WO2005076023A1 - 試験装置 - Google Patents

試験装置 Download PDF

Info

Publication number
WO2005076023A1
WO2005076023A1 PCT/JP2005/001934 JP2005001934W WO2005076023A1 WO 2005076023 A1 WO2005076023 A1 WO 2005076023A1 JP 2005001934 W JP2005001934 W JP 2005001934W WO 2005076023 A1 WO2005076023 A1 WO 2005076023A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
current
supply unit
device under
under test
Prior art date
Application number
PCT/JP2005/001934
Other languages
English (en)
French (fr)
Inventor
Kunihiro Matsuura
Hiroki Ando
Hironori Tanaka
Yasuhiro Urabe
Satoshi Kodera
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to JP2005517809A priority Critical patent/JP4279840B2/ja
Publication of WO2005076023A1 publication Critical patent/WO2005076023A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/30Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
    • H03F3/3001Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor with field-effect transistors
    • H03F3/301CMOS common drain output SEPP amplifiers
    • H03F3/3016CMOS common drain output SEPP amplifiers with symmetrical driving of the end stage
    • H03F3/3018CMOS common drain output SEPP amplifiers with symmetrical driving of the end stage using opamps as driving stages
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/319Tester hardware, i.e. output processing circuits
    • G01R31/31917Stimuli generation or application of test patterns to the device under test [DUT]
    • G01R31/31924Voltage or current aspects, e.g. driver, receiver
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/34Negative-feedback-circuit arrangements with or without positive feedback
    • H03F1/342Negative-feedback-circuit arrangements with or without positive feedback in field-effect transistor amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]

Definitions

  • the present invention relates to a test device.
  • the present invention relates to a test apparatus for performing a test by supplying a current to a device under test.
  • FIG. 1 shows an equivalent circuit of a test apparatus 100 according to the related art.
  • FIG. 2 shows the frequency response characteristics of the voltage V 0 applied to the device under test 104 in the test apparatus 100 shown in FIG.
  • the test apparatus 100 employs a voltage output type amplifier 102 and performs a test on the device under test 104 by applying the applied voltage V to the device under test 104.
  • an object of the present invention is to provide a test apparatus that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous embodiments of the present invention.
  • a test apparatus for performing a test by supplying a current to a device under test, comprising: a first power supply unit configured to generate a current to be supplied to the device under test; 1 The first coaxial cable that supplies the current generated by the power supply unit to the And a second coaxial cable.
  • the first power supply unit has a current detection section that detects the amount of voltage drop when the current generated by the first power supply unit passes through a predetermined resistance, and a test target according to the voltage drop amount detected by the current detection section.
  • a current control unit that controls a current supplied to the device.
  • the first coaxial cable is provided with a first inner conductor through which current flows from the first power supply unit toward the device under test, and an insulator surrounding the first inner conductor via an insulator.
  • the first coaxial cable has a first outer conductor for flowing current in the direction of the power supply unit
  • the second coaxial cable has a second inner conductor for flowing current in the direction of the first power supply unit
  • a second outer conductor which is provided around the inner conductor of the device through an insulator, and allows current to flow from the first power supply unit toward the device under test.
  • the current control unit may control the current supplied to the device under test that cancels out the voltage drop due to the predetermined resistance.
  • the apparatus further includes a voltage detection unit that compares a voltage to be applied to the device under test with a voltage actually applied to the device under test, and outputs a comparison result.
  • the current control unit includes a voltage detection unit. Control the current supplied to the device under test further based on the comparison result output by.
  • the first inner conductor and the second outer conductor are connected in parallel to each other, flow a current in the direction of the first power supply unit, the device under test, and the first outer conductor and the second inner conductor Connect the devices under test in parallel to each other and apply a current in the direction of the first power supply unit.
  • a second power supply unit having the same configuration as the first power supply unit and generating a current to be supplied to the device under test, and a third coaxial cable supplying the current generated by the second power supply unit to the device under test
  • a fourth coaxial cable a multilayer board on which the first power supply unit and the second power supply unit are provided, and an electrical connection between the first power supply unit, the first coaxial cable, and the second coaxial cable formed on the multilayer board.
  • the semiconductor device may further include a first wiring pattern to be connected, and a second wiring pattern formed on the multilayer board and electrically connecting the second power supply unit to the third coaxial cable and the fourth coaxial cable.
  • the third coaxial cable is provided with a third inner conductor through which a current flows from the second power supply unit toward the device under test, and an insulator surrounding the third inner conductor via an insulator. (2) Pass the current in the direction of the power supply unit.
  • the fourth coaxial cable is provided with a fourth inner conductor through which current flows in the direction of the device under test force in the direction of the second power supply unit, and an insulator around the fourth inner conductor. And a fourth outer conductor for flowing a current from the second power supply unit toward the device under test.
  • the first wiring pattern is adjacent to a first power supply pattern for flowing a current from the first power supply unit to the first inner conductor and the second outer conductor, and a layer on the multilayer substrate on which the first power supply pattern is formed.
  • a first ground pattern that is formed at the same width as the first power supply pattern at a position opposing the first power supply pattern in the layer, and has a first outer conductor and a second inner conductor force that allows current to flow through the first power supply unit; Having.
  • the second wiring pattern is formed between the second power supply pattern for flowing current from the second power supply unit to the third inner conductor and the fourth outer conductor, and the layer on which the second power supply pattern is formed on the multilayer board.
  • a second grounding pattern formed at the position opposite to the second power supply pattern on the adjacent layer and having the same width as the second power supply pattern and flowing current from the third outer conductor and the fourth inner conductor to the second power supply unit.
  • the first power supply pattern and the second power supply pattern are formed on a first layer, and the first ground pattern and the second ground pattern are formed on a second layer adjacent to the first layer via an insulating layer. It is formed.
  • Each of the first power supply unit and the second power supply unit applies the same voltage to each of the first power supply pattern and the second power supply pattern, and applies the same voltage to each of the first ground pattern and the second ground pattern. You can apply the same voltage.
  • a performance board for electrically connecting the first coaxial cable, the second coaxial cable, the third coaxial cable, and the fourth coaxial cable to the device under test may be further provided.
  • the performance board electrically connects the first inner conductor and the second outer conductor to the third inner conductor and the fourth outer conductor, and connects the first outer conductor and the second inner conductor to the third inner conductor.
  • the outer conductor and the fourth inner conductor are electrically connected.
  • a test apparatus for performing a test by supplying a current to a device under test, comprising: a first power supply unit for generating a current to be supplied to the device under test; A second power supply unit, a multilayer board provided with the first power supply unit and the second power supply unit, and a second power supply unit formed on the multilayer board and electrically connecting the first power supply unit to the device under test. It has one wiring pattern and a second wiring pattern formed on the multilayer substrate and electrically connecting the second power supply unit and the device under test.
  • the first wiring pattern is opposed to the first power supply pattern for flowing a current from the first power supply unit toward the device under test and the first power supply pattern on a layer adjacent to the layer on which the first power supply pattern is formed on the multilayer substrate.
  • a first ground pattern which is formed to have the same width as the first power supply pattern and allows a current to flow in the direction of the first power supply unit from the device under test
  • the second wiring pattern has a second power supply pattern.
  • a second power supply pattern that allows current to flow from the unit in the direction of the device under test, and a second power supply pattern at a position facing the second power supply pattern on a layer adjacent to the layer on which the second power supply pattern is formed on the multilayer substrate.
  • a second ground pattern formed to have the same width and to flow a current in the direction of the second power supply unit from the device under test.
  • the first power supply unit and the second power supply unit each include a current detection unit that detects a voltage drop amount when a current generated by the first power supply unit or the second power supply unit passes through a predetermined resistance; And a current control unit that controls the current supplied to the device under test according to the voltage drop amount detected by the device.
  • a test can be performed by connecting a plurality of power supply units in parallel and supplying a large current generated by the plurality of power supply units to a device under test.
  • FIG. 1 is a diagram showing an equivalent circuit of a test apparatus 100 according to the related art.
  • FIG. 2 is a diagram showing a frequency response characteristic of an applied voltage V by a test apparatus 100.
  • FIG. 3 is a diagram showing an example of a configuration of a test apparatus 300 according to an embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of a configuration of a current output type amplifier 308a.
  • FIG. 5 is a diagram showing an example of a configuration of a multilayer substrate 302.
  • FIG. 6 is a diagram showing an equivalent circuit of a test apparatus 300.
  • FIG. 7 is a diagram showing a frequency response characteristic of an applied voltage V by a test apparatus 300.
  • FIG. 3 shows an example of a configuration of a test apparatus 300 according to an embodiment of the present invention.
  • the test apparatus 300 supplies a large current required for the test to the device under test 350 by using a coaxial cable as a current transmission path.
  • the test apparatus 300 detects the voltage applied to the device under test 350 when the current generated by the power supply unit is supplied to the device under test 350, and determines the quality of the device under test 350 based on the detected voltage. judge.
  • the test apparatus 300 detects the current supplied to the device under test 350 when the voltage generated by the power supply unit is applied to the device under test 350, and based on the detected current, You may judge the quality of 350.
  • the test apparatus 300 includes power supply units 304 a and 304 b for generating a current to be supplied to the device under test 350, a multilayer substrate 302 provided with power supply units 304 a and 304 b, and a power supply unit
  • Wiring pattern 310b for electrically connecting 350, coaxial cable 316a and coaxial cable 318a that supply current generated by power supply unit 304a to device under test 350, and current generated by power supply unit 304b to device under test 350
  • a performance board 328 that electrically connects the coaxial cables 316a, 318a, 316b, and 318b to the device under test 350.
  • the power supply unit 304a includes a DZA converter 306a, an operational amplifier 307a, and a current output type pump 308a.
  • the DZA converter 306a converts the digital data supplied from a control device such as a workstation into an analog waveform, and generates a voltage to be applied to the device under test 350.
  • the operational amplifier 307a is an example of the voltage detection unit according to the present invention, and determines the voltage to be applied to the device under test 350 in which the D / A conversion 306a has occurred and the voltage actually applied to the device under test 350. Compare and output the comparison result.
  • the amplifier 307a calculates a current output type voltage by subtracting the voltage actually applied to the device under test 350 from the voltage to be applied to the device under test 350 generated by the DZA converter 306a. Apply to amplifier 308a.
  • the current output type amplifier 308a is based on the voltage applied by the operational amplifier 307a! Thus, a current to be supplied to the device under test 350 is generated.
  • the power supply unit 304b has the same configuration as the power supply unit 304a, and includes a DZA converter 306b, an operational amplifier 307b, and a current output type amplifier 308b.
  • Each of the DZA converter 306b, the operational amplifier 307b, and the current output type amplifier 308b may have the same configuration and function as each of the DZA converter 306a, the operational amplifier 307a, and the current output type amplifier 308a.
  • the wiring pattern 310a has a power supply pattern 312a and a ground pattern 314a, and electrically connects the power supply unit 304a to the coaxial cables 316a and 318a.
  • the wiring pattern 310b has a power supply pattern 312b and a ground pattern 314b, and electrically connects the power supply unit 304b and the coaxial cables 316b and 318b.
  • the coaxial cable 316a has an inner conductor 320a and an outer conductor 322a, and electrically connects the wiring pattern 310a and the performance board 328.
  • the coaxial cable 318a has an inner conductor 326a and an outer conductor 324a, and electrically connects the wiring pattern 310a and the performance board 328.
  • the coaxial cable 316b is connected to the inner conductor 320b and the outer conductor 320b. It has a partial conductor 322b and electrically connects the wiring pattern 310b and the performance board 328.
  • the coaxial cable 318b has an inner conductor 326b and an outer conductor 324b, and electrically connects the wiring pattern 310b and the performance board 328.
  • the power supply pattern 312a supplies a current from the power supply unit 304a, which supplies the current generated by the current output type amplifier 308a to the device under test 350, to the internal conductor 320a and the external conductor 324a.
  • the ground pattern 314a allows a current to flow from the outer conductor 322a and the inner conductor 326a to the power supply unit 304a.
  • the power supply pattern 312b allows current to flow from the power supply unit 304b, which supplies the current generated by the current output type amplifier 308b to the device under test 350, to the inner conductor 320b and the outer conductor 324b.
  • the ground pattern 314b allows a current to flow from the outer conductor 322b and the inner conductor 326b to the power supply unit 304b.
  • the internal conductor 320a allows the current supplied via the power supply pattern 312a to flow from the power supply unit 304a toward the device under test 350.
  • the outer conductor 322a is provided around the inner conductor 320a via an insulator, and allows current to flow from the device under test 350 toward the power supply unit 304a.
  • the internal conductor 326a allows a current to flow from the device under test 350 in the direction of the power supply unit 304a.
  • the outer conductor 324a is provided around the inner conductor 326a via an insulator, and allows the current supplied via the power supply pattern 312a to flow from the power supply unit 304a toward the device under test 350.
  • the inner conductor 320a and the outer conductor 324a are connected in parallel with each other, and a current flows from the power supply unit 304a toward the device under test 350.
  • the outer conductor 322a and the inner conductor 326a are connected in parallel with each other, and A current flows from the device 350 to the power supply unit 304a.
  • the internal conductor 320b allows the current supplied through the power supply pattern 312b to flow from the power supply unit 304b toward the device under test 350.
  • the outer conductor 322b is provided around the inner conductor 320b via an insulator, and allows current to flow from the device under test 350 toward the power supply unit 304b.
  • the inner conductor 326b allows a current to flow from the device under test 350 to the power supply unit 304b.
  • the outer conductor 324b is provided around the inner conductor 326b via an insulator, and allows the current supplied via the power supply pattern 312b to flow toward the device under test 350 from the power supply unit 304b.
  • the inner conductor 320b and the outer conductor 324b are connected in parallel with each other, and are electrically connected from the power supply unit 304b to the device under test 350.
  • the outer conductor 322b and the inner conductor 326b are connected in parallel with each other, and pass a current from the device under test 350 toward the power supply unit 304b.
  • the performance board 328 electrically connects the inner conductor 320a and the outer conductor 324a to the inner conductor 320b and the outer conductor 324b, and supplies the current generated by the power supply units 304a and 304b to the device under test 350.
  • the performance board 328 electrically connects the outer conductor 322a and the inner conductor 326a to the outer conductor 322b and the inner conductor 326b, and supplies the current output from the device under test 350 to the power supply units 304a and 304b.
  • the magnetic flux crossing the internal conductor 320a changes, and a mutual induction electromotive force is generated in the internal conductor 320a.
  • the generated mutual induction electromotive force acts to flow a current in the direction from the power supply unit 304a to the device under test 350, that is, the same direction as the direction of the current in the internal conductor 320a. Therefore, the mutual induced electromotive force generated in the inner conductor 320a acts to cancel the self-induced electromotive force generated in the inner conductor 320a. That is, the self-inductance of the inner conductor 320a is substantially reduced. Therefore, the response of the output current to the change in the input current in the inner conductor 320a is improved.
  • the magnetic field crossing the outer conductor 322a The bundle changes and a mutual induced electromotive force is generated in the outer conductor 322a.
  • the generated mutual induced electromotive force acts to flow a current in the direction from the device under test 350 to the power supply unit 304a, that is, the same direction as the current in the outer conductor 322a. Therefore, the mutual induced electromotive force generated in the outer conductor 322a acts to cancel the self-induced electromotive force generated in the outer conductor 322a. That is, the self-inductance of the outer conductor 322a is substantially reduced. Therefore, the response of the output current to the change in the input current in the outer conductor 322a is improved.
  • each of the inner conductor 326a, the outer conductor 324a, the inner conductor 320b, the outer conductor 322b, the outer conductor 324b, and the inner conductor 326b is substantially reduced, and the inner conductor 326a, the outer conductor 324a,
  • the responsiveness of the output current to the change of the input current in each of the inner conductor 320b, the outer conductor 322b, the outer conductor 324b, and the inner conductor 326b is improved.
  • the response of the output current to the change in the input current in the coaxial cable can be improved.
  • the device under test 350 can be tested with high accuracy even when a sudden change in current is required, such as when the current is generated.
  • a plurality of power supply units including the power supply units 304a and 304b are connected in parallel, and a large current generated by the plurality of power supply units is connected to the device under test 350. To provide a test.
  • FIG. 4 shows an example of the configuration of the current output type amplifier 308a according to the present embodiment.
  • the current output amplifier 308a includes a current control unit 400, field effect transistors 402 and 403, a resistor 404, and a current detection unit 406.
  • the current detection unit 406 detects a voltage drop amount when a current generated by the power supply unit 304a by the current output type amplifier 308a and supplied to the power supply pattern 312a passes through a predetermined resistor 404. Then, the current control unit 400 determines the current supplied to the device under test 350 according to the comparison result output from the operational amplifier 307a, that is, the voltage applied by the operational amplifier 307a and the voltage drop amount detected by the current detection unit 406. Control. Specifically, the current control section 400 applies the voltage applied by the operational amplifier 307a to the current detection section 406 By inputting the voltage obtained by adding the detected voltage drop amount to the field effect transistors 402 and 403, the current output by the field effect transistor 402 and the field effect transistor 403 is controlled.
  • the current control unit 400 controls the current supplied to the device under test 350 that cancels out the voltage drop caused by the predetermined resistor 404.
  • the current output type amplifier 308a can stably generate a desired current without depending on the predetermined resistor 404.
  • FIG. 5 shows an example of the configuration of the multilayer substrate 302.
  • a plurality of wiring patterns including a wiring pattern 310a having a power supply pattern 312a and a ground pattern 314a and a wiring pattern 310b having a power supply pattern 312b and a ground pattern 314b are formed.
  • the power supply pattern 312a and the power supply pattern 312b are formed so as to be insulated on a surface layer of the multilayer substrate 302, and the ground pattern 314a and the ground pattern 314b are insulated by an inner layer of the multilayer substrate 302. Formed!
  • the power supply pattern 312a, the power supply pattern 312b, and the power supply layer are formed so as to be insulated from each other in an inner layer of the multilayer substrate 302, and the ground pattern 314a and the ground pattern 314b are formed on the surface layer of the multilayer substrate 302. In addition, it may be formed insulated.
  • the power supply pattern 312a allows a current to flow from the power supply unit 304a to the inner conductor 320a and the outer conductor 324a
  • the ground pattern 314a allows a current to flow from the outer conductor 322a and the inner conductor 326a to the power supply unit 304a
  • the power supply pattern 312b allows current to flow from the power supply unit 304b to the inner conductor 320b and the outer conductor 324b
  • the ground pattern 314b allows current to flow from the outer conductor 322b and the inner conductor 326b to the power supply unit 304b.
  • the power supply patterns 312a and 312b are formed on the first layer, and the ground patterns 314a and 314b are formed on the first layer on which the power supply patterns 312a and 312b are formed via an insulating layer. And is formed in the second layer adjacent thereto.
  • the ground pattern 314a is formed at the same width as the power supply pattern 312a at a position facing the power supply pattern 312a of the second layer adjacent to the first layer on which the power supply pattern 312a is formed on the multilayer substrate 302.
  • the ground pattern 314b has the same width as the power supply pattern 312b at a position facing the power supply pattern 312b of the second layer adjacent to the first layer where the power supply pattern 312b is formed on the multilayer substrate 312.
  • each of power supply units 304a and 304b applies the same collector supply voltage to each of power supply patterns 312a and 312b, and each of power supply units 304a and 304b respectively has a ground pattern 314a and 314b. It is desirable to apply the same drain supply voltage to
  • the magnetic flux crossing the power supply pattern 312a changes, and a mutual induction electromotive force is generated in the power supply pattern 312a.
  • the generated mutual induced electromotive force acts to flow a current in a direction from the power supply unit 304a to the device under test 350, that is, in the same direction as the current direction in the power supply pattern 312a. Therefore, the mutual induced electromotive force generated in the power supply pattern 312a acts to cancel the self-induced electromotive force generated in the power supply pattern 312a. That is, since the power supply pattern 312a and the ground pattern 314a are formed to face each other and have the same width, the self-inductance of the power supply pattern 312a is substantially reduced. Therefore, the response of the output current to the change in the input current in the power supply pattern 312a is improved.
  • the magnetic flux crossing the ground pattern 314a changes, and a mutual induced electromotive force is generated in the ground pattern 314a.
  • the generated mutual induced electromotive force is applied from the device under test 350 to the power supply unit 304a. It acts to flow the current in the direction, that is, the same direction as the current in the ground pattern 314a. Therefore, the mutual induced electromotive force generated in the ground pattern 314a acts to cancel the self-induced electromotive force generated in the ground pattern 314a. That is, since the power supply pattern 312a and the ground pattern 314a are formed to face each other and have the same width, the self-inductance in the ground pattern 314a is substantially reduced. Therefore, the response of the output current to the change in the input current in the ground pattern 314a is improved.
  • the self-inductance in each of the power supply pattern 312b and the ground pattern 314b is substantially reduced, and the responsiveness of the output current to the change in the input current in each of the power supply pattern 312b and the ground pattern 314b is improved. I do.
  • the response of the output current to the change in the input current in the wiring pattern can be improved. Even when a sudden change in current is required, such as when a current is generated, the device under test 350 can be accurately tested.
  • FIG. 6 shows an equivalent circuit of the test apparatus 300 according to the present embodiment.
  • FIG. 7 shows the frequency response characteristics of the voltage V applied to the device under test 350 in the test apparatus 300 shown in FIG.
  • FIG. 8 shows the relationship between the applied voltage V and the resonance frequency of the equivalent circuit of the test apparatus 300.
  • the test apparatus 300 employs a current output type amplifier 308a, performs a test on the device under test 350 by supplying a current to the device under test 350 and applying an applied voltage V.
  • the transconductance of the current output type amplifier 308a is gm
  • the gain bandwidth (GBW) product of the current output type amplifier 308a is gmZ (27 uC) [Hz]. Since it is calculated, the transconductance gm should be increased in order to realize high-speed driving.
  • the resonance frequency of the equivalent circuit of the test apparatus 300 is calculated as 1 (2 K ⁇ LC) [Hz]. If the number exists, a stable current cannot be supplied to the device under test 350. Therefore, in order to increase the resonance frequency to a band not used in the test of the device under test 350, the self-inductance L needs to be reduced.
  • the self-inductance of the coaxial cables 316a, 318a, 316b, and 318b can be sufficiently reduced.
  • the self-inductance in the wiring patterns 310a and 310b can be sufficiently reduced. Therefore, the resonance frequency can be increased to a band that is not used in the test of the device under test 350, so that a stable current can be supplied to the device under test 350 and the device under test 350 can be accurately tested. .
  • a test can be performed by connecting a plurality of power supply units in parallel and supplying a large current generated by the plurality of power supply units to the device under test. it can.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 本発明の試験装置は、被試験デバイスに供給する電流を発生する電源ユニットと、電源ユニットが発生した電流を被試験デバイスに供給する第1同軸ケーブル及び第2同軸ケーブルとを備え、電源ユニットは、電源ユニットが発生する電流が所定の抵抗を通過した場合の電圧降下量を検出する電流検出部と、電流検出部が検出した電圧降下量に応じて、被試験デバイスに供給する電流を制御する電流制御部とを有し、第1同軸ケーブルは、電源ユニットから被試験デバイスの方向に電流を流す第1の内部導体と、第1の内部導体の周囲に絶縁体を介して設けられ、被試験デバイスから電源ユニットの方向に電流を流す第1の外部導体とを有し、第2同軸ケーブルは、被試験デバイスから電源ユニットの方向に電流を流す第2の内部導体と、第1の内部導体の周囲に絶縁体を介して設けられ、電源ユニットから被試験デバイスの方向に電流を流す第2の外部導体とを有する。

Description

明 細 書
試験装置
技術分野
[0001] 本発明は、試験装置に関する。特に本発明は、被試験デバイスに電流を供給して 試験を行う試験装置に関する。
背景技術
[0002] 近年の半導体デバイスの高集積ィ匕 ·高速化に伴!ヽ、低電圧化 ·大電流化が急速に 進んでいる。そのため、半導体デバイスの試験を行う試験装置においても、高性能- 高速負荷応答 ·高効率で動作し、低電圧 ·大電流に対応することが要求されて!ヽる。
[0003] 図 1は、従来技術に係る試験装置 100の等価回路を示す。また、図 2は、図 1に示 した試験装置 100における被試験デバイス 104への印加電圧 V 0の周波数応答特性 を示す。試験装置 100は、電圧出力型アンプ 102を採用し、被試験デバイス 104〖こ 印加電圧 Vを印加することにより、被試験デバイス 104の試験を行っている。
0
発明の開示
発明が解決しょうとする課題
[0004] 電圧出力型アンプ 102の利得帯域幅(GBW)積は、 1Z(2 RC) [Hz]で算出さ れるので、高速化を実現するためには、抵抗 Rを小さくすることが考えられる。しかし ながら、試験装置 100において抵抗 Rを十分に小さくすることは困難であり、そのため 、電圧出力型アンプ 102を採用した試験装置 100においては、高速化に限界があり 、十分な高速負荷応答を実現させることができない。
[0005] そこで本発明は、上記の課題を解決することができる試験装置を提供することを目 的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより 達成される。また従属項は本発明の更なる有利な具体例を規定する。
課題を解決するための手段
[0006] 即ち、本発明の第 1の形態によると、被試験デバイスに電流を供給して試験を行う 試験装置であって、被試験デバイスに供給する電流を発生する第 1電源ユニットと、 第 1電源ユニットが発生した電流を被試験デバイスに供給する第 1同軸ケーブル及 び第 2同軸ケーブルとを備える。第 1電源ユニットは、第 1電源ユニットが発生する電 流が所定の抵抗を通過した場合の電圧降下量を検出する電流検出部と、電流検出 部が検出した電圧降下量に応じて、被試験デバイスに供給する電流を制御する電流 制御部とを有する。第 1同軸ケーブルは、第 1電源ユニットから被試験デバイスの方 向に電流を流す第 1の内部導体と、第 1の内部導体の周囲に絶縁体を介して設けら れ、被試験デバイス力 第 1電源ユニットの方向に電流を流す第 1の外部導体とを有 し、第 2同軸ケーブルは、被試験デバイス力ゝら第 1電源ユニットの方向に電流を流す 第 2の内部導体と、第 1の内部導体の周囲に絶縁体を介して設けられ、第 1電源ュニ ットから被試験デバイスの方向に電流を流す第 2の外部導体とを有する。
[0007] 電流制御部は、所定の抵抗による電圧降下量を打ち消すベぐ被試験デバイスに 供給する電流を制御してもよ ヽ。
[0008] 被試験デバイスに印加すべき電圧と、被試験デバイスに実際に印加されている電 圧とを比較し、比較結果を出力する電圧検出部をさらに備え、電流制御部は、電圧 検出部が出力した比較結果にさらに基づいて、被試験デバイスに供給する電流を制 御してちょい。
[0009] 第 1の内部導体及び第 2の外部導体は、互いに並列に接続され、第 1電源ユニット 力 被試験デバイスの方向に電流を流し、第 1の外部導体及び第 2の内部導体は、 互いに並列に接続され、被試験デバイス力 第 1電源ユニットの方向に電流を流して ちょい。
[0010] 第 1電源ユニットと同一の構成を有し、被試験デバイスに供給する電流を発生する 第 2電源ユニットと、第 2電源ユニットが発生した電流を被試験デバイスに供給する第 3同軸ケーブル及び第 4同軸ケーブルと、第 1電源ユニット及び第 2電源ユニットが設 けられた多層基板と、多層基板に形成され、第 1電源ユニットと第 1同軸ケーブル及 び第 2同軸ケーブルを電気的に接続する第 1配線パターンと、多層基板に形成され 、第 2電源ユニットと第 3同軸ケーブル及び第 4同軸ケーブルを電気的に接続する第 2配線パターンとをさらに備えてもよい。第 3同軸ケーブルは、第 2電源ユニットから被 試験デバイスの方向に電流を流す第 3の内部導体と、第 3の内部導体の周囲に絶縁 体を介して設けられ、被試験デバイス力ゝら第 2電源ユニットの方向に電流を流す第 3 の外部導体とを有し、第 4同軸ケーブルは、被試験デバイス力 第 2電源ユニットの 方向に電流を流す第 4の内部導体と、第 4の内部導体の周囲に絶縁体を介して設け られ、第 2電源ユニットから被試験デバイスの方向に電流を流す第 4の外部導体とを 有する。
[0011] 第 1配線パターンは、第 1電源ユニットから第 1の内部導体及び第 2の外部導体に 電流を流す第 1給電パターンと、多層基板において第 1給電パターンが形成された 層に隣接する層の第 1給電パターンに対向する位置に、第 1給電パターンと同一の 幅に形成され、第 1の外部導体及び第 2の内部導体力 第 1電源ユニットに電流を流 す第 1接地パターンとを有する。第 2配線パターンは、第 2電源ユニットから第 3の内 部導体及び第 4の外部導体に電流を流す第 2給電パターンと、多層基板にお!、て第 2給電パターンが形成された層に隣接する層の第 2給電パターンに対向する位置に 、第 2給電パターンと同一の幅に形成され、第 3の外部導体及び第 4の内部導体から 第 2電源ユニットに電流を流す第 2接地パターンとを有する。
[0012] 第 1給電パターン及び第 2給電パターンは、第 1の層に形成され、第 1接地パターン 及び第 2接地パターンは、絶縁層を介して第 1の層に隣接する第 2の層に形成されて ちょい。
[0013] 第 1電源ユニット及び第 2電源ユニットのそれぞれは、第 1給電パターン及び第 2給 電パターンのそれぞれに同一の電圧を印加し、第 1接地パターン及び第 2接地バタ ーンのそれぞれに同一の電圧を印加してもょ 、。
[0014] 第 1同軸ケーブル、第 2同軸ケーブル、第 3同軸ケーブル、及び第 4同軸ケーブル を被試験デバイスと電気的に接続するパフォーマンスボードをさらに備えてもよい。 パフォーマンスボードは、第 1の内部導体及び第 2の外部導体と第 3の内部導体及び 第 4の外部導体とを電気的に接続し、第 1の外部導体及び第 2の内部導体と第 3の外 部導体及び第 4の内部導体とを電気的に接続する。
[0015] また、本発明の第 2の形態によると、被試験デバイスに電流を供給して試験を行う 試験装置であって、被試験デバイスに供給する電流を発生する第 1電源ユニット及 び第 2電源ユニットと、第 1電源ユニット及び第 2電源ユニットが設けられた多層基板 と、多層基板に形成され、第 1電源ユニットと被試験デバイスを電気的に接続する第 1配線パターンと、多層基板に形成され、第 2電源ユニットと被試験デバイスを電気的 に接続する第 2配線パターンとを備える。第 1配線パターンは、第 1電源ユニットから 被試験デバイスの方向に電流を流す第 1給電パターンと、多層基板において第 1給 電パターンが形成された層に隣接する層の第 1給電パターンに対向する位置に、第 1給電パターンと同一の幅に形成され、被試験デバイス力ゝら第 1電源ユニットの方向 に電流を流す第 1接地パターンとを有し、第 2配線パターンは、第 2電源ユニットから 被試験デバイスの方向に電流を流す第 2給電パターンと、多層基板において第 2給 電パターンが形成された層に隣接する層の第 2給電パターンに対向する位置に、第 2給電パターンと同一の幅に形成され、被試験デバイス力ゝら第 2電源ユニットの方向 に電流を流す第 2接地パターンとを有する。
[0016] 第 1電源ユニット及び第 2電源ユニットは、第 1電源ユニット又は第 2電源ユニットが 発生する電流が所定の抵抗を通過した場合の電圧降下量を検出する電流検出部と 、電流検出部が検出した電圧降下量に応じて、被試験デバイスに供給する電流を制 御する電流制御部とを有してもょ ヽ。
[0017] なお上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなぐこ れらの特徴群のサブコンビネーションも又発明となりうる。
発明の効果
[0018] 本発明によれば、複数の電源ユニットを並列に接続し、複数の電源ユニットによつ て発生された大電流を被試験デバイスに供給して試験を行うことができる。
図面の簡単な説明
[0019] [図 1]従来技術に係る試験装置 100の等価回路を示す図である。
[図 2]試験装置 100による印加電圧 Vの周波数応答特性を示す図である。
0
[図 3]本発明の一実施形態に係る試験装置 300の構成の一例を示す図である。
[図 4]電流出力型アンプ 308aの構成の一例を示す図である。
[図 5]多層基板 302の構成の一例を示す図である。
[図 6]試験装置 300の等価回路を示す図である。
[図 7]試験装置 300による印加電圧 Vの周波数応答特性を示す図である。
0
[図 8]試験装置 300の等価回路の共振周波数を考慮に入れた印加電圧 Vの周波数 応答特性を示す図である。 符号の説明
100 試験装置
104 被試験デバイス
300 試験装置
302 多層基板
304a 電源ユニット
304b 電源ユニット
306a D/A変換器
306b DZA変
307a オペアンプ
307b オペアンプ
308a 電流出力型アンプ
308b 電流出力型アンプ
310a 配線パターン
310b 配線パターン
312 多層基板
312a 給電パターン
312b 給電パターン
314a 接地パターン
314b 接地パターン
316a 同軸ケーブル
316b 同軸ケーブル
318a 同軸ケーブル
318b 同軸ケーブル
320a 内部導体
320b 内部導体
322a 外部導体 322b 外部導体
324a 外部導体
324b 外部導体
326a 内部導体
326b 内部導体
328 パフォーマンスボード
350 被試験デバイス
400 電流制御部
402 電界効果トランジスタ
403 電界効果トランジスタ
404 抵抗
406 電流検出部
発明を実施するための最良の形態
[0021] 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の 範囲に係る発明を限定するものではなぐ又実施形態の中で説明されている特徴の 組み合わせの全てが発明の解決手段に必須であるとは限らな!/、。
[0022] 図 3は、本発明の一実施形態に係る試験装置 300の構成の一例を示す。試験装置 300は、電流の伝送路として同軸ケーブルを用いることにより、試験に必要な大電流 を被試験デバイス 350に供給する。試験装置 300は、電源ユニットが発生した電流が 被試験デバイス 350に供給された場合に被試験デバイス 350に印加される電圧を検 出し、検出された電圧に基づいて、被試験デバイス 350の良否を判定する。また、試 験装置 300は、電源ユニットが発生した電圧が被試験デバイス 350に印加された場 合に被試験デバイス 350に供給される電流を検出し、検出された電流に基づいて、 被試験デバイス 350の良否を判定してもよ 、。
[0023] 試験装置 300は、被試験デバイス 350に供給する電流を発生する電源ユニット 30 4a及び 304bと、電源ユニット 304a及び 304b力設けられた多層基板 302と、多層基 板 302に形成され、電源ユニット 304aと被試験デバイス 350を電気的に接続する配 線パターン 310aと、多層基板 302に形成され、電源ユニット 304bと被試験デバイス 350を電気的に接続する配線パターン 310bと、電源ユニット 304aが発生した電流を 被試験デバイス 350に供給する同軸ケーブル 316a及び同軸ケーブル 318aと、電源 ユニット 304bが発生した電流を被試験デバイス 350に供給する同軸ケーブル 316b 及び同軸ケーブル 318bと、同軸ケーブル 316a、 318a, 316b,及び 318bを被試験 デバイス 350と電気的に接続するパフォーマンスボード 328とを備える。
[0024] 電源ユニット 304aは、 DZA変換器 306a、オペアンプ 307a、及び電流出力型ァ ンプ 308aを有する。 DZA変換器 306aは、ワークステーション等の制御装置力 供 給されたデジタルデータをアナログ波形に変換し、被試験デバイス 350に印加すベ き電圧を発生する。オペアンプ 307aは、本発明の電圧検出部の一例であり、 D/A 変翻 306aが発生した被試験デバイス 350に印加すべき電圧と、被試験デバイス 3 50に実際に印加されている電圧とを比較し、比較結果を出力する。具体的には、ォ ぺアンプ 307aは、 DZ A変換器 306aが発生した被試験デバイス 350に印加すべき 電圧から、被試験デバイス 350に実際に印加されている電圧を減算した電圧を電流 出力型アンプ 308aに印加する。電流出力型アンプ 308aは、オペアンプ 307aによつ て印加された電圧に基づ!/ヽて、被試験デバイス 350に供給する電流を発生する。
[0025] 電源ユニット 304bは、電源ユニット 304aと同一の構成を有し、 DZA変翻 306b 、オペアンプ 307b、及び電流出力型アンプ 308bを有する。 DZA変換器 306b、ォ ぺアンプ 307b、及び電流出力型アンプ 308bのそれぞれは、 DZA変換器 306a、 オペアンプ 307a、及び電流出力型アンプ 308aのそれぞれと同一の構成及び機能 を有してもよい。
[0026] 配線パターン 310aは、給電パターン 312a及び接地パターン 314aを有し、電源ュ ニット 304aと同軸ケーブル 316a及び 318aを電気的に接続する。また、配線パター ン 310bは、給電パターン 312b及び接地パターン 314bを有し、電源ユニット 304bと 同軸ケーブル 316b及び 318bを電気的に接続する。
[0027] 同軸ケーブル 316aは、内部導体 320a及び外部導体 322aを有し、配線パターン 3 10aとパフォーマンスボード 328を電気的に接続する。また、同軸ケーブル 318aは、 内部導体 326a及び外部導体 324aを有し、配線パターン 310aとパフォーマンスボ ード 328を電気的に接続する。また、同軸ケーブル 316bは、内部導体 320b及び外 部導体 322bを有し、配線パターン 310bとパフォーマンスボード 328を電気的に接 続する。また、同軸ケーブル 318bは、内部導体 326b及び外部導体 324bを有し、配 線パターン 310bとパフォーマンスボード 328を電気的に接続する。
[0028] 給電パターン 312aは、電流出力型アンプ 308aが発生した電流を被試験デバイス 350に供給すベぐ電源ユニット 304aから内部導体 320a及び外部導体 324aに電 流を流す。また、接地パターン 314aは、外部導体 322a及び内部導体 326aから電 源ユニット 304aに電流を流す。また、給電パターン 312bは、電流出力型アンプ 308 bが発生した電流を被試験デバイス 350に供給すベぐ電源ユニット 304bから内部 導体 320b及び外部導体 324bに電流を流す。また、接地パターン 314bは、外部導 体 322b及び内部導体 326bから電源ユニット 304bに電流を流す。
[0029] 内部導体 320aは、給電パターン 312aを介して供給された電流を、電源ユニット 30 4aから被試験デバイス 350の方向に流す。また、外部導体 322aは、内部導体 320a の周囲に絶縁体を介して設けられ、被試験デバイス 350から電源ユニット 304aの方 向に電流を流す。また、内部導体 326aは、被試験デバイス 350から電源ユニット 30 4aの方向に電流を流す。また、外部導体 324aは、内部導体 326aの周囲に絶縁体 を介して設けられ、給電パターン 312aを介して供給された電流を、電源ユニット 304 aから被試験デバイス 350の方向に流す。即ち、内部導体 320a及び外部導体 324a は、互いに並列に接続され、電源ユニット 304aから被試験デバイス 350の方向に電 流を流し、外部導体 322a及び内部導体 326aは、互いに並列に接続され、被試験 デバイス 350から電源ユニット 304aの方向に電流を流す。
[0030] 内部導体 320bは、給電パターン 312bを介して供給された電流を、電源ユニット 30 4bから被試験デバイス 350の方向に流す。また、外部導体 322bは、内部導体 320b の周囲に絶縁体を介して設けられ、被試験デバイス 350から電源ユニット 304bの方 向に電流を流す。また、内部導体 326bは、被試験デバイス 350から電源ユニット 30 4bの方向に電流を流す。また、外部導体 324bは、内部導体 326bの周囲に絶縁体 を介して設けられ、給電パターン 312bを介して供給された電流を、電源ユニット 304 b力ゝら被試験デバイス 350の方向に流す。即ち、内部導体 320b及び外部導体 324b は、互いに並列に接続され、電源ユニット 304bから被試験デバイス 350の方向に電 流を流し、外部導体 322b及び内部導体 326bは、互いに並列に接続され、被試験 デバイス 350から電源ユニット 304bの方向に電流を流す。
[0031] パフォーマンスボード 328は、内部導体 320a及び外部導体 324aと内部導体 320b 及び外部導体 324bとを電気的に接続し、電源ユニット 304a及び 304bが発生した 電流を被試験デバイス 350に供給する。また、パフォーマンスボード 328は、外部導 体 322a及び内部導体 326aと外部導体 322b及び内部導体 326bとを電気的に接続 し、被試験デバイス 350が出力した電流を電源ユニット 304a及び 304bに供給する。
[0032] 電源ユニット 304aが発生する電流が変化した場合、内部導体 320aを流れる電流 が変化することにより、内部導体 320aから発生される磁束が変化する。これにより、 内部導体 320aに自己誘導起電力が発生する。発生した自己誘導起電力は、被試 験デバイス 350から電源ユニット 304aへの方向、即ち内部導体 320aにおける電流 の方向とは逆の方向に電流を流すべく作用する。また、電源ユニット 304aが発生す る電流が変化した場合、外部導体 322aを流れる電流が変化することにより、外部導 体 322aから発生される磁束が変化する。これ〖こより、内部導体 320aに交差する磁束 が変化して内部導体 320aに相互誘導起電力が発生する。発生した相互誘導起電 力は、電源ユニット 304aから被試験デバイス 350への方向、即ち内部導体 320aに おける電流の方向と同じ方向に電流を流すべく作用する。そのため、内部導体 320a に発生した相互誘導起電力は、内部導体 320aに発生した自己誘導起電力を相殺 すべく作用する。つまり、内部導体 320aにおける自己インダクタンスは実質的に低減 される。したがって、内部導体 320aにおける入力電流の変化に対する出力電流の応 答性が向上する。
[0033] また、電源ユニット 304aが発生する電流が変化した場合、外部導体 322aを流れる 電流が変化することにより、外部導体 322aから発生される磁束が変化する。これによ り、外部導体 322aに自己誘導起電力が発生する。発生した自己誘導起電力は、電 源ユニット 304aから被試験デバイス 350への方向、即ち外部導体 322aにおける電 流の方向とは逆の方向に電流を流すべく作用する。また、電源ユニット 304aが発生 する電流が変化した場合、内部導体 320aを流れる電流が変化することにより、内部 導体 320aから発生される磁束が変化する。これにより、外部導体 322aに交差する磁 束が変化して外部導体 322aに相互誘導起電力が発生する。発生した相互誘導起 電力は、被試験デバイス 350から電源ユニット 304aへの方向、即ち外部導体 322a における電流の方向と同じ方向に電流を流すべく作用する。そのため、外部導体 32 2aに発生した相互誘導起電力は、外部導体 322aに発生した自己誘導起電力を相 殺すべく作用する。つまり、外部導体 322aにおける自己インダクタンスは実質的に低 減される。したがって、外部導体 322aにおける入力電流の変化に対する出力電流の 応答性が向上する。
[0034] 同様に、内部導体 326a、外部導体 324a、内部導体 320b、外部導体 322b、外部 導体 324b、及び内部導体 326bのそれぞれにおける自己インダクタンスは実質的に 低減され、内部導体 326a、外部導体 324a、内部導体 320b、外部導体 322b、外部 導体 324b、及び内部導体 326bのそれぞれにおける入力電流の変化に対する出力 電流の応答性が向上する。
[0035] 以上のように、本実施形態に係る試験装置 300によれば、同軸ケーブルにおける 入力電流の変化に対する出力電流の応答性が向上するができるので、例えば 2 s の立ち上がり時間で 100Aの電流を発生させる等、急激な電流の変化が必要とされ る場合であっても、被試験デバイス 350を精度よく試験することができる。また、以上 のように本実施形態に係る試験装置 300によれば、電源ユニット 304a及び 304bを 含む複数の電源ユニットを並列に接続し、複数の電源ユニットによって発生された大 電流を被試験デバイス 350に供給して試験を行うことができる。
[0036] 図 4は、本実施形態に係る電流出力型アンプ 308aの構成の一例を示す。電流出 力型アンプ 308aは、電流制御部 400、電界効果トランジスタ 402及び 403、抵抗 40 4、及び電流検出部 406を有する。
[0037] 電流検出部 406は、電流出力型アンプ 308aによって電源ユニット 304aが発生して 給電パターン 312aに供給する電流が所定の抵抗 404を通過した場合の電圧降下 量を検出する。そして、電流制御部 400は、オペアンプ 307aが出力した比較結果、 即ちオペアンプ 307aによって印加された電圧、及び電流検出部 406が検出した電 圧降下量に応じて、被試験デバイス 350に供給する電流を制御する。具体的には、 電流制御部 400は、オペアンプ 307aによって印加された電圧に、電流検出部 406 が検出した電圧降下量を加算した電圧を電界効果トランジスタ 402及び 403に入力 することにより、電界効果トランジスタ 402及び電界効果トランジスタ 403によって出力 される電流を制御する。即ち、電流制御部 400は、所定の抵抗 404による電圧降下 量を打ち消すベぐ被試験デバイス 350に供給する電流を制御する。これにより、電 流出力型アンプ 308aは、所定の抵抗 404に依存することなぐ安定して所望の電流 を発生することができる。
[0038] 図 5は、多層基板 302の構成の一例を示す。多層基板 302には、給電パターン 31 2a及び接地パターン 314aを有する配線パターン 310aと、給電パターン 312b及び 接地パターン 314bを有する配線パターン 310bとを含む複数の配線パターンが形成 されている。給電パターン 312aと給電パターン 312bとは、多層基板 302の表面の層 において絶縁されて形成されており、接地パターン 314aと接地パターン 314bとは、 多層基板 302の内部の層にお 、て絶縁されて形成されて!、る。他の例にぉ 、ては、 給電パターン 312aと給電パターン 312bと力 多層基板 302の内部の層において絶 縁されて形成され、接地パターン 314aと接地パターン 314bとは、多層基板 302の 表面の層にお 、て絶縁されて形成されもよ 、。
[0039] 給電パターン 312aは、電源ユニット 304a力ら内部導体 320a及び外部導体 324a に電流を流し、接地パターン 314aは、外部導体 322a及び内部導体 326aから電源 ユニット 304aに電流を流す。また、給電パターン 312bは、電源ユニット 304bから内 部導体 320b及び外部導体 324bに電流を流し、接地パターン 314bは、外部導体 3 22b及び内部導体 326bから電源ユニット 304bに電流を流す。
[0040] 給電パターン 312a及び 312bは、第 1の層に形成され、また、接地パターン 314a 及び 314bとは、給電パターン 312aと給電パターン 312bとが形成された第 1の層に 、絶縁層を介して隣接する第 2の層に形成される。また、接地パターン 314aは、多層 基板 302において給電パターン 312aが形成された第 1の層に隣接する第 2の層の 給電パターン 312aに対向する位置に、給電パターン 312aと同一の幅に形成される 。また、接地パターン 314bは、多層基板 312において給電パターン 312bが形成さ れた第 1の層に隣接する第 2の層の給電パターン 312bに対向する位置に、給電パタ ーン 312bと同一の幅に形成される。 [0041] なお、電源ユニット 304a及び 304bのそれぞれは、給電パターン 312a及び 312b のそれぞれに同一のコレクタ供給電圧を印加し、電源ユニット 304a及び 304bのそ れぞれは、接地パターン 314a及び 314bのそれぞれに同一のドレイン供給電圧を印 加することが望ましい。
[0042] 電源ユニット 304aが発生する電流が変化した場合、給電パターン 312aを流れる電 流が変化することにより、給電パターン 312aから発生される磁束が変化する。これに より、給電パターン 312aに自己誘導起電力が発生する。発生した自己誘導起電力 は、被試験デバイス 350から電源ユニット 304aへの方向、即ち給電パターン 312aに おける電流の方向とは逆の方向に電流を流すべく作用する。また、電源ユニット 304 aが発生する電流が変化した場合、接地パターン 314aを流れる電流が変化すること により、接地パターン 314aから発生される磁束が変化する。これにより、給電パター ン 312aに交差する磁束が変化して給電パターン 312aに相互誘導起電力が発生す る。発生した相互誘導起電力は、電源ユニット 304aから被試験デバイス 350への方 向、即ち給電パターン 312aにおける電流の方向と同じ方向に電流を流すべく作用 する。そのため、給電パターン 312aに発生した相互誘導起電力は、給電パターン 3 12aに発生した自己誘導起電力を相殺すべく作用する。つまり、給電パターン 312a と接地パターン 314aとが対向して同一の幅に形成されることによって、給電パターン 312aにおける自己インダクタンスは実質的に低減される。したがって、給電パターン 312aにおける入力電流の変化に対する出力電流の応答性が向上する。
[0043] また、電源ユニット 304aが発生する電流が変化した場合、接地パターン 314aを流 れる電流が変化することにより、接地パターン 314aから発生される磁束が変化する。 これにより、接地パターン 314aに自己誘導起電力が発生する。発生した自己誘導起 電力は、電源ユニット 304aから被試験デバイス 350への方向、即ち接地パターン 31 4aにおける電流の方向とは逆の方向に電流を流すべく作用する。また、電源ユニット 304aが発生する電流が変化した場合、給電パターン 312aを流れる電流が変化する ことにより、給電パターン 312aから発生される磁束が変化する。これにより、接地バタ ーン 314aに交差する磁束が変化して接地パターン 314aに相互誘導起電力が発生 する。発生した相互誘導起電力は、被試験デバイス 350から電源ユニット 304aへの 方向、即ち接地パターン 314aにおける電流の方向と同じ方向に電流を流すべく作 用する。そのため、接地パターン 314aに発生した相互誘導起電力は、接地パターン 314aに発生した自己誘導起電力を相殺すべく作用する。つまり、給電パターン 312 aと接地パターン 314aとが対向して同一の幅に形成されることによって、接地パター ン 314aにおける自己インダクタンスは実質的に低減される。したがって、接地パター ン 314aにおける入力電流の変化に対する出力電流の応答性が向上する。
[0044] 同様に、給電パターン 312b及び接地パターン 314bのそれぞれにおける自己イン ダクタンスは実質的に低減され、給電パターン 312b及び接地パターン 314bのそれ ぞれにおける入力電流の変化に対する出力電流の応答性が向上する。
[0045] 以上のように、本実施形態に係る多層基板 302によれば、配線パターンにおける入 力電流の変化に対する出力電流の応答性が向上するができるので、例えば 2 sの 立ち上がり時間で 100Aの電流を発生させる等、急激な電流の変化が必要とされる 場合であっても、被試験デバイス 350を精度よく試験することができる。
[0046] 図 6は、本実施形態に係る試験装置 300の等価回路を示す。また、図 7は、図 6に 示した試験装置 300における被試験デバイス 350への印加電圧 Vの周波数応答特
0
性を示す。また、図 8は、試験装置 300の等価回路の共振周波数を考慮に入れた印 加電圧 Vの
0 周波数応答特性を示す。
[0047] 試験装置 300は、電流出力型アンプ 308aを採用し、被試験デバイス 350に電流を 供給して印加電圧 Vを印加することにより、被試験デバイス 350の試験を行っている
0
。ここで、図 7に示すように、電流出力型アンプ 308aの相互コンダクタンスを gmとす ると、電流出力型アンプ 308aの利得帯域幅(GBW)積は、 gmZ (2 7u C) [Hz]で算 出されるので、高速ィ匕を実現するためには、相互コンダクタンス gmを大きくすればよ い。
[0048] 図 1及び図 2を用いて説明したように、電圧出力型アンプ 102を採用した試験装置 100では、抵抗 Rを十分に小さくすることは困難であり、高速化に限界があつたが、こ れに比べ、電流出力型アンプ 308aを採用した試験装置 300では、相互コンダクタン ス gmを大きくすることが容易であるため、高速化が容易であり、十分な高速負荷応答 を実現させることができる。 [0049] また、図 8に示すように、試験装置 300の等価回路の共振周波数は、 1 (2 K ^L C) [Hz]で算出され、被試験デバイス 350の試験において使用する帯域に共振周波 数が存在すると、被試験デバイス 350に安定した電流を供給することができない。そ のため、被試験デバイス 350の試験において使用されない帯域にまで共振周波数を 大きくするため、自己インダクタンス Lを小さくする必要がある。
[0050] 本実施形態に係る試験装置 300においては、図 3を用いて説明したように、同軸ケ 一ブル 316a、 318a, 316b,及び 318bにおける自己インダクタンスを十分に低減で き、また、図 5を用いて説明したように、配線パターン 310a及び 310bにおける自己ィ ンダクタンスを十分に低減できる。したがって、被試験デバイス 350の試験において 使用されない帯域にまで共振周波数を大きくできるので、被試験デバイス 350に安 定した電流を供給することができ、被試験デバイス 350を精度よく試験することができ る。
[0051] 以上、実施形態を用いて本発明を説明したが、本発明の技術的範囲は上記実施 形態に記載の範囲には限定されない。上記実施形態に、多様な変更又は改良をカロ えることができる。そのような変更又は改良を加えた形態も本発明の技術的範囲に含 まれ得ることが、請求の範囲の記載から明らかである。
産業上の利用可能性
[0052] 上記説明から明らかなように、本発明によれば、複数の電源ユニットを並列に接続 し、複数の電源ユニットによって発生された大電流を被試験デバイスに供給して試験 を行うことができる。

Claims

請求の範囲
[1] 被試験デバイスに電流を供給して試験を行う試験装置であって、
前記被試験デバイスに供給する電流を発生する第 1電源ユニットと、
前記第 1電源ユニットが発生した前記電流を前記被試験デバイスに供給する第 1同 軸ケーブル及び第 2同軸ケーブルと
を備え、
前記第 1電源ユニットは、
前記第 1電源ユニットが発生する前記電流が所定の抵抗を通過した場合の電圧降 下量を検出する電流検出部と、
前記電流検出部が検出した前記電圧降下量に応じて、前記被試験デバイスに供 給する前記電流を制御する電流制御部と
を有し、
前記第 1同軸ケーブルは、
前記第 1電源ユニットから前記被試験デバイスの方向に電流を流す第 1の内部導 体と、
前記第 1の内部導体の周囲に絶縁体を介して設けられ、前記被試験デバイスから 前記第 1電源ユニットの方向に電流を流す第 1の外部導体と
を有し、
前記第 2同軸ケーブルは、
前記被試験デバイスから前記第 1電源ユニットの方向に電流を流す第 2の内部導 体と、
前記第 1の内部導体の周囲に絶縁体を介して設けられ、前記第 1電源ユニットから 前記被試験デバイスの方向に電流を流す第 2の外部導体と
を有する試験装置。
[2] 前記電流制御部は、前記所定の抵抗による前記電圧降下量を打ち消すベぐ前記 被試験デバイスに供給する前記電流を制御する請求項 1に記載の試験装置。
[3] 前記被試験デバイスに印加すべき電圧と、前記被試験デバイスに実際に印加され ている電圧とを比較し、比較結果を出力する電圧検出部をさらに備え、 前記電流制御部は、前記電圧検出部が出力した前記比較結果にさらに基づ!、て、 前記被試験デバイスに供給する前記電流を制御する請求項 1に記載の試験装置。
[4] 前記第 1の内部導体及び前記第 2の外部導体は、互いに並列に接続され、前記第 1電源ユニットから前記被試験デバイスの方向に電流を流し、
前記第 1の外部導体及び前記第 2の内部導体は、互いに並列に接続され、前記被 試験デバイス力 前記第 1電源ユニットの方向に電流を流す請求項 1に記載の試験 装置。
[5] 前記第 1電源ユニットと同一の構成を有し、前記被試験デバイスに供給する電流を 発生する第 2電源ユニットと、
前記第 2電源ユニットが発生した前記電流を前記被試験デバイスに供給する第 3同 軸ケーブル及び第 4同軸ケーブルと、
前記第 1電源ユニット及び前記第 2電源ユニットが設けられた多層基板と、 前記多層基板に形成され、前記第 1電源ユニットと前記第 1同軸ケーブル及び第 2 同軸ケーブルを電気的に接続する第 1配線パターンと、
前記多層基板に形成され、前記第 2電源ユニットと前記第 3同軸ケーブル及び前記 第 4同軸ケーブルを電気的に接続する第 2配線パターンと
をさらに備え、
前記第 3同軸ケーブルは、
前記第 2電源ユニットから前記被試験デバイスの方向に電流を流す第 3の内部導 体と、
前記第 3の内部導体の周囲に絶縁体を介して設けられ、前記被試験デバイスから 前記第 2電源ユニットの方向に電流を流す第 3の外部導体と
を有し、
前記第 4同軸ケーブルは、
前記被試験デバイスから前記第 2電源ユニットの方向に電流を流す第 4の内部導 体と、
前記第 4の内部導体の周囲に絶縁体を介して設けられ、前記第 2電源ユニットから 前記被試験デバイスの方向に電流を流す第 4の外部導体と を有し、
前記第 1配線パターンは、
前記第 1電源ユニットから前記第 1の内部導体及び前記第 2の外部導体に電流を 流す第 1給電パターンと、
前記多層基板において前記第 1給電パターンが形成された層に隣接する層の前 記第 1給電パターンに対向する位置に、前記第 1給電パターンと同一の幅に形成さ れ、前記第 1の外部導体及び前記第 2の内部導体から前記第 1電源ユニットに電流 を流す第 1接地パターンと
を有し、
前記第 2配線パターンは、
前記第 2電源ユニットから第 3の内部導体及び第 4の外部導体に電流を流す第 2給 電パターンと、
前記多層基板において前記第 2給電パターンが形成された層に隣接する層の前 記第 2給電パターンに対向する位置に、前記第 2給電パターンと同一の幅に形成さ れ、第 3の外部導体及び第 4の内部導体力 前記第 2電源ユニットに電流を流す第 2 接地パターンと
を有する請求項 1に記載の試験装置。
[6] 前記第 1給電パターン及び前記第 2給電パターンは、第 1の層に形成され、
前記第 1接地パターン及び第 2接地パターンは、絶縁層を介して前記第 1の層に隣 接する第 2の層に形成される請求項 5に記載の試験装置。
[7] 前記第 1電源ユニット及び前記第 2電源ユニットのそれぞれは、前記第 1給電バタ ーン及び前記第 2給電パターンのそれぞれに同一の電圧を印加し、前記第 1接地パ ターン及び前記第 2接地パターンのそれぞれに同一の電圧を印加する請求項 5に記 載の試験装置。
[8] 前記第 1同軸ケーブル、前記第 2同軸ケーブル、前記第 3同軸ケーブル、及び前記 第 4同軸ケーブルを前記被試験デバイスと電気的に接続するパフォーマンスボード をさらに備え、
前記パフォーマンスボードは、前記第 1の内部導体及び前記第 2の外部導体と前 記第 3の内部導体及び前記第 4の外部導体とを電気的に接続し、前記第 1の外部導 体及び前記第 2の内部導体と前記第 3の外部導体及び前記第 4の内部導体とを電 気的に接続する請求項 7に記載の試験装置。
被試験デバイスに電流を供給して試験を行う試験装置であって、
前記被試験デバイスに供給する電流を発生する第 1電源ユニット及び第 2電源ュ- ッ卜と、
前記第 1電源ユニット及び前記第 2電源ユニットが設けられた多層基板と、 前記多層基板に形成され、前記第 1電源ユニットと前記被試験デバイスを電気的に 接続する第 1配線パターンと、
前記多層基板に形成され、前記第 2電源ユニットと前記被試験デバイスを電気的に 接続する第 2配線パターンと
を備え、
前記第 1配線パターンは、
前記第 1電源ユニットから前記被試験デバイスの方向に電流を流す第 1給電パター ンと、
前記多層基板において前記第 1給電パターンが形成された層に隣接する層の前 記第 1給電パターンに対向する位置に、前記第 1給電パターンと同一の幅に形成さ れ、前記被試験デバイスから前記第 1電源ユニットの方向に電流を流す第 1接地バタ ーンと
を有し、
前記第 2配線パターンは、
前記第 2電源ユニットから前記被試験デバイスの方向に電流を流す第 2給電パター ンと、
前記多層基板において前記第 2給電パターンが形成された層に隣接する層の前 記第 2給電パターンに対向する位置に、前記第 2給電パターンと同一の幅に形成さ れ、前記被試験デバイスから前記第 2電源ユニットの方向に電流を流す第 2接地バタ ーンと
を有する試験装置。 前記第 1電源ユニット及び前記第 2電源ユニットは、
前記第 1電源ユニット又は前記第 2電源ユニットが発生する前記電流が所定の抵抗 を通過した場合の電圧降下量を検出する電流検出部と、
前記電流検出部が検出した前記電圧降下量に応じて、前記被試験デバイスに供 給する前記電流を制御する電流制御部と
を有する請求項 8に記載の試験装置。
PCT/JP2005/001934 2004-02-10 2005-02-09 試験装置 WO2005076023A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517809A JP4279840B2 (ja) 2004-02-10 2005-02-09 試験装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/776,030 2004-02-10
US10/776,030 US7119547B2 (en) 2004-02-10 2004-02-10 Testing apparatus

Publications (1)

Publication Number Publication Date
WO2005076023A1 true WO2005076023A1 (ja) 2005-08-18

Family

ID=34827327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001934 WO2005076023A1 (ja) 2004-02-10 2005-02-09 試験装置

Country Status (3)

Country Link
US (1) US7119547B2 (ja)
JP (1) JP4279840B2 (ja)
WO (1) WO2005076023A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0502829D0 (en) * 2005-02-11 2005-03-16 Ibm Connection error avoidance in apparatus connected to a power supply
TWI408690B (zh) * 2009-05-18 2013-09-11 Wistron Corp 可提升測試品質的自動化測試系統
US8305099B2 (en) * 2010-08-31 2012-11-06 Nxp B.V. High speed full duplex test interface
CN111771110B (zh) * 2018-03-30 2022-06-24 松下知识产权经营株式会社 静电电容检测装置
US20210302469A1 (en) * 2020-03-31 2021-09-30 Advantest Corporation Universal Test Interface Systems and Methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569690U (ja) * 1992-02-27 1993-09-21 株式会社アドバンテスト Ic試験装置
JPH06342033A (ja) * 1993-05-28 1994-12-13 Ando Electric Co Ltd クランプ回路およびこれを用いたicテスタ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1860052A (en) * 1928-12-08 1932-05-24 Rca Corp Transmission line
US3054948A (en) * 1959-05-26 1962-09-18 Ibm High frequency measurements
JP2945015B2 (ja) * 1988-07-06 1999-09-06 日本ヒューレット・パッカード株式会社 直流バイアス印加装置
US4985672A (en) * 1989-12-11 1991-01-15 Advantest Corporation Test equipment for a low current IC
JP2637318B2 (ja) 1991-09-17 1997-08-06 コニカ株式会社 カード記録体製造装置
US5379006A (en) * 1993-06-11 1995-01-03 The United States Of America As Represented By The Secretary Of The Army Wideband (DC to GHz) balun
JP3329555B2 (ja) * 1993-12-28 2002-09-30 アジレント・テクノロジー株式会社 インピーダンス・メータ
US6275023B1 (en) * 1999-02-03 2001-08-14 Hitachi Electronics Engineering Co., Ltd. Semiconductor device tester and method for testing semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0569690U (ja) * 1992-02-27 1993-09-21 株式会社アドバンテスト Ic試験装置
JPH06342033A (ja) * 1993-05-28 1994-12-13 Ando Electric Co Ltd クランプ回路およびこれを用いたicテスタ

Also Published As

Publication number Publication date
US20050174105A1 (en) 2005-08-11
JPWO2005076023A1 (ja) 2007-10-11
JP4279840B2 (ja) 2009-06-17
US7119547B2 (en) 2006-10-10

Similar Documents

Publication Publication Date Title
US9255970B2 (en) On-line monitoring of stator insulation in motors and generators
US7068061B2 (en) Semiconductor device characteristics measurement apparatus and connection apparatus
WO2005076023A1 (ja) 試験装置
JP6106127B2 (ja) スイッチングコンバータおよびそれを用いた電子機器
CN111065931B (zh) 电流测定装置
US11531075B2 (en) Method and apparatus for integrating current sensors in a power semiconductor module
EP1806844B1 (en) Electrical switching device
CN108336910A (zh) 半导体装置以及逆变器系统
US20140247085A1 (en) Controller for load circuit
JPWO2013153599A1 (ja) シーケンサアナログ出力ユニット
US20150198642A1 (en) Measurement of bonding resistances
CN107796981A (zh) 不受噪声影响的电流检测电路
US20170017242A1 (en) Positioner
US8571816B2 (en) Electromagnetic flow meter
WO2005059926A1 (ja) 同軸ケーブル、より対線ケーブル、同軸ケーブルユニット、試験装置、及びcpuシステム
JP2012098156A (ja) 電源の評価方法、電源評価装置、電源の供給方法、それらを用いた試験装置、エミュレート機能付きの電源装置、電源環境のエミュレート方法
US11018588B2 (en) DC/DC converter
CN106233598A (zh) 电源装置
JP2014092859A (ja) 負荷装置
CN107023709A (zh) 定位器
JP2012153197A (ja) 車載電装システムの地絡対策装置
US20230314489A1 (en) Voltage detection device
US20240012035A1 (en) Current sensing
CN104283535B (zh) 包括临界电流供给器件的金属绝缘体转变晶体管系统
JP2015004592A (ja) 電圧測定回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517809

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase