JPH08155584A - Method for molding casting mold - Google Patents

Method for molding casting mold

Info

Publication number
JPH08155584A
JPH08155584A JP30507794A JP30507794A JPH08155584A JP H08155584 A JPH08155584 A JP H08155584A JP 30507794 A JP30507794 A JP 30507794A JP 30507794 A JP30507794 A JP 30507794A JP H08155584 A JPH08155584 A JP H08155584A
Authority
JP
Japan
Prior art keywords
water glass
model
casting
carbon dioxide
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30507794A
Other languages
Japanese (ja)
Inventor
Yuji Okada
裕二 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP30507794A priority Critical patent/JPH08155584A/en
Publication of JPH08155584A publication Critical patent/JPH08155584A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To decrease casting defects by forming a pattern by using a material which generates carbon dioxide by sublimation or decomposition, embedding this pattern into casting sand coated with water glass, generating the carbon dioxide by sublimation or decomposition, thereby forming a cured layer in the casting sand and dissipating the pattern. CONSTITUTION: The casting sand 3 coated with the water glass is formed by kneading casting mold and water glass and drying the mixture. The pattern 1 is formed by using the material which generates carbon dioxide by sublimation or decomposition, for example, dry ice. The pattern 1 is embedded into the casting sand 3 coated with the water glass and is sublimated. The carbon dioxide is generated and the water glass of the casting sand 3 in contact with the pattern 1 cures by reacting with the gas, by which the cured layer is formed. The pattern 1 sublimates and a cavity is formed. The trouble that cracking gas remains in a casting as with a lost foam pattern method does not arise. Since the cured layer is formed on the cavity surface, the mold collapse at the time of pouring is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばフルモールド法
に用いられる鋳型を成形する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding a mold used in, for example, a full molding method.

【0002】[0002]

【従来の技術】フルモールド法の一つとして、消失模型
を用いた消失模型法が知られている。この消失模型法
は、発泡ポリスチレンなどの消失性材料を用いて模型を
作製し、その模型を鋳砂中に埋設させ、埋設された模型
に金属溶湯を注湯しその熱で模型を消失させて注湯した
金属と置換して、模型と同形状の鋳物を鋳造する方法で
ある。この消失模型法によれば、鋳造設備が簡単で砂落
としなどの後処理性が極めて容易であるという利点があ
る。
2. Description of the Related Art As one of full molding methods, an extinction model method using an extinction model is known. In this vanishing model method, a model is made using a vanishing material such as expanded polystyrene, the model is embedded in casting sand, the molten metal is poured into the buried model, and the model disappears due to the heat. This is a method of casting a casting having the same shape as the model by substituting the poured metal. According to this disappearance model method, there are advantages that the casting equipment is simple and the post-processability such as sand removal is extremely easy.

【0003】しかしながら消失模型法においては、消失
模型の分解ガスが金属中に混入して製品欠陥となる場合
がある。また、鋳造時に溶湯が模型と完全に置換する前
に型崩れや型壊れが生じ、鋳造品に欠陥が生じる場合が
ある。これは、模型周囲の鋳砂の強度が弱いことに起因
している。そこで特開昭61−219443号公報に
は、適量の水分を含む鋳砂を用い、消失模型を埋設後に
鋳砂を凍結させた状態で金属溶湯を注湯して、消失模型
と溶湯金属を置換する方法が開示されている。この方法
によれば、凍結により模型周囲の鋳砂は高い強度を有し
ているので、型崩れや型壊れを防止することができる。
However, in the vanishing model method, the decomposed gas of the vanishing model may be mixed into the metal to cause a product defect. Further, during casting, the mold may collapse or break before the molten metal is completely replaced with the model, which may cause defects in the cast product. This is because the strength of the sand around the model is weak. In view of this, Japanese Patent Laid-Open No. 61-219443 uses a casting sand containing an appropriate amount of water, and pours a molten metal in a state where the casting sand is frozen after burying the vanishing model to replace the vanishing model with the molten metal. A method of doing so is disclosed. According to this method, since the molding sand around the model has high strength due to freezing, it is possible to prevent the mold from collapsing or breaking.

【0004】一方、水ガラスが添加された混練砂を模型
周囲に充填し、それに炭酸ガスを吹き込んで水ガラスを
硬化させて鋳型を形成する、いわゆる炭酸ガス鋳型造型
法が知られている。しかしこの方法では、製品キャビテ
ィ面に対して背面に当たる側から炭酸ガスを吹き込むこ
とになるため、製品キャビティ面側を所要の強度に硬化
させるためには炭酸ガスを多量に必要とするうえ、硬化
に時間がかかるという問題があった。
On the other hand, a so-called carbon dioxide gas molding method is known in which kneading sand to which water glass is added is filled around a model and carbon dioxide gas is blown into it to cure the water glass to form a mold. However, in this method, carbon dioxide gas is blown into the product cavity surface from the side that contacts the back surface, so a large amount of carbon dioxide gas is required to cure the product cavity surface side to the required strength, and it There was a problem that it took time.

【0005】そこで特開昭57−50243号公報に
は、模型部に炭酸ガス噴出手段を備えた模型板上に鋳枠
を載置し、製品キャビティ内部側から炭酸ガスを噴出さ
せて製品キャビティ面側を先に硬化させる方法が開示さ
れている。
In view of this, in Japanese Patent Laid-Open No. 57-50243, a casting frame is placed on a model plate provided with carbon dioxide gas jetting means in the model part, and carbon dioxide gas is jetted from the inside of the product cavity to produce the product cavity surface. A method of curing the side first is disclosed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、特開昭
61−219443号公報に開示された方法であって
も、消失模型を消失させて溶湯金属と置換している以
上、消失模型の分解ガスが金属中に混入する問題点は解
決されず、鋳造品に欠陥が生じる場合がある。また特開
昭57−50243号公報に開示された方法では、炭酸
ガスを噴出させて鋳砂を硬化させた後に模型を取り除け
ば問題は生じないが、形状によっては模型を取り除けな
い場合もあり、消失模型を残して鋳造した場合には上記
と同様に分解ガスによる不具合が生じる。
However, even with the method disclosed in Japanese Patent Laid-Open No. 61-219443, the decomposition gas of the disappearance model is eliminated as long as the disappearance model is disappeared and replaced with the molten metal. The problem of mixing in the metal is not solved, and defects may occur in the cast product. Further, in the method disclosed in Japanese Patent Laid-Open No. 57-50243, no problem occurs if the model is removed after the carbon dioxide gas is jetted to harden the casting sand, but the model may not be removed depending on the shape. If casting is performed with the vanishing model left, similar to the above, problems due to decomposed gas occur.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、鋳砂の強度が高く、かつ模型を除去した状
態で注湯できる鋳型を容易に形成することを目的とす
る。
The present invention has been made in view of the above circumstances, and an object of the present invention is to easily form a casting mold which has high strength of casting sand and which can be poured in a state where a model is removed.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する本発
明の鋳型成形方法は、鋳砂に水ガラスを被覆した水ガラ
ス被覆鋳砂を形成する第1工程と、昇華又は分解により
二酸化炭素ガスを発生する材料から模型を作製する第2
工程と、模型を水ガラス被覆鋳砂中に埋設し昇華又は分
解により二酸化炭素ガスを発生させて少なくとも模型に
接する水ガラス被覆鋳砂に硬化層を形成するとともに模
型を消失させる第3工程と、よりなることを特徴とす
る。
[Means for Solving the Problems] The mold forming method of the present invention for solving the above-mentioned problems comprises a first step of forming a water glass-coated casting sand obtained by coating casting glass with water glass, and carbon dioxide gas by sublimation or decomposition. The second to make a model from the material that generates
A step of embedding the model in water glass coated casting sand and generating carbon dioxide gas by sublimation or decomposition to form a hardened layer on the water glass coated casting sand that is in contact with at least the model and the model disappears; Is characterized in that

【0009】[0009]

【作用】本発明の鋳型成形方法の第1工程では、鋳砂に
水ガラスを被覆して水ガラス被覆鋳砂を形成する。これ
は、所定濃度の水ガラスと鋳砂を混練して乾燥させるこ
とで容易に行うことができる。一方、第2工程では、昇
華又は分解により二酸化炭素を発生する材料から模型が
作製される。
In the first step of the molding method of the present invention, the casting sand is coated with water glass to form a water glass-coated casting sand. This can be easily done by kneading water glass and casting sand of a predetermined concentration and drying. On the other hand, in the second step, a model is made from a material that generates carbon dioxide by sublimation or decomposition.

【0010】第3工程では、模型を水ガラス被覆鋳砂中
に埋設し、例えばドライアイスであれば常温で放置する
ことにより、炭酸塩であれば加熱することなどにより、
模型が昇華又は分解して二酸化炭素ガスが発生する。こ
の二酸化炭素ガスにより、少なくとも模型に接する水ガ
ラス被覆鋳砂の水ガラスが反応して硬化し、硬化層が形
成される。一方、模型は昇華又は分解により消失する。
In the third step, the model is embedded in water glass-covered sand, and if it is dry ice, it is left at room temperature, and if it is carbonate, it is heated.
The model sublimes or decomposes to generate carbon dioxide gas. By this carbon dioxide gas, at least the water glass of the water glass coated sand that contacts the model reacts and hardens, and a hardened layer is formed. On the other hand, the model disappears due to sublimation or decomposition.

【0011】これにより模型のあった部分にその形状が
型取られたキャビティが形成され、そのキャビティの表
面には、水ガラス被覆鋳砂の水ガラスが反応して硬化し
た硬化層が形成される。そして硬化層は主としてキャビ
ティ面に形成され、外周部分は強度が高くないいわゆる
シェル型のような状態となっている。したがって型ばら
し時に余分な力が不要で容易に型ばらしすることができ
る。しかもキャビティ面の硬化層は、注湯後に金属の熱
により分解して崩壊するので、後処理として行われるシ
ョットブラストなどの工程に要する時間が短縮される。
As a result, a cavity whose shape is modeled is formed in the portion where the model was present, and a hardened layer is formed on the surface of the cavity, in which the water glass of the water glass coated casting sand has reacted and hardened. . The hardened layer is mainly formed on the cavity surface, and the outer peripheral portion is in a so-called shell type state in which the strength is not high. Therefore, it is possible to easily remove the mold without any extra force at the time of mold release. Moreover, since the hardened layer on the cavity surface is decomposed and collapsed by the heat of the metal after pouring, the time required for a step such as shot blasting performed as a post-treatment is shortened.

【0012】[0012]

【実施例】以下、実施例により具体的に説明する。 (第1工程)水ガラスと珪砂とを混練し、水ガラス被覆
鋳砂を形成した。鋳砂として珪砂を用いる場合、水ガラ
スは鋳砂全体の6重量%被覆されている。
EXAMPLES The present invention will be specifically described below with reference to examples. (First step) Water glass and silica sand were kneaded to form water glass-coated casting sand. When silica sand is used as the casting sand, water glass covers 6% by weight of the entire casting sand.

【0013】なお、本実施例では珪砂を用いたが、鋳造
金属の種類や重量によって、ジルコン砂、クロマイト
砂、オリビン砂、シャモット砂などを用いることもでき
る。また水ガラスの被覆量は、用いられる砂の種類に応
じて設定される。 (第2工程)一方、ドライアイス粉末を所定の型内に充
填し、突き固めた後型を開いて、図1に示す断面形状の
ドライアイス模型1を製作した。昇華又は分解により二
酸化炭素を発生する材料としては、ドライアイスが最も
望ましいが、炭酸カルシウム、重炭酸ナトリウムなどの
炭酸塩を用いることもできる。また模型の製造方法は、
例えばこれらの材料の粉末を型に充填して固める方法、
鍛造や切削による方法など、公知の方法が利用できる。
Although silica sand is used in this embodiment, zircon sand, chromite sand, olivine sand, chamotte sand or the like may be used depending on the type and weight of the cast metal. Further, the coating amount of water glass is set according to the type of sand used. (Second step) On the other hand, dry ice powder was filled in a predetermined mold, crushed, and then the mold was opened to manufacture a dry ice model 1 having a cross-sectional shape shown in FIG. Dry ice is most preferable as the material that generates carbon dioxide by sublimation or decomposition, but carbonates such as calcium carbonate and sodium bicarbonate can also be used. Also, the manufacturing method of the model is
For example, a method of filling powders of these materials in a mold and hardening it,
Known methods such as forging and cutting can be used.

【0014】なお第1工程と第2工程とは、その順序に
制限はなくどちらを先に行っても、また両方を同時に行
ってもよい。 (第3工程)次に、図2に示す鋳枠2を用意し、第1工
程で形成した水ガラス被覆鋳砂3を充填した。この鋳枠
2の底部には複数の貫通孔20が設けられ、貫通孔20
にはアルゴンガスの供給口21が連通されている。
The order of the first step and the second step is not limited, and either of them may be performed first, or both of them may be performed simultaneously. (Third step) Next, the casting frame 2 shown in FIG. 2 was prepared and filled with the water glass-coated casting sand 3 formed in the first step. A plurality of through holes 20 are provided at the bottom of the casting frame 2, and the through holes 20
An argon gas supply port 21 is communicated with.

【0015】そして図2に示すように、鋳枠2に充填さ
れた水ガラス被覆鋳砂3にドライアイス模型1を埋設し
た。この際、供給口21から貫通孔20を介してアルゴ
ンガスを鋳枠2内に噴出させ、水ガラス被覆鋳砂3をバ
ブリングさせながらドライアイス模型1を埋設した。こ
れによりドライアイス模型1の埋設が容易となり、かつ
ドライアイス模型1の表面に沿う部分には隙間なく水ガ
ラス被覆鋳砂3が充填された。
Then, as shown in FIG. 2, the dry ice model 1 was embedded in the water glass-coated casting sand 3 filled in the flask 2. At this time, the dry ice model 1 was embedded while the argon gas was jetted from the supply port 21 through the through hole 20 into the flask 2 to bubble the water glass coated casting sand 3. As a result, the burying of the dry ice model 1 was facilitated, and the portion along the surface of the dry ice model 1 was filled with the water glass-coated casting sand 3 without any gap.

【0016】その状態で常温で放置し、ドライアイス模
型1から昇華により二酸化炭素ガスを放出させ、ドライ
アイス模型1を消失させた。二酸化炭素ガスは、水ガラ
ス被覆鋳砂3のドライアイス模型1に接する表面から水
ガラス被覆鋳砂3の粒子間を通過して外部に排出される
が、その途中で二酸化炭素ガスと水ガラスとの反応が生
じ、水ガラス被覆鋳砂3の粒子は互いに固着しながら硬
化する。この反応はドライアイス模型1表面部分で先ず
生じるので、ドライアイス模型1に接していたキャビテ
ィを構成する水ガラス被覆鋳砂3の表面には、図3に示
すように二酸化炭素ガスと水ガラスとの反応による硬化
層4が形成された。
In this state, the dry ice model 1 was left standing at room temperature to release carbon dioxide gas by sublimation, so that the dry ice model 1 disappeared. The carbon dioxide gas is discharged from the surface of the water glass-coated casting sand 3 in contact with the dry ice model 1 through the particles of the water glass-coated casting sand 3 to the outside. And the particles of the water glass coated sand 3 harden while sticking to each other. Since this reaction first occurs on the surface portion of the dry ice model 1, as shown in FIG. 3, carbon dioxide gas and water glass are formed on the surface of the water glass-coated casting sand 3 which constitutes the cavity in contact with the dry ice model 1. The cured layer 4 was formed by the reaction of.

【0017】この硬化層4は、鋳砂が硬化した水ガラス
で連続的に結合された状態となっており、鋳砂どうしの
間隙が硬化した水ガラスで充填された滑らかな表面を有
している。なお、二酸化炭素は水ガラス1モルに対して
1〜3モルの割合で発生するように構成することが望ま
しい。二酸化炭素が1モルより少ないと硬化層の強度が
十分でなく、3モルより多いと表層硬化反応が早過ぎて
内部まで硬化しにくくなる。
The hardened layer 4 is in a state in which the casting sand is continuously bonded with the hardened water glass, and the gap between the casting sands has a smooth surface filled with the hardened water glass. There is. It is desirable that carbon dioxide is generated at a ratio of 1 to 3 mol with respect to 1 mol of water glass. When the amount of carbon dioxide is less than 1 mol, the strength of the hardened layer is not sufficient, and when it is more than 3 mol, the surface layer hardening reaction is too fast and it is difficult to harden the inside.

【0018】(鋳造工程)得られた鋳型5には、図4に
示すように鉄系合金又はアルミニウム系合金の溶湯6が
注湯され、凝固後に型ばらしして鋳造品を取り出した。
得られた鋳造品では、硬化層4の存在により注湯時の型
崩れが防止されていたため、模型1とほとんど同一形状
に鋳造され、鋳肌も良好であった。
(Casting Step) A molten metal 6 of an iron-based alloy or an aluminum-based alloy was poured into the obtained mold 5 as shown in FIG. 4, and after solidification, the mold was released and the cast product was taken out.
In the obtained cast product, the presence of the hardened layer 4 prevented deformation of the mold during pouring, so that the cast product was cast in almost the same shape as the model 1 and the casting surface was good.

【0019】また鋳型5の硬化層4は主としてキャビテ
ィ表面に形成されてシェル状態となっているため、鋳型
5の大部分を占める水ガラス被覆鋳砂3は未硬化状態で
あり、型ばらしは極めて容易に行うことができた。また
硬化層4は、注湯後の溶湯金属の熱により大部分が分解
して崩壊する。したがって鋳造品に付着した硬化層4を
除去するショットブラスト処理なども短時間ですみ、工
程が短縮できた。
Further, since the hardened layer 4 of the mold 5 is mainly formed on the surface of the cavity and is in a shell state, the water glass-covered casting sand 3 occupying most of the mold 5 is in an uncured state, and the mold release is extremely difficult. It could be done easily. Most of the hardened layer 4 is decomposed and collapsed by the heat of the molten metal after pouring. Therefore, the shot blasting process for removing the hardened layer 4 adhering to the cast product can be completed in a short time, and the process can be shortened.

【0020】なお、模型を例えばCaCO3 のような材
料から形成した場合には、分解により二酸化炭素ガスが
発生するもののCaOも発生する。このCaOは脱硫剤
などに使用できるメリットがあるが、反面スラグを多量
に発生させるという不具合がある。したがって、このよ
うな材料から形成された模型を用いる場合には、スラグ
キャッチ法を検討する必要がある。
When the model is made of a material such as CaCO 3 , carbon dioxide gas is generated by decomposition, but CaO is also generated. This CaO has an advantage that it can be used as a desulfurizing agent and the like, but on the other hand, it has a problem that a large amount of slag is generated. Therefore, when using a model formed of such a material, it is necessary to consider the slag catch method.

【0021】またドライアイスを用いた場合には、ドラ
イアイスどうしは接触していると自然に接合するという
性質があるので、模型を複数に分けて製作しそれを複合
化する組立て中子法などの方法を用いることも可能であ
る。
When dry ice is used, the dry ice has a property of naturally joining when they are in contact with each other. Therefore, an assembly core method for producing a plurality of models and compounding them It is also possible to use the above method.

【0022】[0022]

【発明の効果】すなわち本発明の鋳型成形方法によれ
ば、従来の消失模型法に比べて発生した分解ガスが鋳造
品に残留するような不具合がない。またキャビティ表面
に硬化層が形成されるため、注湯時の型崩れなどが防止
される。したがって鋳造不良を低減することができる。
[Effects of the Invention] That is, according to the mold forming method of the present invention, there is no problem that decomposed gas generated remains in the cast product as compared with the conventional disappearance model method. In addition, since the hardened layer is formed on the surface of the cavity, it is possible to prevent the mold from collapsing during pouring. Therefore, defective casting can be reduced.

【0023】またキャビティ表面の硬化層の存在により
型崩れが防止されているから、キャビティ形状が鋳造品
に正確に転写される。したがって精密形状の模型を用い
て鋳型を形成すれば、その模型と同一形状の精密な鋳造
品を成形できるので、従来の消失模型法では困難であっ
たニアネットシェイプ化が可能である。さらに、大型の
鋳物や複雑形状の鋳物を製造する鋳型を成形する場合で
あっても、模型から放出された二酸化炭素ガスは確実に
キャビティの全表面に接触して硬化層を形成するので、
部分的に硬化層が未熟となるような不具合がない。
Further, since the shape collapse is prevented by the existence of the hardened layer on the surface of the cavity, the shape of the cavity is accurately transferred to the cast product. Therefore, if a mold is formed using a model having a precise shape, a precise cast product having the same shape as that of the model can be formed, and it is possible to form a near net shape which has been difficult with the conventional disappearance model method. Furthermore, even when molding a mold for producing a large casting or a casting having a complicated shape, the carbon dioxide gas released from the model surely contacts the entire surface of the cavity to form a hardened layer,
There is no problem that the cured layer is partially immature.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例で作製した模型の断面図であ
る。
FIG. 1 is a cross-sectional view of a model produced in one example of the present invention.

【図2】本発明の一実施例において模型を水ガラス被覆
鋳砂中に埋設する方法を示す説明図である。
FIG. 2 is an explanatory view showing a method of burying a model in water glass-covered molding sand in one embodiment of the present invention.

【図3】本発明の一実施例において形成された鋳型の断
面図である。
FIG. 3 is a sectional view of a mold formed in one embodiment of the present invention.

【図4】本発明の一実施例で形成された鋳型を用いて鋳
造している状態を示す説明図である。
FIG. 4 is an explanatory diagram showing a state of casting using the mold formed in one example of the present invention.

【符号の説明】[Explanation of symbols]

1:ドライアイス模型 2:鋳枠 3:水
ガラス被覆鋳砂 4:硬化層 5:鋳型 6:溶
1: Dry ice model 2: Casting frame 3: Water glass coating sand 4: Hardened layer 5: Mold 6: Molten metal

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋳砂に水ガラスを被覆した水ガラス被覆
鋳砂を形成する第1工程と、 昇華又は分解により二酸化炭素ガスを発生する材料から
模型を作製する第2工程と、 該模型を該水ガラス被覆鋳砂中に埋設し昇華又は分解に
より二酸化炭素ガスを発生させて少なくとも該模型に接
する該水ガラス被覆鋳砂に硬化層を形成するとともに該
模型を消失させる第3工程と、よりなることを特徴とす
る鋳型成形方法。
1. A first step of forming a water glass-coated casting sand by coating water glass on a casting sand, a second step of producing a model from a material that generates carbon dioxide gas by sublimation or decomposition, and the model. A third step of embedding in the water glass-coated casting sand to generate carbon dioxide gas by sublimation or decomposition to form a hardened layer on the water glass-coated casting sand that contacts at least the model and to eliminate the model, A method of molding a mold, comprising:
JP30507794A 1994-12-08 1994-12-08 Method for molding casting mold Pending JPH08155584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30507794A JPH08155584A (en) 1994-12-08 1994-12-08 Method for molding casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30507794A JPH08155584A (en) 1994-12-08 1994-12-08 Method for molding casting mold

Publications (1)

Publication Number Publication Date
JPH08155584A true JPH08155584A (en) 1996-06-18

Family

ID=17940841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30507794A Pending JPH08155584A (en) 1994-12-08 1994-12-08 Method for molding casting mold

Country Status (1)

Country Link
JP (1) JPH08155584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111054892A (en) * 2019-12-30 2020-04-24 山东常林铸业有限公司 Method for solving casting slag hole by using foam slag collecting bag
CN114309488A (en) * 2021-10-20 2022-04-12 清华大学 Liquid metal forming method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111054892A (en) * 2019-12-30 2020-04-24 山东常林铸业有限公司 Method for solving casting slag hole by using foam slag collecting bag
CN114309488A (en) * 2021-10-20 2022-04-12 清华大学 Liquid metal forming method
CN114309488B (en) * 2021-10-20 2023-02-21 清华大学 Liquid metal forming method

Similar Documents

Publication Publication Date Title
US4812278A (en) Process for preparing mold
JP3948490B2 (en) Casting manufacturing method
AU729980B2 (en) Sleeves, their preparation, and use
US4150704A (en) Method of producing sand mounds having a frozen surface
US5906781A (en) Method of using thermally reversible material to form ceramic molds
JPH08155584A (en) Method for molding casting mold
JPH0442106B2 (en)
JP2004106038A (en) Resin coated sand, method for producing the same, and casting mold
US3548914A (en) Soluble core fabrication
US3404724A (en) Method of casting in a shell molding
JP4397040B2 (en) Core material
JP2001179393A (en) Molding method and the mold
JPS63115649A (en) Molding method for hollow core
JPS58151936A (en) Construction of core for casting
JPH01202338A (en) Casting method and lost foam pattern
JPH04118154A (en) Manufacture of manhole with lost foam casting method
JPH01273644A (en) Method for casting and lost foam pattern
JPS62207530A (en) Casting method
RU2051008C1 (en) Method of manufacturing special ingots according to removable patterns
JPS6357137B2 (en)
JPS62130741A (en) Forming method for casting mold
JPH057981A (en) Method for molding mold for hollow product
JPH05123822A (en) Manufacture of mold
JP2002346693A (en) Mold for casting
JPH0639491A (en) Manufacture of mold