために従来要求されていた充分な冷却及びそ の後の大きな衝撃力は必要としない。従って中子铸型を簡単な方法、例えば以下に 説明する軽振動で除去することができる。本実施形態の抜型工程 5においては、注 湯力 約 10分後に、凝固した溶湯を铸物として取り出した。その直後に、温度 350°C の錡物に対して IMpa以下の衝撃力を 20Hz、 20sec未満の軽振動によって与えて砂 落しをなすことにより、中子錡型を完全に除去できた。また実験によれば、抜型工程 5 では、注湯後 5分乃至 20分以内の時間において、 IMpa以下の衝撃力を 30Hz未満 で 30sec未満与える砂落しとしても铸物から中子錡型を完全に除去できた。  (Unmolding) process 5). In the conventional shell mode process, in order to disintegrate and remove the core from the solid, it was necessary to apply a large impact force to the solid after cooling the solid sufficiently. According to the method of the present invention, since a core type having high collapsibility is used, sufficient cooling and a large impact force thereafter required to remove the core type from the animal are required. Do not need. Therefore, the core 铸 type can be removed by a simple method, for example, light vibration described below. In the mold removing step 5 of the present embodiment, after about 10 minutes of pouring power, the solidified molten metal was taken out as solid. Immediately after that, the core 錡 type was completely removed by applying an impact force of IMpa or less to a 350 ° C animal by light vibration at 20Hz for less than 20sec to remove the sand. Also, according to the experiment, in the removal process 5, in the time within 5 to 20 minutes after pouring, even if the sand was removed by applying an impact force of less than IMpa at less than 30 Hz for less than 30 seconds, the core-to-metal type was completely removed from the material. Could be removed.
[0047] このような錡物の湯口を除去し、錡物の铸ばりを除去してから、この錡物を熱処理し た(第 6 (熱処理)工程 6)。铸物の湯口及び铸ばりの除去は、本実施形態では铸物の 熱処理の前になしたが、熱処理後に実施してもよい。本実施形態においても、第 6 ( 熱処理)工程 6に続き、図 1に示す中子砂回収工程 7、破砕工程 8、及び機械式再生 工程 110を追加してもよい。 [0047] After removing the gate of such a substance and removing the burrs of the substance, the substance is subjected to a heat treatment. (6th (heat treatment) step 6). In the present embodiment, the gate and burrs of the object are removed before the heat treatment of the object, but may be carried out after the heat treatment. Also in this embodiment, following the sixth (heat treatment) step 6, a core sand recovery step 7, a crushing step 8, and a mechanical regeneration step 110 shown in FIG. 1 may be added.
[0048] 金型铸型を用いた铸造方法では、中子錡型からのみ粒子状骨材及び中子塊が回 収されるので、回収して再生した粒子状骨材を铸型の造型に容易に再使用すること ができる。 [0048] In the molding method using the mold 铸, the particulate aggregate and the core lump are collected only from the core 錡, so that the collected and regenerated particulate aggregate is converted into the mold 铸. It can be easily reused.
[0049] 比較のために示す図 2 (従来技術)は、先述の特開平 5— 261478号公報に記載さ れたシェルモールドプロセスを用いた従来の铸物の製造方法の工程図である。  FIG. 2 (Prior Art) shown for comparison is a process diagram of a conventional method of manufacturing a product using a shell mold process described in the above-mentioned Japanese Patent Application Laid-Open No. 5-261478.
[0050] 図 2の従来方法においては、レジンコーテッドサンドを用いる。通常、レジンコーテツ ドサンドは铸物製造業者とは別の業者によって製造販売されているので、レジンコー テッドサンドを製造する工程(11)は、铸物製造現場とは別の場所でなされる。従って 、レジンコーテッドサンドを回収して再生しても、本発明の方法とは対照的に、铸型の 造型に再使用することは困難である。  [0050] In the conventional method of Fig. 2, resin-coated sand is used. Normally, resin-coated sand is manufactured and sold by a different company from the plastic manufacturer, and therefore, the step (11) of producing the resin-coated sand is performed at a place different from the plastic manufacturing site. Therefore, even if the resin-coated sand is recovered and regenerated, it is difficult to reuse the resin-coated sand for the molding of type III, in contrast to the method of the present invention.
[0051] 図 2の従来方法によれば、铸物製造業者は、市販のレジンコーテッドサンドを加熱 して中子铸型を造型し(12)、造型された中子铸型を他の铸型と組み立てて、完成铸 型を製造し(13)、この完成铸型に注湯する(14)。次いで砂落し炉により中子铸型を 抜型し(15)、铸物を充分に冷却した(16)後、ノックアウト工程により铸物砂を完全に 除去し(17)、この铸物を熱処理する(18)。更に、ノックアウト工程 17、熱処理工程 1 8及びその後の工程から中子塊を含んだ中子砂を回収している(19)。この回収した 中子砂には、この回収工程 19をなす場所とは通常は別の場所であるレジンコーテツ ドサンド製造場において、中子塊の破砕 20、焙焼 21、機械的な再生 22がなされる。  [0051] According to the conventional method of Fig. 2, a vegetable manufacturer heats a commercially available resin-coated sand to form a core mold (12), and replaces the molded core mold with another mold. To produce a finished mold (13) and pour the finished mold (14). Next, the core mold is removed from the mold using a sand dropping furnace (15), and the fish is sufficiently cooled (16). Then, the sand is completely removed by a knockout process (17), and the fish is heat-treated ( 18). Further, the core sand including the core lump is recovered from the knockout step 17, the heat treatment step 18 and the subsequent steps (19). The recovered core sand is subjected to crushing, roasting, and mechanical regeneration of the core mass at a resin-coated sand mill, which is usually a different place from the place where the recovery step is performed. .
[0052] 図 1に示す本発明の铸物製造方法では、図 2に示す従来方法に比べて工程数が 削減されることが明らかである。例えば本発明の方法(図 1)では第 5 (铸型除去)工程 5は、錡型の崩壊が容易であるので、簡単な工程、例えば軽振動による砂落としで達 成すること力 Sできる。ところ力 铸型を崩壊させにくい従来方法(図 2)では、铸型除去 のために砂落し炉による除去 15、铸物の充分な冷却 16、ノックアウト工程 17を必要 とする。また本発明の方法は従来方法の回収再生における焙焼 21を必要としない。 [0053] 図 3は本発明の実施形態の第 5 (铸型除去)工程 5及び第 6 (熱処理)工程 6におけ る温度と時間との関係を示すグラフである。比較のために示す図 4 (従来技術)は、本 発明の方法における铸型除去及び熱処理工程に対応する従来工程についての同 様なグラフである。 It is clear that the number of steps is reduced in the method for producing a product of the present invention shown in FIG. 1 as compared with the conventional method shown in FIG. For example, in the method of the present invention (FIG. 1), the fifth step (removal of type III) 5 can be achieved by a simple step, for example, sand removal by light vibration since the type III collapses easily. However, the conventional method (Fig. 2), which does not easily disintegrate the mold (1), requires removal of the mold (15), sufficient cooling of the material (16), and knockout process (17) to remove the mold. Further, the method of the present invention does not require roasting 21 in the recovery and regeneration of the conventional method. FIG. 3 is a graph showing the relationship between temperature and time in the fifth (5-type removal) step 5 and the sixth (heat treatment) step 6 of the embodiment of the present invention. FIG. 4 (Prior Art) shown for comparison is a similar graph of a conventional step corresponding to the 铸 removal and heat treatment steps in the method of the present invention.
[0054] 従来方法においては、上述のように铸物の充分な冷却(図 2の工程 16)の後に、ノ ックアウト工程による砂落しをなし(図 2の工程 17)、その後、 T6処理のために改めて 昇温をしていた。このため、図 4に示すように冷却に時間を要する上に、熱処理のた めの再加熱の時間及びエネルギが必要である。  [0054] In the conventional method, as described above, after sufficient cooling of the animal (step 16 in Fig. 2), sand removal by the knockout step is performed (step 17 in Fig. 2). The temperature was rising again. For this reason, as shown in FIG. 4, it takes time for cooling, and also requires time and energy for reheating for heat treatment.
[0055] 図 3に示す本発明の実施形態においては、 720°Cで注湯した後、錡型除去工程 5 で溶湯が凝固後の铸物を取り出した直後に、この錡物から中子铸型を除去している 。従って、中子铸型の除去のために、充分に铸物製品を冷却した後に大きな衝撃を 付与することが不要となり、溶体化処理 (熱処理)を直ちに開始することができる。この ため、冷却に要する時間を短縮でき、熱処理のための再加熱時間も短縮できるので 、消費エネルギを省くことができ、工程数も削減できる。铸物は必ずしも 100°Cまで冷 却する必要は無ぐ 300°Cまでの冷却でも省エネルギの効果が得られる。  In the embodiment of the present invention shown in FIG. 3, after pouring at 720 ° C., immediately after removing the solid after the molten metal is solidified in mold removing step 5, the core is removed from the solid. The mold has been removed. Therefore, it is not necessary to apply a large impact after sufficiently cooling the fermented product in order to remove the core type, and the solution treatment (heat treatment) can be started immediately. Therefore, the time required for cooling can be shortened, and the time for reheating for heat treatment can also be shortened, so that energy consumption can be reduced and the number of steps can be reduced. It is not always necessary to cool foods to 100 ° C. Energy savings can be obtained by cooling to 300 ° C.
[0056] 上述の実施形態は本発明を単に例示するものであって、限定を意図するものでは なぐ当業者には添付の請求項に記載された目的及び要旨を逸脱することなぐ様 々な変更や変形をなせることが明らかである。  [0056] The above embodiments are merely illustrative of the present invention, and are not intended to be limiting, and those skilled in the art will appreciate that various modifications may be made without departing from the spirit and scope of the appended claims. It is clear that it can be made or deformed.
図面の簡単な説明  Brief Description of Drawings
[0057] [図 1]図 1は本発明に係る錡物の製造方法の工程図である。  [FIG. 1] FIG. 1 is a process chart of a method for producing a product according to the present invention.
[図 2]図 2はシェルモールドプロセスを用いた従来の錡物の製造方法の工程図である  [FIG. 2] FIG. 2 is a process chart of a conventional method of manufacturing a product using a shell mold process.
[図 3]図 3は本実施形態の铸型除去及び熱処理工程における錡物の温度と時間との 関係を示すグラフである。 FIG. 3 is a graph showing a relationship between temperature and time of a substance in a mold removal and heat treatment step of the present embodiment.
[図 4]図 4は図 3の工程に対応し、シェルモールドプロセスを用いる従来技術の工程 について示す図 3と同様なグラフである。  [FIG. 4] FIG. 4 is a graph corresponding to the step of FIG. 3 and similar to FIG. 3 showing a step of a conventional technique using a shell mold process.

Claims

請求の範囲 The scope of the claims
[1] 铸物の製造方法であって、  [1] a method for producing a animal,
少なくとも 1種類の粒子状骨材、少なくとも 1種類の水溶性バインダー、及び水を混 合することにより骨材混合物を形成し、この骨材混合物を攪拌して発泡させる工程と 発泡させた骨材混合物を铸型造型用空間に充填し、充填した骨材混合物中の水 分を蒸発させて骨材混合物を固化させ、前記粒子状骨材により铸型を造型する工程 と、  Forming an aggregate mixture by mixing at least one kind of particulate aggregate, at least one kind of water-soluble binder, and water, stirring the aggregate mixture and foaming; and a step of foaming the aggregate mixture. Is filled in a mold forming space, the water in the filled aggregate mixture is evaporated to solidify the aggregate mixture, and a mold is formed by the particulate aggregate, and
この粒子状骨材により造型された少なくとも 1つの造型铸型に対して、相手方の铸 型を組み合わせて完成铸型を製作する工程と、  Manufacturing a completed mold by combining the mold of the other party with at least one mold formed by the particulate aggregate;
前記完成铸型に溶湯を注湯する工程と、  Pouring the molten metal into the finished mold,
前記溶湯が凝固後の铸物の冷却期間中に前記铸物から前記造型铸型を除去する 工程と、  Removing the molding mold from the molten metal during the cooling period of the solidified solid;
前記铸物を熱処理する工程とを含む铸物の製造方法。  A process for heat-treating the animal.
[2] 請求項 1に記載の方法において、前記粒子状骨材により造型された少なくとも 1つの 造型铸型が中子錡型であり、前記相手方の铸型が主型錡型である方法。  [2] The method according to claim 1, wherein at least one molding die formed by the particulate aggregate is a core die, and the other die is a main die.
[3] 請求項 2に記載の方法において、前記主型铸型が金型である方法。 [3] The method according to claim 2, wherein the main mold 铸 is a mold.
[4] 請求項 2に記載の方法において、前記主型铸型が砂型である方法。 [4] The method according to claim 2, wherein the main mold 铸 is a sand mold.
[5] 請求項 1乃至 4の何れか一項に記載の方法において、前記粒子状骨材を回収する 工程と、その回収した粒子状骨材を再生する工程とを更に含む方法。 [5] The method according to any one of claims 1 to 4, further comprising a step of collecting the particulate aggregate, and a step of regenerating the collected particulate aggregate.
[6] 請求項 5に記載の方法において、前記回収し再生した粒子状骨材を铸型の造型に 再び使用する方法。 [6] The method according to claim 5, wherein the recovered and regenerated particulate aggregate is reused for a 铸 -shaped molding.
[7] 請求項 5又は 6に記載の方法において、前記粒子状骨材を回収し再生する工程が機 械的な再生である方法。  7. The method according to claim 5, wherein the step of collecting and regenerating the particulate aggregate is mechanical regeneration.
[8] 請求項 1乃至 7の何れか一項に記載の方法において、前記铸物がアルミニウム合金 铸物又はマグネシウム合金铸物である方法。 [8] The method according to any one of claims 1 to 7, wherein the metal is an aluminum alloy material or a magnesium alloy material.
[9] 請求項 8に記載の方法において、前記熱処理力 ST6処理若しくは T7処理である方法 [9] The method according to claim 8, wherein the heat treatment power is ST6 treatment or T7 treatment.
[10] 請求項 1乃至 7の何れか一項に記載の方法において、前記铸物が铸鉄、铸鋼、又は 鉄系金属合金による铸物である方法。 [10] The method according to any one of claims 1 to 7, wherein the substance is a substance made of iron, steel, or an iron-based metal alloy.
[11] 請求項 1乃至 7の何れか一項に記載の方法において、前記铸物が銅合金铸物である 方法。 [11] The method according to any one of claims 1 to 7, wherein the metal is a copper alloy material.
[12] 請求項 1乃至 11の何れか一項に記載の方法において、前記铸型を除去する工程が [12] The method according to any one of claims 1 to 11, wherein the step of removing the 铸 pattern is performed.
、前記铸型に振動を加える方法。 And applying vibration to the 铸 type.
[13] 請求項 12に記載の方法において、前記铸型に振動を加えることが、注湯後 5分乃至 [13] The method according to claim 12, wherein the vibration is applied to the mold (5) from 5 minutes after pouring.
20分以内の時間において、前記铸型に対して IMpa以下の衝撃力を 30Hz未満で 30 sec未満与えることを含む方法。  A method comprising applying an impact force equal to or less than IMpa to the type で for less than 30 seconds at less than 30 Hz within a time period of 20 minutes or less.
[14] 铸物の製造方法であって、 [14] A method for producing a animal,
少なくとも 1種類の粒子状骨材、少なくとも 1種類の水溶性バインダー、及び水を混 合することにより骨材混合物を形成する工程と、  Forming an aggregate mixture by mixing at least one particulate aggregate, at least one water-soluble binder, and water;
この骨材混合物を攪拌して発泡させ、発泡させた骨材混合物を铸型造型用空間に 充填し、充填した骨材混合物中の水分を蒸発させて骨材混合物を固化させ、前記粒 子状骨材による中子铸型を造型する工程と、  The aggregate mixture is agitated and foamed, and the foamed aggregate mixture is filled in a space for mold making, and the moisture in the filled aggregate mixture is evaporated to solidify the aggregate mixture, and the aggregated particles are formed. A step of molding a core 铸 type with aggregate;
少なくとも 1つの前記中子铸型と金型铸型とを組み合わせて完成铸型にする工程と 前記完成铸型にアルミニウム合金の溶湯を注湯する工程と、  A step of combining at least one of the core mold and the mold to form a completed mold; and pouring a molten aluminum alloy into the completed mold.
前記溶湯が凝固後の铸物の冷却期間中に前記铸物から前記中子铸型を除去する 工程と、  Removing the core mold from the molten metal during the cooling period of the solidified solid;
前記アルミニウム合金铸物を T6又は T7熱処理する工程とを含む铸物の製造方法。  Subjecting the aluminum alloy article to a T6 or T7 heat treatment.
[15] 請求項 1乃至 14の何れか一項に記載の方法において、前記少なくとも 1種類の水溶 性バインダーが、ポリビュルアルコールとその誘導体との少なくとも一方、 [15] The method according to any one of claims 1 to 14, wherein the at least one water-soluble binder is at least one of polybutyl alcohol and a derivative thereof,
或いは、澱粉とその誘導体との少なくとも一方である方法。  Alternatively, the method is at least one of starch and a derivative thereof.
PCT/JP2005/002893 2004-02-25 2005-02-23 Process for producing cast item WO2005080023A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT05710586T ATE509714T1 (en) 2004-02-25 2005-02-23 METHOD FOR PRODUCING A CASTING
CN200580005550.1A CN1921969B (en) 2004-02-25 2005-02-23 Process for producing cast item
EP05710586A EP1721689B1 (en) 2004-02-25 2005-02-23 Process for producing cast item
JP2006510291A JP3948490B2 (en) 2004-02-25 2005-02-23 Casting manufacturing method
US10/590,354 US20070137825A1 (en) 2004-02-25 2005-02-23 Process for producing cast item

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004049428 2004-02-25
JP2004-049428 2004-02-25

Publications (1)

Publication Number Publication Date
WO2005080023A1 true WO2005080023A1 (en) 2005-09-01

Family

ID=34879546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002893 WO2005080023A1 (en) 2004-02-25 2005-02-23 Process for producing cast item

Country Status (7)

Country Link
US (1) US20070137825A1 (en)
EP (1) EP1721689B1 (en)
JP (1) JP3948490B2 (en)
CN (1) CN1921969B (en)
AT (1) ATE509714T1 (en)
TW (1) TW200533436A (en)
WO (1) WO2005080023A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094694A (en) * 2008-10-15 2010-04-30 Sintokogio Ltd Sand shake-out method for cast-in sand core
CN103601465A (en) * 2013-11-06 2014-02-26 安庆帝雅艺术品有限公司 Bronze ware filling material
JP2019181566A (en) * 2018-03-30 2019-10-24 株式会社巴川製紙所 Sand mold material for casting mold, core for casting mold, and manufacturing method of sand mold material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11501911B2 (en) * 2007-04-05 2022-11-15 Grant A. MacLennan Method of forming a cast inductor apparatus
DE102007042506B4 (en) * 2007-09-07 2010-06-17 Norbert Gatzweiler Process for quenching aluminum components
CN101956121B (en) * 2010-10-13 2013-03-13 江苏万恒铸业有限公司 Manufacture process of high-pressure hydro-stainless steel valve casting
US10371686B2 (en) 2012-11-15 2019-08-06 Heraeus EIectro-Nite International N.V. Detection device for molten metal
KR20150079679A (en) * 2012-11-19 2015-07-08 신토고교 가부시키가이샤 Sand for casting mold, manufacturing method for sand casting-mold, and core for metal casting
AT517384A1 (en) * 2015-06-15 2017-01-15 Fill Gmbh Method for producing a cast workpiece
WO2018043412A1 (en) * 2016-08-31 2018-03-08 旭有機材株式会社 Casting mold manufacturing method
AT520370B1 (en) 2017-09-07 2020-08-15 Fill Gmbh Process for the production of a cast workpiece
DE102017131255A1 (en) * 2017-12-22 2019-06-27 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung A method of making a metallic casting or a cured molding using aliphatic polymers comprising hydroxy groups
TWI789125B (en) * 2021-11-19 2023-01-01 財團法人金屬工業研究發展中心 Low pressure casting metal foaming system and intermediate foaming device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115942A (en) * 1981-01-06 1982-07-19 Sintokogio Ltd Method for forming mold
JPS5832540A (en) * 1981-08-21 1983-02-25 Sintokogio Ltd Production of core for die casting

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH470922A (en) * 1965-07-23 1969-04-15 Tsnii T I Mash Liquid, self-hardening mixture for casting molds and mold cores
GB1193952A (en) * 1966-06-02 1970-06-03 British Cast Iron Res Ass Foundry Moulding Materials
FR2096863B1 (en) * 1970-07-07 1973-02-02 Ctre Tech Ind Fonderie
NO142944L (en) * 1975-08-14 1900-01-01
JPH05261478A (en) * 1992-03-19 1993-10-12 Ube Ind Ltd Producltion of collapsible sand core

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57115942A (en) * 1981-01-06 1982-07-19 Sintokogio Ltd Method for forming mold
JPS5832540A (en) * 1981-08-21 1983-02-25 Sintokogio Ltd Production of core for die casting

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010094694A (en) * 2008-10-15 2010-04-30 Sintokogio Ltd Sand shake-out method for cast-in sand core
CN103601465A (en) * 2013-11-06 2014-02-26 安庆帝雅艺术品有限公司 Bronze ware filling material
JP2019181566A (en) * 2018-03-30 2019-10-24 株式会社巴川製紙所 Sand mold material for casting mold, core for casting mold, and manufacturing method of sand mold material
JP7309405B2 (en) 2018-03-30 2023-07-18 株式会社巴川製紙所 Manufacturing method of sand mold material for mold, core for mold and sand mold material

Also Published As

Publication number Publication date
EP1721689B1 (en) 2011-05-18
TW200533436A (en) 2005-10-16
CN1921969B (en) 2015-03-18
CN1921969A (en) 2007-02-28
EP1721689A1 (en) 2006-11-15
JP3948490B2 (en) 2007-07-25
US20070137825A1 (en) 2007-06-21
EP1721689A4 (en) 2007-05-02
ATE509714T1 (en) 2011-06-15
JPWO2005080023A1 (en) 2007-10-25

Similar Documents

Publication Publication Date Title
WO2005080023A1 (en) Process for producing cast item
JP2752316B2 (en) Consumable core for casting process
JPWO2004041460A1 (en) Dried aggregate mixture, mold making method using the dried aggregate mixture, and casting core
JP4403072B2 (en) Mold removal casting method and equipment
JP2003507192A (en) METHOD AND APPARATUS FOR PRODUCING METAL GRID NETWORK
US20170297086A1 (en) Process for providing metal castings using the lost foam method
WO2005023457A1 (en) Method of forming mold and core for metal casting
US7165600B2 (en) Chemically bonded aggregate mold
JPH01154846A (en) Method of casting metal in air gap section of sand mold easy to be fluidized and firmly cured
US4248974A (en) Binder composition for foundry sand containing zinc carbonate dispersed in resin
JP7202238B2 (en) Coated sand and mold manufacturing method using the same
US6920911B2 (en) Foundry sand with oxidation promoter
JP4117514B2 (en) template
Deore et al. A study of core and its types for casting process
US20090250185A1 (en) Methods for casting stainless steel and articles prepared therefrom
JPH09174194A (en) Manufacture of mold and method for distingrating mold obtained by this method
JP4126366B2 (en) Method for producing foamed inorganic powder
JPH07303935A (en) Formation of mold
JPS63295037A (en) Molding method for mold for casting
JPS58369A (en) Casting of cast iron
JPS6242696B2 (en)
CS257755B2 (en) Method of frozen casting moulds or mould blades production from precooled grained material
JPH08155584A (en) Method for molding casting mold
CN103073272A (en) Production method of ceramic core for support plate forming
CN103056303A (en) Ceramic core for supporting plate forming

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005710586

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580005550.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2007137825

Country of ref document: US

Ref document number: 2006510291

Country of ref document: JP

Ref document number: 10590354

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005710586

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10590354

Country of ref document: US