WO2005076290A1 - Halbleitendes band und verwendung davon - Google Patents

Halbleitendes band und verwendung davon Download PDF

Info

Publication number
WO2005076290A1
WO2005076290A1 PCT/EP2005/050467 EP2005050467W WO2005076290A1 WO 2005076290 A1 WO2005076290 A1 WO 2005076290A1 EP 2005050467 W EP2005050467 W EP 2005050467W WO 2005076290 A1 WO2005076290 A1 WO 2005076290A1
Authority
WO
WIPO (PCT)
Prior art keywords
filler
tape
tape according
range
antimony
Prior art date
Application number
PCT/EP2005/050467
Other languages
English (en)
French (fr)
Inventor
Heinrich Kapitza
Volker Muhrer
Norbert Müller
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP05701637A priority Critical patent/EP1711952A1/de
Priority to US10/587,696 priority patent/US20070173151A1/en
Publication of WO2005076290A1 publication Critical patent/WO2005076290A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/002Inhomogeneous material in general
    • H01B3/004Inhomogeneous material in general with conductive additives or conductive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2738Coating or impregnation intended to function as an adhesive to solid surfaces subsequently associated therewith

Definitions

  • the invention relates to a semiconducting tape, in particular one which is suitable for equipotential bonding in high-voltage transformers.
  • the yokes which consist of individual sheets stacked on top of one another, are bandaged with an insulating tape, which is also referred to as a winding tape.
  • an insulating tape which is also referred to as a winding tape.
  • the maximum value of the electrical voltage is determined by the corresponding breakdown field strength of the air. If this is exceeded, glow and sliding discharges occur, which can destroy the insulation.
  • One tries to avoid this by first applying a semiconducting intermediate layer in the form of a winding tape as potential equalization to the yoke before bandaging with the insulating tape.
  • Such tapes are known from epoxy resin, preferably from an epoxy resin that only hardens at elevated temperature, is incorporated into the carbon black. Glass fabric tapes are impregnated with this epoxy resin and the tapes are made from them.
  • the electrical resistance of the belts is adjusted via the amount of soot incorporated. It is problematic, however, that in the area of interest for this application, a small addition or release of soot changes the conductivity / electrical resistance of the strip by several powers of ten. This greatly complicates the reliability during manufacture.
  • the desired conductivity is in the range of 10 3 to 10 6 ⁇ c, which is obtained with a soot content of approx. 21.5 - 23% in the epoxy resin. In the range between 15% and 25% soot content, the specific electrical resistance of the resulting epoxy resin from 10 14 ⁇ cm to 10 ⁇ ⁇ c, so that there are major problems with the reproducibility of the set and desired conductivity.
  • the invention relates to a tape made of a fabric material which is impregnated with a filler-containing binder, the filler, in the overpercolated state, causing a surface resistance in the range from 1 to 100 k ⁇ / sq.
  • the invention also relates to the use of the tape as a winding tape in electrical machines, in particular high-voltage machines, transformers, chokes and for equipotential bonding in high-voltage transformers.
  • the filler is accordingly selected so that the concentration in the over-percolated state in the fabric-reinforced plastic matrix corresponds to an electrical surface resistance in the range from 1 to 100 kOhm / square.
  • the addition of filler can also vary within certain limits that are acceptable for mass production and with regard to reproducibility, without the value of the resistance leaving the desired and defined range.
  • Over-percolated means that there is no serious change in the resistance behavior when the filler is added, since there are already so many contacts between the conductive particles that a further increase in concentration has hardly any effect on the electrical resistance.
  • the filler is advantageously coated with a layer of an antimony-tin mixed oxide, in particular with an antimony-doped tin oxide layer.
  • the level of conductivity in the mixed oxide, the layer thickness of the mixed oxide and the grain size and shape of the fillers can be adjusted.
  • Antimony-tin oxide fillers can also be used.
  • coatings and / or coatings are selected whose thickness is in the range from one nm to a few hundred ⁇ m, particularly preferably in the range from 5 nm to 20 ⁇ m, or 50 nm to 7 ⁇ m, etc.
  • All known inorganic and / or mineral fillers are used, such as potassium titanate, Al 2 0 3 (corundum), chalk, talc, barium sulfate, Si0 2 (quartz), quartz powder, kaolin, titanium dioxide, generally titanates, mica and the like , Fillers which have been coated with another layer, for example SiO 2 , before coating with antimony-tin oxide are also suitable.
  • the filler is preferably added in an amount of 20 to 50% by weight, particularly preferably 22 to 45% by weight, based on the solids content in the binder.
  • the ratio of the antimony to the tin component in the mixed oxide can vary within wide limits. As a rule, the antimony content will be lower than the tin content, ie antimony oxide ⁇ 50% and tin oxide> 50% in the mixed oxide.
  • the antimony content is preferably less than / equal to 30% and the tin content greater than / equal to 70%.
  • the particle size of the filler is preferably in the range (average particle size ⁇ 15 ⁇ m).
  • the particle shape of the filler is preferably splintered and / or flake-shaped and / or whisker-shaped.
  • the coated filler and the coating can be chosen as desired.
  • the tin oxide layer doped with antimony is advantageously made either by coating the fillers with an organic antimony-tin compound, which is then thermally calcined, or by introducing a hydrolyzable antimony and tin compound onto the filler in an aqueous filler dispersion applied.
  • the fillers coated in this way are commercially available.
  • Both glass fabric and fabric made from organic fibers can be considered as fabric material.
  • Organic fabrics made from aramid fibers and / or polyester fibers are usually used. Insofar as they are compatible with the requirements for insulating materials for, for example, high-voltage transformers, other organic types of fabric, for example based on polypropylene and / or fluorinated polymers, can also be used.
  • fabric types with a basis weight of 30 to 1000 g / m 2 are usually used.
  • binders such as, for example, alkyd resins, polyester resins, silicone resins and imide resins.
  • epoxy resins due to their balanced property profile with regard to dielectric properties, temperature stability and processing behavior as well as their good compatibility with the insulation system, epoxy resins have proven their worth.
  • aromatic glycidyl ethers have proven successful.
  • hardeners and / or accelerators the preferred amine compounds used in tapes. A certain flexibility of the not yet hardened tapes is necessary for problem-free processing in order to be able to wind them on the base without wrinkles and pockets. A slight inherent stickiness is also advantageous in order to be able to work with adhesive tapes without the additional fixing.
  • the semiconducting tapes according to the invention are produced by the methods customary for the production of insulating tapes. Binder solutions are used in which the semiconducting filler is dispersed. The viscosity and thus the application to the fabric material is determined by the concentration of the binder and the filler in the solution. The tissue materials are either pulled through the solution and / or sprayed with them as more or less wide bands. The belt then passes through a horizontal or vertical drying section at elevated temperature and / or in a gas stream to remove the solvent. The tape is then wound up.
  • the semiconducting tapes according to the invention described here can be used as equipotential bonding in the manufacture of high-voltage transformers. However, they can also be used in general in electrical machines, in particular high-voltage machines, transformers and chokes, if semiconducting layers with a defined surface resistance in the range between 1 and 100 k ⁇ / square are to be used for potential equalization.
  • a fabric tape is drawn as a carrier material at a defined speed through a container filled with the impregnation resin.
  • the impregnation Resin stock is continuously stirred before and during the test to prevent the conductive filler from settling.
  • Examples 1-6 mica coated with antimony-tin oxide was used as the electrically conductive filler.
  • the composition of the binders is summarized in Table 2. The meaning of the symbols are given in Table 1 for explanation.
  • a glass fabric tape (width 50 mm, thickness 0.2 mm, basis weight approx. 200 g / m 2 ) was used as the fabric material.
  • the preparation was carried out analogously to the above-described regulation.
  • the influence of the filler content on the electrical resistance of the tapes (examples 1-5) and the reproducibility of the results (example 1.6) can be seen.
  • the values given in brackets reflect the measurement results at various points on the belt and show the low scatter.
  • the resistance of the tapes is measured on a 50mm wide tape over a length of 50mm.
  • the test specimens (5 pieces / formulation) are each provided with two 10 mm wide and 50 mm long conductive silver electrodes, which are applied parallel to each other at a distance of 50 mm.
  • the conductive silver electrodes are contacted by means of crocodile clips and the respective surface resistance is measured with a multimeter (measuring voltage ⁇ 10V).
  • the tapes are cured in a laboratory oven for 5 hours at 130 ° C.
  • Example 1 As the repetition of Example 1 as Example 6 shows, a satisfactory reproducibility of the electrical strip properties can be assumed. There is also only a slight scatter in the electrical properties of the strip along the strip.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulating Bodies (AREA)
  • Organic Insulating Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Die Erfindung betrifft ein halbleitendes Wickelband, insbesondere eines, das zum Potentialausgleich bei Hochspannungstransformatoren geeignet ist. Der Füllstoff wird so gewählt, dass bei seiner Sättigungskonzentration im Bindemittel ein halbleitendes Band erhalten wird. So werden, im Hinblick auf ihren spezifischen Widerstand gut reproduzierbare Bänder erhalten.

Description

Be s ehr eibung
Halbleitendes Band und Verwendung davon
Die Erfindung betrifft ein halbleitendes Band, insbesondere eines, das zum Potentialausgleich bei Hochspannungstransformatoren geeignet ist.
Bei Hochspannungstransformatoren sind die aus aufeinander ge- stapelten Einzelblechen bestehenden Joche mit einem isolierenden Band, das auch als Wickelband bezeichnet wird, bandagiert. Im Betrieb ergibt sich ein Potentialsprung zwischen dem elektrisch leitfähigen Joch und dem isolierenden Wickelband. Der maximale Wert der elektrischen Spannung wird von der korrespondierenden Durchschlagsfeldstärke der Luft bestimmt. Wird diese überschritten, treten Glimm- und Gleitentladungen, die die Isolierung zerstören können, auf. Das versucht man zu vermeiden, indem vor dem Bandagieren mit dem Isolierband zunächst eine halbleitende Zwischenschicht in Form eines Wickelbandes als Potentialausgleich auf das Joch aufgebracht wird.
Bekannt sind solche Bänder aus Epoxidharz, bevorzugt aus einem Epoxidharz, das erst bei erhöhter Temperatur härtet, in das Ruß eingearbeitet ist. Mit diesem Epoxidharz werden Glasgewebebänder imprägniert und daraus die Bänder hergestellt.
Der elektrische Widerstand der Bänder wird über die Menge an eingearbeitetem Ruß eingestellt. Problematisch ist jedoch, dass in dem für diese Anwendung interessanten Bereich eine kleine Zu- oder Abgabe von Ruß die Leitfähigkeit/den elektrischen Widerstand des Bandes um mehrere Zehnerpotenzen verändert. Damit wird die Zuverlässigkeit bei der Herstellung stark erschwert. Die gewünschte Leitfähigkeit liegt im Be- reich von 103 bis 106 Ωc , die bei ca. 21,5 - 23% Rußgehalt im Epoxidharz erhalten wird. Im Bereich zwischen 15% und 25% Rußgehalt fällt der spezifische elektrische Widerstand des resultierenden Epoxidharzes von 1014 Ωcm auf 10α Ωc , so dass es große Probleme bei der Reproduzierbarkeit der eingestellten und gewünschten Leitfähigkeit gibt.
Aufgabe der vorliegenden Erfindung ist es daher, ein Material für ein halbleitendes Band, das als Wickelband einsetzbar ist, zur Verfügung zu stellen, das den mechanischen Anforderungen für die Anwendung an einem Hochspannungstransformator genügt, gleichzeitig einen gut reproduzierbaren Oberflächen- iderstand im Bereich von 1 - 100 kOlm/square und eine möglichst geringe Streuung der elektrischen Eigenschaften entlang des Bandes hat.
Die erfindungsgemäße Lösung der Aufgabe wird durch die unab- hängigen und abhängigen Ansprüche, sowie durch die Beschreibung und die darin enthaltenen Beispielen angegeben und unter Schutz gestellt.
Gegenstand der Erfindung ist ein Band aus einem Gewebemateri- al, welches mit einem füllstoffhaltigen Bindemittel imprägniert ist, wobei der Füllstoff im überperkolierten Zustand im Bindemittel einen Oberflächenwiderstand im Bereich 1 - 100 kO?hm/sqaure bewirkt. Außerdem ist Gegenstand der Erfindung eine Verwendung des Bandes als Wickelband in elektrischen Ma- schinen, insbesondere Hochspannungsmaschinen, Transformatoren, Drosseln und zum Potentialausgleich bei Hochspannungstransformatoren .
Der Füllstoff wird demnach so gewählt, dass die Konzentration im überperkolierten Zustand in der gewebeverstärkten Kunststoffmatrix mit einem elektrischen Oberflächenwiderstand im Bereich von Bereich 1 - 100 kOhm/square korrespondiert. Dadurch kann die Füllstoffzugabe auch in gewissen, für die Massenfertigung und im Hinblick auf die Reproduzierbarkeit ak- zeptablen, Grenzen variieren, ohne dass der Wert des Widerstands den gewünschten und definierten Bereich verlässt. Überperkoliert bedeutet hier, dass bei weiterer Füllstoffzugabe keine gravierende Änderung im Widerstandsverhalten auftritt, da bereits so viele Kontakte zwischen den leitfähigen Partikeln bestehen, dass sich eine weitere Konzentrationser- höhung kaum noch auf den elektrischen Widerstand auswirkt.
Vorteilhafterweise ist der Füllstoff mit einer Schicht aus einem Antimon-Zinn-Mischoxid überzogen, insbesondere mit einer Antimon dotierten Zinn-Oxid-Schicht. Durch den Antimonan- teil im Mischoxid, die Schichtdicke des Mischoxids und durch die Korngröße und Form der Füllstoffe kann dessen Leitfähigkeitsniveau eingestellt werden. Es können auch Füllstoffe aus Antimon-Zinn-Oxid verwendet werden.
Insbesondere werden Beschichtungen und/oder Coatings gewählt, deren Dicke im Bereich eines nm bis einiger hundert μm, besonders bevorzugt im Bereich von 5nm bis 20μm, oder 50nm bis 7um etc.. liegt.
Es kommen alle bekannten anorganischen und/oder mineralischen Füllstoffe zum Einsatz, wie Kalium-Titanat, Al203 (Korund) , Kreide, Talk, Bariumsulfat, Si02 (Quarz) , Quarzgutmehl, Kaolin, Titandioxid, allgemein Titanate, Glimmer und ähnliches. In Frage kommen auch Füllstoffe, die vor der Beschichtung mit Antimon-Zinn-Oxid mit einer anderen Schicht, z.B. Si02 überzogen wurden.
Bevorzugt wird der Füllstoff in einer Menge von 20 bis 50- Gew%, insbesondere bevorzugt von 22 bis 45-Gew%, bezogen auf den Feststoffanteil im Bindemittel, zugegeben.
Das Verhältnis der Antimon zur Zinn-Komponente im Mischoxid kann in weiten Grenzen variieren, in der Regel wird der Antimonanteil geringer als der Zinnanteil sein, also Anti- monoxid<50% und Zinnoxid>50% im Mischoxid. Bevorzugt wird der Antimonanteil kleiner/gleich 30% und der Zinnanteil größer/gleich 70% sein. Die Partikelgröße des Füllstoffs liegt bevorzugt im Bereich (durchschnittliche Partikelgröße <15 μm) . Die Partikelform des Füllstoffes ist bevorzugt splittrig und/oder plättchen- förmig und/oder whiskerförmig.
Nach der Erfindung kann jedoch der beschichtete Füllstoff und die Beschichtung beliebig gewählt werden.
Die mit Antimon dotierte Zinn-Oxid-Schicht wird vorteilhafterweise entweder durch Beschichtung der Füllstoffe mit einer organischen Antimon-Zinn-Verbindung, die anschließend thermisch calciniert wird oder durch Einbringen einer hydroli- sierbaren Antimon- und Zinnverbindung in eine wässrige Füll- stoffdispersion auf den Füllstoff aufgebracht. Die so beschichteten Füllstoffe sind kommerziell erhältlich.
Als Gewebematerial kommen sowohl Glasgewebe als auch Gewebe aus organischen Fasern in Betracht. Üblicherweise werden or- ganische Gewebe aus Aramidfasern und/oder Polyesterfasern verwendet. Soweit sie mit den Anforderungen an Isoliermaterialien für z.B. Hochspannungstransformatoren kompatibel sind, lassen sich auch andere organische Gewebetypen, beispielsweise auf Basis von Polypropylen und/oder fluorierten Polymeren, einsetzen. Um beispielsweise bei der Verwendung des Bandes als Wickelband den Auftrag auf die Wicklung möglichst gering zu halten, werden üblicherweise Gewebetypen mit einem Flächengewicht von 30 bis 1000 g/m2 eingesetzt.
Als Bindemittel kommen prinzipiell verschiedenste Reaktionsharze infrage, wie beispielsweise Alkydharze, Polyesterharze, Siliconharze und Imidharze. Aufgrund ihres ausgewogenen Eigenschaftsprofils hinsichtlich dielektrischer Eigenschaften, Temperaturstabilität und Verarbeitungsverhalten sowie der gu- ten Verträglichkeit mit dem Isoliersystem haben sich jedoch Epoxidharze bewährt. Insbesondere haben sich aber aromatische Glycidylether bewährt. Als Härter und/oder Beschleuniger wer- den bei Bändern bevorzugt aminische Verbindungen eingesetzt. Zur problemlosen Verarbeitung ist eine gewisse Flexibilität der noch nicht ausgehärteten Bänder notwendig, um sie ohne Falten- und Taschenbildung auf die Unterlage wickeln zu kön- nen. Vorteilhaft ist zudem eine leichte Eigenklebrigkeit, um ohne die zusätzliche Fixierung mit Klebebändern arbeiten zu können.
Die Herstellung der erfindungsgemäßen halbleitenden Bänder erfolgt nach den für die Herstellung von Isolierbänder üblichen Verfahren. Dabei kommen Lösungen der Bindemittel zum Einsatz, in denen der halbleitende Füllstoff dispergiert ist. Durch die Konzentration des Bindemittels und des Füllstoffs in der Lösung wird die Viskosität und damit der Auftrag auf das Gewebematerial bestimmt. Die Gewebematerialien werden als mehr oder weniger breite Bänder entweder durch die Lösung gezogen und/oder damit besprüht. Danach passiert das Band eine horizontale oder vertikale Trockenstrecke bei erhöhter Temperatur und/oder im Gasstrom, um das Lösungsmittel abzuziehen. Anschließend wird das Band aufgewickelt.
Die hier beschriebenen erfindungsgemäßen halbleitenden Bänder können in der Fertigung von Hochspannungstransformatoren als Potentialausgleich eingesetzt werden. Ebenso können diese aber auch ganz allgemein in elektrischen Maschinen, insbesondere Hochspannungsmaschinen, Transformatoren und Drosseln eingesetzt werden, wenn zum Potentialausgleich halbleitende Schichten mit einem definierten Oberflächenwiderstand im Bereich zwischen 1 und 100 kμ/square eingesetzt werden sollen.
Im Folgenden wird die Erfindung anhand mehrerer Ausführungs- beispiele verdeutlicht:
Allgemeine Vorschrift zur Herstellung der Bänder Zur Imprägnierung des Bandes wird ein Gewebeband als Trägermaterial mit definierter Geschwindigkeit durch einen mit dem Imprägnierharz gefüllten Behälter gezogen. Der Imprägnier- harzvorrat wird vor und während der Versuchsdurchführung kontinuierlich gerührt, um ein Absetzten des leitfähigen Füllstoffs zu verhindern. Nach der Imprägnierung wird das Glimmschutzband durch einen Trockenturm mit 4 voneinander unabhän- gig regulierbaren Heizzonen geführt. In den angeführten Beispielen wurde mit folgenden Trockenbedingungen gearbeitet: δι=90°C, δ2=140°C, δ3=110°C, δ4=70°C, Bandgeschwindigkeit: 20 cm/min.
Beispiele 1 - 6
In den Beispielen 1 - 6 wurden mit Antimon-Zinn-Oxid gecoate- ter Glimmer als elektrisch leitfähiger Füllstoff eingesetzt. Die Zusammensetzung der Bindemittel ist in Tabelle 2 zusam- πtengefasst. Zur Erläuterung sind in Tabelle 1 die Bedeutung der Symbole angegeben. Als Gewebematerial wurde ein Glasgewebeband (Breite 50mm, Dicke 0,2mm, Flächengewicht ca. 200g/m2) verwendet. Die Herstellung erfolgte analog der oben beschriebenen Vorschrift. Zu erkennen ist der Einfluss des Füllstoffgehaltes auf den elektrischen Widerstand der Bänder (Beispie- le 1-5) , sowie die Reproduzierbarkeit der Ergebnisse (Beispiel 1,6). Die in Klammern angegebenen Werte geben die Messergebnisse an verschiedenen Stellen des Bandes wieder und zeigen die geringe Streuung.
Tabelle 1:
Figure imgf000008_0001
Tabelle 2:
Figure imgf000008_0002
1) Gew. % bezogen auf Feststoffe im Bindemittel
Der Widerstand der Bänder wird an einem 50mm breiten Band auf 50 mm Länge gemessen. Die Prüflinge (5 Stück/Formulierung) werden jeweils mit zwei 10mm breiten und 50 mm langen Leitsilberelektroden versehen, die in 50 mm Abstand parallel zueinander aufgetragen werden. Die Leitsilberelektroden werden mittels Krokodilklemmen kontaktiert und der jeweilige Oberflächenwiderstand mit einem Multimeter (Messspannung < 10V) gemessen.
Vor der Prüfung werden die Bänder in einem Laborofen 5 Stunden bei 130 °C ausgehärtet.
Wie die Wiederholung des Beispiels 1 als Beispiel 6 zeigt, kann von einer zufrieden stellenden Reproduzierbarkeit der elektrischen Bandeigenschaften ausgegangen werden. Ebenso ist eine nur geringe Streuung der elektrischen Bandeigenschaften entlang des Bandes zu erkennen.

Claims

Patentansprüche
1. Band aus einem Gewebematerial, welches mit einem füll- stoffhaltigen Bindemittel imprägniert ist, wobei der Füll- stoff im überperkolierten Zustand im Bindemittel einen Oberflächenwiderstand im Bereich 1 - 100 kOhm/square bewirkt.
2. Band nach Anspruch 1, wobei der Füllstoff mit einer Schicht aus einem Antimon-Zinn Mischoxid überzogen ist.
3. Band nach einem der Ansprüche 1 oder 2, bei dem die Dicke der Beschichtung des Füllstoffs im Bereich eines nm bis einiger hundert μm liegt.
4. Band nach einem der vorstehenden Ansprüche, wobei der Füllstoff ausgewählt ist aus folgender Gruppe: Kalium- Titanat, A1203 (Korund) , Kreide, Talk, Bariumsulfat, Si02 (Quarz) , Quarzgutmehl, Kaolin, Titandioxid, Titanate und/oder Glimmer.
5. Verwendung des Bandes nach einem der vorstehenden Ansprüche in elektrischen Maschinen, Hochspannungsmaschinen, Transformatoren, Drosseln und/oder zum Potentialausgleich bei Hochspannungstransformatoren.
PCT/EP2005/050467 2004-02-04 2005-02-03 Halbleitendes band und verwendung davon WO2005076290A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05701637A EP1711952A1 (de) 2004-02-04 2005-02-03 Halbleitendes band und verwendung davon
US10/587,696 US20070173151A1 (en) 2004-02-04 2005-02-03 Semiconducting winding strip and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005548 2004-02-04
DE102004005548.3 2004-02-04

Publications (1)

Publication Number Publication Date
WO2005076290A1 true WO2005076290A1 (de) 2005-08-18

Family

ID=34832518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050467 WO2005076290A1 (de) 2004-02-04 2005-02-03 Halbleitendes band und verwendung davon

Country Status (4)

Country Link
US (1) US20070173151A1 (de)
EP (1) EP1711952A1 (de)
CN (1) CN1918669A (de)
WO (1) WO2005076290A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213535A1 (de) * 2015-07-17 2017-01-19 Siemens Aktiengesellschaft Fester Isolationswerkstoff, Verwendung dazu und damit hergestelltes Isolationssystem

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6898062B2 (ja) * 2016-01-20 2021-07-07 日立金属株式会社 差動伝送用ケーブル及び多対差動伝送用ケーブル

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839285C1 (de) * 1998-08-28 2000-04-27 Siemens Ag Glimmschutzband

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6043582A (en) * 1998-08-19 2000-03-28 General Electric Co. Stable conductive material for high voltage armature bars

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839285C1 (de) * 1998-08-28 2000-04-27 Siemens Ag Glimmschutzband

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015213535A1 (de) * 2015-07-17 2017-01-19 Siemens Aktiengesellschaft Fester Isolationswerkstoff, Verwendung dazu und damit hergestelltes Isolationssystem
EP3292616B1 (de) * 2015-07-17 2019-10-30 Siemens Aktiengesellschaft Fester isolationswerkstoff, verwendung dazu und damit hergestelltes isolationssystem
US10774244B2 (en) 2015-07-17 2020-09-15 Siemens Aktiengesellschaft Solid insulation material

Also Published As

Publication number Publication date
CN1918669A (zh) 2007-02-21
EP1711952A1 (de) 2006-10-18
US20070173151A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
EP1118086B1 (de) Glimmschutzband
DE68916538T2 (de) Verstärktes Glimmerpapier und Methode zur Herstellung desselben.
EP2451867A1 (de) Nanokomposit mit bornitrid-nanoröhrchen
DE102016118453A1 (de) Polyrotaxan-umfassende Zusammensetzung und Produkt, das diese enthält
DE1947677C3 (de) Aus großen Schuppen hergestellte Glimmerisolierung
DE102009039457A1 (de) Leitereinrichtung, elektrische Maschine sowie Traktionsmaschine
EP2622006A1 (de) Elektrisch isolierender nanokomposit mit halbleitenden oder nichtleitenden nanopartikeln, verwendung dieses nanokomposits und verfahren zu dessen herstellung
DE102010032949A1 (de) Isoliersysteme mit verbesserter Teilentladungsbeständigkeit
EP3078033B1 (de) Leitfähiges glimmschutzpapier, insbesondere für den aussenglimmschutz
DE102014221715A1 (de) Tränkharz, Leiteranordnung, elektrische Spule und elektrische Maschine
DE102016202391A1 (de) Kompakter Trockentransformator mit einer elektrischen Wicklung und Verfahren zur Herstellung einer elektrischen Wicklung
DE102014211122A1 (de) Elektrisch definiert leitfähiges Multifunktionsband, Verfahren zur Herstellung und Verwendung dazu
DE69604378T2 (de) Sandwich-Isolierung für verbesserten Korona-Schutz
DE102012208226A1 (de) Endenglimmschutzband und Verfahren zum Herstellen des Endenglimmschutzbandes
EP1711952A1 (de) Halbleitendes band und verwendung davon
EP2599089B1 (de) Füllstoff zur steuerung von elektrischen potentialen in transformatoren, generatoren oder dergleichen
DE102020211111A1 (de) Pulverlack-Formulierung für ein Isolationssystem einer elektrischen Maschine, elektrische Maschine mit einem solchen Isolationssystem und Verfahren zum Herstellen eines solchen Isolationssystems
DE102009039456A1 (de) Leitereinrichtung sowie elektrische Maschine
DE69322796T2 (de) Lackbeschichteter Elektrodraht und Verfahren zu seiner Herstellung
EP2393885B1 (de) Additiv zur verbesserung der lösemittelbeständigkeit und anderer eigenschaften von wasserbasierten bindemittelsystemen
EP3363030A1 (de) Kompakter trockentransformator mit einer elektrischen wicklung und verfahren zur herstellung einer elektrischen wicklung
EP0325919A1 (de) Aluminium-Electrolytkondensator und Verfahren zu seiner Herstellung
DE2142844A1 (de) Halbierendes Klebemittel
DE102019209346A1 (de) Imprägnierformulierung, Isolationsmaterial, Verfahren zum Herstellen eines Isolationsmaterials und elektrische Maschine mit einem Isolationsmaterial
DE102017208950A1 (de) Schirmring und/oder Steigungsausgleich für eine Transformatorspule

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005701637

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007173151

Country of ref document: US

Ref document number: 10587696

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580004177.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005701637

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10587696

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2005701637

Country of ref document: EP