WO2018043412A1 - Casting mold manufacturing method - Google Patents

Casting mold manufacturing method Download PDF

Info

Publication number
WO2018043412A1
WO2018043412A1 PCT/JP2017/030764 JP2017030764W WO2018043412A1 WO 2018043412 A1 WO2018043412 A1 WO 2018043412A1 JP 2017030764 W JP2017030764 W JP 2017030764W WO 2018043412 A1 WO2018043412 A1 WO 2018043412A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
water
coated sand
parts
mass
Prior art date
Application number
PCT/JP2017/030764
Other languages
French (fr)
Japanese (ja)
Other versions
WO2018043412A8 (en
Inventor
智宏 高間
哲也 浦
Original Assignee
旭有機材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭有機材株式会社 filed Critical 旭有機材株式会社
Priority to MX2019002260A priority Critical patent/MX2019002260A/en
Priority to CN201780053438.8A priority patent/CN109641265B/en
Priority to JP2018537260A priority patent/JP6923533B2/en
Publication of WO2018043412A1 publication Critical patent/WO2018043412A1/en
Publication of WO2018043412A8 publication Critical patent/WO2018043412A8/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the present invention relates to a mold manufacturing method, and in particular, while improving workability at a molding site, which is a mold manufacturing site, advantageously manufactures the mold and improves the filling property of the coated sand and the strength of the mold. It is about the method that can be made to.
  • a coated sand formed by coating a mold sand made of a refractory aggregate with a predetermined binder is used.
  • a technique for forming a mold has been adopted, and as a binder used there, for example, “Casting Engineering Handbook” pages 78 to 90 edited by the Japan Foundry Engineering Society include inorganic systems such as water glass.
  • organic binders using resins such as phenolic resins, furan resins, and urethane resins have been clarified, and in these cases, self-hardening molds are formed using these binders. The method is also clarified.
  • silica sand, water glass and amorphous silicon dioxide are kneaded at the mold making site, and wet alkali silicate (water glass) is adhered to the surface of the silica sand.
  • a mold material (coated sand) in a wet form (humid state) is formed, and the mold material is filled into a predetermined mold to form a mold having a desired shape.
  • Such wet coated sand reacts with carbon dioxide in the air and gradually cures, so the pot life is short and the storage stability is not sufficient.
  • Such a wet coated sand is generally manufactured at a molding site of a mold and then filled in a molding die as it is to perform the molding of a target mold. Therefore, in order to obtain a wet coated sand by transporting fine powdery refractory aggregate and water glass to a molding site with many obstacles and kneading them with a mixer, the viscosity of water glass is high. In addition, it takes a lot of labor and time, and in addition to the difficulty of mixing with refractory aggregate due to the viscosity of water glass, mixing mixers and molds for molding, etc. There is a problem of poor workability in molding, such as the equipment is easily soiled. In addition, since the work is performed at the molding site, there is an inherent problem that the worker is highly likely to receive chemical injury due to the strong alkaline water glass.
  • JP-A-2012-076115 discloses a dry coated sand having room temperature fluidity. There, such dry coated sand is coated with a solid coating layer containing a water-soluble inorganic compound such as water glass as a binder, which is used to mold a mold for mold making. After filling the cavity, the method of solidifying the coated sand by aeration of water vapor and obtaining the target mold has been clarified. It is necessary to blow water vapor into the mold after filling with the dry coated sand. Therefore, it is necessary to specially provide a water vapor blowing device, so that the conventional device can be used as it is. There are inherent problems that cannot be achieved and increase the manufacturing cost of the mold.
  • the wet coated sand filled in the mold is wetted with water vapor and then solidified by drying to mold the mold, so that the wet coated sand is used.
  • the present invention has been made against the background of such circumstances, and the solution is to improve the workability at the molding site while improving the filling property of the coated sand and the strength of the mold. It is to provide a mold manufacturing method capable of effectively achieving the above, and another problem is that a conventional apparatus for molding is basically left as it is without installing a special apparatus.
  • the object of the present invention is to provide a method capable of advantageously producing a target mold.
  • the present invention can be suitably implemented in various aspects as listed below, and each aspect described below is employed in any combination. Is possible. It should be noted that aspects or technical features of the present invention are not limited to those described below, and can be recognized based on the inventive concept that can be grasped from the description of the entire specification. Should be understood.
  • An aqueous medium containing a surfactant and / or a polyhydric alcohol is added to dry coated sand obtained by coating the surface of a refractory aggregate with a water-soluble binder.
  • a method for producing a casting mold comprising: moistening and then filling the obtained wetted coated sand into a molding die.
  • the aqueous medium is 100 parts by mass of the coated sand, The method for producing a mold according to the aspect (1), wherein the mold is added to the coated sand in a ratio of 0.5 to 6 parts by mass.
  • the aqueous medium is added so that the surfactant has a ratio of 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand.
  • the above aspect A method for producing a mold according to 1) or aspect (2).
  • the aqueous medium is added so that the polyhydric alcohol has a ratio of 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand.
  • (6) The aspect (5), wherein the addition amount of the spherical particles is 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand.
  • (7) The aspect (1), wherein a second water-soluble binder is further added to wet the dry coated sand. Thru
  • (8) The above aspect (5), wherein the moisture content in the dry coated sand is 5 to 55% by mass of the solid content of the water-soluble binder.
  • thermosetting resins, saccharides, proteins, synthetic polymers, salts and inorganic polymers are selected and used as the water-soluble binder.
  • the above aspect wherein the inorganic polymer is water glass ( The method for producing a mold according to 9).
  • heated air or dry air is ventilated in a mold filled with the wetted coated sand. A method for producing the mold described above.
  • the carbon dioxide gas or the organic ester gas is aerated in a mold filled with the wetted coated sand.
  • (13) The mold manufacturing method according to any one of the aspects (1) to (12), wherein the mold is heated to a temperature of 40 ° C. to 250 ° C.
  • a dry coated sand is prepared in advance, and it is brought to the molding site, At the site of molding, it is possible to mold a target mold only by preparing a surfactant and / or a polyhydric alcohol-containing aqueous medium for moistening such dry coated sand.
  • a surfactant and / or a polyhydric alcohol-containing aqueous medium for moistening such dry coated sand.
  • the mixture adheres to the mixer.
  • the operator can use the water glass or other water-soluble binders to burn chemicals. The fear of receiving was completely eliminated.
  • a surfactant and / or a polyhydric alcohol is added to the aqueous medium used for moistening the coated sand, thereby advantageously improving the filling property of the coated sand during mold making.
  • the feature that the strength of the obtained mold can be effectively improved can be advantageously exhibited.
  • the dry coated sand prepared in advance hardly changes with time due to carbon dioxide gas in the air unless an aqueous medium is added, and the dry coated sand is excellent in storage stability.
  • the coated sand of the state is prepared in advance in a large amount at a place different from the molding site, and at the molding site, a part thereof is added to the surfactant and / or polyhydric alcohol-containing aqueous medium, It has the practical advantage that the target mold can be molded after it has been wetted, and such dry coated sand that has been wetted can be used on the molding site as before. Compared with the wet coated sand to be produced, it exhibits excellent characteristics that the filling property into the mold is better and the mold release property of the molded mold is improved.
  • a surfactant and / or a polyhydric alcohol-containing aqueous solution can be obtained by simply filling a mold with wetted sand and heating it at the molding site. Since the moisture of the medium is evaporated and dried or solidified or hardened, it is necessary to newly install special devices such as a water vapor generating device and a water vapor ventilation mechanism as in the case of using the dry coated sand as it is. Basically, it becomes possible to perform molding using the conventional apparatus as it is, and this can avoid an increase in apparatus cost and, in turn, an increase in mold manufacturing cost, There is no need to adopt a new steam blowing process, which can advantageously avoid lengthening the molding cycle. And than it was.
  • a dry coated sand prepared in advance is generally mixed with a water-soluble binder in a state of an aqueous solution as a binder to a refractory aggregate, and By evaporating water from the mixture, in other words, by evaporating water in the water-soluble binder in the form of an aqueous solution, a dried coating layer made of a solid content of the water-soluble binder that is a binder is obtained. It is a dry product formed on the surface of such a refractory aggregate at a predetermined thickness, and has good room temperature fluidity.
  • the water content in such dry coated sand is desirably 5 to 55% by mass, preferably 10 to 50%, based on the solid content of the water-soluble binder. It is desirable that it is mass%.
  • the content is desirably 20 to 50% by mass.
  • the water content is less than 5% by mass, there is a problem that a water-soluble binder such as water glass is vitrified and does not return to a solution state even when water is added again. If the amount is larger than that, a problem of not being in a dry state occurs.
  • the dry state in the present invention refers to the one in which the measured value of the dynamic angle of repose is obtained when the dynamic angle of repose is measured regardless of the water content.
  • the dynamic angle of repose means that coated sand is contained in a cylinder whose one end in the axial direction is closed with a transparent plate (for example, in a container having a diameter of 7.2 cm and a height of 10 cm.
  • Coated sand is put to half of the volume), the core is held in the horizontal direction, and is rotated around the horizontal axis at a constant speed (for example, 25 rpm), so that the coated is flowing in the cylinder.
  • the slope of the sand layer is a flat surface, and the angle formed between the slope and the horizontal plane is measured.
  • wet coated sand when the coated sand is in a wet state, the coated sand layer does not flow, the slope of the coated sand layer is not formed as a flat surface, and the dynamic angle of repose cannot be measured is referred to as wet coated sand. I will do it.
  • the pot life is prolonged, and the storage stability can be advantageously improved.
  • a place such as a factory that is different from the site, it is possible to prepare a large amount in advance, transport a part of it to the molding site, and use it for molding the target mold, This can greatly contribute to the efficiency of molding work.
  • the fireproof aggregate constituting the coated sand as described above is a fireproof material that functions as a base material of a mold, and various fireproof granular or powder materials conventionally used for molds.
  • refractory aggregates may be fresh sand, or reclaimed sand or recovered sand that has been used once or a plurality of times as casting sand for casting molds. Even mixed sand made by adding fresh sand to sand or recovered sand and mixing them can be used.
  • Such a refractory aggregate is generally used with a particle size of about 40 to 130, preferably about 60 to 110 in terms of AFS index.
  • the binder that covers the fireproof aggregate as described above is also called a binder, and a water-soluble binder is used in the present invention.
  • a water-soluble binder any of inorganic polymers, thermosetting resins, saccharides, synthetic polymers, salts, and proteins can be used as long as they are water-soluble. These may be used alone, or two or more may be selected and used, but it is particularly preferable to use an inorganic polymer. Moreover, these water-soluble binders may be used by diluting with water or a solvent in advance.
  • examples of the inorganic polymer used as such a water-soluble binder include water glass, colloidal silica, alkyl silicate, bentonite, cement, etc. Among them, water glass is preferably used. Become. Such water glass is a soluble silicate compound. Examples of such a silicate compound include sodium silicate, potassium silicate, sodium metasilicate, potassium metasilicate, lithium silicate, and ammonium silicate. In particular, in the present invention, sodium silicate (sodium silicate) is advantageously used.
  • sodium silicates are usually classified and used as No. 1 to No. 5 depending on the molar ratio of SiO 2 / Na 2 O.
  • sodium silicate No. 1 has a SiO 2 / Na 2 O molar ratio of 2.0 to 2.3
  • sodium silicate No. 2 is SiO 2 / Na 2 O 2 The molar ratio is 2.4 to 2.6
  • sodium silicate No. 3 has a SiO 2 / Na 2 O molar ratio of 2.8 to 3.3
  • sodium silicate No. 4 has a SiO 2 / Na 2 O molar ratio of 3.3 to 3.5
  • sodium silicate No. 5 has a SiO 2 / Na 2 O molar ratio. Is 3.6 to 3.8.
  • sodium silicate Nos. 1 to 3 are also defined in JIS-K-1408. These sodium silicates may be used alone or in combination, and the molar ratio of SiO 2 / Na 2 O can be adjusted by mixing.
  • the sodium silicate constituting the water glass used as the binder generally has a SiO 2 / Na 2 O molar ratio of 1.9 or more. Preferably, it is 2.0 or more, more preferably 2.1 or more. In the above-mentioned classification of sodium silicate, sodium silicate corresponding to No. 1 and No. 2 is particularly advantageously used. Become. Such sodium silicates No. 1 and No. 2 provide dry coated sand having stable and good characteristics even when the sodium silicate concentration in the water glass is wide.
  • the upper limit of the SiO 2 / Na 2 O molar ratio in such sodium silicate is appropriately selected according to the characteristics of the water glass in the form of an aqueous solution, but generally 3.5 or less, It is preferably 3.2 or less, more preferably 2.7 or less.
  • the SiO 2 / Na 2 O molar ratio is smaller than 1.9, the viscosity of the water glass is lowered, and unless the water content is considerably reduced, it becomes difficult to obtain a dry state.
  • it exceeds 3.5 the solubility in water is lowered, and the adhesion to the surface of the refractory aggregate is not sufficient, so that the adhesion area cannot be obtained and the mold strength is lowered.
  • the water glass used in the present invention means a solution of a silicate compound in a state dissolved in water.
  • water is added to such a stock solution. It is added and used in a diluted state.
  • a solid content (water glass component) obtained by removing a volatile substance such as water or a solvent from such water glass is referred to as a nonvolatile content, and this corresponds to the above-described soluble silicate compound such as sodium silicate. To do.
  • the higher the proportion of such non-volatile content (solid content) the higher the silicate compound concentration in the water glass.
  • the non-volatile content of the water glass used in the present invention corresponds to the ratio excluding the amount of water in the stock solution when it is composed of only the stock solution, while the stock solution is converted into water.
  • the remaining amount excluding the amount of water in the stock solution and the amount of water used for dilution corresponds to the non-volatile content of the water glass used. Will be.
  • the non-volatile content in the water glass is set to an appropriate ratio depending on the type of the water glass component (soluble silicate compound) and the like, but is preferably a ratio of 20 to 50% by mass. It is desirable to be contained in By making the water glass component corresponding to this non-volatile content appropriately in the aqueous solution, the water glass component can be uniformly and uniformly applied to the fire resistant aggregate during mixing (kneading) with the fire resistant aggregate. So that the intended mold can be advantageously made according to the invention. In addition, when the concentration of the water glass component in the water glass becomes too low and the total amount of non-volatile components is less than 20% by mass, the heating temperature is increased or the heating time is lengthened for drying the coated sand.
  • thermosetting resin which is one of the water-soluble binders other than the above-described inorganic polymer
  • resol type phenol resin furan resin, water-soluble epoxy resin, water-soluble melamine resin, water-soluble urea resin, water-soluble resin
  • examples thereof include unsaturated polyester resins and water-soluble alkyd resins.
  • a curing agent such as acid or ester
  • the use of a resol type phenol resin is preferable, and such a phenol resin can be prepared by reacting phenols with formaldehyde in the presence of a reaction catalyst. .
  • a water-soluble alkaline resole resin is mentioned as a suitable thing as this phenol resin.
  • a mold that can be used in a wide range of fields such as cast iron and cast steel can be provided.
  • saccharides which are other ones of water-soluble binders known ones such as monosaccharides, oligosaccharides and polysaccharides can be used.
  • monosaccharides include glucose (glucose), fructose (fructose), galactose
  • examples of oligosaccharides include maltose (malt sugar), sucrose (sucrose), lactose (lactose), cellobiose, and the like.
  • monosaccharides include glucose (glucose), fructose (fructose), galactose
  • examples of oligosaccharides include maltose (malt sugar), sucrose (sucrose), lactose (lactose), cellobiose, and the like.
  • polysaccharide examples include starch sugar, dextrin, xanthan gum, curdlan, pullulan, cycloamylose, chitin, cellulose, and starch.
  • gums of plant mucilage such as gum arabic may be used, and carboxylic acid can also be used as a curing agent for saccharides, particularly polysaccharides.
  • synthetic polymers used as water-soluble binders include polyethylene oxide, poly- ⁇ -hydroxyacrylic acid, acrylic acid copolymers, acrylic ester copolymers, methacrylic ester copolymers, polyacrylamide , Anionized polyacrylamide, cationized polyacrylamide, polyaminoalkyl methacrylate, acrylamide / acrylic acid copolymer, polyvinyl sulfonic acid, polystyrene sulfonic acid, sulfonated maleic acid polymer, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyvinyl methyl ether , Polyether-modified silicone, or modified products thereof. And these are used independently, or a plurality are selected and used.
  • salts those which are solidified by adding water and drying are used, for example, sulfates such as magnesium sulfate and sodium sulfate, bromides such as sodium bromide and potassium bromide, sodium carbonate and carbonate. Examples thereof include carbonates such as potassium, and chlorides such as barium chloride, sodium chloride and potassium chloride.
  • sulfates such as magnesium sulfate and sodium sulfate
  • bromides such as sodium bromide and potassium bromide
  • carbonates such as potassium
  • chlorides such as barium chloride, sodium chloride and potassium chloride.
  • proteins include gelatin and glue.
  • the water-soluble binder as described above may be used at a ratio of 0.1 to 2.5 parts by mass in terms of solid content when considered as only a non-volatile content with respect to 100 parts by mass of the refractory aggregate. Desirably, among these, a ratio of 0.2 to 2.0 parts by mass is particularly advantageously employed, and a predetermined coating layer is formed on the surface of the refractory aggregate.
  • the measurement of solid content is implemented as follows. That is, 10 g of a sample was weighed and contained in an aluminum foil dish (length: 90 mm, width: 90 mm, height: 15 mm), placed on a heating plate maintained at 180 ⁇ 1 ° C., and left for 20 minutes. The sample pan is inverted and left on the heating plate for an additional 20 minutes.
  • Solid content (mass%) [mass after drying (g) / mass before drying (g)] ⁇ 100
  • the amount of the water-soluble binder used is too small, it is difficult to form a coating layer on the surface of the refractory aggregate, resulting in a problem that the coated sand is not sufficiently solidified or hardened. Even if the amount of the water-soluble binder used is excessive, the water-soluble binder is excessively adhered to the surface of the refractory aggregate, making it difficult to form a uniform coating layer, and the coated sand is mutually attached. There is also a risk that it will stick and agglomerate (composite particles), which will adversely affect the physical properties of the mold and cause problems that make it difficult to remove the sand from the core after casting the metal.
  • dry coated sand obtained by using the above-mentioned water-soluble binder and forming a coating layer on the surface of the refractory aggregate is intended.
  • a known additive can be appropriately contained as required.
  • a method of kneading or mixing with a refractory aggregate after blending a predetermined additive in a water-soluble binder in advance, separately from the water-soluble binder A method of adding a predetermined additive to the refractory aggregate and kneading or mixing the whole together with the water-soluble binder is employed.
  • a solid oxide or salt is advantageously used.
  • the moisture resistance of the coated sand can be advantageously improved.
  • the solid oxide it is effective to use oxides of elements such as silicon, zinc, magnesium, aluminum, calcium, lead, boron, and the like.
  • silicon dioxide, zinc oxide, aluminum oxide, and boron oxide is desirable.
  • silicon dioxide precipitated silicic acid and exothermic silicic acid are preferably used.
  • the salt there are silicofluoride, silicate, phosphate, borate, tetraborate, carbonate, etc.
  • zinc carbonate zinc carbonate, basic zinc carbonate, potassium metaborate, tetraborate, etc.
  • Use of sodium acid and potassium tetraborate is desirable.
  • These solid oxides and salts are generally used at a ratio of about 0.5 to 5% by mass with respect to the nonvolatile content in the water-soluble binder.
  • a coupling agent that strengthens the bond between the refractory aggregate and the water-soluble binder as other additives, for example, silane coupling agents, zircon coupling agents, titanium coupling agents. Etc. can be used. It is also effective to contain a lubricant that contributes to improving the flowability of the coated sand.
  • a lubricant that contributes to improving the flowability of the coated sand.
  • waxes such as paraffin wax, synthetic polyethylene wax, and montanic acid wax; stearic acid amide, oleic acid amide, erucic acid amide, etc.
  • Fatty acid amides such as methylene bis stearic acid amide and ethylene bis stearic acid amide; stearic acid, stearyl alcohol; stearic acid metal salts such as lead stearate, zinc stearate, calcium stearate, magnesium stearate; stearin Acid monoglycerides, stearyl stearate, hydrogenated oils and the like can be used.
  • release agents paraffin, wax, light oil, machine oil, spindle oil, insulating oil, waste oil, vegetable oil, fatty acid ester, organic acid, fine graphite particles, mica, meteorite, fluorine release agent, silicone release agent An agent or the like can also be used.
  • Each of these other additives is generally contained in a proportion of 5% by mass or less, preferably 3% by mass or less, with respect to the nonvolatile components in the water-soluble binder.
  • a water-soluble binder as a binder is added to the fire-resistant aggregate, together with additives used as necessary.
  • a water-soluble binder as a binder
  • mixing uniformly, and covering the surface of such a refractory aggregate with a water-soluble binder, and by evaporating the water of such a water-soluble binder A method of obtaining dry powdered coated sand having room temperature fluidity will be adopted, but the transpiration of the moisture in the coating layer at that time is quickly before solidification or hardening of the water-soluble binder proceeds Therefore, in the present invention, it is more preferable that the water-resistant binder in the form of an aqueous solution is added (mixed) to the refractory aggregate within 5 minutes.
  • the moisture content of the dry powdered coated sand thus obtained is generally about 5 to 55% by mass, preferably 10 to 50% by mass, based on the solid content of the water-soluble binder.
  • the water-soluble binder is water glass, it is formed as a coated sand having a moisture content adjusted to 20 to 50% by mass.
  • the refractory aggregate is preheated, A technique is adopted in which a water-soluble binder in the form of an aqueous solution is kneaded or mixed and mixed. By mixing or mixing the water-soluble binder with this preheated refractory aggregate, the water in the water-soluble binder is evaporated very rapidly by the heat of such a refractory aggregate. Therefore, the moisture content of the coated sand obtained can be effectively reduced, and a dry powder having room temperature fluidity can be advantageously obtained.
  • the preheating temperature of such a refractory aggregate is appropriately selected according to the water content of the water-soluble binder, the blending amount thereof, etc., but is generally about 100 to 160 ° C., preferably 100 to It is desirable to heat the refractory aggregate to a temperature of about 140 ° C. If this preheating temperature is too low, it is not possible to effectively evaporate water, and it takes time to dry. Therefore, it is desirable to employ a temperature of 100 ° C. or higher.
  • the coated sand is too high, the water-soluble binder component hardens when the coated sand obtained is cooled, and in addition, the formation of composite particles proceeds, so there is a problem in the physical properties such as the strength of the coated sand, particularly strength. Will be produced.
  • the dry coated sand obtained as described above is used and transported to the molding site where the mold is produced. Then, at the molding site, the surfactant and / or Alternatively, an aqueous medium containing a polyhydric alcohol is added to wet, and the obtained wet coated sand is filled into a mold to form a target mold.
  • the step of adding a surfactant and / or a polyhydric alcohol-containing aqueous medium to the dry coated sand and moistening is performed by simply combining the dry coated sand with a predetermined amount of the aqueous medium.
  • the addition of a surfactant enhances the compatibility between the water-soluble binder that is the coating layer of the coated sand and moisture, and can advantageously improve the fluidity in the wet coated sand.
  • the improved fluidity improves the filling property of the coated sand into the mold, and in particular, even in a mold with a complicated shape and a long cavity path from the filling port to the completion of filling. Without filling.
  • the strength of the mold can be advantageously improved, and since it has a moisturizing effect, the moisturizing property of the coated sand in the wet state is improved and the pot life is extended. There is an advantage that can be.
  • wet coated sand can be moistened by simply adding a surfactant and / or a polyhydric alcohol-containing aqueous medium, and kneading the viscous water-soluble binder into the refractory aggregate. Since the workability is extremely good and the wetted coated sand is difficult to adhere to a mixer, a mold or the like, the device exhibits a feature that makes it difficult to get dirty. In the molding site, since the water-soluble binder, particularly water glass, is not handled, there is an advantage that the worker is not likely to receive chemical injury.
  • the surfactant and / or polyhydric alcohol-containing aqueous medium used in the present invention is dissolved by adding at least one of the surfactant and the polyhydric alcohol to water in a predetermined ratio. Or it is prepared by dispersing.
  • various additives pointed out in this specification and other additives known to those skilled in the art are added and contained in the aqueous medium as necessary.
  • the amount of the surfactant is 0.1 to 20% with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. It is desirable to use an aqueous medium so as to be 0 parts by mass, and it is particularly preferable to use an aqueous medium so as to be 0.5 to 15.0 parts by mass, particularly 0.75 to 12.5 parts by mass. .
  • the surfactant any of cationic, anionic, amphoteric, nonionic, silicone type and fluorine type can be used.
  • examples of the cationic surfactant include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolinium salts, and the like.
  • anionic surfactant examples include fatty acid soap, N-acyl-N-methylglycine salt, N-acyl-N-methyl- ⁇ -alanine salt, N-acyl glutamate, alkyl ether carboxylate, acyl Peptide, alkyl sulfonate, alkyl benzene sulfonate, alkyl naphthalene sulfonate, dialkyl sulfosuccinate ester, alkyl sulfoacetate, ⁇ -olefin sulfonate, N-acylmethyl taurine, sulfated oil, higher alcohol Sulfate, secondary higher alcohol sulfate, alkyl ether sulfate, secondary higher alcohol ethoxy sulfate, polyoxyethylene alkyl phenyl ether sulfate, monoglyculate, fatty acid alkylolamide sulfate, alkyl ether phosphorus Acid Examples include stealth salts
  • amphoteric surfactant examples include carboxybetaine type, sulfobetaine type, aminocarboxylate, imidazolinium betaine and the like.
  • nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkylphenyl ether (eg, Emulgen 911), polyoxyethylene sterol ether, polyoxyethylene lanolin derivative Polyoxyethylene polyoxypropylene alkyl ether (for example, New Pole PE-62), polyoxyethylene glycerin fatty acid ester, polyoxyethylene castor oil, hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, Polyethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fat Esters, sucrose fatty acid esters, fatty acid alkanolamides, polyoxyethylene
  • silicone surfactants those having a siloxane structure as a nonpolar site are particularly referred to as silicone surfactants, and those having a perfluoroalkyl group are referred to as fluorine surfactants.
  • silicone-based surfactant include polyester-modified silicone, acrylic-terminated polyester-modified silicone, polyether-modified silicone, acrylic-terminated polyether-modified silicone, polyglycerin-modified silicone, and aminopropyl-modified silicone.
  • fluorosurfactants perfluoroalkyl sulfonates, perfluoroalkyl carboxylates, perfluoroalkyl phosphates, perfluoroalkyltrimethylammonium salts, perfluoroalkylethylene oxide adducts, perfluoroalkyl groups Containing oligomers and the like.
  • these surfactants are used individually or in mixture of 2 or more types.
  • the polyhydric alcohol used instead of or together with the above surfactant is generally 0.1 to 20.0 mass per 100 mass parts of the solid content of the water-soluble binder in the dry coated sand.
  • An aqueous medium containing such a polyhydric alcohol is preferably used in an amount of 0.5 to 15.0 parts by mass, more preferably 0.75 to 12.5 parts by mass. It will be added to the coated sand.
  • Specific examples of the polyhydric alcohol used here include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, dipropylene glycol, propylene glycol, butylene glycol, 1,2-butanediol, and 1,2-pentane.
  • Diol 1,5-pentanediol, 1,2-hexanediol, 2-ethyl-1,3-hexanediol, 1,6-hexanediol, 1,2-heptanediol, 1,2-octanediol, 1, Examples include 2,6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane, and trimethylolpropane. And these can be used individually or in mixture of 2 or more types.
  • the aqueous medium containing the surfactant and / or polyhydric alcohol prepared as described above can also contain various known additives as necessary.
  • an acid or an ester may be contained as the curing agent, and among them, sulfuric acid, hydrochloric acid, carbonic acid, and sulfonic acids are preferable as the acid.
  • the ester include lactones such as ⁇ -butyrolactone and ⁇ -caprolactone, Esters derived from an alcohol having 1 to 10 carbon atoms and a carboxylic acid having 1 to 10 carbon atoms such as ethylene glycol diacetate, triacetin, diethylene glycol diacetate and triethylene glycol diacetate are preferred.
  • the alcohol having 1 to 10 carbon atoms may be monovalent or polyvalent.
  • the metal salt is preferably a metal salt such as calcium, magnesium, aluminum, or iron
  • the metal powder is preferably a metal powder such as calcium, magnesium, zinc, aluminum, or silicon.
  • drying accelerators such as alcohols such as methanol, which are organic solvents, and ketones such as acetone and diacetone alcohol, PROXEL GXL [1,2-benzoisothiazol-3 (2H) -one manufactured by Lonza Japan Co., Ltd. ]
  • PROXEL IB polyhexamethylene biguanidine
  • silane coupling agent may be added in a small amount.
  • a second water-soluble binder can be added as a further additive for adjusting the mold strength.
  • the second water-soluble binder is appropriately selected from the water-soluble binders exemplified above, and may be the same as or different from the water-soluble binder covering the coated sand.
  • the second water-soluble binder may be further added.
  • the strength can be improved.
  • the addition amount of the second water-soluble binder is for adjustment, the solid content of the second water-soluble binder to be added is reduced with respect to the solid content of the water-soluble binder in the coated sand. Is desirable.
  • spherical particles are added as a further additive when adding an aqueous medium containing a surfactant and / or a polyhydric alcohol to the dry coated sand and moistening. It is also effective.
  • Such spherical particles it is possible to advantageously contribute to improvement of the filling property of the coated sand at the time of mold making.
  • Such spherical particles may be added in a state of being mixed with a surfactant and / or a polyhydric alcohol-containing aqueous medium, or added separately from the surfactant and / or the polyhydric alcohol-containing aqueous medium. It is also possible to do.
  • the addition amount of the spherical particles is about 0.1 to 20.0 parts by mass, preferably 0.5 to 15.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. More preferably, the content is 0.75 to 12.5 parts by mass.
  • spherical particles those having a sphericity of 0.5 or more are usually desirable. Among them, particles having a sphericity of preferably 0.7 or more, more preferably 0.9 or more are advantageously used. It will be.
  • the sphericity is the average value of the aspect ratio (minor axis / major axis ratio) obtained from the projection shape of 10 single particles randomly selected in scanning electron microscope observation. I mean.
  • the average particle diameter of such spherical particles is about 0.1 to 25.0 ⁇ m, preferably about 1.0 to 20.0 ⁇ m.
  • the material of the spherical particles is not particularly limited, Advantageously, spherical particles such as amorphous silica, alumina, titanium oxide and the like are preferably used.
  • the amount of a surfactant and / or a polyhydric alcohol-containing aqueous medium is added to the dry coated sand at the mold making site.
  • the amount of water supplied by the surfactant and / or polyhydric alcohol-containing aqueous medium used therein is The amount of the water glass component constituting the coated sand is appropriately determined according to the type and amount of use, and generally, in order to wet the dry coated sand, 0.5 to 5 parts by mass, preferably 0.75 to 4 parts by mass, more preferably 1 to 3 parts by mass. In, will be determined as appropriate.
  • the amount of the surfactant and / or polyhydric alcohol-containing aqueous medium is determined by the amount of water, surfactant, or polyhydric alcohol to be added, but generally 100 parts by mass of the coated sand.
  • the ratio is appropriately determined in the ratio of 0.5 to 6 parts by mass, preferably in the ratio of 0.75 to 4 parts by mass, more preferably in the ratio of 1 to 3.5 parts by mass. . If the amount of the surfactant and / or the polyhydric alcohol-containing aqueous medium is too small, it is not possible to sufficiently wet the coated sand in the dry state. As a result of the weak adhesion, the fluidity of the coated sand deteriorates and the filling property into the mold deteriorates.
  • the strength of the resulting mold is reduced.
  • the amount of the surfactant and / or the polyhydric alcohol-containing aqueous medium is excessively increased, the filling operation into the mold becomes difficult, and the drying operation after filling into the mold is time-consuming. In short, it causes problems such as a long molding time.
  • the dried coated sand wet product obtained as described above is used to fill a predetermined mold, specifically, the mold cavity of the mold. Then, by drying the wetted coated sand, a mold having a target shape is formed. At this time, the wetted coated sand used is directly coated with a water-soluble binder. It has better fluidity than wet coated sand obtained by kneading into refractory aggregates, and it has improved adhesiveness due to reduced adhesion and adhesion between sand. In addition, since the adhesion to the mold can be effectively reduced, the dirt on the mold can be advantageously suppressed, and the mold releasability from the mold can be advantageously improved. is there.
  • a blow filling method using a blow head is preferably employed, and the blow pressure at that time is about 0.2 to 0.6 MPa, The pressure is preferably about 0.3 to 0.5 MPa.
  • the heating temperature of such a mold generally a temperature within the range of 40 to 250 ° C., preferably 70 to 200 ° C., more preferably 100 to 175 ° C. is employed. If this heating temperature is less than 40 ° C., it is difficult to sufficiently exert the drying accelerating effect due to heating, and there is a problem that the molding time becomes long.
  • the coated sand is solidified or hardened too quickly, and its filling property is deteriorated. Also, the wet coated sand is too dried, the tackiness is lost, and the adhesive effect is lowered. Problems such as a decrease in strength also arise.
  • the mold in order to promote drying of the wetted coated sand filled in the mold, it is also effective to directly heat the filled wetted coated sand in the microwave,
  • the mold when the mold is a resin mold, it is preferably employed. Further, by allowing heated air or dry air to pass through a mold filled with wetted coated sand and passing through a packed bed of wetted coated sand, drying is promoted and the filling is performed more quickly. It is also effective to solidify or harden the wet coated sand.
  • it is one of the effective drying means to vacuum-dry the inside of the mold by sucking the mold filled with wet coated sand under reduced pressure. In a mold of a material that is easily received, it is advantageously employed.
  • the moisture of the surfactant and / or polyhydric alcohol-containing aqueous medium used for the moistening is used from the moistened coated sand filled in the mold.
  • the target mold By removing it, the target mold will be formed, but at that time, the water glass constituting the coating layer on the surface of the coated sand is usually not added with any additives, If it is solidified by evaporating to dryness of water and an oxide or salt is added as a curing agent, it will be cured.
  • it is also effective to ventilate carbon dioxide gas or organic ester gas into a mold filled with wetted coated sand. It is possible to cure the water glass quickly and advantageously increase the molding speed.
  • organic ester gas for example, methyl formate, ethyl formate, propyl formate, ⁇ -butyrolactone, ⁇ -propionlactone, ethylene glycol diacetate, diethylene glycol diacetate, glycerin diacetate, triacetin, propylene carbonate and the like are gaseous or Atomized and used.
  • the present invention as a method of moistening the dry coated sand and molding it with a predetermined mold, it is possible to produce a mold by employing various known molding methods. Furthermore, the present invention can be carried out in a mode to which various changes, modifications, improvements, etc. are added based on the knowledge of those skilled in the art, and such a mode of implementation does not depart from the gist of the present invention. Insofar, it should be understood that all belong to the scope of the present invention.
  • the method is not particularly limited as long as it can measure the moisture content in CS, and an effective measurement method can be selected depending on the type of binder. An example of the measurement method is shown below.
  • Each CS is weighed and accommodated in a crucible that has been baked and weighed, and the amount of moisture (W1) in the CS is calculated using the mass loss (%) after heating at 900 ° C. for 1 hour. It calculates from the following formula (1). The weighing is measured to the fourth decimal place. Next, the binder solid content (B1) with respect to CS is calculated using the following formula (2), and then the water content (W2) with respect to the solid content of the binder is calculated from the following formula (3). ) To calculate.
  • the CS of each example or each comparative example is divided into one mold half 5 having a parting surface as shown in FIG. 1 and the other mold half having a parting surface symmetrical to the mold half (5 ), And the molding die is filled at a blow pressure of 0.3 MPa from the filling port 6 and molded at a molding die temperature of 150 ° C. and a molding time of 180 seconds. (G) is measured.
  • the CS filling state with respect to the flow paths 1 to 4 in the cavity is visually evaluated.
  • the filled state of each flow path is determined as ⁇ : filled, ⁇ : filled but slightly deficient, x: not filled, and the flow path portion is deficient.
  • the channels 2 to 4 are filled, and the channel 1 that is filled with ⁇ or more is regarded as acceptable.
  • Example 1 Using an commercially available product: Olfine PD-301 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) as an anionic surfactant, adding 0.02 part thereof to 2 parts of water, mixing and stirring Thus, a surfactant-containing aqueous solution as an aqueous medium was obtained. Then, 100 parts of CS1 obtained in the above dry production example 1 was put into a Shinagawa universal stirrer (5DM-r type), and a surfactant-containing aqueous solution as an aqueous medium was further added. (Thus, the surfactant is in a ratio of 4.0 parts with respect to 100 parts of the solid content of water glass in CS1) and stirred for 1 minute.
  • Olfine PD-301 trade name: manufactured by Nissin Chemical Industry Co., Ltd.
  • the wet CS thus obtained is placed in a blow tank and blown into a mold consisting of a pair of mold halves 5 heated to 150 ° C. at a gauge pressure of 0.3 MPa and filled. It was. And after hold
  • Example 2 By adding 0.05 part of an anionic surfactant (10 parts to 100 parts solid content of water glass which is a water-soluble binder) to 2 parts of water, and mixing and stirring. A mold (test piece) was prepared according to the same procedure as in Example 1 except that the aqueous medium was used.
  • Example 3 An aqueous surfactant was prepared by adding 0.06 part of an anionic surfactant (12 parts with respect to 100 parts of the solid content of water glass) to 2 parts of water and mixing and stirring. Except for this, a template (test piece) was prepared according to the same procedure as in Example 1.
  • Example 4 A mold (test piece) was prepared according to the same procedure as in Example 2 except that dry CS1 was changed to dry CS2.
  • Example 5 A mold (test piece) was prepared according to the same procedure as in Example 2 except that dry CS1 was changed to dry CS3.
  • Example 6 A commercially available product: KF643 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) is prepared as a silicone-based surfactant, and 0.005 part thereof (the ratio is 1 part with respect to 100 parts of the solid content of water glass).
  • a mold test piece was prepared according to the same procedure as in Example 1 except that it was added to 2 parts of water, mixed and stirred to obtain an aqueous medium.
  • Example 7 A commercially available product: KF640 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) is prepared as a silicone-based surfactant, and 0.005 part thereof (the ratio is 1 part with respect to 100 parts of the solid content of water glass).
  • a mold (test piece) was prepared according to the same procedure as in Example 1 except that it was added to 2 parts of water, mixed and stirred to obtain an aqueous medium.
  • Example 8 A template (test piece) was prepared in the same manner as in Example 2 except that a commercially available product: Liporan LB-440 (trade name: manufactured by Lion Corporation) was used as the anionic surfactant.
  • Example 9 A mold (test piece) was prepared according to the same procedure as in Example 2 except that a commercially available product: Surfynol 465 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used as the nonionic surfactant.
  • a commercially available product Surfynol 465 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used as the nonionic surfactant.
  • Example 10 A mold (test piece) was prepared in the same manner as in Example 2 except that a commercially available product: Surfynol 485 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used as the nonionic surfactant.
  • Surfynol 485 trade name: manufactured by Nissin Chemical Industry Co., Ltd.
  • Example 11 As an anionic surfactant, a commercially available product: Olphine PD-301 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used, and 0.02 part thereof (a ratio of 4 parts to 100 parts of the solid content of water glass) And 0.04 part of glycerin as polyhydric alcohol (the ratio is 8 parts with respect to 100 parts of the solid content of water glass) is added to 2 parts of water and mixed and stirred. Thus, a template (test piece) was prepared according to the same procedure as in Example 1 except that the aqueous medium was used.
  • Example 12 As an anionic surfactant, a commercially available product: Olphine PD-301 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used, and 0.05 parts thereof (a ratio of 10 parts to 100 parts of solid content of water glass) And 0.04 part of glycerin as polyhydric alcohol (the ratio is 8 parts with respect to 100 parts of the solid content of water glass) is added to 2 parts of water and mixed and stirred.
  • a template (test piece) was prepared according to the same procedure as in Example 1 except that the aqueous medium was used.
  • Example 13 As a surfactant, commercially available product: Olfine PD-301 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.), 0.05 part thereof (10 parts per 100 parts of water glass solid content) was added to 2 parts of water, and the aqueous medium obtained by mixing and stirring was mixed with 0.05 parts of spherical particles of HS311 (trade name: manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) A mold (test piece) was prepared according to the same procedure as in Example 1 except that 10 parts of solid content was added and used. The aspect ratio of HS311 was measured and found to be 0.91.
  • Example 14 A mold (test piece) was prepared according to the same procedure as in Example 2 except that dry CS1 was changed to dry CS4.
  • Example 15 By using glycerin as a polyhydric alcohol, adding 0.04 part thereof (a ratio of 8 parts to 100 parts of solid content of water glass) to 2 parts of water, and mixing and stirring, A template (test piece) was prepared according to the same procedure as in Example 1 except that the aqueous medium was used.
  • Example 16 As a polyhydric alcohol, a polyethylene glycol commercial product: PEG400 (product name: Daiichi Kogyo Seiyaku Co., Ltd.) is used, and 0.04 part thereof (a ratio of 8 parts to 100 parts of the solid content of water glass) is 2 A mold (test piece) was prepared according to the same procedure as in Example 1 except that it was added to a portion of water and mixed and stirred to obtain an aqueous medium.
  • PEG400 product name: Daiichi Kogyo Seiyaku Co., Ltd.
  • Example 17 Obtained by using glycerin as the polyhydric alcohol, adding 0.04 part thereof (a ratio of 8 parts to 100 parts of solid content of water glass) to 2 parts of water, and mixing and stirring. To the resulting aqueous medium, add 0.05 part of HS311 (trade name: manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) as spherical particles (the ratio is 10 parts with respect to 100 parts of the solid content of water glass). A mold (test piece) was prepared according to the same procedure as in Example 1 except that it was used.
  • Example 18 A mold (test piece) was prepared according to the same procedure as in Example 15 except that dry CS1 was changed to dry CS4.
  • Example 1 A template (test piece) was prepared according to the same procedure as in Example 1 except that normal tap water to which no surfactant or polyhydric alcohol was added was used as the aqueous medium.
  • Example 3 A template (test piece) was prepared according to the same procedure as in Example 14 except that normal tap water to which no surfactant or polyhydric alcohol was added was used as the aqueous medium.
  • the dry CS is moistened using only water, or the wet CS is directly formed using water glass.
  • the filling ability and filling fluidity of CS into the mold are not sufficient.

Abstract

Provided is a casting mold manufacturing method that is capable of effectively improving workability at a molding site while improving coated sand fillability and casting mold strength. Provided is a method that is capable of advantageously manufacturing an intended casting mold by using a conventional molding device as is without any need to newly install a special device. The intended casing mold is formed by adding an aqueous medium prepared by including a surfactant and/or a polyhydric alcohol in dry-state coated sand obtained by covering the surface of a refractory aggregate with a water-soluble binder, moistening the coated sand, and then filling a molding die with the obtained moist coated sand.

Description

鋳型の製造方法Mold manufacturing method
 本発明は、鋳型の製造方法に係り、特に、鋳型の製造現場である造型現場での作業性の改善を図りつつ、鋳型を有利に製造すると共に、コーテッドサンドの充填性や鋳型の強度を向上させることの出来る方法に関するものである。 The present invention relates to a mold manufacturing method, and in particular, while improving workability at a molding site, which is a mold manufacturing site, advantageously manufactures the mold and improves the filling property of the coated sand and the strength of the mold. It is about the method that can be made to.
 従来から、金属溶湯の鋳造に用いられる鋳型の製造方法の一つとして、耐火性骨材からなる鋳型砂を所定の粘結剤にて被覆してなるコーテッドサンドを用いて、目的とする形状の鋳型を造型する手法が、採用されており、また、そこで用いられる粘結剤としては、例えば、日本鋳造工学会編の「鋳造工学便覧」第78~90頁には、水ガラスの如き無機系粘結剤の他、フェノール樹脂やフラン樹脂、ウレタン樹脂等の樹脂を用いた有機系粘結剤等が明らかにされており、そこでは、それら粘結剤を用いて、自硬性鋳型を造型する手法も、明らかにされている。 Conventionally, as one of the methods for producing a mold used for casting a molten metal, a coated sand formed by coating a mold sand made of a refractory aggregate with a predetermined binder is used. A technique for forming a mold has been adopted, and as a binder used there, for example, “Casting Engineering Handbook” pages 78 to 90 edited by the Japan Foundry Engineering Society include inorganic systems such as water glass. In addition to binders, organic binders using resins such as phenolic resins, furan resins, and urethane resins have been clarified, and in these cases, self-hardening molds are formed using these binders. The method is also clarified.
 そして、それら粘結剤のうちの無機系粘結剤の一つである水ガラスを用いて、所定の耐火性骨材(鋳型砂)を被覆せしめてなるコーテッドサンドを形成した後、鋳型の造型を行う手法としても、各種の方法が提案されてきており、例えば、特開2008-036712号公報においては、ケイ砂(耐火性骨材)とアルカリケイ酸塩(水ガラス)と非晶質二酸化ケイ素を含有する凝集体とを含有する鋳型材料又は鋳型部品が、明らかにされている。また、そこでは、鋳型の造型現場において、それらケイ砂と水ガラスと非晶質二酸化ケイ素とが混練されて、ケイ砂の表面に、湿潤なアルカリケイ酸塩(水ガラス)が付着せしめられてなる湿潤形態(湿態)の鋳型材料(コーテッドサンド)とされ、そして、それが所定の成形型に充填されて、目的とする形状の鋳型が造型されるようになっている。 And after forming the coated sand which coat | covers a predetermined | prescribed fireproof aggregate (mold sand) using water glass which is one of the inorganic binders among these binders, mold making Various methods have also been proposed as a method for performing the above. For example, in Japanese Unexamined Patent Application Publication No. 2008-036712, silica sand (refractory aggregate), alkali silicate (water glass), and amorphous dioxide. A mold material or mold part containing an agglomerate containing silicon has been identified. In addition, there, the silica sand, water glass and amorphous silicon dioxide are kneaded at the mold making site, and wet alkali silicate (water glass) is adhered to the surface of the silica sand. A mold material (coated sand) in a wet form (humid state) is formed, and the mold material is filled into a predetermined mold to form a mold having a desired shape.
 しかしながら、そのような湿態のコーテッドサンドは、空気中の炭酸ガスと反応して、漸次硬化が進行するようになるところから、可使時間が短く、また貯蔵安定性が十分ではなく、そのために、かかる湿態のコーテッドサンドは、一般に、鋳型の造型現場において製造された後、そのまま成形型に充填されて、目的とする鋳型の造型が行われることとなる。しかして、障害物の多い造型現場に、微粉状の耐火性骨材と水ガラスとを運搬し、それらをミキサで混練して、湿態のコーテッドサンドを得るには、水ガラスの粘性が高いこともあって、かなりの手間や時間がかかり、しかも水ガラスの粘性によって、耐火性骨材との混合が困難であることに加えて、混合のためのミキサや造型のための成形型等の装置が汚れやすい等、造型の作業性が悪い問題を内在している。しかも、造型現場での作業となるために、強アルカリ性の水ガラスによって、作業者が薬傷を受ける恐れが高い問題も内在するものであった。 However, such wet coated sand reacts with carbon dioxide in the air and gradually cures, so the pot life is short and the storage stability is not sufficient. Such a wet coated sand is generally manufactured at a molding site of a mold and then filled in a molding die as it is to perform the molding of a target mold. Therefore, in order to obtain a wet coated sand by transporting fine powdery refractory aggregate and water glass to a molding site with many obstacles and kneading them with a mixer, the viscosity of water glass is high. In addition, it takes a lot of labor and time, and in addition to the difficulty of mixing with refractory aggregate due to the viscosity of water glass, mixing mixers and molds for molding, etc. There is a problem of poor workability in molding, such as the equipment is easily soiled. In addition, since the work is performed at the molding site, there is an inherent problem that the worker is highly likely to receive chemical injury due to the strong alkaline water glass.
 一方、上述せる如き湿態のコーテッドサンドとは異なり、粘結剤として水ガラスを用いて、耐火性骨材の表面に、そのような粘結剤の乾燥された被覆層を形成してなる、常温流動性を有する乾態のコーテッドサンドが、特開2012-076115号公報に、明らかにされている。そこでは、そのような乾態のコーテッドサンドは、粘結剤として水ガラス等の水溶性無機化合物を含有する固形のコーティング層にて被覆されており、それが鋳型造型のための成形型の成形キャビティ内に充填せしめられた後、水蒸気を通気させることにより、かかるコーテッドサンドの固化を行い、目的とする鋳型を得る手法が、明らかにされているのであるが、そのような造型手法にあっては、乾態のコーテッドサンドを充填した後、成形型内に水蒸気を吹き込む必要があり、そのために、水蒸気の吹込み装置を特別に設ける必要があるところから、従来の装置をそのまま使用することが出来ず、鋳型の製造コストを増大せしめる問題が内在している。 On the other hand, unlike the wet coated sand as described above, water glass is used as a binder, and a coating layer in which such a binder is dried is formed on the surface of the refractory aggregate. JP-A-2012-076115 discloses a dry coated sand having room temperature fluidity. There, such dry coated sand is coated with a solid coating layer containing a water-soluble inorganic compound such as water glass as a binder, which is used to mold a mold for mold making. After filling the cavity, the method of solidifying the coated sand by aeration of water vapor and obtaining the target mold has been clarified. It is necessary to blow water vapor into the mold after filling with the dry coated sand. Therefore, it is necessary to specially provide a water vapor blowing device, so that the conventional device can be used as it is. There are inherent problems that cannot be achieved and increase the manufacturing cost of the mold.
 しかも、そこでは、成形型に充填された乾態のコーテッドサンドを水蒸気で濡らした後、それを乾燥することによって固化せしめて、鋳型の造型を行うものであるところから、そのような濡れたコーテッドサンドの乾燥を有効に行うために、水蒸気の吹き込みに加えて、加熱した気体の吹込みという新たな工程を追加する必要も生じ、これによって、成形型への充填から乾燥固化乃至硬化に至る造型サイクルが長くなって、鋳型の生産性が低下するという問題も内在しているのである。 Moreover, the wet coated sand filled in the mold is wetted with water vapor and then solidified by drying to mold the mold, so that the wet coated sand is used. In order to effectively dry the sand, it is necessary to add a new process of blowing a heated gas in addition to blowing water vapor, thereby forming a mold from filling into a mold to drying solidification or curing. The problem is that the cycle becomes longer and the productivity of the mold decreases.
特開2008-036712号公報JP 2008-036712 A 特開2012-076115号公報JP 2012-076115 A
 ここにおいて、本発明は、かかる事情を背景として為されたものであって、その解決課題とするところは、コーテッドサンドの充填性や鋳型の強度を向上させつつ、造型現場での作業性の改善を効果的に図り得る鋳型の製造方法を提供することに有り、また他の課題とするところは、特別な装置を新たに設置する必要なく、基本的に、従来の造型のための装置をそのまま用いて、目的とする鋳型を有利に製造することの出来る方法を提供することにある。 Here, the present invention has been made against the background of such circumstances, and the solution is to improve the workability at the molding site while improving the filling property of the coated sand and the strength of the mold. It is to provide a mold manufacturing method capable of effectively achieving the above, and another problem is that a conventional apparatus for molding is basically left as it is without installing a special apparatus. The object of the present invention is to provide a method capable of advantageously producing a target mold.
 そして、本発明は、上記した課題を解決するために、以下に列挙せる如き各種の態様において、好適に実施され得るものであるが、また、以下に記載の各態様は、任意の組合せにおいて採用可能である。なお、本発明の態様乃至は技術的特徴は、以下に記載のものに何等限定されることなく、明細書全体の記載から把握され得る発明思想に基づいて、認識され得るものであることが、理解されるべきである。 In order to solve the above-described problems, the present invention can be suitably implemented in various aspects as listed below, and each aspect described below is employed in any combination. Is possible. It should be noted that aspects or technical features of the present invention are not limited to those described below, and can be recognized based on the inventive concept that can be grasped from the description of the entire specification. Should be understood.
(1) 耐火性骨材の表面を水溶性バインダにて被覆して得られる乾態のコ
   ーテッドサンドに、界面活性剤及び/又は多価アルコールを含有せし
   めてなる水性媒体を添加して、湿態化させた後、その得られた湿態化
   コーテッドサンドを成形型に充填して、造型することを特徴とする鋳
   型の製造方法。
(2) 前記水性媒体が、前記コーテッドサンドの100質量部に対して、
   0.5~6質量部となる割合において、該コーテッドサンドに添加せ
   しめられることを特徴とする前記態様(1)に記載の鋳型の製造方法
   。
(3) 前記界面活性剤が、前記コーテッドサンドにおける水溶性バインダ
   の固形分の100質量部に対して、0.1~20.0質量部の割合と
   なるように、前記水性媒体が添加されることを特徴とする前記態様(
   1)又は前記態様(2)に記載の鋳型の製造方法。
(4) 前記多価アルコールが、前記コーテッドサンドにおける水溶性バイ
   ンダの固形分の100質量部に対して、0.1~20.0質量部の割
   合となるように、前記水性媒体が添加されることを特徴とする前記態
   様(1)乃至前記態様(3)の何れか1つに記載の鋳型の製造方法。
(5) 前記乾態のコーテッドサンドを湿態化させるに際し、更に、球状粒
   子が添加されることを特徴とする前記態様(1)乃至前記態様(4)
   の何れか1つに記載の鋳型の製造方法。
(6) 前記球状粒子の添加量が、前記コーテッドサンドにおける水溶性バ
   インダの固形分の100質量部に対して、0.1~20.0質量部で
   あることを特徴とする前記態様(5)に記載の鋳型の製造方法。
(7) 前記乾態のコーテッドサンドを湿態化させるに際し、更に、第二の
   水溶性バインダが添加せしめられることを特徴とする前記態様(1)
   乃至前記態様(6)の何れか1つに記載の鋳型の製造方法。
(8) 前記乾態のコーテッドサンドにおける含水分量が、前記水溶性バイ
   ンダの固形分量の5~55質量%であることを特徴とする前記態様(
   1)乃至前記態様(7)の何れか1つに記載の鋳型の製造方法。
(9) 前記水溶性バインダとして、熱硬化性樹脂、糖類、タンパク質、合
   成高分子、塩類及び無機高分子のうちの単独又は二以上が選択されて
   用いられることを特徴とする前記態様(1)乃至前記態様(8)の何
   れか1つに記載の鋳型の製造方法。
(10) 前記無機高分子が、水ガラスであることを特徴とする前記態様(
   9)に記載の鋳型の製造方法。
(11) 前記湿態化コーテッドサンドを充填した成形型内に、加熱空気又
   は乾燥空気が通気させられることを特徴とする前記態様(1)乃至前
   記態様(10)の何れか1つに記載の鋳型の製造方法。
(12) 炭酸ガス又は有機エステルガスが、前記湿態化コーテッドサンド
   を充填した成形型内に、通気せしめられることを特徴とする前記態様
   (1)乃至前記態様(11)の何れか1つに記載の鋳型の製造方法。
(13) 前記成形型が、40℃~250℃の温度に加熱されていることを
   特徴とする前記態様(1)乃至前記態様(12)の何れか1つに記載
   の鋳型の製造方法。
(1) An aqueous medium containing a surfactant and / or a polyhydric alcohol is added to dry coated sand obtained by coating the surface of a refractory aggregate with a water-soluble binder. A method for producing a casting mold, comprising: moistening and then filling the obtained wetted coated sand into a molding die.
(2) The aqueous medium is 100 parts by mass of the coated sand,
The method for producing a mold according to the aspect (1), wherein the mold is added to the coated sand in a ratio of 0.5 to 6 parts by mass.
(3) The aqueous medium is added so that the surfactant has a ratio of 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. The above aspect (
A method for producing a mold according to 1) or aspect (2).
(4) The aqueous medium is added so that the polyhydric alcohol has a ratio of 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. The method for producing a mold according to any one of the above aspects (1) to (3), wherein:
(5) The aspect (1) to the aspect (4), wherein spherical particles are further added to wet the dry coated sand.
The manufacturing method of the casting_mold | template as described in any one of these.
(6) The aspect (5), wherein the addition amount of the spherical particles is 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. The method for producing a mold as described in 1).
(7) The aspect (1), wherein a second water-soluble binder is further added to wet the dry coated sand.
Thru | or the manufacturing method of the casting_mold | template as described in any one of the said aspect (6).
(8) The above aspect (5), wherein the moisture content in the dry coated sand is 5 to 55% by mass of the solid content of the water-soluble binder.
1) The manufacturing method of the casting_mold | template as described in any one of the said aspect (7).
(9) The above aspect (1), wherein one or more of thermosetting resins, saccharides, proteins, synthetic polymers, salts and inorganic polymers are selected and used as the water-soluble binder. The method for producing a mold according to any one of aspects (8) to (8).
(10) The above aspect wherein the inorganic polymer is water glass (
The method for producing a mold according to 9).
(11) In any one of the above aspects (1) to (10), heated air or dry air is ventilated in a mold filled with the wetted coated sand. A method for producing the mold described above.
(12) In any one of the above aspects (1) to (11), the carbon dioxide gas or the organic ester gas is aerated in a mold filled with the wetted coated sand. A method for producing the mold described above.
(13) The mold manufacturing method according to any one of the aspects (1) to (12), wherein the mold is heated to a temperature of 40 ° C. to 250 ° C.
 このように、本発明にあっては、粘結剤として水ガラス等の水溶性バインダを用いて、先ず、乾態のコーテッドサンドを予め準備しておき、そしてそれを造型の現場に持ち込む一方、造型の現場では、かかる乾態のコーテッドサンドを湿態化させるための、界面活性剤及び/又は多価アルコール含有水性媒体を準備するのみで、目的とする鋳型の造型が可能となるところから、作業環境の悪い造型現場において、粘稠な水ガラスを耐火性骨材に混練せしめる必要が全くなく、そのために、造型現場での作業性が著しく改善され得ることとなるのである。また、ミキサ内において、乾態のコーテッドサンドに、界面活性剤及び/又は多価アルコール含有水性媒体を添加して、混合せしめることにより、湿潤化させても、その混合物がミキサ内に付着することが少なく、装置が汚れ難いことに加えて、造型現場において、水ガラス等の水溶性バインダを取り扱うことがないところから、そのような水ガラスや他の水溶性バインダにて、作業者が薬傷を受ける恐れも全くなくなったのである。 As described above, in the present invention, using a water-soluble binder such as water glass as a binder, first, a dry coated sand is prepared in advance, and it is brought to the molding site, At the site of molding, it is possible to mold a target mold only by preparing a surfactant and / or a polyhydric alcohol-containing aqueous medium for moistening such dry coated sand. In the molding site where the working environment is poor, there is no need to knead the viscous water glass into the refractory aggregate, so that the workability at the molding site can be remarkably improved. In addition, even if the mixture is wetted by adding a surfactant and / or a polyhydric alcohol-containing aqueous medium to dry coated sand in the mixer, the mixture adheres to the mixer. In addition to the fact that the device is less likely to get dirty and the water-soluble binder such as water glass is not handled at the molding site, the operator can use the water glass or other water-soluble binders to burn chemicals. The fear of receiving was completely eliminated.
 しかも、コーテッドサンドを湿態化させるために用いられる水性媒体中には、界面活性剤及び/又は多価アルコールが添加されていることにより、鋳型造型に際してのコーテッドサンドの充填性が有利に向上せしめられ得ると共に、得られる鋳型の強度を効果的に向上させることが出来るという特徴が、有利に発揮せしめられ得ることとなったのである。 In addition, a surfactant and / or a polyhydric alcohol is added to the aqueous medium used for moistening the coated sand, thereby advantageously improving the filling property of the coated sand during mold making. In addition, the feature that the strength of the obtained mold can be effectively improved can be advantageously exhibited.
 また、本発明において、予め準備される乾態のコーテッドサンドは、水性媒体を添加しない限り、空気中の炭酸ガスにて経時変化することは殆どなく、貯蔵安定性に優れているところから、乾態のコーテッドサンドを、造型現場とは異なる場所において、予め大量に作製しておき、造型現場では、その一部を用いて、それに界面活性剤及び/又は多価アルコール含有水性媒体を加えて、湿態化した後、目的とする鋳型の造型を行うことが出来る実用的な利点を有していると共に、そのような乾態のコーテッドサンドを湿態化したものは、従来の如く造型現場で作製される湿態のコーテッドサンドよりも、成形型への充填性が良好であり、しかも造型された鋳型の成形型からの離型性も向上するという格別な特徴を発揮するものである。 In addition, in the present invention, the dry coated sand prepared in advance hardly changes with time due to carbon dioxide gas in the air unless an aqueous medium is added, and the dry coated sand is excellent in storage stability. The coated sand of the state is prepared in advance in a large amount at a place different from the molding site, and at the molding site, a part thereof is added to the surfactant and / or polyhydric alcohol-containing aqueous medium, It has the practical advantage that the target mold can be molded after it has been wetted, and such dry coated sand that has been wetted can be used on the molding site as before. Compared with the wet coated sand to be produced, it exhibits excellent characteristics that the filling property into the mold is better and the mold release property of the molded mold is improved.
 さらに、かかる本発明に従う鋳型の製造方法によれば、造型現場において、湿態化されたコーテッドサンドを成形型に充填して、加熱等するだけで、界面活性剤及び/又は多価アルコール含有水性媒体の水分を蒸発せしめ、乾燥固化乃至は硬化させるものであるところから、乾態のコーテッドサンドをそのまま用いる場合の如く、水蒸気発生装置や水蒸気の通気機構等の特別な装置を新たに設置する必要は全くなく、基本的に、従来の装置をそのまま用いて、造型を行うことが可能となるのであり、これによって、装置コストの増大、ひいては鋳型の製造コストの上昇を回避することが出来ると共に、水蒸気の吹込み工程を新たに採用する必要もなく、それによって、造型サイクルが長くなるようなことも、有利に回避することが出来ることとなったのである。 Furthermore, according to the method for producing a mold according to the present invention, a surfactant and / or a polyhydric alcohol-containing aqueous solution can be obtained by simply filling a mold with wetted sand and heating it at the molding site. Since the moisture of the medium is evaporated and dried or solidified or hardened, it is necessary to newly install special devices such as a water vapor generating device and a water vapor ventilation mechanism as in the case of using the dry coated sand as it is. Basically, it becomes possible to perform molding using the conventional apparatus as it is, and this can avoid an increase in apparatus cost and, in turn, an increase in mold manufacturing cost, There is no need to adopt a new steam blowing process, which can advantageously avoid lengthening the molding cycle. And than it was.
充填性及び充填流動性の評価に用いられる成形型を構成する金型半体の一つの型割面を示す正面模式図である。It is a front schematic diagram which shows one mold split surface of the metal mold | die half which comprises the shaping | molding die used for evaluation of filling property and filling fluidity | liquidity.
 ところで、本発明に従う鋳型の製造方法において、予め準備される乾態のコーテッドサンドは、一般に、耐火性骨材に対して、粘結剤として、水溶液の状態にある水溶性バインダを混合せしめ、そしてその混合物から水分を蒸発させることにより、換言すれば水溶液の状態にある水溶性バインダの水分を蒸発させることによって、製造され、粘結剤である水溶性バインダの固形分からなる乾燥した被覆層が、所定厚さにおいて、かかる耐火性骨材の表面に形成されてなる、乾態のものであって、良好な常温流動性を有しているものである。特に、本発明にあっては、そのような乾態のコーテッドサンドにおける水分量は、水溶性バインダの固形分量に対して、5~55質量%の割合となることが望ましく、好ましくは10~50質量%であることが望ましい。特に、水溶性バインダが水ガラスの場合においては、20~50質量%であることが望ましい。なお、この水分量が5質量%よりも少なくなると、水ガラス等の水溶性バインダがガラス化して、再び水分を添加しても、溶液状に戻らなくなってしまう問題があり、一方、55質量%よりも多くなると、乾態状態とはならないという問題が生じる。 By the way, in the mold manufacturing method according to the present invention, a dry coated sand prepared in advance is generally mixed with a water-soluble binder in a state of an aqueous solution as a binder to a refractory aggregate, and By evaporating water from the mixture, in other words, by evaporating water in the water-soluble binder in the form of an aqueous solution, a dried coating layer made of a solid content of the water-soluble binder that is a binder is obtained. It is a dry product formed on the surface of such a refractory aggregate at a predetermined thickness, and has good room temperature fluidity. In particular, in the present invention, the water content in such dry coated sand is desirably 5 to 55% by mass, preferably 10 to 50%, based on the solid content of the water-soluble binder. It is desirable that it is mass%. In particular, when the water-soluble binder is water glass, the content is desirably 20 to 50% by mass. When the water content is less than 5% by mass, there is a problem that a water-soluble binder such as water glass is vitrified and does not return to a solution state even when water is added again. If the amount is larger than that, a problem of not being in a dry state occurs.
 ここで、本発明で用いられる乾態のコーテッドサンドにおいて、乾態状態を与える水分量の範囲は、水溶性バインダの性質によって異なるものとなる。このため、本発明における乾態とは、水分量に関わらず、動的安息角を測定した時に、動的安息角の測定値が得られるものをいうこととする。なお、動的安息角とは、軸方向の一方の端部が透明な板材で閉塞されてなる円筒内にコーテッドサンドを収容して(例えば、直径7.2cm×高さ10cmの容器に、その体積の半分まで、コーテッドサンドを入れる)、軸心が水平方向となるように保持し、一定速度(例えば、25rpm)で水平な軸心回りに回転させることにより、円筒内で流動しているコーテッドサンド層の斜面が平坦面状となり、斜面と水平面との間で形成する角度を測定したものである。一方、コーテッドサンドが湿ったような状態で、円筒内で流動せずに、コーテッドサンド層の斜面が平坦面として形成されず、動的安息角が測定できないものを、湿態のコーテッドサンドと称することとする。 Here, in the dry coated sand used in the present invention, the range of the amount of water that gives the dry state varies depending on the nature of the water-soluble binder. For this reason, the dry state in the present invention refers to the one in which the measured value of the dynamic angle of repose is obtained when the dynamic angle of repose is measured regardless of the water content. The dynamic angle of repose means that coated sand is contained in a cylinder whose one end in the axial direction is closed with a transparent plate (for example, in a container having a diameter of 7.2 cm and a height of 10 cm. Coated sand is put to half of the volume), the core is held in the horizontal direction, and is rotated around the horizontal axis at a constant speed (for example, 25 rpm), so that the coated is flowing in the cylinder. The slope of the sand layer is a flat surface, and the angle formed between the slope and the horizontal plane is measured. On the other hand, when the coated sand is in a wet state, the coated sand layer does not flow, the slope of the coated sand layer is not formed as a flat surface, and the dynamic angle of repose cannot be measured is referred to as wet coated sand. I will do it.
 本発明においては、上述の如き乾態のコーテッドサンドを用いることにより、その可使時間が長くなり、貯蔵安定性が有利に向上せしめられ得るところから、そのような乾態のコーテッドサンドを、造型現場とは異なる、工場等の場所において、予め大量に準備しておき、その一部を造型現場に運搬して、目的とする鋳型の造型に用いるようにすることが出来ることとなり、以て、造型作業の効率化にも大いに寄与せしめ得ることとなるのである。 In the present invention, by using the dry coated sand as described above, the pot life is prolonged, and the storage stability can be advantageously improved. In a place such as a factory that is different from the site, it is possible to prepare a large amount in advance, transport a part of it to the molding site, and use it for molding the target mold, This can greatly contribute to the efficiency of molding work.
 なお、上述の如きコーテッドサンドを構成する耐火性骨材としては、鋳型の基材として機能する耐火性物質であって、従来から鋳型用として利用されている各種の耐火性粒状乃至は粉状材料が何れも用いられ得、具体的には、ケイ砂、再生ケイ砂をはじめ、アルミナサンド、オリビンサンド、ジルコンサンド、クロマイトサンド等の特殊砂や、フェロクロム系スラグ、フェロニッケル系スラグ、転炉スラグ等のスラグ系粒子;アルミナ系粒子、ムライト系粒子等の人工粒子及びこれらの再生粒子;アルミナボール、マグネシアクリンカー等を挙げることが出来る。なお、これらの耐火性骨材は、新砂であっても、或いは、鋳物砂として鋳型の造型に一回或いは複数回使用された再生砂または回収砂であっても、更には、そのような再生砂や回収砂に新砂を加えて混合せしめてなる混合砂であっても、何ら差支えない。そして、そのような耐火性骨材は、一般に、AFS指数で40~130程度の粒度のものとして、好ましくは、60~110程度の粒度のものとして、用いられることとなる。 The fireproof aggregate constituting the coated sand as described above is a fireproof material that functions as a base material of a mold, and various fireproof granular or powder materials conventionally used for molds. Can be used, specifically, silica sand, recycled silica sand, special sand such as alumina sand, olivine sand, zircon sand, chromite sand, ferrochrome slag, ferronickel slag, converter slag Slag-based particles such as alumina; artificial particles such as alumina-based particles and mullite-based particles; and regenerated particles thereof; alumina balls, magnesia clinker, and the like. These refractory aggregates may be fresh sand, or reclaimed sand or recovered sand that has been used once or a plurality of times as casting sand for casting molds. Even mixed sand made by adding fresh sand to sand or recovered sand and mixing them can be used. Such a refractory aggregate is generally used with a particle size of about 40 to 130, preferably about 60 to 110 in terms of AFS index.
 また、上述の如き耐火性骨材を被覆するバインダは、粘結剤とも呼称されるものであって、本発明においては、水溶性のバインダが用いられることとなる。この水溶性バインダとしては、水溶性である限りにおいて、無機高分子、熱硬化性樹脂、糖類、合成高分子、塩類、タンパク質の何れをも用いることが出来る。そして、これらは、単独で用いられてもよく、また二つ以上を選択して用いられてもよいが、特に、無機高分子を用いることが好ましい。また、これらの水溶性バインダは、事前に水や溶剤で希釈して用いられてもよい。 In addition, the binder that covers the fireproof aggregate as described above is also called a binder, and a water-soluble binder is used in the present invention. As the water-soluble binder, any of inorganic polymers, thermosetting resins, saccharides, synthetic polymers, salts, and proteins can be used as long as they are water-soluble. These may be used alone, or two or more may be selected and used, but it is particularly preferable to use an inorganic polymer. Moreover, these water-soluble binders may be used by diluting with water or a solvent in advance.
 そして、そのような水溶性バインダとして用いられる無機高分子としては、水ガラス、コロイダルシリカ、アルキルシリケート、ベントナイト、セメント等を挙げることが出来るが、それらの中でも、水ガラスが好適に用いられることとなる。また、かかる水ガラスは、可溶性のケイ酸化合物であって、そのようなケイ酸化合物としては、例えば、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、メタケイ酸カリウム、ケイ酸リチウム、ケイ酸アンモニウム等を挙げることが出来るが、特に、本発明にあっては、ケイ酸ナトリウム(ケイ酸ソーダ)が有利に用いられることとなる。 And examples of the inorganic polymer used as such a water-soluble binder include water glass, colloidal silica, alkyl silicate, bentonite, cement, etc. Among them, water glass is preferably used. Become. Such water glass is a soluble silicate compound. Examples of such a silicate compound include sodium silicate, potassium silicate, sodium metasilicate, potassium metasilicate, lithium silicate, and ammonium silicate. In particular, in the present invention, sodium silicate (sodium silicate) is advantageously used.
 さらに、そのようなケイ酸ナトリウムは、通常、SiO2 /Na2O のモル比により、1号~5号の種類に分類されて、用いられている。具体的には、ケイ酸ナトリウム1号は、SiO2 /Na2O のモル比が2.0~2.3であるものであり、またケイ酸ナトリウム2号は、SiO2 /Na2O のモル比が2.4~2.6であるものであり、更にケイ酸ナトリウム3号は、SiO2 /Na2O のモル比が2.8~3.3であるものである。加えて、ケイ酸ナトリウム4号は、SiO2 /Na2O のモル比が3.3~3.5であるものであり、またケイ酸ナトリウム5号は、SiO2 /Na2O のモル比が3.6~3.8であるものである。これらの中で、ケイ酸ナトリウム1号~3号は、JIS-K-1408にても規定されている。そして、これらのケイ酸ナトリウムは、単独での使用の他、混合して用いられても良く、また混合することで、SiO2 /Na2O のモル比を調製することも可能である。 Further, such sodium silicates are usually classified and used as No. 1 to No. 5 depending on the molar ratio of SiO 2 / Na 2 O. Specifically, sodium silicate No. 1 has a SiO 2 / Na 2 O molar ratio of 2.0 to 2.3, and sodium silicate No. 2 is SiO 2 / Na 2 O 2 The molar ratio is 2.4 to 2.6, and sodium silicate No. 3 has a SiO 2 / Na 2 O molar ratio of 2.8 to 3.3. In addition, sodium silicate No. 4 has a SiO 2 / Na 2 O molar ratio of 3.3 to 3.5, and sodium silicate No. 5 has a SiO 2 / Na 2 O molar ratio. Is 3.6 to 3.8. Among these, sodium silicate Nos. 1 to 3 are also defined in JIS-K-1408. These sodium silicates may be used alone or in combination, and the molar ratio of SiO 2 / Na 2 O can be adjusted by mixing.
 なお、本発明において用いられる乾態のコーテッドサンドを有利に得るべく、粘結剤として用いられる水ガラスを構成するケイ酸ナトリウムは、SiO2 /Na2O のモル比が、一般に1.9以上、好ましくは2.0以上、より好ましくは2.1以上であることが望ましく、上記したケイ酸ナトリウムの分類において、1号及び2号に相当するケイ酸ナトリウムが、特に有利に用いられることとなる。かかるケイ酸ナトリウム1号及び2号は、それぞれ、水ガラス中のケイ酸ナトリウム濃度が広い範囲においても、安定して、特性の良好な乾態のコーテッドサンドを与えるものである。また、そのようなケイ酸ナトリウムにおけるSiO2 /Na2O のモル比の上限は、水溶液の形態にある水ガラスの特性に応じて適宜に選定されることとなるが、一般に3.5以下、好ましくは3.2以下、より好ましくは2.7以下とされることとなる。ここで、SiO2 /Na2O のモル比が1.9よりも小さくなると、水ガラスの粘性が低くなり、水分量をかなり低くしなければ、乾態とすることが困難となるのであり、一方3.5よりも大きくなると、水への溶解度が低下して、耐火性骨材の表面への付着が充分でないために、接着面積が稼げず、鋳型強度が低下する問題を生じる。 In order to advantageously obtain the dry coated sand used in the present invention, the sodium silicate constituting the water glass used as the binder generally has a SiO 2 / Na 2 O molar ratio of 1.9 or more. Preferably, it is 2.0 or more, more preferably 2.1 or more. In the above-mentioned classification of sodium silicate, sodium silicate corresponding to No. 1 and No. 2 is particularly advantageously used. Become. Such sodium silicates No. 1 and No. 2 provide dry coated sand having stable and good characteristics even when the sodium silicate concentration in the water glass is wide. Further, the upper limit of the SiO 2 / Na 2 O molar ratio in such sodium silicate is appropriately selected according to the characteristics of the water glass in the form of an aqueous solution, but generally 3.5 or less, It is preferably 3.2 or less, more preferably 2.7 or less. Here, when the SiO 2 / Na 2 O molar ratio is smaller than 1.9, the viscosity of the water glass is lowered, and unless the water content is considerably reduced, it becomes difficult to obtain a dry state. On the other hand, when it exceeds 3.5, the solubility in water is lowered, and the adhesion to the surface of the refractory aggregate is not sufficient, so that the adhesion area cannot be obtained and the mold strength is lowered.
 また、本発明において用いられる水ガラスは、水に溶けた状態のケイ酸化合物の溶液のことを意味し、市場において購入されたままの原液の状態において用いられる他、そのような原液に水を添加して、希釈した状態において用いられることとなる。そして、そのような水ガラスから、水や溶剤等の、揮発する物質を除いた固形分(水ガラス成分)を不揮発分と言い、これが、上記したケイ酸ナトリウム等の可溶性のケイ酸化合物に相当するものである。また、そのような不揮発分(固形分)の割合が高い程、水ガラス中のケイ酸化合物濃度は、高くなるものである。従って、本発明において用いられる水ガラスの不揮発分とは、それが原液のみにて構成される場合においては、かかる原液中の水分量を除いた割合に相当することとなり、一方、原液を水にて希釈して得られる希釈液が用いられる場合にあっては、原液中の水分量と希釈に用いられた水の量とを除いた残余の量が、使用される水ガラスの不揮発分に相当することとなる。 The water glass used in the present invention means a solution of a silicate compound in a state dissolved in water. In addition to being used in a stock solution as purchased in the market, water is added to such a stock solution. It is added and used in a diluted state. A solid content (water glass component) obtained by removing a volatile substance such as water or a solvent from such water glass is referred to as a nonvolatile content, and this corresponds to the above-described soluble silicate compound such as sodium silicate. To do. Moreover, the higher the proportion of such non-volatile content (solid content), the higher the silicate compound concentration in the water glass. Therefore, the non-volatile content of the water glass used in the present invention corresponds to the ratio excluding the amount of water in the stock solution when it is composed of only the stock solution, while the stock solution is converted into water. When the diluted solution obtained by dilution is used, the remaining amount excluding the amount of water in the stock solution and the amount of water used for dilution corresponds to the non-volatile content of the water glass used. Will be.
 そして、そのような水ガラス中の不揮発分は、水ガラス成分(可溶性ケイ酸化合物)の種類等に応じて適宜の割合とされることとなるが、有利には、20~50質量%の割合において含有せしめられていることが望ましい。この不揮発分に相当する水ガラス成分を適度に水溶液中に存在せしめることによって、耐火性骨材との混合(混練)時に、かかる耐火性骨材に対して、ムラなく、均一に、水ガラス成分を被覆させることが出来、それによって、目的とする鋳型を、本発明に従って有利に造型することが可能となる。なお、水ガラス中における水ガラス成分の濃度が低くなり過ぎて、不揮発分の合計量が20質量%未満となると、コーテッドサンドの乾燥のために、加熱温度を高くしたり、加熱時間を長くしたりする必要があり、そのために、エネルギーロス等の問題が惹起されるようになる。また、水ガラス中における不揮発分の割合が高くなり過ぎると、耐火性骨材の表面を、水ガラス成分にて均一に被覆することが困難となり、目的とする鋳型の特性の向上にも問題を惹起するところから、かかる不揮発分は50質量%以下、従って水分量が50質量%以上の割合となるように、水溶液の形態にある水ガラスを調製することが望ましい。 The non-volatile content in the water glass is set to an appropriate ratio depending on the type of the water glass component (soluble silicate compound) and the like, but is preferably a ratio of 20 to 50% by mass. It is desirable to be contained in By making the water glass component corresponding to this non-volatile content appropriately in the aqueous solution, the water glass component can be uniformly and uniformly applied to the fire resistant aggregate during mixing (kneading) with the fire resistant aggregate. So that the intended mold can be advantageously made according to the invention. In addition, when the concentration of the water glass component in the water glass becomes too low and the total amount of non-volatile components is less than 20% by mass, the heating temperature is increased or the heating time is lengthened for drying the coated sand. For this reason, problems such as energy loss are caused. In addition, if the proportion of non-volatile content in the water glass becomes too high, it becomes difficult to uniformly coat the surface of the refractory aggregate with the water glass component, which causes a problem in improving the properties of the target mold. Therefore, it is desirable to prepare water glass in the form of an aqueous solution so that the non-volatile content is 50% by mass or less, and thus the water content is 50% by mass or more.
 ところで、上記した無機高分子以外の水溶性バインダの一つである熱硬化性樹脂としては、レゾール型のフェノール樹脂、フラン樹脂、水溶性エポキシ樹脂、水溶性メラミン樹脂、水溶性尿素樹脂、水溶性不飽和ポリエステル樹脂、水溶性アルキド樹脂等を挙げることが出来る。また、この熱硬化性樹脂に対して、酸やエステル類等の硬化剤を配合して、その熱硬化特性を向上せしめることも、有利に採用されるところである。なお、それら熱硬化性樹脂の中でも、レゾール型のフェノール樹脂の使用が好ましく、そのようなフェノール樹脂は、フェノール類とホルムアルデヒド類とを反応触媒の存在下で反応させることによって、調製することが出来る。また、本発明においては、かかるフェノール樹脂として、水溶性のアルカリレゾール樹脂が好適なものとして挙げられる。このようなアルカリレゾール樹脂を用いると、鋳鉄・鋳鋼等の幅広い分野で用いられ得る鋳型を提供することが出来る。 By the way, as a thermosetting resin which is one of the water-soluble binders other than the above-described inorganic polymer, resol type phenol resin, furan resin, water-soluble epoxy resin, water-soluble melamine resin, water-soluble urea resin, water-soluble resin Examples thereof include unsaturated polyester resins and water-soluble alkyd resins. It is also advantageous to add a curing agent such as acid or ester to the thermosetting resin to improve its thermosetting characteristics. Among these thermosetting resins, the use of a resol type phenol resin is preferable, and such a phenol resin can be prepared by reacting phenols with formaldehyde in the presence of a reaction catalyst. . Moreover, in this invention, a water-soluble alkaline resole resin is mentioned as a suitable thing as this phenol resin. When such an alkali resol resin is used, a mold that can be used in a wide range of fields such as cast iron and cast steel can be provided.
 また、水溶性バインダの他の一つである糖類としては、単糖類、少糖類、多糖類等の公知のものを用いることが出来、各種の単糖類、少糖類、多糖類の中から、1種を選んで単独で用いても、また複数種を併用して用いても、何等差し支えない。それらのうち、単糖類としては、グルコース(ブドウ糖)、フルクトース(果糖)、ガラクトース等を挙げることが出来、少糖類としては、マルトース(麦芽糖)、スクロース(ショ糖)、ラクトース(乳糖)、セロビオース等の二糖類を挙げることが出来る。そして、多糖類としては、でんぷん糖、デキストリン、ザンサンガム、カードラン、プルラン、シクロアミロース、キチン、セルロース、でんぷん等を挙げることが出来る。この他にも、アラビアガム等の植物粘質物のガム類を用いてもよく、更に糖類、特に多糖類の硬化剤として、カルボン酸を用いることも出来る。 Moreover, as saccharides which are other ones of water-soluble binders, known ones such as monosaccharides, oligosaccharides and polysaccharides can be used. Among various monosaccharides, oligosaccharides and polysaccharides, 1 There is no problem even if a species is selected and used alone or a plurality of species are used in combination. Among them, examples of monosaccharides include glucose (glucose), fructose (fructose), galactose, and examples of oligosaccharides include maltose (malt sugar), sucrose (sucrose), lactose (lactose), cellobiose, and the like. Can be mentioned. Examples of the polysaccharide include starch sugar, dextrin, xanthan gum, curdlan, pullulan, cycloamylose, chitin, cellulose, and starch. In addition, gums of plant mucilage such as gum arabic may be used, and carboxylic acid can also be used as a curing agent for saccharides, particularly polysaccharides.
 さらに、水溶性バインダとして用いられる合成高分子としては、ポリエチレンオキシド、ポリ-α-ヒドロキシアクリル酸、アクリル酸系共重合体、アクリル酸エステル系共重合体、メタクリル酸エステル系共重合体、ポリアクリルアミド、アニオン化ポリアクリルアミド、カチオン化ポリアクリルアミド、ポリアミノアルキルメタクリレート、アクリルアミド/アクリル酸共重合体、ポリビニルスルホン酸、ポリスチレンスルホン酸、スルホン化マレイン酸重合体、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリビニルメチルエーテル、ポリエーテル変性シリコーン、またはこれらの変性物等を挙げることが出来る。そして、これらは単独で用いられたり、複数を選択して用いられたりされることとなる。 Furthermore, synthetic polymers used as water-soluble binders include polyethylene oxide, poly-α-hydroxyacrylic acid, acrylic acid copolymers, acrylic ester copolymers, methacrylic ester copolymers, polyacrylamide , Anionized polyacrylamide, cationized polyacrylamide, polyaminoalkyl methacrylate, acrylamide / acrylic acid copolymer, polyvinyl sulfonic acid, polystyrene sulfonic acid, sulfonated maleic acid polymer, polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyvinyl methyl ether , Polyether-modified silicone, or modified products thereof. And these are used independently, or a plurality are selected and used.
 更にまた、塩類としては、水を加えた後、乾燥させることによって、固まるものが用いられ、例えば硫酸マグネシウムや硫酸ナトリウム等の硫酸塩、臭化ナトリウムや臭化カリウム等の臭化物、炭酸ナトリウムや炭酸カリウム等の炭酸塩、塩化バリウムや塩化ナトリウム、塩化カリウム等の塩化物等を挙げることが出来る。加えて、タンパク質としては、ゼラチン、膠等を挙げることが出来る。 Furthermore, as the salts, those which are solidified by adding water and drying are used, for example, sulfates such as magnesium sulfate and sodium sulfate, bromides such as sodium bromide and potassium bromide, sodium carbonate and carbonate. Examples thereof include carbonates such as potassium, and chlorides such as barium chloride, sodium chloride and potassium chloride. In addition, examples of proteins include gelatin and glue.
 そして、上述の如き水溶性バインダは、耐火性骨材の100質量部に対して、不揮発分のみとして考えた場合の固形分換算で0.1~2.5質量部の割合において用いられることが望ましく、中でも、0.2~2.0質量部の割合が特に有利に採用されて、耐火性骨材の表面に、所定の被覆層が形成されることとなる。ここで、固形分の測定は、以下のようにして実施される。即ち、アルミ箔製皿(縦:90mm、横:90mm、高さ:15mm)内に、試料10gを秤量して収容し、180±1℃に保持した加熱板上に置き、20分間放置した後、かかる試料皿を、反転させて、更に20分間、上記加熱板上に放置する。次いで、かかる試料皿を、加熱板上から取り出して、デシケータ中で放冷した後、秤量を行って、次式により、固形分(質量%)が算出される。
  固形分(質量%)=[乾燥後の質量(g)/乾燥前の質量(g)]
           ×100
The water-soluble binder as described above may be used at a ratio of 0.1 to 2.5 parts by mass in terms of solid content when considered as only a non-volatile content with respect to 100 parts by mass of the refractory aggregate. Desirably, among these, a ratio of 0.2 to 2.0 parts by mass is particularly advantageously employed, and a predetermined coating layer is formed on the surface of the refractory aggregate. Here, the measurement of solid content is implemented as follows. That is, 10 g of a sample was weighed and contained in an aluminum foil dish (length: 90 mm, width: 90 mm, height: 15 mm), placed on a heating plate maintained at 180 ± 1 ° C., and left for 20 minutes. The sample pan is inverted and left on the heating plate for an additional 20 minutes. Next, the sample dish is taken out from the heating plate, allowed to cool in a desiccator, weighed, and the solid content (% by mass) is calculated by the following formula.
Solid content (mass%) = [mass after drying (g) / mass before drying (g)]
× 100
 なお、この水溶性バインダの使用量が少なくなり過ぎると、耐火性骨材の表面に、被覆層が形成され難くなって、コーテッドサンドの固化乃至は硬化が充分に行われ難くなる問題を生じる。また、水溶性バインダの使用量が多くなり過ぎても、耐火性骨材の表面に、余分に、水溶性バインダが付着して、均一な被覆層が形成され難くなると共に、コーテッドサンドが相互に固着して団塊化(複合粒子化)する恐れもあり、そのために、鋳型物性に悪影響をもたらし、また金属を鋳込んだ後の中子の砂落としを難しくする問題も惹起するようになる。 If the amount of the water-soluble binder used is too small, it is difficult to form a coating layer on the surface of the refractory aggregate, resulting in a problem that the coated sand is not sufficiently solidified or hardened. Even if the amount of the water-soluble binder used is excessive, the water-soluble binder is excessively adhered to the surface of the refractory aggregate, making it difficult to form a uniform coating layer, and the coated sand is mutually attached. There is also a risk that it will stick and agglomerate (composite particles), which will adversely affect the physical properties of the mold and cause problems that make it difficult to remove the sand from the core after casting the metal.
 そして、本発明にあっては、上記した水溶性バインダを用いて、それによる被覆層を耐火性骨材の表面に形成してなる乾態のコーテッドサンドが、その対象とされるものであるが、そのような被覆層には、必要に応じて、公知の添加剤を適宜に含有せしめることも可能である。なお、そのような添加剤を被覆層に含有せしめるには、水溶性バインダに、所定の添加剤を予め配合した後、耐火性骨材と混練又は混合せしめる方法や、水溶性バインダとは別個に、所定の添加剤を、耐火性骨材に対して添加して、水溶性バインダと共に、全体を均一に混練乃至は混合せしめる方法等が、採用される。 In the present invention, dry coated sand obtained by using the above-mentioned water-soluble binder and forming a coating layer on the surface of the refractory aggregate is intended. In such a coating layer, a known additive can be appropriately contained as required. In order to incorporate such an additive in the coating layer, a method of kneading or mixing with a refractory aggregate after blending a predetermined additive in a water-soluble binder in advance, separately from the water-soluble binder A method of adding a predetermined additive to the refractory aggregate and kneading or mixing the whole together with the water-soluble binder is employed.
 そのような添加剤の一つとして、本発明においては、固形酸化物や塩が、有利に用いられることとなる。それら固形酸化物や塩の含有によって、コーテッドサンドの耐湿性が有利に向上せしめられ得るのである。なお、それらの中で、固形酸化物としては、例えば、ケイ素、亜鉛、マグネシウム、アルミニウム、カルシウム、鉛、ホウ素等の元素の酸化物の使用が有効である。特に、その中でも、二酸化ケイ素、酸化亜鉛、酸化アルミニウム、酸化ホウ素の使用が望ましい。また、二酸化ケイ素の中では、沈殿ケイ酸、発熱性ケイ酸が好ましく用いられる。一方、塩としては、ケイフッ化塩、ケイ酸塩、リン酸塩、ホウ酸塩、四ホウ酸塩、炭酸塩等があり、その中でも、炭酸亜鉛、塩基性炭酸亜鉛、メタホウ酸カリウム、四ホウ酸ナトリウム、四ホウ酸カリウムの使用が、望ましい。そして、これら固形酸化物や塩は、水溶性バインダ中の不揮発分に対して、一般に、0.5~5質量%程度の割合において、用いられるのである。 As one of such additives, in the present invention, a solid oxide or salt is advantageously used. By containing these solid oxides and salts, the moisture resistance of the coated sand can be advantageously improved. Of these, as the solid oxide, it is effective to use oxides of elements such as silicon, zinc, magnesium, aluminum, calcium, lead, boron, and the like. In particular, among these, use of silicon dioxide, zinc oxide, aluminum oxide, and boron oxide is desirable. Of silicon dioxide, precipitated silicic acid and exothermic silicic acid are preferably used. On the other hand, as the salt, there are silicofluoride, silicate, phosphate, borate, tetraborate, carbonate, etc. Among them, zinc carbonate, basic zinc carbonate, potassium metaborate, tetraborate, etc. Use of sodium acid and potassium tetraborate is desirable. These solid oxides and salts are generally used at a ratio of about 0.5 to 5% by mass with respect to the nonvolatile content in the water-soluble binder.
 また、その他の添加剤として、耐火性骨材と水溶性バインダとの結合を強化するカップリング剤を含有せしめることも有効であり、例えば、シランカップリング剤、ジルコンカップリング剤、チタンカップリング剤等を用いることが出来る。また、コーテッドサンドの流動性の向上に寄与する滑剤の含有も有効であり、例えば、パラフィンワックス、合成ポリエチレンワックス、モンタン酸ワックス等のワックス類;ステアリン酸アマイド、オレイン酸アマイド、エルカ酸アマイド等の脂肪酸アマイド類;メチレンビスステアリン酸アマイド、エチレンビスステアリン酸アマイド等のアルキレン脂肪酸アマイド類;ステアリン酸、ステアリルアルコール;ステアリン酸鉛、ステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム等のステアリン酸金属塩;ステアリン酸モノグリセリド、ステアリルステアレート、硬化油等を使用することが可能である。更に、離型剤として、パラフィン、ワックス、軽油、マシン油、スピンドル油、絶縁油、廃油、植物油、脂肪酸エステル、有機酸、黒鉛微粒子、雲母、蛭石、フッ素系離型剤、シリコーン系離型剤等も使用可能である。そして、これらその他の添加剤は、それぞれ、水溶性バインダ中の不揮発成分に対して、一般に、5質量%以下、好ましくは3質量%以下の割合において、含有せしめられる。 In addition, it is also effective to include a coupling agent that strengthens the bond between the refractory aggregate and the water-soluble binder as other additives, for example, silane coupling agents, zircon coupling agents, titanium coupling agents. Etc. can be used. It is also effective to contain a lubricant that contributes to improving the flowability of the coated sand. For example, waxes such as paraffin wax, synthetic polyethylene wax, and montanic acid wax; stearic acid amide, oleic acid amide, erucic acid amide, etc. Fatty acid amides; alkylene fatty acid amides such as methylene bis stearic acid amide and ethylene bis stearic acid amide; stearic acid, stearyl alcohol; stearic acid metal salts such as lead stearate, zinc stearate, calcium stearate, magnesium stearate; stearin Acid monoglycerides, stearyl stearate, hydrogenated oils and the like can be used. Furthermore, as release agents, paraffin, wax, light oil, machine oil, spindle oil, insulating oil, waste oil, vegetable oil, fatty acid ester, organic acid, fine graphite particles, mica, meteorite, fluorine release agent, silicone release agent An agent or the like can also be used. Each of these other additives is generally contained in a proportion of 5% by mass or less, preferably 3% by mass or less, with respect to the nonvolatile components in the water-soluble binder.
 ところで、本発明において、予め準備される乾態のコーテッドサンドを製造するに際しては、一般に、耐火性骨材に対して、粘結剤としての水溶性バインダを、必要に応じて用いられる添加剤と共に、常法に従って混練乃至は混合せしめて、均一に混和し、かかる耐火性骨材の表面を水溶性バインダにて被覆するようにすると共に、そのような水溶性バインダの水分を蒸散せしめることによって、常温流動性を有する乾態の粉末状コーテッドサンドを得る手法が、採用されることとなるが、その際における被覆層の水分の蒸散は、水溶性バインダの固化乃至は硬化が進む前に迅速に行われる必要があり、そのために、本発明にあっては、耐火性骨材に対して、水溶液の形態にある水溶性バインダを投入(混合)してから、5分以内に、より好ましくは3分以内に、含有水分を飛ばして、乾態の粉末状コーテッドサンドとすることが望ましい。かかる蒸散の時間が長くなると、混和(混練)サイクルが長くなり、生産性が低下する他、水溶性バインダが空気中のCO2 に触れる時間が長くなって、失活する等の問題を生じる恐れが高くなるからである。なお、このようにして得られる乾態の粉末状コーテッドサンドの含水分量は、一般に、水溶性バインダの固形分量に対して5~55質量%程度、中でも10~50質量%であることが望ましい。特に、水溶性バインダが水ガラスである場合においては、かかる含水分量を20~50質量%に調製してなるコーテッドサンドとして、形成されることとなる。 By the way, in the present invention, when manufacturing a dry coated sand prepared in advance, generally, a water-soluble binder as a binder is added to the fire-resistant aggregate, together with additives used as necessary. By kneading or mixing according to a conventional method, mixing uniformly, and covering the surface of such a refractory aggregate with a water-soluble binder, and by evaporating the water of such a water-soluble binder, A method of obtaining dry powdered coated sand having room temperature fluidity will be adopted, but the transpiration of the moisture in the coating layer at that time is quickly before solidification or hardening of the water-soluble binder proceeds Therefore, in the present invention, it is more preferable that the water-resistant binder in the form of an aqueous solution is added (mixed) to the refractory aggregate within 5 minutes. Is properly within 3 minutes, skip-containing water, it is desirable that the powder coated sand of Inuitai. If the transpiration time becomes longer, the mixing (kneading) cycle becomes longer, the productivity is lowered, and the time that the water-soluble binder comes into contact with CO 2 in the air becomes longer, which may cause problems such as deactivation. Because it becomes higher. The moisture content of the dry powdered coated sand thus obtained is generally about 5 to 55% by mass, preferably 10 to 50% by mass, based on the solid content of the water-soluble binder. In particular, when the water-soluble binder is water glass, it is formed as a coated sand having a moisture content adjusted to 20 to 50% by mass.
 さらに、そのような乾態のコーテッドサンドの製造工程において、かかる水溶性バインダ中の水分を迅速に蒸散せしめるための有効な手段の一つとして、耐火性骨材を予め加熱しておき、それに、水溶液の形態にある水溶性バインダを混練乃至は混合して、混和せしめるようにする手法が、採用される。この予め加熱された耐火性骨材に、水溶性バインダを混練乃至は混合せしめるようにすることによって、水溶性バインダ中の水分は、そのような耐火性骨材の熱にて、極めて迅速に蒸散せしめられ得ることとなるのであり、以て、得られるコーテッドサンドの水分量を効果的に低下せしめ得て、常温流動性を有する乾態の粉体が、有利に得られることとなるのである。なお、かかる耐火性骨材の予熱温度としては、水溶性バインダの含有水分量やその配合量等に応じて、適宜に選定されることとなるが、一般に100~160℃程度、好ましくは100~140℃程度の温度に、耐火性骨材を加熱して行うことが望ましい。この予熱温度が低くなり過ぎると、水分の蒸散を効果的に行うことが出来ず、乾燥に時間がかかるようになるところから、100℃以上の温度を採用することが望ましいのであり、また予熱温度が高くなり過ぎると、得られるコーテッドサンドの冷却時に、水溶性バインダ成分の硬化が進み、加えて複合粒子化が進行するようになるところから、コーテッドサンドとしての機能、特に強度の如き物性に問題を生じるようになる。 Furthermore, in the manufacturing process of such dry coated sand, as one of effective means for quickly evaporating the water in the water-soluble binder, the refractory aggregate is preheated, A technique is adopted in which a water-soluble binder in the form of an aqueous solution is kneaded or mixed and mixed. By mixing or mixing the water-soluble binder with this preheated refractory aggregate, the water in the water-soluble binder is evaporated very rapidly by the heat of such a refractory aggregate. Therefore, the moisture content of the coated sand obtained can be effectively reduced, and a dry powder having room temperature fluidity can be advantageously obtained. The preheating temperature of such a refractory aggregate is appropriately selected according to the water content of the water-soluble binder, the blending amount thereof, etc., but is generally about 100 to 160 ° C., preferably 100 to It is desirable to heat the refractory aggregate to a temperature of about 140 ° C. If this preheating temperature is too low, it is not possible to effectively evaporate water, and it takes time to dry. Therefore, it is desirable to employ a temperature of 100 ° C. or higher. When the coated sand is too high, the water-soluble binder component hardens when the coated sand obtained is cooled, and in addition, the formation of composite particles proceeds, so there is a problem in the physical properties such as the strength of the coated sand, particularly strength. Will be produced.
 そして、本発明にあっては、上述の如くして得られた乾態のコーテッドサンドを用い、それを、鋳型の製造場所たる造型現場まで運搬した後、その造型現場において、界面活性剤及び/又は多価アルコールを含有する水性媒体を添加して、湿態化させ、そして、その得られた湿態化コーテッドサンドを成形型に充填して、目的とする鋳型の造型を行うものであるが、そこにおいて、乾態のコーテッドサンドに界面活性剤及び/又は多価アルコール含有水性媒体を加えて湿態化する工程は、単に、乾態のコーテッドサンドと所定量の上記水性媒体とを適当なミキサに投入して、混合せしめることにより、コーテッドサンドを湿らせれば足りるものであるところから、極めて単純な作業にて実施され得て、作業環境の悪い造型現場においても、極めて簡単に且つ容易に行い得るのである。しかも、界面活性剤が添加されていることにより、コーテッドサンドの被覆層となる水溶性バインダと水分との相溶性が高められ、湿状態のコーテッドサンドにおける流動性を有利に向上させることが出来ることとなり、そしてその流動性の向上により、鋳型成形型へのコーテッドサンドの充填性が向上せしめられ、特に複雑形状で充填口から充填完了までのキャビティの経路が長い鋳型成形型においても、欠損することなく、充填することが可能となるのである。また、多価アルコールが添加されていると、鋳型の強度を有利に向上させることが出来ると共に、保湿効果を有するため、湿状態のコーテッドサンドの保湿性を向上させて、可使時間を延長させることが出来る利点がある。 In the present invention, the dry coated sand obtained as described above is used and transported to the molding site where the mold is produced. Then, at the molding site, the surfactant and / or Alternatively, an aqueous medium containing a polyhydric alcohol is added to wet, and the obtained wet coated sand is filled into a mold to form a target mold. In this case, the step of adding a surfactant and / or a polyhydric alcohol-containing aqueous medium to the dry coated sand and moistening is performed by simply combining the dry coated sand with a predetermined amount of the aqueous medium. Since it is sufficient to moisten the coated sand by putting it in the mixer and mixing it, it can be performed with extremely simple work, even in molding sites where the working environment is bad, It is as it can easily and readily carried out Te fit. In addition, the addition of a surfactant enhances the compatibility between the water-soluble binder that is the coating layer of the coated sand and moisture, and can advantageously improve the fluidity in the wet coated sand. In addition, the improved fluidity improves the filling property of the coated sand into the mold, and in particular, even in a mold with a complicated shape and a long cavity path from the filling port to the completion of filling. Without filling. In addition, when polyhydric alcohol is added, the strength of the mold can be advantageously improved, and since it has a moisturizing effect, the moisturizing property of the coated sand in the wet state is improved and the pot life is extended. There is an advantage that can be.
 さらに、そのような乾態のコーテッドサンドの湿態化には、単に、界面活性剤及び/又は多価アルコール含有水性媒体のみの添加で済み、粘性のある水溶性バインダを耐火性骨材に混練せしめるものではないところから、作業性が極めて良好であって、その湿態化されたコーテッドサンドが、ミキサや成形型等に付着し難いために、装置が汚れ難い特徴を発揮するものであると共に、造型現場においては、水溶性バインダ、特に水ガラスを取り扱うことがないために、作業者が薬傷を受ける恐れもない等の利点も生じることとなるのである。 Furthermore, such wet coated sand can be moistened by simply adding a surfactant and / or a polyhydric alcohol-containing aqueous medium, and kneading the viscous water-soluble binder into the refractory aggregate. Since the workability is extremely good and the wetted coated sand is difficult to adhere to a mixer, a mold or the like, the device exhibits a feature that makes it difficult to get dirty. In the molding site, since the water-soluble binder, particularly water glass, is not handled, there is an advantage that the worker is not likely to receive chemical injury.
 ここで、本発明に用いられる界面活性剤及び/又は多価アルコール含有水性媒体は、界面活性剤及び多価アルコールのうちの少なくとも何れか一方を、所定の割合において、水に添加して、溶解乃至は分散せしめることによって、調製されるものである。また、この水性媒体には、この明細書に指摘される各種の添加剤や当業者に公知の他の添加剤が、必要に応じて、添加・含有せしめられることとなる。 Here, the surfactant and / or polyhydric alcohol-containing aqueous medium used in the present invention is dissolved by adding at least one of the surfactant and the polyhydric alcohol to water in a predetermined ratio. Or it is prepared by dispersing. In addition, various additives pointed out in this specification and other additives known to those skilled in the art are added and contained in the aqueous medium as necessary.
 そして、そのような水性媒体を乾態のコーテッドサンドに添加せしめるに際しては、界面活性剤の量が、かかるコーテッドサンドにおける水溶性バインダの固形分の100質量部に対して、0.1~20.0質量部となるように、水性媒体を使用することが望ましく、中でも0.5~15.0質量部、特に0.75~12.5質量部となるように、水性媒体を用いることが好ましい。なお、この界面活性剤としては、陽イオン性、陰イオン性、両性、非イオン性、シリコーン系、フッ素系の何れをも、用いることが出来る。 In addition, when such an aqueous medium is added to the dry coated sand, the amount of the surfactant is 0.1 to 20% with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. It is desirable to use an aqueous medium so as to be 0 parts by mass, and it is particularly preferable to use an aqueous medium so as to be 0.5 to 15.0 parts by mass, particularly 0.75 to 12.5 parts by mass. . As the surfactant, any of cationic, anionic, amphoteric, nonionic, silicone type and fluorine type can be used.
 具体的には、陽イオン性界面活性剤としては、脂肪族アミン塩、脂肪族4級アンモニウム塩、ベンザルコニウム塩、塩化ベンゼトニウム、ピリジニウム塩、イミダゾリニウム塩等が挙げられる。また、陰イオン性界面活性剤としては、脂肪酸石鹸、N-アシル-N-メチルグリシン塩、N-アシル-N-メチル-β-アラニン塩、N-アシルグルタミン酸塩、アルキルエーテルカルボン酸塩、アシル化ペプチド、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホ琥珀酸エステル塩、アルキルスルホ酢酸塩、α-オレフィンスルホン酸塩、N-アシルメチルタウリン、硫酸化油、高級アルコール硫酸エステル塩、第2級高級アルコール硫酸エステル塩、アルキルエーテル硫酸塩、第2級高級アルコールエトキシサルフェート、ポリオキシエチレンアルキルフェニルエーテル硫酸塩、モノグリサルフェート、脂肪酸アルキロールアミド硫酸エステル塩、アルキルエーテルリン酸エステル塩、アルキルリン酸エステル塩等が挙げられる。更に、両性界面活性剤としては、カルボキシベタイン型、スルホベタイン型、アミノカルボン酸塩、イミダゾリニウムベタイン等が挙げられる。加えて、非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン2級アルコールエーテル、ポリオキシエチレンアルキルフェニルエーテル(例えば、エマルゲン911)、ポリオキシエチレンステロールエーテル、ポリオキシエチレンラノリン誘導体、ポリオキシエチレンポリオキシプロピレンアルキルエーテル(例えば、ニューポールPE-62)、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンヒマシ油、硬化ヒマシ油、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、脂肪酸モノグリセリド、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、脂肪酸アルカノールアミド、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレンアルキルアミン、アルキルアミンオキサイド、アセチレングリコール、アセチレンアルコール等が挙げられる。また、種々の界面活性剤のうち、特に、非極性部位としてシロキサン構造を有するものをシリコーン系界面活性剤といい、パーフルオロアルキル基を有するものをフッ素系界面活性剤という。シリコーン系界面活性剤としては、ポリエステル変性シリコーン、アクリル末端ポリエステル変性シリコーン、ポリエーテル変性シリコーン、アクリル末端ポリエーテル変性シリコーン、ポリグリセリン変性シリコーン、アミノプロピル変性シリコーン等が挙げられる。また、フッ素系界面活性剤としては、パーフルオロアルキルスルフォン酸塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルリン酸エステル、パーフルオロアルキルトリメチルアンモニウム塩、パーフルオロアルキルエチレンオキサイド付加物、パーフルオロアルキル基含有オリゴマー等が挙げられる。そして、これら界面活性剤が、単独で又は2種類以上混合して、用いられることとなるのである。 Specifically, examples of the cationic surfactant include aliphatic amine salts, aliphatic quaternary ammonium salts, benzalkonium salts, benzethonium chloride, pyridinium salts, imidazolinium salts, and the like. Examples of the anionic surfactant include fatty acid soap, N-acyl-N-methylglycine salt, N-acyl-N-methyl-β-alanine salt, N-acyl glutamate, alkyl ether carboxylate, acyl Peptide, alkyl sulfonate, alkyl benzene sulfonate, alkyl naphthalene sulfonate, dialkyl sulfosuccinate ester, alkyl sulfoacetate, α-olefin sulfonate, N-acylmethyl taurine, sulfated oil, higher alcohol Sulfate, secondary higher alcohol sulfate, alkyl ether sulfate, secondary higher alcohol ethoxy sulfate, polyoxyethylene alkyl phenyl ether sulfate, monoglyculate, fatty acid alkylolamide sulfate, alkyl ether phosphorus Acid Examples include stealth salts and alkyl phosphate ester salts. Furthermore, examples of the amphoteric surfactant include carboxybetaine type, sulfobetaine type, aminocarboxylate, imidazolinium betaine and the like. In addition, nonionic surfactants include polyoxyethylene alkyl ether, polyoxyethylene secondary alcohol ether, polyoxyethylene alkylphenyl ether (eg, Emulgen 911), polyoxyethylene sterol ether, polyoxyethylene lanolin derivative Polyoxyethylene polyoxypropylene alkyl ether (for example, New Pole PE-62), polyoxyethylene glycerin fatty acid ester, polyoxyethylene castor oil, hydrogenated castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, Polyethylene glycol fatty acid ester, fatty acid monoglyceride, polyglycerin fatty acid ester, sorbitan fatty acid ester, propylene glycol fat Esters, sucrose fatty acid esters, fatty acid alkanolamides, polyoxyethylene fatty acid amides, polyoxyethylene alkyl amines, alkyl amine oxides, acetylene glycol, acetylene alcohol, and the like. Among various surfactants, those having a siloxane structure as a nonpolar site are particularly referred to as silicone surfactants, and those having a perfluoroalkyl group are referred to as fluorine surfactants. Examples of the silicone-based surfactant include polyester-modified silicone, acrylic-terminated polyester-modified silicone, polyether-modified silicone, acrylic-terminated polyether-modified silicone, polyglycerin-modified silicone, and aminopropyl-modified silicone. In addition, as fluorosurfactants, perfluoroalkyl sulfonates, perfluoroalkyl carboxylates, perfluoroalkyl phosphates, perfluoroalkyltrimethylammonium salts, perfluoroalkylethylene oxide adducts, perfluoroalkyl groups Containing oligomers and the like. And these surfactants are used individually or in mixture of 2 or more types.
 また、上記の界面活性剤に代えて、又はそれと共に用いられる多価アルコールは、乾態のコーテッドサンドにおける水溶性バインダの固形分の100質量部に対して、一般に0.1~20.0質量部の割合となるように、好ましくは0.5~15.0質量部、更に好ましくは0.75~12.5質量部の割合となるように、そのような多価アルコールを含む水性媒体が、コーテッドサンドに添加されることとなる。ここで用いられる多価アルコールの具体例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ジプロピレングリコール、プロピレングリコール、ブチレングリコール、1,2-ブタンジオール、1,2-ペンタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、2-エチル-1,3-ヘキサンジオール、1,6-ヘキサンジオール、1,2-ヘプタンジオール、1,2-オクタンジオール、1,2,6-ヘキサントリオール、チオグリコール、ヘキシレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン等が挙げられる。そして、これらは、単独で又は2種類以上を混合して、用いられ得るのである。 In addition, the polyhydric alcohol used instead of or together with the above surfactant is generally 0.1 to 20.0 mass per 100 mass parts of the solid content of the water-soluble binder in the dry coated sand. An aqueous medium containing such a polyhydric alcohol is preferably used in an amount of 0.5 to 15.0 parts by mass, more preferably 0.75 to 12.5 parts by mass. It will be added to the coated sand. Specific examples of the polyhydric alcohol used here include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, dipropylene glycol, propylene glycol, butylene glycol, 1,2-butanediol, and 1,2-pentane. Diol, 1,5-pentanediol, 1,2-hexanediol, 2-ethyl-1,3-hexanediol, 1,6-hexanediol, 1,2-heptanediol, 1,2-octanediol, 1, Examples include 2,6-hexanetriol, thioglycol, hexylene glycol, glycerin, trimethylolethane, and trimethylolpropane. And these can be used individually or in mixture of 2 or more types.
 なお、上述の如くして調製される界面活性剤及び/又は多価アルコールを含有する水性媒体には、また、必要に応じて、公知の各種の添加剤を含有せしめることが可能である。例えば、硬化剤として、酸やエステルを含有させてもよく、中でも、酸としては、硫酸、塩酸、炭酸、スルホン酸類が好ましく、エステルとしては、γ-ブチロラクトン、ε-カプロラクトン等のラクトン類や、エチレングリコールジアセテート、トリアセチン、ジエチレングリコールジアセテート、トリエチレングリコールジアセテート等の炭素数1~10のアルコールと炭素数1~10のカルボン酸から導かれるエステル類が好ましい。このときの炭素数1~10のアルコールは、一価又は多価であってもよい。また、硬化促進剤として、金属塩や金属粉末等を含有させてもよい。そこで、金属塩としては、カルシウム、マグネシウム、アルミニウム、鉄等の金属塩が好ましく、金属粉末としては、カルシウム、マグネシウム、亜鉛、アルミニウム、ケイ素等の金属粉末が好ましい。更に、有機溶剤であるメタノール等のアルコール類やアセトン、ジアセトンアルコール等のケトン類の如き乾燥促進剤や、ロンザジャパン株式会社製PROXEL GXL[1,2-ベンゾイソチアゾール-3(2H)-オン]やPROXEL IB(ポリヘキサメチレンビグアニジン)等の防腐剤や、シランカップリング剤を、少量添加含有させることも可能である。 The aqueous medium containing the surfactant and / or polyhydric alcohol prepared as described above can also contain various known additives as necessary. For example, an acid or an ester may be contained as the curing agent, and among them, sulfuric acid, hydrochloric acid, carbonic acid, and sulfonic acids are preferable as the acid. Examples of the ester include lactones such as γ-butyrolactone and ε-caprolactone, Esters derived from an alcohol having 1 to 10 carbon atoms and a carboxylic acid having 1 to 10 carbon atoms such as ethylene glycol diacetate, triacetin, diethylene glycol diacetate and triethylene glycol diacetate are preferred. In this case, the alcohol having 1 to 10 carbon atoms may be monovalent or polyvalent. Moreover, you may contain a metal salt, a metal powder, etc. as a hardening accelerator. Therefore, the metal salt is preferably a metal salt such as calcium, magnesium, aluminum, or iron, and the metal powder is preferably a metal powder such as calcium, magnesium, zinc, aluminum, or silicon. Furthermore, drying accelerators such as alcohols such as methanol, which are organic solvents, and ketones such as acetone and diacetone alcohol, PROXEL GXL [1,2-benzoisothiazol-3 (2H) -one manufactured by Lonza Japan Co., Ltd. ] Or PROXEL IB (polyhexamethylene biguanidine) and a silane coupling agent may be added in a small amount.
 また、鋳型強度の調整のために、更なる添加物として、第二の水溶性バインダを添加することが出来る。この第二の水溶性バインダとしては、先に例示の水溶性バインダの中から適宜に選択され、コーテッドサンドを被覆している水溶性バインダと同一のものであっても、また異なるものであっても、何等差支えない。このような第二の水溶性バインダを鋳型造型時に添加することにより、製造する鋳型の形状や大きさによっては、鋳型の強度を増大させたい場合等、第二の水溶性バインダを更に添加することで、強度の向上を行うことが出来る。なお、かかる第二の水溶性バインダの添加量は、調整用であるため、コーテッドサンドにおける水溶性バインダの固形分に対して、添加される第二の水溶性バインダの固形分の方を少なくするのが望ましい。 Moreover, a second water-soluble binder can be added as a further additive for adjusting the mold strength. The second water-soluble binder is appropriately selected from the water-soluble binders exemplified above, and may be the same as or different from the water-soluble binder covering the coated sand. However, there is no problem. By adding such a second water-soluble binder at the time of mold making, depending on the shape and size of the mold to be produced, in order to increase the strength of the mold, the second water-soluble binder may be further added. Thus, the strength can be improved. In addition, since the addition amount of the second water-soluble binder is for adjustment, the solid content of the second water-soluble binder to be added is reduced with respect to the solid content of the water-soluble binder in the coated sand. Is desirable.
 さらに、本発明に従って、乾態のコーテッドサンドに、界面活性剤及び/又は多価アルコールを含有する水性媒体を添加して、湿態化する際に、更なる添加物として、球状粒子を添加することも有効である。このような球状粒子を添加することにより、鋳型造型に際してのコーテッドサンドの充填性の向上に有利に寄与させることが出来る。なお、このような球状粒子は、界面活性剤及び/又は多価アルコール含有水性媒体に混合した状態で添加してもよく、また界面活性剤及び/又は多価アルコール含有水性媒体とは別個に添加することも可能である。また、かかる球状粒子の添加量は、コーテッドサンドにおける水溶性バインダの固形分100質量部に対して、0.1~20.0質量部程度であり、好ましくは0.5~15.0質量部、更に好ましくは0.75~12.5質量部であることが望ましい。 Furthermore, in accordance with the present invention, spherical particles are added as a further additive when adding an aqueous medium containing a surfactant and / or a polyhydric alcohol to the dry coated sand and moistening. It is also effective. By adding such spherical particles, it is possible to advantageously contribute to improvement of the filling property of the coated sand at the time of mold making. Such spherical particles may be added in a state of being mixed with a surfactant and / or a polyhydric alcohol-containing aqueous medium, or added separately from the surfactant and / or the polyhydric alcohol-containing aqueous medium. It is also possible to do. The addition amount of the spherical particles is about 0.1 to 20.0 parts by mass, preferably 0.5 to 15.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. More preferably, the content is 0.75 to 12.5 parts by mass.
 そして、そのような球状粒子としては、通常、真球度が0.5以上であるものが望ましく、中でも、好ましくは0.7以上、更に好ましくは0.9以上であるものが有利に用いられることとなる。ここで、真球度とは、走査型電子顕微鏡観察において、単粒子のものを無作為に10個選択し、その投影形状から得られたアスペクト比(短径/長径の比)の平均値を意味している。また、そのような球状粒子の平均粒子径は、0.1~25.0μm程度、好ましくは1.0~20.0μm程度であり、球状の粒子であれば、その材質は特に限定されないが、有利には、非晶質シリカ、アルミナ、酸化チタン等の球状粒子が好適に用いられることとなる。 As such spherical particles, those having a sphericity of 0.5 or more are usually desirable. Among them, particles having a sphericity of preferably 0.7 or more, more preferably 0.9 or more are advantageously used. It will be. Here, the sphericity is the average value of the aspect ratio (minor axis / major axis ratio) obtained from the projection shape of 10 single particles randomly selected in scanning electron microscope observation. I mean. The average particle diameter of such spherical particles is about 0.1 to 25.0 μm, preferably about 1.0 to 20.0 μm. The material of the spherical particles is not particularly limited, Advantageously, spherical particles such as amorphous silica, alumina, titanium oxide and the like are preferably used.
 ところで、前記した乾態のコーテッドサンドの湿態化に際しては、鋳型の造型現場において、乾態のコーテッドサンドに対して、所定量の界面活性剤及び/又は多価アルコール含有水性媒体を添加して、通常のミキサにより混合せしめることによって、目的とする湿態化コーテッドサンドが形成されることとなるが、そこで用いられる界面活性剤及び/又は多価アルコール含有水性媒体によって供給される水の量は、コーテッドサンドを構成する水ガラス成分の種類や使用量に応じて、適宜に決定されるところであり、一般に、乾態のコーテッドサンドを湿態化させるために、コーテッドサンドの100質量部に対して、0.5~5質量部の割合において、好ましくは0.75~4質量部の割合において、より好ましくは1~3質量部の割合において、適宜に決定されることとなる。また、界面活性剤及び/又は多価アルコール含有水性媒体の量は、添加される水、界面活性剤、又は多価アルコールの量によって決定されるものであるが、一般に、コーテッドサンドの100質量部に対して、0.5~6質量部の割合において、好ましくは0.75~4質量部の割合において、より好ましくは1~3.5質量部の割合において、適宜に決定されることとなる。なお、この界面活性剤及び/又は多価アルコール含有水性媒体の添加量が少な過ぎると、乾態のコーテッドサンドの湿態化を充分に実現することが出来ず、そのために、コーテッドサンド間の相互の接着が弱くなることにより、またコーテッドサンドの流動性が悪化して、成形型への充填性が悪くなる結果、得られる鋳型の強度が低下する等の問題を惹起する。一方、界面活性剤及び/又は多価アルコール含有水性媒体の添加量が多くなり過ぎると、成形型への充填作業が困難となる問題に加えて、成形型への充填後の乾燥操作に時間を要し、造型時間が長くなってしまう等の問題を惹起する。 By the way, when the above-mentioned dry coated sand is moistened, a predetermined amount of a surfactant and / or a polyhydric alcohol-containing aqueous medium is added to the dry coated sand at the mold making site. By mixing with an ordinary mixer, the desired wetted coated sand is formed, but the amount of water supplied by the surfactant and / or polyhydric alcohol-containing aqueous medium used therein is The amount of the water glass component constituting the coated sand is appropriately determined according to the type and amount of use, and generally, in order to wet the dry coated sand, 0.5 to 5 parts by mass, preferably 0.75 to 4 parts by mass, more preferably 1 to 3 parts by mass. In, will be determined as appropriate. The amount of the surfactant and / or polyhydric alcohol-containing aqueous medium is determined by the amount of water, surfactant, or polyhydric alcohol to be added, but generally 100 parts by mass of the coated sand. The ratio is appropriately determined in the ratio of 0.5 to 6 parts by mass, preferably in the ratio of 0.75 to 4 parts by mass, more preferably in the ratio of 1 to 3.5 parts by mass. . If the amount of the surfactant and / or the polyhydric alcohol-containing aqueous medium is too small, it is not possible to sufficiently wet the coated sand in the dry state. As a result of the weak adhesion, the fluidity of the coated sand deteriorates and the filling property into the mold deteriorates. As a result, the strength of the resulting mold is reduced. On the other hand, if the amount of the surfactant and / or the polyhydric alcohol-containing aqueous medium is excessively increased, the filling operation into the mold becomes difficult, and the drying operation after filling into the mold is time-consuming. In short, it causes problems such as a long molding time.
 そして、本発明にあっては、上述の如くして得られた乾態のコーテッドサンドの湿態化物を用いて、それを、所定の成形型、具体的には成形型の成形キャビティ内に充填して、かかる湿態化コーテッドサンドの乾燥を図ることにより、目的とする形状の鋳型が造型されることとなるのであるが、その際、用いられる湿態化コーテッドサンドは、水溶性バインダを直接に耐火性骨材に混練せしめて得られる湿態のコーテッドサンドよりも、流動性がよく、また砂同士の固着や粘着力が低下したものであるところから、充填性が効果的に向上せしめられ、更に成形型に対する付着も効果的に低減され得ることによって、成形型の汚れが有利に抑制され得、そして成形型からの鋳型の離型性も、有利に向上せしめられ得ることとなったのである。なお、そのような湿態化コーテッドサンドの成形型への充填には、ブローヘッドを用いたブロー充填方式が好適に採用され、そしてそのときのブロー圧は、0.2~0.6MPa程度、好ましくは0.3~0.5MPa程度とされることとなる。 In the present invention, the dried coated sand wet product obtained as described above is used to fill a predetermined mold, specifically, the mold cavity of the mold. Then, by drying the wetted coated sand, a mold having a target shape is formed. At this time, the wetted coated sand used is directly coated with a water-soluble binder. It has better fluidity than wet coated sand obtained by kneading into refractory aggregates, and it has improved adhesiveness due to reduced adhesion and adhesion between sand. In addition, since the adhesion to the mold can be effectively reduced, the dirt on the mold can be advantageously suppressed, and the mold releasability from the mold can be advantageously improved. is there. Incidentally, for filling such a wet coated sand into the mold, a blow filling method using a blow head is preferably employed, and the blow pressure at that time is about 0.2 to 0.6 MPa, The pressure is preferably about 0.3 to 0.5 MPa.
 また、このように、成形型内に充填された湿態化コーテッドサンドを乾燥させて、固化乃至は硬化させることにより、目的とする鋳型の造型を行うに際しては、湿態化コーテッドサンドの乾燥を有利に図るべく、成形型を加熱しておくことが望ましく、本発明において推奨されるところである。この加熱された成形型を用いることにより、充填された湿態化コーテッドサンドの乾燥が、効果的に進行せしめられることによって、造型時間が有利に短縮せしめられ得るのである。なお、そのような成形型の加熱温度としては、一般に、40~250℃、好ましくは70~200℃、更に好ましくは100~175℃の範囲内の温度が採用されることとなる。この加熱温度が、40℃未満となると、加熱による乾燥促進効果を充分に発揮させ難く、造型時間が長くなる問題があり、また250℃よりも高くなると、成形型内に充填される湿態化コーテッドサンドの固化乃至は硬化が早くなり過ぎ、その充填性が悪化することとなる他、湿態化コーテッドサンドが乾燥し過ぎて、粘着性がなくなり、接着効果が低くなって、得られる鋳型の強度が低下する等の問題も惹起されるようになる。 In addition, in this way, when the target mold is molded by drying the wetted coated sand filled in the mold and solidifying or curing it, the wetted sand is dried. In order to be advantageous, it is desirable to heat the mold, which is recommended in the present invention. By using this heated mold, the drying of the filled wetted sand can be effectively advanced so that the molding time can be advantageously shortened. As the heating temperature of such a mold, generally a temperature within the range of 40 to 250 ° C., preferably 70 to 200 ° C., more preferably 100 to 175 ° C. is employed. If this heating temperature is less than 40 ° C., it is difficult to sufficiently exert the drying accelerating effect due to heating, and there is a problem that the molding time becomes long. The coated sand is solidified or hardened too quickly, and its filling property is deteriorated. Also, the wet coated sand is too dried, the tackiness is lost, and the adhesive effect is lowered. Problems such as a decrease in strength also arise.
 そして、成形型内に充填された湿態化コーテッドサンドの乾燥を促進せしめるべく、かかる充填された湿態化コーテッドサンドを、マイクロ波にて、直接に加熱するようにすることも有効であり、特に鋳型成形型が樹脂型である場合において、好適に採用されるところである。更に、湿態化コーテッドサンドを充填した成形型内に、加熱空気または乾燥空気を通気せしめて、湿態化コーテッドサンドの充填層を通過させることによって、乾燥を促進し、より迅速に、充填された湿態化コーテッドサンドの固化乃至は硬化を図るようにすることも有効である。加えて、湿態化コーテッドサンドを充填した成形型を減圧吸引することにより、かかる成形型内を減圧乾燥させることも、有効な乾燥手段の一つであり、特に、樹脂型の如き熱影響を受けやすい材質の成形型においては、有利に採用されるところである。 And, in order to promote drying of the wetted coated sand filled in the mold, it is also effective to directly heat the filled wetted coated sand in the microwave, In particular, when the mold is a resin mold, it is preferably employed. Further, by allowing heated air or dry air to pass through a mold filled with wetted coated sand and passing through a packed bed of wetted coated sand, drying is promoted and the filling is performed more quickly. It is also effective to solidify or harden the wet coated sand. In addition, it is one of the effective drying means to vacuum-dry the inside of the mold by sucking the mold filled with wet coated sand under reduced pressure. In a mold of a material that is easily received, it is advantageously employed.
 さらに、本発明にあっては、上述の如く、成形型内に充填された湿態化コーテッドサンドから、その湿態化に用いられた界面活性剤及び/又は多価アルコール含有水性媒体の水分を除去せしめることにより、目的とする鋳型が造型されることとなるのであるが、その際、コーテッドサンドの表面の被覆層を構成する水ガラスは、通常、何等の添加剤も加えられていなければ、水の蒸発乾固により固化し、また硬化剤として、酸化物や塩等が加えられておれば、硬化せしめられることとなる。そして、そのような水ガラスの硬化のために、湿態化コーテッドサンドを充填した成形型内に、炭酸ガス又は有機エステルガスを、通気せしめることも有効であり、これによって、従来と同様に、水ガラスを迅速に硬化せしめて、造型速度を有利に高めることが可能となる。なお、有機エステルガスとしては、例えば、ギ酸メチル、ギ酸エチル、ギ酸プロピル、γ-ブチロラクトン、γ-プロピオンラクトン、エチレングリコールジアセテート、ジエチレングリコールジアセテート、グリセリンジアセテート、トリアセチン、プロピレンカーボネート等がガス状又は霧状にされて、用いられる。 Furthermore, in the present invention, as described above, the moisture of the surfactant and / or polyhydric alcohol-containing aqueous medium used for the moistening is used from the moistened coated sand filled in the mold. By removing it, the target mold will be formed, but at that time, the water glass constituting the coating layer on the surface of the coated sand is usually not added with any additives, If it is solidified by evaporating to dryness of water and an oxide or salt is added as a curing agent, it will be cured. In order to cure such water glass, it is also effective to ventilate carbon dioxide gas or organic ester gas into a mold filled with wetted coated sand. It is possible to cure the water glass quickly and advantageously increase the molding speed. As the organic ester gas, for example, methyl formate, ethyl formate, propyl formate, γ-butyrolactone, γ-propionlactone, ethylene glycol diacetate, diethylene glycol diacetate, glycerin diacetate, triacetin, propylene carbonate and the like are gaseous or Atomized and used.
 なお、本発明に従って、乾態のコーテッドサンドを湿態化して、それを、所定の成形型により造型する方法としては、公知の各種造型方法を採用して、鋳型を製造することが可能であり、更に本発明が、当業者の知識に基づいて、種々なる変更、修正、改良等を加えた態様において、実施され得るものであり、そのような実施の態様が、本発明の趣旨を逸脱しない限りにおいて、何れも、本発明の範疇に属するものであることが、理解されるべきである。 According to the present invention, as a method of moistening the dry coated sand and molding it with a predetermined mold, it is possible to produce a mold by employing various known molding methods. Furthermore, the present invention can be carried out in a mode to which various changes, modifications, improvements, etc. are added based on the knowledge of those skilled in the art, and such a mode of implementation does not depart from the gist of the present invention. Insofar, it should be understood that all belong to the scope of the present invention.
 以下に、幾つかの実施例を用いて、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等限定的に解釈されるものでないことが理解されるべきである。なお、以下の実施例や比較例において、「%」及び「部」は、特に断りのない限りにおいて、何れも、質量基準にて示されている。また、実施例や比較例で得られたコーテッドサンド(CS)の水分量、充填性、充填流動性、強度の評価は、それぞれ、以下のようにして行った。 Hereinafter, the present invention will be more specifically clarified by using some examples, but the present invention is not construed as being limited in any way by the description of such examples. Should be understood. In the following examples and comparative examples, “%” and “parts” are shown on a mass basis unless otherwise specified. Moreover, the water content, filling property, filling fluidity, and strength of the coated sand (CS) obtained in Examples and Comparative Examples were evaluated as follows.
-水溶性バインダの固形分に対する水分量の測定-
 CS中の水分量を測定出来る方法であれば、特に限定されるものではなく、バインダの種類によって、有効な測定方法を選択することが出来る。以下に、その測定方法の一例を示す。
-Measurement of water content relative to solid content of water-soluble binder-
The method is not particularly limited as long as it can measure the moisture content in CS, and an effective measurement method can be selected depending on the type of binder. An example of the measurement method is shown below.
(水溶性バインダが水ガラスである場合)
 空焼して秤量したるつぼに、各CSを10g秤量して収容し、900℃にて1時間曝熱した後の質量減少量(%)を用いて、CS中の水分量(W1)を、下記の式(1)より算出する。なお、秤量は、小数点以下第4位まで計測する。次に、CSに対するバインダ固形分量(B1)を、下記の式(2)を用いて算出し、その後、CS中の水分量よりバインダの固形分量に対する水分量(W2)を、下記の式(3)を用いて算出する。
  W1=[(M1-M2)/M3]×100       ・・・(1)
  [W1:CS中の水分量(%)、M1:焼成前のるつぼとCSの合計質
   量(g)、M2:焼成後のるつぼとCSの合計質量(g)、M3:焼
   成前のCSの質量(g)]   
  B1=[B2/(100+B2)]×(100-W1) ・・・(2)
  [B1:CSに対するバインダの固形分量(%)、B2:砂の100部
   に対して添加したバインダの固形分量(部)、W1:CS中の水分量
   (%)]
  W2=(W1/B1)×100            ・・・(3)
  [W2:バインダの固形分量に対する水分量(%)、W1:CS中の水
   分量(%)、B1:CSに対するバインダの固形分量(%)]
(When water-soluble binder is water glass)
Each CS is weighed and accommodated in a crucible that has been baked and weighed, and the amount of moisture (W1) in the CS is calculated using the mass loss (%) after heating at 900 ° C. for 1 hour. It calculates from the following formula (1). The weighing is measured to the fourth decimal place. Next, the binder solid content (B1) with respect to CS is calculated using the following formula (2), and then the water content (W2) with respect to the solid content of the binder is calculated from the following formula (3). ) To calculate.
W1 = [(M1-M2) / M3] × 100 (1)
[W1: Moisture content (%) in CS, M1: Total mass (g) of crucible and CS before firing, M2: Total mass (g) of crucible and CS after firing, M3: CS before firing Mass (g)]
B1 = [B2 / (100 + B2)] × (100−W1) (2)
[B1: solid content (%) of binder with respect to CS, B2: solid content (parts) of binder added to 100 parts of sand, W1: moisture content (%) in CS]
W2 = (W1 / B1) × 100 (3)
[W2: Water content (%) with respect to binder solid content, W1: Water content (%) in CS, B1: Binder solid content (%) with respect to CS]
(水溶性バインダが水溶性レゾール樹脂である場合)
 各CSを2.0g秤量し、脱水溶剤であるアクアミクロンML(三菱化学株式会社製)100mlが入った、カールフィッシャ水分測定機(平沼産業株式会社製:AQV-7 HIRANUMA AQUACOUNTER)のフラスコ[予め、カールフィッシャ試薬(Sigma-Aldrich Laborchemikalien Gmbh 社製:ハイドラナールコンポジット5)を滴下して、水分を0にしておく]内に投入した後、マグネチックスターラを用いて数分間攪拌し、その後、前記ハイドラナールコンポジット5を滴下して、CS中の水分量(W1)を定量した。その後、CS中の水分量(W1)より、バインダの固形分に対する水分量(W2)を、上記式(2)及び式(3)用いて算出した。
(When water-soluble binder is water-soluble resol resin)
Weigh 2.0 g of each CS and add 100 ml of Aquamicron ML (Mitsubishi Chemical Corporation), a dehydrating solvent, to a flask of a Karl Fischer moisture meter (Hiranuma Sangyo Co., Ltd .: AQV-7 HIRANUMA AQUACOUNTER) [in advance The Karl Fischer reagent (Sigma-Aldrich Laborchemikalien Gmbh: Hydranal Composite 5) was added dropwise and the water content was kept at 0], and stirred for several minutes using a magnetic stirrer. Hydranal composite 5 was dropped and the moisture content (W1) in CS was quantified. Thereafter, the moisture content (W2) relative to the solid content of the binder was calculated from the moisture content (W1) in CS using the above formulas (2) and (3).
-充填性の測定及び充填流動性の評価-
 各実施例または各比較例のCSを、それぞれ、図1に示すような型割面を有する一方の金型半体5と、それに対称的な型割面を有する他方の金型半体(5)とを組み合わせて、構成される成形型に、その充填口6からブロー圧0.3MPaで充填せしめ、成形型温度150℃、成形時間180秒にて造型して、その得られた鋳型の質量(g)を測定する。次に、その成形された鋳型において、キャビティ内の流路1~4に対するCSの充填状態を、目視にて評価する。各流路の充填状態は、○:充填されている、△:充填されているが、若干欠損あり、×:充填できずに、当該流路部分が欠損している、として判断する。なお、流路2~4までは充填され、流路1が△以上の充填であるものを、合格とする。
-Measurement of fillability and evaluation of filling fluidity-
The CS of each example or each comparative example is divided into one mold half 5 having a parting surface as shown in FIG. 1 and the other mold half having a parting surface symmetrical to the mold half (5 ), And the molding die is filled at a blow pressure of 0.3 MPa from the filling port 6 and molded at a molding die temperature of 150 ° C. and a molding time of 180 seconds. (G) is measured. Next, in the molded mold, the CS filling state with respect to the flow paths 1 to 4 in the cavity is visually evaluated. The filled state of each flow path is determined as ◯: filled, Δ: filled but slightly deficient, x: not filled, and the flow path portion is deficient. The channels 2 to 4 are filled, and the channel 1 that is filled with Δ or more is regarded as acceptable.
-抗折強度の測定-
 各CSを用いて得られた、幅:1.0cm×高さ:1.0cm×長さ:6.0cmの大きさの試験片について、その破壊荷重を、測定器(高千穂精機株式会社製:デジタル鋳物砂強度試験機)を用いて、測定する。そして、この測定された破壊荷重を用いて、抗折強度を、下記の式(4)により、算出する。
  抗折強度(N/cm2 )=1.5×LW/ab2         ・・・(4)
  [L:支点間距離(cm)、W:破壊荷重(N)、a:試験片の幅(c
   m)、b:試験片の厚み(cm)]
-Measurement of bending strength-
About the test piece of width | variety: 1.0cmxheight: 1.0cmxlength: 6.0cm obtained using each CS, the breaking load was measured with the measuring device (Takachiho Seiki Co., Ltd. product: Measure using a digital foundry sand strength tester). And the bending strength is calculated by the following formula (4) using the measured breaking load.
Bending strength (N / cm 2 ) = 1.5 × LW / ab 2 (4)
[L: distance between fulcrums (cm), W: breaking load (N), a: width of test piece (c
m), b: thickness of test piece (cm)]
-乾態CSの製造例1-
 耐火性骨材として、市販の鋳造用人工砂であるルナモス#80(商品名:花王クエーカー株式会社製)を準備すると共に、粘結剤(水溶性バインダ)として用いられる水ガラスとして、市販品:2号ケイ酸ナトリウム(商品名:富士化学株式会社製、SiO2 /Na2O のモル比:2.5、固形成分:41.3%)を準備した。そして、上記のルナモス#80を約120℃の温度に加熱した後、品川式万能攪拌機(5DM-r型)(株式会社ダルトン製)に投入し、更に、前記水ガラスを、ルナモス#80の100部に対して、1.21部(固形成分:0.50部)の割合で添加して、3分間の混練を行ない、水分を蒸発せしめる一方、砂粒塊が崩壊するまで攪拌混合せしめた後に取り出すことにより、常温で自由流動性のある乾態のコーテッドサンド:CS1を得た。かかる混練後のCS1の含水分量を測定したところ、0.2%(/CS)であった。
-Production example 1 of dry CS
As refractory aggregate, Lunamos # 80 (trade name: manufactured by Kao Quaker Co., Ltd.), which is a commercially available artificial sand for casting, is prepared, and as a water glass used as a binder (water-soluble binder), a commercial product: No. 2 sodium silicate (trade name: manufactured by Fuji Chemical Co., Ltd., SiO 2 / Na 2 O molar ratio: 2.5, solid component: 41.3%) was prepared. The lunamos # 80 is heated to a temperature of about 120 ° C., and is then introduced into a Shinagawa universal agitator (5DM-r type) (Dalton Co., Ltd.). 1.21 parts (solid component: 0.50 part) with respect to the part, knead for 3 minutes to evaporate the water, and while stirring and mixing until the sand granule collapses, it is taken out As a result, dry coated sand: CS1 having free fluidity at room temperature was obtained. When the moisture content of CS1 after such kneading was measured, it was 0.2% (/ CS).
-乾態CSの製造例2-
 粘結剤の水ガラスとして、市販品:1号ケイ酸ナトリウム(商品名:富士化学株式会社製、SiO2 /Na2O のモル比:2.1、固形成分:48.5%)を用いること、そしてかかる水ガラスの添加量を、ルナモス#80の100部に対して、1.03部(固形成分0.50部)の割合としたこと以外は、上記製造例1と同様の手順に従って、乾態のCS2を得た。そして、その混練後のCS2の含水分量を測定したところ、0.2%(/CS)であった。
-Production example 2- of dry CS
Commercially available product: No. 1 sodium silicate (trade name: manufactured by Fuji Chemical Co., Ltd., molar ratio of SiO 2 / Na 2 O: 2.1, solid component: 48.5%) is used as the water glass for the binder. In addition, according to the same procedure as in Production Example 1 except that the amount of water glass added was 1.03 parts (0.50 parts of solid component) with respect to 100 parts of Lunamos # 80. , Dry CS2 was obtained. And when the moisture content of CS2 after the kneading was measured, it was 0.2% (/ CS).
-乾態CSの製造例3-
 粘結剤の水ガラスとして、市販品:3号ケイ酸ナトリウム(商品名:富士化学株式会社製、SiO2 /Na2O のモル比:3.2、固形成分:38%)を準備し、この水ガラスの添加量を、ルナモス#80の100部に対して、1.32部(固形成分0.50部)の割合としたこと以外は、上記製造例1と同様の手順に従って、乾態のCS3を得た。そして、その混練後のCS3の含水分量を測定したところ、0.2%(/CS)であった。
-Production example of dry CS 3-
As a water glass of a binder, a commercially available product: No. 3 sodium silicate (trade name: manufactured by Fuji Chemical Co., Ltd., SiO 2 / Na 2 O molar ratio: 3.2, solid component: 38%) was prepared, According to the procedure similar to the said manufacture example 1, except that the addition amount of this water glass was made into the ratio of 1.32 parts (solid component 0.50 part) with respect to 100 parts of Lunamos # 80, it is a dry state. CS3 was obtained. And when the moisture content of CS3 after the kneading was measured, it was 0.2% (/ CS).
-乾態CSの製造例4-
 粘結剤(水溶性バインダ)である水溶性レゾールとして、市販品:HPR833(商品名:旭有機材株式会社製、不揮発成分:45%)を準備した。そして、上記のルナモス#80を約120℃の温度に加熱した後、品川式万能攪拌機(5DM-r型)(株式会社ダルトン製)に投入し、更に、水溶性レゾールを、ルナモス#80の100部に対して、1.33部(樹脂成分0.6)の割合で添加して、60秒間の混練を行ない、水分を蒸発せしめる一方、砂粒塊が崩壊するまで攪拌混合せしめた。その後、攪拌機より取り出すことにより、常温で自由流動性のある乾態のCS4を得た。また、その得られた混練後のCS4の含水分量を測定したところ、0.2%(/CS)であった。
-Production example 4 of dry CS
A commercially available product: HPR833 (trade name: manufactured by Asahi Organic Materials Co., Ltd., nonvolatile component: 45%) was prepared as a water-soluble resol which is a binder (water-soluble binder). The lunamos # 80 is heated to a temperature of about 120 ° C. and then charged into a Shinagawa universal stirrer (5DM-r type) (Dalton Co., Ltd.). The mixture was added at a ratio of 1.33 parts (resin component 0.6) with respect to the parts, and kneading was performed for 60 seconds to evaporate the moisture, while stirring and mixing until the sand granule collapsed. Then, by taking out from the stirrer, dry CS4 having free flowability at room temperature was obtained. Moreover, when the moisture content of CS4 after the kneading | mixing obtained was measured, it was 0.2% (/ CS).
-湿態CSの製造例1-
 耐火性骨材として、市販の鋳造用人工砂であるルナモス#80(商品名:花王クエーカー株式会社製)を準備すると共に、粘結剤の水ガラスとして、市販品:2号ケイ酸ナトリウム(商品名:富士化学株式会社製)を準備した。次いで、常温の上記のルナモス#80を、品川式万能攪拌機(5DM-r型)(株式会社ダルトン製)に投入し、更に、前記水ガラスを、ルナモス#80の100部に対して、1.21部(固形成分0.50部)の割合で添加すると共に、水の0.46部を添加して、3分間の混練を行ない、湿態のCS5を得た。かかる混練後のCS5の含水分量を測定したところ、1.15%(/CS)であり、動的安息角を測定したところ、湿態となって、常温流動性を有していないために、動的安息角を測定することが出来なかった。
-Manufacture example 1 of wet CS
Lunamos # 80 (trade name: manufactured by Kao Quaker Co., Ltd.), a commercially available artificial sand for casting, is prepared as a fire-resistant aggregate, and a commercial product: No. 2 sodium silicate (product) Name: manufactured by Fuji Chemical Co., Ltd.). Next, the above-mentioned lunamos # 80 at room temperature was put into a Shinagawa universal agitator (5DM-r type) (manufactured by Dalton Co., Ltd.), and the water glass was further added to 1.100 parts of lunamos # 80. While adding 21 parts (solid component 0.50 part), 0.46 part of water was added and kneading for 3 minutes was performed to obtain wet CS5. When the moisture content of CS5 after such kneading was measured, it was 1.15% (/ CS), and when the dynamic angle of repose was measured, it became wet and has no room temperature fluidity. The dynamic angle of repose could not be measured.
-鋳型の造型例-
(実施例1)
 アニオン系界面活性剤として、市販品:オルフィンPD-301(商品名:日信化学工業株式会社製)を用い、その0.02部を、2部の水に添加して、混合・攪拌することにより、水性媒体としての界面活性剤含有水溶液を得た。そして、上記の乾態の製造例1にて得られたCS1の100部を、品川式万能攪拌機(5DM-r型)に投入し、更に前記水性媒体としての界面活性剤含有水溶液を添加して(従って、界面活性剤は、CS1における水ガラスの固形分100部に対して4.0部の割合となる)、1分間撹拌した。かくして得られた湿態のCSを、ブロータンクに入れて、150℃に加熱した前記金型半体5の一対からなる成形型内に、圧力0.3MPaのゲージ圧にて吹き込んで、充填させた。そして、180秒間保持した後、成形型より取り外すことにより、試験片としての鋳型を得た。
-Examples of mold making-
(Example 1)
Using an commercially available product: Olfine PD-301 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) as an anionic surfactant, adding 0.02 part thereof to 2 parts of water, mixing and stirring Thus, a surfactant-containing aqueous solution as an aqueous medium was obtained. Then, 100 parts of CS1 obtained in the above dry production example 1 was put into a Shinagawa universal stirrer (5DM-r type), and a surfactant-containing aqueous solution as an aqueous medium was further added. (Thus, the surfactant is in a ratio of 4.0 parts with respect to 100 parts of the solid content of water glass in CS1) and stirred for 1 minute. The wet CS thus obtained is placed in a blow tank and blown into a mold consisting of a pair of mold halves 5 heated to 150 ° C. at a gauge pressure of 0.3 MPa and filled. It was. And after hold | maintaining for 180 second, the casting_mold | template as a test piece was obtained by removing from a shaping | molding die.
(実施例2)
 アニオン系界面活性剤の0.05部(水溶性バインダである水ガラスの固形分100部に対して10部の割合となる)を、2部の水に添加して、混合・攪拌することにより、水性媒体としたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 2)
By adding 0.05 part of an anionic surfactant (10 parts to 100 parts solid content of water glass which is a water-soluble binder) to 2 parts of water, and mixing and stirring. A mold (test piece) was prepared according to the same procedure as in Example 1 except that the aqueous medium was used.
(実施例3)
 アニオン系界面活性剤の0.06部(水ガラスの固形分100部に対して12部の割合となる)を、2部の水に添加して、混合・攪拌することにより、水性媒体としたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 3)
An aqueous surfactant was prepared by adding 0.06 part of an anionic surfactant (12 parts with respect to 100 parts of the solid content of water glass) to 2 parts of water and mixing and stirring. Except for this, a template (test piece) was prepared according to the same procedure as in Example 1.
(実施例4)
 乾態CS1を、乾態CS2に変更したこと以外は、実施例2と同様の手順に従って、鋳型(試験片)を作製した。
Example 4
A mold (test piece) was prepared according to the same procedure as in Example 2 except that dry CS1 was changed to dry CS2.
(実施例5)
 乾態CS1を、乾態CS3に変更したこと以外は、実施例2と同様の手順に従って、鋳型(試験片)を作製した。
(Example 5)
A mold (test piece) was prepared according to the same procedure as in Example 2 except that dry CS1 was changed to dry CS3.
(実施例6)
 シリコーン系界面活性剤として、市販品:KF643(商品名:信越化学工業株式会社製)を準備し、それを0.005部(水ガラスの固形分100部に対して1部の割合となる)用いて、2部の水に添加して、混合・攪拌することにより、水性媒体としたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 6)
A commercially available product: KF643 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) is prepared as a silicone-based surfactant, and 0.005 part thereof (the ratio is 1 part with respect to 100 parts of the solid content of water glass). A mold (test piece) was prepared according to the same procedure as in Example 1 except that it was added to 2 parts of water, mixed and stirred to obtain an aqueous medium.
(実施例7)
 シリコーン系界面活性剤として、市販品:KF640(商品名:信越化学工業株式会社製)を準備し、それを0.005部(水ガラスの固形分100部に対して1部の割合となる)用いて、2部の水に添加して、混合・攪拌することにより、水性媒体としたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 7)
A commercially available product: KF640 (trade name: manufactured by Shin-Etsu Chemical Co., Ltd.) is prepared as a silicone-based surfactant, and 0.005 part thereof (the ratio is 1 part with respect to 100 parts of the solid content of water glass). A mold (test piece) was prepared according to the same procedure as in Example 1 except that it was added to 2 parts of water, mixed and stirred to obtain an aqueous medium.
(実施例8)
 アニオン系界面活性剤として、市販品:リポランLB-440(商品名:ライオン株式会社製)を用いたこと以外は、実施例2と同様の手順に従って、鋳型(試験片)を作製した。
(Example 8)
A template (test piece) was prepared in the same manner as in Example 2 except that a commercially available product: Liporan LB-440 (trade name: manufactured by Lion Corporation) was used as the anionic surfactant.
(実施例9)
 非イオン性界面活性剤として、市販品:Surfynol465(商品名:日信化学工業株式会社製)を用いたこと以外は、実施例2と同様の手順に従って、鋳型(試験片)を作製した。
Example 9
A mold (test piece) was prepared according to the same procedure as in Example 2 except that a commercially available product: Surfynol 465 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used as the nonionic surfactant.
(実施例10)
 非イオン性界面活性剤として、市販品:Surfynol485(商品名:日信化学工業株式会社製)を用いたこと以外は、実施例2と同様の手順に従って、鋳型(試験片)を作製した。
(Example 10)
A mold (test piece) was prepared in the same manner as in Example 2 except that a commercially available product: Surfynol 485 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used as the nonionic surfactant.
(実施例11)
 アニオン系界面活性剤として、市販品:オルフィンPD-301(商品名:日信化学工業株式会社製)を用い、その0.02部(水ガラスの固形分100部に対して4部の割合となる)と、多価アルコールとして、グリセリンの0.04部(水ガラスの固形分100部に対して8部の割合となる)とを、2部の水に添加して、混合・攪拌することにより、水性媒体としたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 11)
As an anionic surfactant, a commercially available product: Olphine PD-301 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used, and 0.02 part thereof (a ratio of 4 parts to 100 parts of the solid content of water glass) And 0.04 part of glycerin as polyhydric alcohol (the ratio is 8 parts with respect to 100 parts of the solid content of water glass) is added to 2 parts of water and mixed and stirred. Thus, a template (test piece) was prepared according to the same procedure as in Example 1 except that the aqueous medium was used.
(実施例12)
 アニオン系界面活性剤として、市販品:オルフィンPD-301(商品名:日信化学工業株式会社製)を用い、その0.05部(水ガラスの固形分100部に対して10部の割合となる)と、多価アルコールとして、グリセリンの0.04部(水ガラスの固形分100部に対して8部の割合となる)とを、2部の水に添加して、混合・攪拌することにより、水性媒体としたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 12)
As an anionic surfactant, a commercially available product: Olphine PD-301 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.) was used, and 0.05 parts thereof (a ratio of 10 parts to 100 parts of solid content of water glass) And 0.04 part of glycerin as polyhydric alcohol (the ratio is 8 parts with respect to 100 parts of the solid content of water glass) is added to 2 parts of water and mixed and stirred. Thus, a template (test piece) was prepared according to the same procedure as in Example 1 except that the aqueous medium was used.
(実施例13)
 界面活性剤として、市販品:オルフィンPD-301(商品名:日信化学工業株式会社製)を用い、その0.05部(水ガラスの固形分100部に対して10部の割合となる)を、2部の水に添加して、混合・攪拌することにより得られた水性媒体に、球状粒子であるHS311(商品名:新日鉄住金マテリアルズ株式会社製)の0.05部(水ガラスの固形分100部に対して10部の割合となる)を添加して用いたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。なお、HS311のアスペクト比を測定したところ、0.91であった。
(Example 13)
As a surfactant, commercially available product: Olfine PD-301 (trade name: manufactured by Nissin Chemical Industry Co., Ltd.), 0.05 part thereof (10 parts per 100 parts of water glass solid content) Was added to 2 parts of water, and the aqueous medium obtained by mixing and stirring was mixed with 0.05 parts of spherical particles of HS311 (trade name: manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) A mold (test piece) was prepared according to the same procedure as in Example 1 except that 10 parts of solid content was added and used. The aspect ratio of HS311 was measured and found to be 0.91.
(実施例14)
 乾態CS1を、乾態CS4に変更したこと以外は、実施例2と同様の手順に従って、鋳型(試験片)を作製した。
(Example 14)
A mold (test piece) was prepared according to the same procedure as in Example 2 except that dry CS1 was changed to dry CS4.
(実施例15)
 多価アルコールとして、グリセリンを用い、その0.04部(水ガラスの固形分100部に対して8部の割合となる)を、2部の水に添加して、混合・攪拌することにより、水性媒体としたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 15)
By using glycerin as a polyhydric alcohol, adding 0.04 part thereof (a ratio of 8 parts to 100 parts of solid content of water glass) to 2 parts of water, and mixing and stirring, A template (test piece) was prepared according to the same procedure as in Example 1 except that the aqueous medium was used.
(実施例16)
 多価アルコールとして、ポリエチレングリコール市販品:PEG400(製品名:第一工業製薬株式会社)を用い、その0.04部(水ガラスの固形分100部に対して8部の割合となる)を2部の水に添加して、混合・攪拌することにより、水性媒体としたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 16)
As a polyhydric alcohol, a polyethylene glycol commercial product: PEG400 (product name: Daiichi Kogyo Seiyaku Co., Ltd.) is used, and 0.04 part thereof (a ratio of 8 parts to 100 parts of the solid content of water glass) is 2 A mold (test piece) was prepared according to the same procedure as in Example 1 except that it was added to a portion of water and mixed and stirred to obtain an aqueous medium.
(実施例17)
 多価アルコールとして、グリセリンを用い、その0.04部(水ガラスの固形分100部に対して8部の割合となる)を、2部の水に添加して、混合・攪拌することにより得られた水性媒体に、球状粒子としてのHS311(商品名:新日鉄住金マテリアルズ株式会社製)の0.05部(水ガラスの固形分100部に対して10部の割合となる)を添加して用いたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Example 17)
Obtained by using glycerin as the polyhydric alcohol, adding 0.04 part thereof (a ratio of 8 parts to 100 parts of solid content of water glass) to 2 parts of water, and mixing and stirring. To the resulting aqueous medium, add 0.05 part of HS311 (trade name: manufactured by Nippon Steel & Sumikin Materials Co., Ltd.) as spherical particles (the ratio is 10 parts with respect to 100 parts of the solid content of water glass). A mold (test piece) was prepared according to the same procedure as in Example 1 except that it was used.
(実施例18)
 乾態CS1を、乾態CS4に変更したこと以外は、実施例15と同様の手順に従って、鋳型(試験片)を作製した。
(Example 18)
A mold (test piece) was prepared according to the same procedure as in Example 15 except that dry CS1 was changed to dry CS4.
(比較例1)
 水性媒体として、界面活性剤や多価アルコールの添加されていない通常の水道水を用いたこと以外は、実施例1と同様の手順に従って、鋳型(試験片)を作製した。
(Comparative Example 1)
A template (test piece) was prepared according to the same procedure as in Example 1 except that normal tap water to which no surfactant or polyhydric alcohol was added was used as the aqueous medium.
(比較例2)
 湿態のCS5を、ブロータンクに入れて、150℃に加熱した成形型内に、圧力0.3MPaのゲージ圧にて吹き込んで、充填させた。そして、180秒間型内に保持した後、成形型より取り出すことにより、鋳型(試験片)を得た。
(Comparative Example 2)
Wet CS5 was placed in a blow tank and blown into a mold heated to 150 ° C. at a gauge pressure of 0.3 MPa to be filled. And after hold | maintaining in a type | mold for 180 second, the casting_mold | template (test piece) was obtained by taking out from a shaping | molding die.
(比較例3)
 水性媒体として、界面活性剤や多価アルコールの添加されていない通常の水道水を用いたこと以外は、実施例14と同様の手順に従って、鋳型(試験片)を作製した。
(Comparative Example 3)
A template (test piece) was prepared according to the same procedure as in Example 14 except that normal tap water to which no surfactant or polyhydric alcohol was added was used as the aqueous medium.
 上記の実施例1~18及び比較例1~3で得られた各々の鋳型(試験片)について、前述の試験法に従って、充填性の測定及び充填流動性の評価を行うと共に、強度の測定を実施して、それらの結果を、下記表1乃至表3に示した。 For each of the molds (test pieces) obtained in Examples 1 to 18 and Comparative Examples 1 to 3, the filling property and filling fluidity are evaluated according to the test method described above, and the strength is measured. The results are shown in Tables 1 to 3 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 かかる表1乃至表3の結果より明らかな如く、実施例1~18において、本発明に従う界面活性剤及び/又は多価アルコール含有水性媒体を用いて湿態化してなるCSから得られた鋳型は、何れも、コーテッドサンドの良好な充填性と充填流動性を示していることが認められる。 As is clear from the results of Tables 1 to 3, in Examples 1 to 18, the template obtained from CS wetted with the surfactant and / or polyhydric alcohol-containing aqueous medium according to the present invention was used. It can be seen that both show good filling and filling fluidity of the coated sand.
 これに対して、比較例1~3に係る、水のみを用いて乾態のCSを湿態化したものや、水ガラスを用いて直接に湿態のCSを形成せしめてなるものから、造型された鋳型においては、成形型へのCSの充填性や充填流動性が充分でないことが認められる。 On the other hand, according to Comparative Examples 1 to 3, the dry CS is moistened using only water, or the wet CS is directly formed using water glass. In the molded mold, it is recognized that the filling ability and filling fluidity of CS into the mold are not sufficient.
 また、実施例1~18において得られた鋳型は、水のみの混練により湿態化されたCSを用いる比較例に対して、強度の効果的な向上が実現されていることが認められる。 In addition, it can be seen that the molds obtained in Examples 1 to 18 have an effective improvement in strength over the comparative example using CS wetted by kneading only water.
  1~4 流路
  5 金型半体
  6 充填口
1-4 Flow path 5 Mold half 6 Filling port

Claims (13)

  1.  耐火性骨材の表面を水溶性バインダにて被覆して得られる乾態のコーテッドサンドに、界面活性剤及び/又は多価アルコールを含有せしめてなる水性媒体を添加して、湿態化させた後、その得られた湿態化コーテッドサンドを成形型に充填して、造型することを特徴とする鋳型の製造方法。 An aqueous medium containing a surfactant and / or a polyhydric alcohol was added to a dry coated sand obtained by coating the surface of a refractory aggregate with a water-soluble binder, and was wetted. Then, a mold manufacturing method is characterized in that the obtained wet coated sand is filled into a mold and then molded.
  2.  前記水性媒体が、前記コーテッドサンドの100質量部に対して、0.5~6質量部となる割合において、該コーテッドサンドに添加せしめられることを特徴とする請求項1に記載の鋳型の製造方法。 The method for producing a mold according to claim 1, wherein the aqueous medium is added to the coated sand at a ratio of 0.5 to 6 parts by mass with respect to 100 parts by mass of the coated sand. .
  3.  前記界面活性剤が、前記コーテッドサンドにおける水溶性バインダの固形分の100質量部に対して、0.1~20.0質量部の割合となるように、前記水性媒体が添加されることを特徴とする請求項1又は請求項2に記載の鋳型の製造方法。 The aqueous medium is added so that the surfactant has a ratio of 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. The manufacturing method of the casting_mold | template of Claim 1 or Claim 2.
  4.  前記多価アルコールが、前記コーテッドサンドにおける水溶性バインダの固形分の100質量部に対して、0.1~20.0質量部の割合となるように、前記水性媒体が添加されることを特徴とする請求項1乃至請求項3の何れか1項に記載の鋳型の製造方法。 The aqueous medium is added such that the polyhydric alcohol is in a ratio of 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. The method for producing a mold according to any one of claims 1 to 3.
  5.  前記乾態のコーテッドサンドを湿態化させるに際し、更に、球状粒子が添加されることを特徴とする請求項1乃至請求項4の何れか1項に記載の鋳型の製造方法。 The method for producing a mold according to any one of claims 1 to 4, wherein spherical particles are further added when the dry coated sand is wetted.
  6.  前記球状粒子の添加量が、前記コーテッドサンドにおける水溶性バインダの固形分の100質量部に対して、0.1~20.0質量部であることを特徴とする請求項5に記載の鋳型の製造方法。 The mold according to claim 5, wherein the amount of the spherical particles added is 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the solid content of the water-soluble binder in the coated sand. Production method.
  7.  前記乾態のコーテッドサンドを湿態化させるに際し、更に、第二の水溶性バインダが添加せしめられることを特徴とする請求項1乃至請求項6の何れか1項に記載の鋳型の製造方法。 The method for producing a mold according to any one of claims 1 to 6, wherein a second water-soluble binder is further added to wet the dry coated sand.
  8.  前記乾態のコーテッドサンドにおける含水分量が、前記水溶性バインダの固形分量の5~55質量%であることを特徴とする請求項1乃至請求項7の何れか1項に記載の鋳型の製造方法。 The method for producing a mold according to any one of claims 1 to 7, wherein the moisture content in the dry coated sand is 5 to 55 mass% of the solid content of the water-soluble binder. .
  9.  前記水溶性バインダとして、熱硬化性樹脂、糖類、タンパク質、合成高分子、塩類及び無機高分子のうちの単独又は二以上が選択されて用いられることを特徴とする請求項1乃至請求項8の何れか1項に記載の鋳型の製造方法。 9. The water-soluble binder according to claim 1, wherein one or more of thermosetting resins, saccharides, proteins, synthetic polymers, salts and inorganic polymers are selected and used. The manufacturing method of the casting_mold | template of any one.
  10.  前記無機高分子が、水ガラスであることを特徴とする請求項9に記載の鋳型の製造方法。 The method for producing a mold according to claim 9, wherein the inorganic polymer is water glass.
  11.  前記湿態化コーテッドサンドを充填した成形型内に、加熱空気又は乾燥空気が通気させられることを特徴とする請求項1乃至請求項10の何れか1項に記載の鋳型の製造方法。 The method for producing a mold according to any one of claims 1 to 10, wherein heated air or dry air is passed through a mold filled with the wetted coated sand.
  12.  炭酸ガス又は有機エステルガスが、前記湿態化コーテッドサンドを充填した成形型内に、通気せしめられることを特徴とする請求項1乃至請求項11の何れか1項に記載の鋳型の製造方法。 The method for producing a mold according to any one of claims 1 to 11, wherein carbon dioxide gas or organic ester gas is aerated in a mold filled with the wetted coated sand.
  13.  前記成形型が、40℃~250℃の温度に加熱されていることを特徴とする請求項1乃至請求項12の何れか1項に記載の鋳型の製造方法。 The method for producing a mold according to any one of claims 1 to 12, wherein the mold is heated to a temperature of 40 ° C to 250 ° C.
PCT/JP2017/030764 2016-08-31 2017-08-28 Casting mold manufacturing method WO2018043412A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
MX2019002260A MX2019002260A (en) 2016-08-31 2017-08-28 Casting mold manufacturing method.
CN201780053438.8A CN109641265B (en) 2016-08-31 2017-08-28 Method for manufacturing casting mold
JP2018537260A JP6923533B2 (en) 2016-08-31 2017-08-28 Mold manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016168835 2016-08-31
JP2016-168835 2016-08-31

Publications (2)

Publication Number Publication Date
WO2018043412A1 true WO2018043412A1 (en) 2018-03-08
WO2018043412A8 WO2018043412A8 (en) 2018-11-15

Family

ID=61300862

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/030764 WO2018043412A1 (en) 2016-08-31 2017-08-28 Casting mold manufacturing method

Country Status (4)

Country Link
JP (1) JP6923533B2 (en)
CN (1) CN109641265B (en)
MX (1) MX2019002260A (en)
WO (1) WO2018043412A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801179A (en) * 2018-03-22 2020-10-20 新东工业株式会社 Aggregate mixture for mold, and method for molding mold
JP2021519699A (en) * 2018-03-30 2021-08-12 アイメリーズ ユーエスエー,インコーポレーテッド Compositions containing oxidized materials for sand casting and methods of preparation and use thereof
JP2022009343A (en) * 2018-03-30 2022-01-14 旭有機材株式会社 Method for producing coated sand

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110170612B (en) * 2019-05-28 2020-10-13 湖北工业大学 Method for improving fluidity of inorganic resin molding sand and application method thereof
BR112021023515A2 (en) * 2019-06-07 2022-01-18 Nof Corp Surfactant composition for foaming sand
JP7247804B2 (en) * 2019-07-26 2023-03-29 新東工業株式会社 Mold-making composition and mold-making method
CN110756732B (en) * 2019-12-03 2020-12-04 安徽省含山县皖中减速机械有限公司 Casting process for improving casting defects of speed reducer pin gear shell
JP6832469B1 (en) * 2020-01-07 2021-02-24 花王株式会社 Inorganic coated sand

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154843A (en) * 1987-12-11 1989-06-16 Hitachi Chem Co Ltd Manufacture of resin coated sand for gas hardening mold
JPH0647480A (en) * 1992-07-29 1994-02-22 Hodogaya Ashiyurando Kk Continuous production of sand mold for casting
JPH10216895A (en) * 1997-02-06 1998-08-18 Kao Corp Binder composition for casting mold
JP2012076115A (en) * 2010-10-01 2012-04-19 Lignyte Co Ltd Binder-coated refractory, casting mold, method for producing the casting mold

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS486691B1 (en) * 1968-12-25 1976-02-28
JP3139918B2 (en) * 1993-12-28 2001-03-05 株式会社キャディック・テクノロジ−・サ−ビス Method for producing refractory molded article and binder for refractory molded article
CN1270860A (en) * 1999-04-16 2000-10-25 蔡建军 Making process of filmed sand mold (core)
CN1175946C (en) * 2000-06-13 2004-11-17 秦升益 Wet film coating sand
CN1214879C (en) * 2001-11-05 2005-08-17 江苏省机电研究所 Wet mold-coating sand and its prepn
CN1513621A (en) * 2003-07-08 2004-07-21 东风汽车公司 Production method of covering film sand core for investment casting
ATE509714T1 (en) * 2004-02-25 2011-06-15 Sintokogio Ltd METHOD FOR PRODUCING A CASTING
WO2014098129A1 (en) * 2012-12-19 2014-06-26 旭有機材工業株式会社 Coated sand, manufacturing method for same, and manufacturing method for mold
EP3040136B1 (en) * 2013-08-30 2021-04-07 Asahi Yukizai Corporation Molding method for laminated mold
WO2015194550A1 (en) * 2014-06-20 2015-12-23 旭有機材工業株式会社 Mold manufacturing method and mold
JP6765868B2 (en) * 2016-06-20 2020-10-07 旭有機材株式会社 Mold manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01154843A (en) * 1987-12-11 1989-06-16 Hitachi Chem Co Ltd Manufacture of resin coated sand for gas hardening mold
JPH0647480A (en) * 1992-07-29 1994-02-22 Hodogaya Ashiyurando Kk Continuous production of sand mold for casting
JPH10216895A (en) * 1997-02-06 1998-08-18 Kao Corp Binder composition for casting mold
JP2012076115A (en) * 2010-10-01 2012-04-19 Lignyte Co Ltd Binder-coated refractory, casting mold, method for producing the casting mold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111801179A (en) * 2018-03-22 2020-10-20 新东工业株式会社 Aggregate mixture for mold, and method for molding mold
EP3769861A4 (en) * 2018-03-22 2021-12-29 Sintokogio, Ltd. Aggregate mixture for mold, mold, and method for shaping mold
JP2021519699A (en) * 2018-03-30 2021-08-12 アイメリーズ ユーエスエー,インコーポレーテッド Compositions containing oxidized materials for sand casting and methods of preparation and use thereof
JP2022009343A (en) * 2018-03-30 2022-01-14 旭有機材株式会社 Method for producing coated sand
JP7223098B2 (en) 2018-03-30 2023-02-15 旭有機材株式会社 How to make coated sand
JP7358450B2 (en) 2018-03-30 2023-10-10 アイメリーズ ユーエスエー,インコーポレーテッド Compositions containing oxidized materials for sand casting and methods of preparation and use thereof

Also Published As

Publication number Publication date
JPWO2018043412A1 (en) 2019-06-24
CN109641265A (en) 2019-04-16
WO2018043412A8 (en) 2018-11-15
JP6923533B2 (en) 2021-08-18
CN109641265B (en) 2021-06-11
MX2019002260A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018043412A1 (en) Casting mold manufacturing method
JP6193884B2 (en) Coated sand, method for producing the same, and method for producing a mold
JP7345596B2 (en) Mold material composition and mold manufacturing method using the same
JP6604944B2 (en) Mold manufacturing method and mold
JP7055753B2 (en) Coated sand and its manufacturing method and mold manufacturing method using it
JP4315470B2 (en) Binder for core and mold
WO2018097179A1 (en) Coated sand, manufacturing method for same, and manufacturing method for mold using same
JP5986498B2 (en) Coated sand manufacturing method and mold manufacturing method
JP6765868B2 (en) Mold manufacturing method
CN109982785B (en) Precoated sand, method for producing same, and method for producing mold using same
JP7252897B2 (en) Mold material and method for manufacturing the same, mold and method for manufacturing the same, and method for regenerating foundry sand
JP7418279B2 (en) Mold manufacturing method
JP2016002574A (en) Manufacturing method of casting mold
JP7467221B2 (en) Mold making method
WO2020203752A1 (en) Mold material composition and method for manufacturing mold using same
CN115461171A (en) Method for manufacturing casting mold

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018537260

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17846417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17846417

Country of ref document: EP

Kind code of ref document: A1