JP3948490B2 - Casting manufacturing method - Google Patents

Casting manufacturing method Download PDF

Info

Publication number
JP3948490B2
JP3948490B2 JP2006510291A JP2006510291A JP3948490B2 JP 3948490 B2 JP3948490 B2 JP 3948490B2 JP 2006510291 A JP2006510291 A JP 2006510291A JP 2006510291 A JP2006510291 A JP 2006510291A JP 3948490 B2 JP3948490 B2 JP 3948490B2
Authority
JP
Japan
Prior art keywords
mold
casting
aggregate
mixture
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006510291A
Other languages
Japanese (ja)
Other versions
JPWO2005080023A1 (en
Inventor
裕介 加藤
敏彦 善甫
憲啓 浅野
政彦 長坂
和之 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Application granted granted Critical
Publication of JP3948490B2 publication Critical patent/JP3948490B2/en
Publication of JPWO2005080023A1 publication Critical patent/JPWO2005080023A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/10Cores; Manufacture or installation of cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D29/00Removing castings from moulds, not restricted to casting processes covered by a single main group; Removing cores; Handling ingots
    • B22D29/001Removing cores
    • B22D29/005Removing cores by vibrating or hammering

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)
  • Glass Compositions (AREA)

Abstract

A casting process that employs a collapse-prone core is disclosed. The process includes the steps of mixing one or more kind of an aggregate granular material, one or more kind of a water-soluble binder, and water, to form a mixture of the aggregate granular material, and stirring the mixture to cause it to foam. Such a mixture prevents the generation of undesirable gases when molding a mold and pouring molten metal into the mold. The process also includes the steps of charging the foamed mixture into a molding space, evaporating the moisture within the charged mixture to harden the charged mixture to mold a mold with the hardened mixture, assembling at least one mold that is cast in the hardened mixture with the mating mold to form a completed mold, pouring molten metal into the completed mold, removing the completed mold from a cast article that is composed of the solidified molten metal during a process of cooling the cast article after the molten metal is solidified, and applying a heat treatment to the cast article.

Description

本発明は鋳物の製造方法に関し、特に従来のシェルモールドプロセスに代えて、除去が容易な鋳型を用いる鋳物の製造方法に関する。   The present invention relates to a casting manufacturing method, and more particularly to a casting manufacturing method using a mold that can be easily removed instead of a conventional shell mold process.

従来の軽合金鋳物の製造方法としては、例えば特開平5−261478号公報に記載されたように、シェルモールドプロセスが公知である。このシェルモールドプロセスのバインダーとしては、フェノール−ホルムアルデヒド系の樹脂を含むものが採用されている。このバインダーで被覆した砂を加熱された造型用金型に吹き込み充填し、充填した砂に被覆されたバインダーを金型の熱により硬化させている。   As a conventional method for producing a light alloy casting, a shell mold process is known as described in, for example, Japanese Patent Laid-Open No. 5-261478. As the binder for the shell mold process, a binder containing a phenol-formaldehyde resin is employed. The sand covered with the binder is blown and filled into a heated mold, and the binder covered with the filled sand is cured by the heat of the mold.

しかしながら、このようなシェルモールドプロセスにおいては、注湯後の中子鋳型が比較的に硬いので、この中子鋳型を崩壊させて鋳物から除去するためには、中子鋳型に大きな衝撃力を付与するノックアウト工程を必要とする。このノックアウト工程をなすためには、鋳物の熱処理前に鋳物を充分に冷却する必要がある。また、1Mpa以上の比較的に大きな衝撃力を10Hz以上で10sec以上与えても70〜80%程度の砂落ししかできないので、熱処理期間中やその後にも、崩壊後の中子鋳型の残滓である中子砂及び中子塊が鋳物に残存してしまう。従ってそれらの再度の除去が要求されることもある。更に、鋳物から除去した中子塊を再生するためには、焙焼を必要とすることが多い。   However, in such a shell mold process, since the core mold after pouring is relatively hard, a large impact force is applied to the core mold in order to collapse the core mold and remove it from the casting. A knockout process is required. In order to perform this knock-out process, it is necessary to sufficiently cool the casting before heat treatment of the casting. Moreover, even if a relatively large impact force of 1 Mpa or more is applied at 10 Hz or more for 10 seconds or more, only about 70 to 80% of the sand can be removed, so that the core mold remains after collapse during and after the heat treatment. Core sand and core lump remain in the casting. Therefore, removal of them again may be required. Furthermore, roasting is often required to regenerate the core mass removed from the casting.

更に、シェルモールドプロセスにおいては、金型の熱によりバインダーを硬化させる際には揮発ガスの発生を伴う。このような揮発ガスは、不快な臭気を伴い、特にホルムアルデヒド、フェノール、アンモニアなどのガスは人体に悪影響を及ぼす。   Further, in the shell mold process, volatile gas is generated when the binder is cured by heat of the mold. Such a volatile gas is accompanied by an unpleasant odor, and especially gases such as formaldehyde, phenol and ammonia have an adverse effect on the human body.

従って従来のシェルモールドプロセスに代えて、鋳型の除去が容易であり、揮発ガスの発生を抑制する鋳物の製造方法が望まれる。   Therefore, in place of the conventional shell mold process, there is a demand for a casting manufacturing method that facilitates removal of the mold and suppresses the generation of volatile gases.

本明細書において「粒子状骨材」とは、珪砂、ジルコン、砂、オリビン砂、クロマイト砂、アルミナ砂、ムライト砂、人工砂等のうちの1種或いは2種以上から成るものを意味する。   In the present specification, the “particulate aggregate” means one or more of quartz sand, zircon, sand, olivine sand, chromite sand, alumina sand, mullite sand, artificial sand and the like.

本明細書において「溶湯が凝固後」とは、溶湯が凝固し硬化した後をいう。この温度はプロセスや溶湯材質により異なっている。   In the present specification, “after the molten metal has solidified” means after the molten metal has solidified and hardened. This temperature varies depending on the process and the melt material.

本明細書において「鋳物の冷却期間中」とは、完成鋳型から鋳物を取り出しても変形しない程度に鋳物が冷却された温度よりも低く鋳物を冷やしている期間を示す。例えば、アルミニウム合金のT6処理では、溶体化処理温度である約520℃よりも低いが通常の冷却温度である70乃至111℃よりも高い温度、例えば、300℃まで鋳物を冷却している期間を示す。   In the present specification, “during the cooling period of the casting” indicates a period during which the casting is cooled to a temperature lower than the temperature at which the casting is cooled to such an extent that the casting is not deformed even when the casting is taken out from the finished mold. For example, in the T6 treatment of an aluminum alloy, the casting is cooled to a temperature lower than the solution treatment temperature of about 520 ° C. but higher than the normal cooling temperature of 70 to 111 ° C., for example, 300 ° C. Show.

本発明の一つの局面によれば鋳物の製造方法が与えられ、この方法は、鋳物の製造方法であって、
少なくとも1種類の粒子状骨材、少なくとも1種類の水溶性バインダー、及び水を混合することにより骨材混合物を形成し、この骨材混合物を攪拌して発泡させる工程と、
発泡させた骨材混合物を鋳型造型用空間に充填し、充填した骨材混合物中の水分を蒸発させて骨材混合物を固化させ、前記粒子状骨材により鋳型を造型する工程と、
この粒子状骨材により造型された造型鋳型に対して、相手方の鋳型を組み合わせて完成鋳型を製作する工程と、
前記完成鋳型に溶湯を注湯する工程と、
前記溶湯が凝固後の鋳物の冷却期間中に前記鋳物から前記造型鋳型を除去する工程と、
前記鋳物を熱処理する工程とを含む。
According to one aspect of the present invention, there is provided a method for manufacturing a casting, which is a method for manufacturing a casting,
Forming an aggregate mixture by mixing at least one particulate aggregate, at least one water-soluble binder, and water, and stirring the aggregate mixture to foam;
Filling the foamed aggregate mixture into the mold making space, evaporating moisture in the filled aggregate mixture to solidify the aggregate mixture, and molding the mold with the particulate aggregate; and
A process for producing a finished mold by combining the mold of the other party with the mold made of the particulate aggregate,
Pouring molten metal into the finished mold;
Removing the molding mold from the casting during a cooling period of the casting after the molten metal is solidified;
Heat-treating the casting.

粒子状骨材により造型された造型鋳型は好ましくは中子鋳型である。この場合、相手方の鋳型(主型鋳型)は金型でもよく、砂型でもよい。   The molding mold made of the particulate aggregate is preferably a core mold. In this case, the counterpart mold (main mold) may be a mold or a sand mold.

本明細書において「完成鋳型」とは、主鋳型と、粒子状骨材により造型された少なくとも1つの造型鋳型(中子鋳型)との組み合わせからなり、溶湯を注湯可能な鋳型を意味する。従って完成鋳型の構成要素は、主鋳型と中子鋳型の他に、注湯に必要な要素も含み得る。   In the present specification, the “finished mold” means a mold that is composed of a combination of a main mold and at least one molding mold (core mold) made of particulate aggregate, and can pour molten metal. Accordingly, the components of the finished mold can include elements necessary for pouring in addition to the main mold and the core mold.

本発明の鋳物の製造方法においては、粒子状骨材を回収工程と、その回収した粒子状骨材を再生する工程とを更に含んでもよい。回収して再生した粒子状骨材を鋳型の造型に再び使用することが好ましい。   The casting manufacturing method of the present invention may further include a step of collecting the particulate aggregate and a step of regenerating the collected particulate aggregate. It is preferable that the particulate aggregate recovered and regenerated is used again for mold making.

本発明の一実施形態によれば、粒子状骨材を回収して再生する工程は機械的な再生である。   According to one embodiment of the present invention, the step of recovering and regenerating the particulate aggregate is mechanical regeneration.

鋳物はアルミニウム合金鋳物としてもよく、又はマグネシウム合金鋳物、或いは銅合金鋳物その他としてもよい。   The casting may be an aluminum alloy casting, a magnesium alloy casting, a copper alloy casting or the like.

熱処理はT6処理若しくはT7処理としてもよい。 The heat treatment may be T6 treatment or T7 treatment.

本発明の一実施形態によれば、鋳型を除去する工程は、鋳型に対して振動を加える工程である。これは例えば、注湯後5分乃至20分以内の時間において、鋳型に対して1Mpa以下の衝撃力を30Hz未満で30sec未満与えることを含む。   According to one embodiment of the present invention, the step of removing the mold is a process of applying vibration to the mold. This includes, for example, applying an impact force of 1 Mpa or less to the mold at less than 30 Hz and less than 30 seconds in a time within 5 to 20 minutes after pouring.

本発明の他の局面により与えられる鋳物の製造方法は、粒子状骨材、少なくとも1種類の水溶性バインダー、及び水を混合することにより骨材混合物を形成する工程と、
この骨材混合物を攪拌して発泡させ、発泡させた骨材混合物を鋳型造型用空間に充填し、充填した骨材混合物中の水分を蒸発させて骨材混合物を固化させ、中子鋳型を造型する工程と、
中子鋳型と金型鋳型とを組み合わせて完成鋳型にする工程と、
完成鋳型にアルミニウム合金の溶湯を注湯する工程と、
溶湯が凝固後の鋳物の冷却期間中に鋳物から中子鋳型を除去する工程と、
アルミニウム合金鋳物をT6又はT7熱処理する工程とを含む。
A method for producing a casting provided by another aspect of the present invention includes a step of forming an aggregate mixture by mixing particulate aggregate, at least one water-soluble binder, and water;
The aggregate mixture is agitated and foamed, the foamed aggregate mixture is filled into the mold molding space, the moisture in the filled aggregate mixture is evaporated to solidify the aggregate mixture, and the core mold is molded. And a process of
Combining a core mold and a mold mold into a finished mold;
Pouring molten aluminum alloy into the finished mold;
Removing the core mold from the casting during the cooling period of the casting after the molten metal has solidified;
Heat-treating the aluminum alloy casting with T6 or T7.

少なくとも1種類の水溶性バインダーは、ポリビニルアルコールとその誘導体との少なくとも一方、或いは、澱粉とその誘導体との少なくとも一方である。 The at least one water-soluble binder is at least one of polyvinyl alcohol and its derivative, or at least one of starch and its derivative.

発明を実施するための好ましい形態Preferred form for carrying out the invention

図1の工程図には本発明に係る鋳物の製造方法の各工程を概略的に示してある。この工程図に沿って先ず本発明の鋳物の製造方法の原理について説明する。   The process diagram of FIG. 1 schematically shows each process of the casting manufacturing method according to the present invention. First, the principle of the casting manufacturing method of the present invention will be described with reference to this process chart.

図1において、第1に、少なくとも1種類の粒子状骨材、少なくとも1種類の水溶性バインダー及び水を混合して骨材混合物を形成して、これを攪拌することにより発泡させる(第1(調製)工程1)。   In FIG. 1, first, at least one type of particulate aggregate, at least one type of water-soluble binder and water are mixed to form an aggregate mixture, which is then foamed by stirring (first ( Preparation) Step 1).

第2に、前工程で発泡させた骨材混合物を鋳型造型用空間に充填して固化させて、粒子状骨材からなる鋳型を造型する(第2(造型)工程)2)。   Second, the foam mixture formed in the previous step is filled into a mold making space and solidified to form a mold made of particulate aggregate (second (molding) process) 2).

第3に、この造型された少なくとも1つ以上の造型鋳型(中子鋳型)を相手方鋳型(主型)に組み合わせて、完成鋳型を製作する(第3(組立)工程3)。   Third, at least one or more molded molds (core molds) thus molded are combined with the counterpart mold (main mold) to produce a completed mold (third (assembly) step 3).

第4に、この完成鋳型に溶湯を注湯する(第4(注湯)工程4)。   Fourth, molten metal is poured into the finished mold (fourth (pouring) step 4).

第5に、溶湯が凝固後の鋳物の冷却期間中に、この鋳物から中子鋳型を鋳物から除去して抜型する(第5(抜型)工程5)。   Fifth, during the cooling period of the casting after the molten metal has solidified, the core mold is removed from the casting and the die is removed (fifth (die cutting) step 5).

第6に、この鋳物を熱処理する(第6(熱処理)工程6)ことにより、完成品の鋳物が製造される。   Sixth, a finished product casting is manufactured by heat-treating the casting (sixth (heat treatment) step 6).

図1の各工程について更に詳しく説明する。   Each step of FIG. 1 will be described in more detail.

第1(調製)工程1において、粒子状骨材としては、珪砂、ジルコン、砂、オリビン砂、クロマイト砂、アルミナ砂、ムライト砂、人工砂等のうちの少なくとも1種類以上を用いる。   In the first (preparation) step 1, at least one of silica sand, zircon, sand, olivine sand, chromite sand, alumina sand, mullite sand, artificial sand and the like is used as the particulate aggregate.

水溶性バインダーとしては、常温にて水分可溶性を有するものを用いることが好ましい。常温で水分可溶性を有する水溶性バインダーは、加熱することなく骨材混合物を形成できるので、バインダー及び粒子状骨材を加熱するために要する時間やエネルギを節約できる。これは、従来のシェルモールドプロセスにおけるコーテッドサンド製造とは対照的な本発明の利点である。本発明に用いる水溶性バインダーは、水溶性バインダーであるポリビニルアルコール又はその誘導体と、澱粉又はその誘導体との何れか一方、又はその両方が好ましいが、これに限定されるものではない。この水溶性バインダーは容易に揮発または分解させることができるので、後の第5(抜型)工程5においては、溶湯の凝固した鋳物から中子鋳型を容易に除去できる。なお、水溶性バインダーは、粒子状骨材に対し0.1乃至5.0重量部含有されることが好ましい。   As the water-soluble binder, it is preferable to use a water-soluble binder at room temperature. Since a water-soluble binder having water solubility at room temperature can form an aggregate mixture without heating, the time and energy required to heat the binder and the particulate aggregate can be saved. This is an advantage of the present invention as opposed to coated sand production in a conventional shell mold process. The water-soluble binder used in the present invention is preferably water-soluble binder polyvinyl alcohol or a derivative thereof, starch or a derivative thereof, or both, but is not limited thereto. Since this water-soluble binder can be easily volatilized or decomposed, the core mold can be easily removed from the solidified casting of the molten metal in the subsequent fifth (die cutting) step 5. The water-soluble binder is preferably contained in an amount of 0.1 to 5.0 parts by weight with respect to the particulate aggregate.

このような少なくとも1種類の水溶性バインダーと、少なくとも1種類の粒子状骨材と、水とを混合して骨材混合物を形成する。これを攪拌することにより発泡させると、骨材混合物はホイップクリーム状になる。   Such an at least one water-soluble binder, at least one particulate aggregate, and water are mixed to form an aggregate mixture. When this is foamed by stirring, the aggregate mixture becomes whipped cream.

第2(造型)工程2においては、鋳型造型用空間に充填した骨材混合物中の水分を蒸発させて骨材混合物を固化させると、前工程における発泡に起因して、粒子状骨材からなる中空の中子鋳型(中子鋳型)が造型される。この中空鋳型は、空孔率が3%乃至60%である。また、中空鋳型の厚みが例えば約40mmの場合、水溶性バインダーは、鋳型の表面と10mm深さとの間の鋳型表面層に50%以上凝集している。即ち、発泡させた骨材混合物による中空鋳型では、骨材混合物中に分散した気泡及びバインダーの含有する水分が鋳型中心部に集まっているので、その水分を蒸発させることにより、鋳型中心部においては骨材の充填密度が低くなる。   In the second (molding) step 2, when the aggregate mixture is solidified by evaporating the water in the aggregate mixture filled in the mold molding space, the aggregate is made of particulate aggregate due to foaming in the previous step. A hollow core mold (core mold) is formed. This hollow mold has a porosity of 3% to 60%. When the thickness of the hollow mold is, for example, about 40 mm, the water-soluble binder is aggregated by 50% or more in the mold surface layer between the mold surface and 10 mm depth. That is, in the hollow mold made of the foamed aggregate mixture, the bubbles contained in the aggregate mixture and the moisture contained in the binder are collected in the center of the mold, so by evaporating the moisture, The packing density of the aggregate is lowered.

第3(組立)工程3においては、粒子状骨材よりなる少なくとも1つの中子鋳型に、主型鋳型(相手方鋳型)を組み合わせて完成鋳型を構成することができる。主型鋳型は金型でもよく、或いは例えば粒子状骨材よりなる砂型でもよい。本実施形態においては、主型鋳型として金型を採用し、低圧鋳造を適用する。しかしながら、金型鋳型を採用する場合には、本発明の方法は、低圧鋳造に限らず、逆圧鋳造、ダイキャスト、重力金型鋳造などの他の処理にも適用可能である。   In the third (assembly) step 3, a completed mold can be configured by combining a main mold (an opponent mold) with at least one core mold made of particulate aggregate. The main mold may be a mold or a sand mold made of, for example, particulate aggregate. In this embodiment, a die is adopted as the main mold, and low pressure casting is applied. However, when a mold is used, the method of the present invention is not limited to low pressure casting but can be applied to other processes such as reverse pressure casting, die casting, and gravity mold casting.

第4(注湯)工程4において、完成鋳型に注湯する溶湯材質は、本実施形態ではアルミニウム合金であるが、これに限定されるものではなく、他の軽金属合金又は非鉄合金(例えばマグネシウム合金又は銅合金)としてもよい。これに代えて、鋳鉄、鋳鋼、或いは鉄系金属合金を用いてもよい。但し鉄系金属を用いる場合には、中子鋳型に塗型材を塗布することが望ましいであろう。   In the fourth (pouring) step 4, the molten metal material poured into the finished mold is an aluminum alloy in the present embodiment, but is not limited to this, and other light metal alloys or non-ferrous alloys (for example, magnesium alloys) Or a copper alloy). Instead of this, cast iron, cast steel, or an iron-based metal alloy may be used. However, when using an iron-based metal, it may be desirable to apply a coating material to the core mold.

第5(抜型)工程5において、冷却期間中(完成鋳型から鋳物を取り出しても変形しない程度に鋳物が冷却された温度よりも更に低い温度へ鋳物を冷却する期間)に鋳物から中子鋳型を除去する。ここで第4(注湯)工程4における溶湯材質がアルミニウム合金である場合の「冷却期間中」とは、アルミニウム合金のT6処理における溶体化処理温度である約520℃よりも低いが、通常の冷却温度である70乃至111℃よりも高い温度、例えば、300℃まで鋳物を冷却している期間である。   In the fifth (die cutting) step 5, the core mold is removed from the casting during the cooling period (period in which the casting is cooled to a temperature lower than the temperature at which the casting is cooled to such an extent that the casting is not deformed even if the casting is removed from the finished mold) Remove. Here, “in the cooling period” when the molten metal material in the fourth (pouring) step 4 is an aluminum alloy is lower than about 520 ° C., which is the solution treatment temperature in the T6 treatment of the aluminum alloy. This is a period in which the casting is cooled to a temperature higher than the cooling temperature of 70 to 111 ° C., for example, 300 ° C.

アルミニウム合金の場合には、第6(熱処理)工程6における熱処理は、T6処理、T7処理その他の熱処理である。   In the case of an aluminum alloy, the heat treatment in the sixth (heat treatment) step 6 is T6 treatment, T7 treatment or other heat treatment.

水溶性バインダーとして、ポリビニルアルコール若しくはその誘導体、又は澱粉若しくはその誘導体を用いることにより、バインダーを含む粒子状骨材混合物を混練して調整する調製工程1においても、中子鋳型を造型する造型工程2においても不快なガス臭は生じなかった。   Molding step 2 for forming a core mold in preparation step 1 in which a particulate aggregate mixture containing a binder is kneaded and adjusted by using polyvinyl alcohol or a derivative thereof, or starch or a derivative thereof as a water-soluble binder. No unpleasant gas odor occurred.

また、造型された中子鋳型に溶湯を注湯する注湯工程4に際し、溶湯の熱でバインダーが加熱されても、中子鋳型からの不快な臭気や不所望な揮発性ガスの発生は認められなかった。   In addition, in the pouring step 4 in which the molten metal is poured into the molded core mold, even if the binder is heated by the heat of the molten metal, generation of unpleasant odor and undesired volatile gas from the core mold is recognized. I couldn't.

図1に示すように本発明の鋳物の製造方法には、第6(熱処理)工程6に続き、必要に応じて以下の工程を更に追加してもよい。即ち、中子鋳型の粒子状骨材(中子砂)及び中子塊を回収する回収工程7、中子塊を破砕する破砕工程8、及び、回収した粒子状骨材を機械的に再生する機械式再生工程9である。回収して再生した粒子状骨材は中子鋳型の造型に再び使用することができる。   As shown in FIG. 1, in the casting manufacturing method of the present invention, following the sixth (heat treatment) step 6, the following steps may be further added as necessary. That is, a recovery step 7 for recovering the core aggregate particulate aggregate (core sand) and core lump, a crushing step 8 for crushing the core lump, and mechanically regenerating the recovered particulate aggregate. This is a mechanical regeneration step 9. The particulate aggregate recovered and regenerated can be used again for the molding of the core mold.

図1の工程図を参照して、本発明の鋳物の製造方法の特定の実施形態について説明する。但し、ここに示した材料名は例示の目的のために示すものであり、本発明を限定するものではない。   A specific embodiment of the casting manufacturing method of the present invention will be described with reference to the process diagram of FIG. However, the material names shown here are given for illustrative purposes and do not limit the present invention.

本実施形態の第1工程(調製工程)1においては、以下のように二種類の骨材混合物A及びBを得た。   In the first step (preparation step) 1 of the present embodiment, two types of aggregate mixtures A and B were obtained as follows.

表1 骨材混合物A
粒子状骨材:珪砂(フラタリーサンド)100重量部
水溶性バインダー:ポリビニルアルコール(JP−05 日本酢ビ・ポバール製)0.8重量部
架橋剤:ブタンテトラカルボン酸(リカシッドBT−W 新日本理化製)0.2重量部
表1に示す組成からなる骨材混合物100重量部と水6重量部とを混合、攪拌、混練して発泡させ、ホイップクリーム状の骨材混合物Aを得た。
Table 1 Aggregate mixture A
Particulate aggregate: 100 parts by weight of silica sand (flattery sand) Water-soluble binder: 0.8 parts by weight of polyvinyl alcohol (JP-05, Nippon Acetate / Poval) Crosslinker: Butanetetracarboxylic acid (Ricacid BT-W Shin Nippon) 0.2 parts by weight Rika) 100 parts by weight of the aggregate mixture having the composition shown in Table 1 and 6 parts by weight of water were mixed, stirred, kneaded and foamed to obtain a whipped cream-like aggregate mixture A.

表2 骨材混合物B
粒子状骨材:珪砂(フラタリ−サンド)100重量部
水溶性バインダー:ポリビニルアルコール(JL−05 日本酢ビ・ポバール製)0.2重量部、澱粉(デキストリンND−S 日澱化学製)1.0重量部、及びクエン酸(扶桑化学製)0.4重量部
表2に示す組成からなる乾燥した骨材混合物100重量部と、水6重量部とを混合、攪拌、混練して発泡させ、ホイップクリーム状の骨材混合物Bを得た。
Table 2 Aggregate mixture B
Particulate aggregate: 100 parts by weight of silica sand (Flatari-sand) Water-soluble binder: 0.2 parts by weight of polyvinyl alcohol (JL-05, manufactured by Nippon Acetate / Poval), starch (dextrin ND-S manufactured by Nissho Chemical Co., Ltd.) 0 part by weight, and 0.4 part by weight of citric acid (manufactured by Fuso Chemical) 100 parts by weight of a dry aggregate mixture having the composition shown in Table 2 and 6 parts by weight of water are mixed, stirred, kneaded and foamed. A whipped cream-like aggregate mixture B was obtained.

なお、本実施形態の調製工程1では、従来のシェルモールドプロセスのレジンコーテッドサンドを製造する工程で必要な加熱装置や、レジンの加熱によって生じる有害ガスを除去する脱臭装置は必要ない。   In addition, in the preparation process 1 of this embodiment, the heating apparatus required in the process which manufactures the resin coated sand of the conventional shell mold process, and the deodorizing apparatus which removes the harmful gas which arises by the heating of a resin are unnecessary.

次いで、250℃に保持されている鋳型造型用金型(図示せず)のキャビティ(図示せず)内に、調製工程1で得られた2種類のホイップクリーム状の骨材混合物A及びBを別々に加圧充填し、1分間保持し、骨材混合物中の水分を気化し、固化させた後、鋳型造型用金型のキャビティ内から中子鋳型を取り出した(第2(造型)工程2)。   Next, the two types of whipped cream-like aggregate mixtures A and B obtained in the preparation step 1 are placed in a cavity (not shown) of a mold for mold making (not shown) held at 250 ° C. Separately pressurize and hold for 1 minute to vaporize and solidify the moisture in the aggregate mixture, and then remove the core mold from the cavity of the mold for mold making (second (molding) step 2 ).

既に説明したように、この鋳型を他の鋳型と組み立て、完成鋳型にする(第3(組立)工程3)。ここで本実施形態の組立工程3においては、低圧鋳造装置の主型金型に中子鋳型を組み込んで、完成鋳型を製作し、注湯準備をなした。   As already described, this mold is assembled with another mold to form a completed mold (third (assembly) step 3). Here, in the assembly process 3 of the present embodiment, a core mold was incorporated into the main mold of the low pressure casting apparatus, a completed mold was manufactured, and pouring preparation was made.

この完成鋳型に溶湯を注湯した(第4(注湯)工程4)。本実施形態ではアルミニウム合金鋳物AC4Cの溶湯(温度720℃)を低圧鋳造装置(図示せず)を用いて下方から注湯した。溶湯の720℃の温度は、バインダーを揮発又は分解させるので、次工程の中子鋳型の除去が容易になる。 Molten metal was poured into the finished mold (fourth (pouring) step 4). In this embodiment, a molten aluminum alloy casting AC4C (temperature: 720 ° C.) was poured from below using a low-pressure casting apparatus (not shown). Since the temperature of the molten metal at 720 ° C. volatilizes or decomposes the binder, it becomes easy to remove the core mold in the next step.

溶湯が凝固した後の鋳物の冷却期間中に、この鋳物から中子鋳型を除去した(第5(抜型)工程5)。従来のシェルモードプロセスにおいては、鋳物から中子鋳型を崩壊させて除去するためには、鋳物を充分に冷却した後に、鋳型に対して大きな衝撃力を与える必要があった。本発明の方法によれば、崩壊性が高い中子鋳型を用いているので、中子鋳型を鋳物から除去するために従来要求されていた充分な冷却及びその後の大きな衝撃力は必要としない。従って中子鋳型を簡単な方法、例えば以下に説明する軽振動で除去することができる。本実施形態の抜型工程5においては、注湯から約10分後に、凝固した溶湯を鋳物として取り出した。その直後に、温度350℃の鋳物に対して1Mpa以下の衝撃力を20Hz、20sec未満の軽振動によって与えて砂落しをなすことにより、中子鋳型を完全に除去できた。また実験によれば、抜型工程5では、注湯後5分乃至20分以内の時間において、1Mpa以下の衝撃力を30Hz未満で30sec未満与える砂落しとしても鋳物から中子鋳型を完全に除去できた。   During the cooling period of the casting after the molten metal solidified, the core mold was removed from the casting (fifth (die cutting) step 5). In the conventional shell mode process, in order to collapse and remove the core mold from the casting, it is necessary to apply a large impact force to the mold after the casting is sufficiently cooled. According to the method of the present invention, since the core mold having a high collapsibility is used, sufficient cooling and a large impact force thereafter required for removing the core mold from the casting are not required. Therefore, the core mold can be removed by a simple method, for example, a light vibration described below. In the mold removal step 5 of the present embodiment, the solidified molten metal was taken out as a casting about 10 minutes after pouring. Immediately thereafter, the core mold was completely removed by applying an impact force of 1 Mpa or less to the casting at a temperature of 350 ° C. by light vibration of 20 Hz for less than 20 seconds to remove sand. Also, according to experiments, in the die-cutting step 5, the core mold can be completely removed from the casting even when the sand is dropped to give an impact force of 1 Mpa or less at less than 30 Hz for less than 30 seconds within 5 to 20 minutes after pouring. It was.

このような鋳物の湯口を除去し、鋳物の鋳ばりを除去してから、この鋳物を熱処理した(第6(熱処理)工程6)。鋳物の湯口及び鋳ばりの除去は、本実施形態では鋳物の熱処理の前になしたが、熱処理後に実施してもよい。本実施形態においても、第6(熱処理)工程6に続き、図1に示す中子砂回収工程7、破砕工程8、及び機械式再生工程110を追加してもよい。   After removing the pouring gate of such a casting and removing the cast burr of the casting, this casting was heat-treated (sixth (heat treatment) step 6). The removal of the casting spout and cast burr is performed before the heat treatment of the casting in this embodiment, but may be performed after the heat treatment. Also in the present embodiment, following the sixth (heat treatment) step 6, a core sand collecting step 7, a crushing step 8, and a mechanical regeneration step 110 shown in FIG. 1 may be added.

金型鋳型を用いた鋳造方法では、中子鋳型からのみ粒子状骨材及び中子塊が回収されるので、回収して再生した粒子状骨材を鋳型の造型に容易に再使用することができる。   In the casting method using the mold mold, the particulate aggregate and the core lump are collected only from the core mold, so that the collected and regenerated particulate aggregate can be easily reused for mold making. it can.

比較のために示す図2(従来技術)は、先述の特開平5−261478号公報に記載されたシェルモールドプロセスを用いた従来の鋳物の製造方法の工程図である。   FIG. 2 (prior art) shown for comparison is a process diagram of a conventional casting manufacturing method using the shell mold process described in the above-mentioned Japanese Patent Application Laid-Open No. 5-261478.

図2の従来方法においては、レジンコーテッドサンドを用いる。通常、レジンコーテッドサンドは鋳物製造業者とは別の業者によって製造販売されているので、レジンコーテッドサンドを製造する工程(11)は、鋳物製造現場とは別の場所でなされる。従って、レジンコーテッドサンドを回収して再生しても、本発明の方法とは対照的に、鋳型の造型に再使用することは困難である。   In the conventional method of FIG. 2, resin-coated sand is used. Usually, since the resin-coated sand is manufactured and sold by a vendor different from the casting manufacturer, the step (11) of manufacturing the resin-coated sand is performed at a location different from the casting manufacturing site. Therefore, even if the resin-coated sand is recovered and regenerated, it is difficult to reuse the resin-coated sand for molding a mold as opposed to the method of the present invention.

図2の従来方法によれば、鋳物製造業者は、市販のレジンコーテッドサンドを加熱して中子鋳型を造型し(12)、造型された中子鋳型を他の鋳型と組み立てて、完成鋳型を製造し(13)、この完成鋳型に注湯する(14)。次いで砂落し炉により中子鋳型を抜型し(15)、鋳物を充分に冷却した(16)後、ノックアウト工程により鋳物砂を完全に除去し(17)、この鋳物を熱処理する(18)。更に、ノックアウト工程17、熱処理工程18及びその後の工程から中子塊を含んだ中子砂を回収している(19)。この回収した中子砂には、この回収工程19をなす場所とは通常は別の場所であるレジンコーテッドサンド製造場において、中子塊の破砕20、焙焼21、機械的な再生22がなされる。   According to the conventional method of FIG. 2, a casting manufacturer heats a commercially available resin-coated sand to form a core mold (12), assembles the molded core mold with other molds, and forms a finished mold. Manufacturing (13) and pouring the finished mold (14). Next, the core mold is removed by a sand dropping furnace (15), and the casting is sufficiently cooled (16). Then, the foundry sand is completely removed by a knockout process (17), and the casting is heat-treated (18). Furthermore, core sand containing core lump is recovered from the knockout process 17, the heat treatment process 18 and the subsequent processes (19). The collected core sand is subjected to core crushing 20, roasting 21, and mechanical regeneration 22 at a resin-coated sand manufacturing site that is usually a place different from the place where the collecting step 19 is performed. The

図1に示す本発明の鋳物製造方法では、図2に示す従来方法に比べて工程数が削減されることが明らかである。例えば本発明の方法(図1)では第5(鋳型除去)工程5は、鋳型の崩壊が容易であるので、簡単な工程、例えば軽振動による砂落としで達成することができる。ところが、鋳型を崩壊させにくい従来方法(図2)では、鋳型除去のために砂落し炉による除去15、鋳物の充分な冷却16、ノックアウト工程17を必要とする。また本発明の方法は従来方法の回収再生における焙焼21を必要としない。   In the casting manufacturing method of the present invention shown in FIG. 1, it is apparent that the number of steps is reduced as compared with the conventional method shown in FIG. For example, in the method of the present invention (FIG. 1), the fifth (mold removal) step 5 is easy to disintegrate the mold, and can be achieved by a simple step, for example, sand removal by light vibration. However, in the conventional method (FIG. 2) that makes it difficult to collapse the mold, the removal 15 by the sand dropping furnace, the sufficient cooling 16 of the casting, and the knockout process 17 are required for removing the mold. Further, the method of the present invention does not require roasting 21 in the recovery and regeneration of the conventional method.

図3は本発明の実施形態の第5(鋳型除去)工程5及び第6(熱処理)工程6における温度と時間との関係を示すグラフである。比較のために示す図4(従来技術)は、本発明の方法における鋳型除去及び熱処理工程に対応する従来工程についての同様なグラフである。   FIG. 3 is a graph showing the relationship between temperature and time in the fifth (template removal) step 5 and the sixth (heat treatment) step 6 of the embodiment of the present invention. For comparison, FIG. 4 (Prior Art) is a similar graph for the conventional process corresponding to the mold removal and heat treatment process in the method of the present invention.

従来方法においては、上述のように鋳物の充分な冷却(図2の工程16)の後に、ノックアウト工程による砂落しをなし(図2の工程17)、その後、T6処理のために改めて昇温をしていた。このため、図4に示すように冷却に時間を要する上に、熱処理のための再加熱の時間及びエネルギが必要である。   In the conventional method, as described above, after sufficient cooling of the casting (step 16 in FIG. 2), sand removal by the knockout step is performed (step 17 in FIG. 2), and then the temperature is raised again for the T6 treatment. Was. For this reason, as shown in FIG. 4, in addition to the time required for cooling, reheating time and energy for heat treatment are required.

図3に示す本発明の実施形態においては、720℃で注湯した後、鋳型除去工程5で溶湯が凝固後の鋳物を取り出した直後に、この鋳物から中子鋳型を除去している。従って、中子鋳型の除去のために、充分に鋳物製品を冷却した後に大きな衝撃を付与することが不要となり、溶体化処理(熱処理)を直ちに開始することができる。このため、冷却に要する時間を短縮でき、熱処理のための再加熱時間も短縮できるので、消費エネルギを省くことができ、工程数も削減できる。鋳物は必ずしも100℃まで冷却する必要は無く、300℃までの冷却でも省エネルギの効果が得られる。   In the embodiment of the present invention shown in FIG. 3, after pouring at 720 ° C., the core mold is removed from the casting immediately after the molten metal is taken out in the mold removing step 5. Therefore, in order to remove the core mold, it is not necessary to apply a large impact after sufficiently cooling the cast product, and the solution treatment (heat treatment) can be started immediately. For this reason, since the time required for cooling can be shortened and the reheating time for heat treatment can be shortened, energy consumption can be saved and the number of processes can be reduced. The casting does not necessarily need to be cooled to 100 ° C, and an energy saving effect can be obtained even by cooling to 300 ° C.

上述の実施形態は本発明を単に例示するものであって、限定を意図するものではなく、当業者には添付の請求項に記載された目的及び要旨を逸脱することなく、様々な変更や変形をなせることが明らかである。   The above-described embodiments are merely illustrative of the present invention and are not intended to be limiting, and various modifications and variations will occur to those skilled in the art without departing from the scope and spirit of the appended claims. It is clear that

図1は本発明に係る鋳物の製造方法の工程図である。FIG. 1 is a process diagram of a casting manufacturing method according to the present invention. 図2はシェルモールドプロセスを用いた従来の鋳物の製造方法の工程図である。FIG. 2 is a process diagram of a conventional casting manufacturing method using a shell mold process. 図3は本実施形態の鋳型除去及び熱処理工程における鋳物の温度と時間との関係を示すグラフである。FIG. 3 is a graph showing the relationship between casting temperature and time in the mold removal and heat treatment steps of this embodiment. 図4は図3の工程に対応し、シェルモールドプロセスを用いる従来技術の工程について示す図3と同様なグラフである。FIG. 4 corresponds to the process of FIG. 3 and is a graph similar to FIG. 3 showing the prior art process using the shell mold process.

Claims (15)

鋳物の製造方法であって、
少なくとも1種類の粒子状骨材、少なくとも1種類の水溶性バインダー、及び水を混合することにより骨材混合物を形成し、この骨材混合物を攪拌して発泡させる工程と、
発泡させた骨材混合物を鋳型造型用空間に充填し、充填した骨材混合物中の水分を蒸発させて骨材混合物を固化させ、前記粒子状骨材により鋳型を造型する工程と、
この粒子状骨材により造型された少なくとも1つの造型鋳型に対して、相手方の鋳型を組み合わせて完成鋳型を製作する工程と、
前記完成鋳型に溶湯を注湯する工程と、
前記溶湯が凝固後の鋳物の冷却期間中に前記鋳物から前記造型鋳型を除去する工程と、
前記鋳物を熱処理する工程とを含む鋳物の製造方法。
A method for manufacturing a casting,
Forming an aggregate mixture by mixing at least one particulate aggregate, at least one water-soluble binder, and water, and stirring the aggregate mixture to foam;
Filling the foamed aggregate mixture into the mold making space, evaporating moisture in the filled aggregate mixture to solidify the aggregate mixture, and molding the mold with the particulate aggregate; and
A step of producing a finished mold by combining a mold of the other party with respect to at least one molding mold formed of the particulate aggregate;
Pouring molten metal into the finished mold;
Removing the molding mold from the casting during a cooling period of the casting after the molten metal is solidified;
A method for producing a casting, including a step of heat-treating the casting.
請求項1に記載の方法において、前記粒子状骨材により造型された少なくとも1つの造型鋳型が中子鋳型であり、前記相手方の鋳型が主型鋳型である方法。2. The method according to claim 1, wherein at least one molding mold molded by the particulate aggregate is a core mold, and the counterpart mold is a main mold. 請求項2に記載の方法において、前記主型鋳型が金型である方法。3. The method according to claim 2, wherein the main mold is a mold. 請求項2に記載の方法において、前記主型鋳型が砂型である方法。The method according to claim 2, wherein the main mold is a sand mold. 請求項1乃至4の何れか一項に記載の方法において、前記粒子状骨材を回収する工程と、その回収した粒子状骨材を再生する工程とを更に含む方法。5. The method according to claim 1, further comprising a step of collecting the particulate aggregate and a step of regenerating the collected particulate aggregate. 請求項5に記載の方法において、前記回収し再生した粒子状骨材を鋳型の造型に再び使用する方法。6. The method according to claim 5, wherein the recovered and regenerated particulate aggregate is used again for molding a mold. 請求項5又は6に記載の方法において、前記粒子状骨材を回収し再生する工程が機械的な再生である方法。The method according to claim 5 or 6, wherein the step of recovering and regenerating the particulate aggregate is mechanical regeneration. 請求項1乃至7の何れか一項に記載の方法において、前記鋳物がアルミニウム合金鋳物又はマグネシウム合金鋳物である方法。8. The method according to any one of claims 1 to 7, wherein the casting is an aluminum alloy casting or a magnesium alloy casting. 請求項8に記載の方法において、前記熱処理がT6処理若しくはT7処理である方法。9. The method according to claim 8, wherein the heat treatment is T6 treatment or T7 treatment. 請求項1乃至7の何れか一項に記載の方法において、前記鋳物が鋳鉄、鋳鋼、又は鉄系金属合金による鋳物である方法。8. The method according to any one of claims 1 to 7, wherein the casting is a cast iron, cast steel, or iron metal alloy casting. 請求項1乃至7の何れか一項に記載の方法において、前記鋳物が銅合金鋳物である方法。8. The method according to any one of claims 1 to 7, wherein the casting is a copper alloy casting. 請求項1乃至11の何れか一項に記載の方法において、前記鋳型を除去する工程が、前記鋳型に振動を加える方法。12. The method according to any one of claims 1 to 11, wherein the step of removing the mold applies vibration to the mold. 請求項12に記載の方法において、前記鋳型に振動を加えることが、注湯後5分乃至20分以内の時間において、前記鋳型に対して1Mpa以下の衝撃力を30Hz未満で30sec未満与えることを含む方法。13. The method according to claim 12, wherein applying vibration to the mold gives an impact force of 1 Mpa or less to the mold at less than 30 Hz for less than 30 seconds in a time within 5 minutes to 20 minutes after pouring. Including methods. 鋳物の製造方法であって、
少なくとも1種類の粒子状骨材、少なくとも1種類の水溶性バインダー、及び水を混合することにより骨材混合物を形成する工程と、
この骨材混合物を攪拌して発泡させ、発泡させた骨材混合物を鋳型造型用空間に充填し、充填した骨材混合物中の水分を蒸発させて骨材混合物を固化させ、前記粒子状骨材による中子鋳型を造型する工程と、
少なくとも1つの前記中子鋳型と金型鋳型とを組み合わせて完成鋳型にする工程と、
前記完成鋳型にアルミニウム合金の溶湯を注湯する工程と、
前記溶湯が凝固後の鋳物の冷却期間中に前記鋳物から前記中子鋳型を除去する工程と、
前記アルミニウム合金鋳物をT6又はT7熱処理する工程とを含む鋳物の製造方法。
A method for manufacturing a casting,
Forming an aggregate mixture by mixing at least one particulate aggregate, at least one water soluble binder, and water;
The aggregate mixture is agitated and foamed, the foamed aggregate mixture is filled into a mold molding space, the moisture in the filled aggregate mixture is evaporated to solidify the aggregate mixture, and the particulate aggregate Forming a core mold by
Combining at least one core mold and a mold mold into a finished mold;
Pouring a molten aluminum alloy into the finished mold;
Removing the core mold from the casting during a cooling period of the casting after the molten metal is solidified;
A method for producing a casting, including a step of heat-treating the aluminum alloy casting with T6 or T7.
請求項1乃至14の何れか一項に記載の方法において、前記少なくとも1種類の水溶性バインダーが、ポリビニルアルコールとその誘導体との少なくとも一方、
或いは、澱粉とその誘導体との少なくとも一方である方法。
The method according to any one of claims 1 to 14, wherein the at least one water-soluble binder is at least one of polyvinyl alcohol and a derivative thereof.
Or the method which is at least one of starch and its derivative (s).
JP2006510291A 2004-02-25 2005-02-23 Casting manufacturing method Active JP3948490B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004049428 2004-02-25
JP2004049428 2004-02-25
PCT/JP2005/002893 WO2005080023A1 (en) 2004-02-25 2005-02-23 Process for producing cast item

Publications (2)

Publication Number Publication Date
JP3948490B2 true JP3948490B2 (en) 2007-07-25
JPWO2005080023A1 JPWO2005080023A1 (en) 2007-10-25

Family

ID=34879546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006510291A Active JP3948490B2 (en) 2004-02-25 2005-02-23 Casting manufacturing method

Country Status (7)

Country Link
US (1) US20070137825A1 (en)
EP (1) EP1721689B1 (en)
JP (1) JP3948490B2 (en)
CN (1) CN1921969B (en)
AT (1) ATE509714T1 (en)
TW (1) TW200533436A (en)
WO (1) WO2005080023A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789533B2 (en) 2012-11-19 2017-10-17 Sintokogio, Ltd. Sand for casting mold, manufacturing method for sand casting-mold, and core for metal casting

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11501911B2 (en) * 2007-04-05 2022-11-15 Grant A. MacLennan Method of forming a cast inductor apparatus
DE102007042506B4 (en) * 2007-09-07 2010-06-17 Norbert Gatzweiler Process for quenching aluminum components
JP5024733B2 (en) * 2008-10-15 2012-09-12 新東工業株式会社 Sand removal method for cast sand cores
CN101956121B (en) * 2010-10-13 2013-03-13 江苏万恒铸业有限公司 Manufacture process of high-pressure hydro-stainless steel valve casting
US10371686B2 (en) 2012-11-15 2019-08-06 Heraeus EIectro-Nite International N.V. Detection device for molten metal
CN103601465B (en) * 2013-11-06 2015-04-29 安庆帝雅艺术品有限公司 Bronze ware filling material
AT517384A1 (en) * 2015-06-15 2017-01-15 Fill Gmbh Method for producing a cast workpiece
MX2019002260A (en) * 2016-08-31 2019-07-04 Asahi Yukizai Corp Casting mold manufacturing method.
AT520370B1 (en) 2017-09-07 2020-08-15 Fill Gmbh Process for the production of a cast workpiece
DE102017131255A1 (en) 2017-12-22 2019-06-27 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung A method of making a metallic casting or a cured molding using aliphatic polymers comprising hydroxy groups
JP7309405B2 (en) * 2018-03-30 2023-07-18 株式会社巴川製紙所 Manufacturing method of sand mold material for mold, core for mold and sand mold material
TWI789125B (en) * 2021-11-19 2023-01-01 財團法人金屬工業研究發展中心 Low pressure casting metal foaming system and intermediate foaming device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH470922A (en) * 1965-07-23 1969-04-15 Tsnii T I Mash Liquid, self-hardening mixture for casting molds and mold cores
GB1193952A (en) * 1966-06-02 1970-06-03 British Cast Iron Res Ass Foundry Moulding Materials
FR2096863B1 (en) * 1970-07-07 1973-02-02 Ctre Tech Ind Fonderie
NO142944L (en) * 1975-08-14 1900-01-01
JPS57115942A (en) * 1981-01-06 1982-07-19 Sintokogio Ltd Method for forming mold
JPS5832540A (en) * 1981-08-21 1983-02-25 Sintokogio Ltd Production of core for die casting
JPH05261478A (en) * 1992-03-19 1993-10-12 Ube Ind Ltd Producltion of collapsible sand core

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9789533B2 (en) 2012-11-19 2017-10-17 Sintokogio, Ltd. Sand for casting mold, manufacturing method for sand casting-mold, and core for metal casting

Also Published As

Publication number Publication date
EP1721689B1 (en) 2011-05-18
ATE509714T1 (en) 2011-06-15
WO2005080023A1 (en) 2005-09-01
US20070137825A1 (en) 2007-06-21
CN1921969A (en) 2007-02-28
CN1921969B (en) 2015-03-18
EP1721689A4 (en) 2007-05-02
TW200533436A (en) 2005-10-16
JPWO2005080023A1 (en) 2007-10-25
EP1721689A1 (en) 2006-11-15

Similar Documents

Publication Publication Date Title
JP3948490B2 (en) Casting manufacturing method
JPH0734970B2 (en) Water-dispersible mold, method for producing the mold, and casting method using the mold
JP4403072B2 (en) Mold removal casting method and equipment
CN102489670B (en) Ceramic core for molding of support plate and preparation method thereof
US5126089A (en) Method for easy removal of sand cores from castings
US3019497A (en) Making fine grained castings
CN103056302A (en) Ceramic core for molding aeroengine case type annular casting hollow support plate
CN103286273A (en) Making method of ceramic core for molding of casing annular casting hollow support plate
JPH01154846A (en) Method of casting metal in air gap section of sand mold easy to be fluidized and firmly cured
JP2000504278A (en) Ceramic mold forming method using thermoreversible material
JP7202238B2 (en) Coated sand and mold manufacturing method using the same
US6673141B2 (en) Foundry sand with oxidation promoter
Deore et al. A study of core and its types for casting process
JP2005502473A (en) Casting production method, mold sand, and use of the mold sand in the production method
JP6406207B2 (en) How to recycle foundry sand
JPH071075A (en) Investment casting method
JPS6015421B2 (en) Manufacturing method for precision casting molds
JP4397040B2 (en) Core material
JP2001179393A (en) Molding method and the mold
JPH09174194A (en) Manufacture of mold and method for distingrating mold obtained by this method
CN103073319A (en) Alumina-based ceramic core for support plate forming
JPH08155584A (en) Method for molding casting mold
JP3189911B2 (en) Sand composition for molding
CN103056303A (en) Ceramic core for supporting plate forming
JP2000117415A (en) Method for removing molding material and manufacture of network structure of metallic body

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3948490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250