WO2005073771A1 - レーザ光入射光学装置 - Google Patents

レーザ光入射光学装置 Download PDF

Info

Publication number
WO2005073771A1
WO2005073771A1 PCT/JP2005/001061 JP2005001061W WO2005073771A1 WO 2005073771 A1 WO2005073771 A1 WO 2005073771A1 JP 2005001061 W JP2005001061 W JP 2005001061W WO 2005073771 A1 WO2005073771 A1 WO 2005073771A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
incident
laser
laser beam
laser light
Prior art date
Application number
PCT/JP2005/001061
Other languages
English (en)
French (fr)
Inventor
Makoto Ishibashi
Original Assignee
Kabushiki Kaisha Toshiba
Toshiba Electron Tubes & Devices Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34829407&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005073771(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kabushiki Kaisha Toshiba, Toshiba Electron Tubes & Devices Co., Ltd. filed Critical Kabushiki Kaisha Toshiba
Publication of WO2005073771A1 publication Critical patent/WO2005073771A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/44Raman spectrometry; Scattering spectrometry ; Fluorescence spectrometry
    • G01J3/4406Fluorescence spectrometry
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4206Optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4296Coupling light guides with opto-electronic elements coupling with sources of high radiant energy, e.g. high power lasers, high temperature light sources

Definitions

  • the present invention relates to a laser light incidence optical device for stably injecting a giant pulse oscillation type laser light having a peak power of 10 MW or more into an optical fiber.
  • a step-index optical fiber made of quartz is used for transmission of such a high-power laser beam.
  • An optical fiber made of quartz can transmit up to several kW in the case of continuous wave (CW) laser light.
  • a short pulse laser beam with a pulse width of about several nanoseconds and a pulse energy exceeding several tens mj has a peak power of several MW or more.
  • pulse energy of pulse laser light is more than three orders of magnitude as compared to the pulse energy of the continuous wave light large instrument peak power density 10- 1 - 1. OGW / cm 2 order and very higher due. For this reason, it is known that damage due to an avalanche phenomenon or multiphoton absorption occurs, and the optical fiber is broken, so that laser light cannot be transmitted. It has been reported that the threshold value of the damage caused by pulse laser light of quartz (quartz glass) material is about 100 GWZ cm 2 with a pulse width of about 5 nsec ("Laser Handbook", Laser Society of Japan, Ohmsha, Ltd.). Pp. 463, 473).
  • a practical limit in transmitting a laser beam having a spatial and temporal distribution, that is, a short pulse laser beam, through an optical fiber is, for example, an Nd: YAG laser having a pulse width of 5 nsec and a repetition of oscillation of 10 Hz.
  • the pulse energy is about 30-40 mJ, that is, the peak power is 6-8 MW (the peak power density with respect to the core diameter is 0 ⁇ 76- 1. OGW / cm 2 ).
  • the laser beam When a laser beam having a high peak power is condensed and incident on the optical fiber, the laser beam partially converges inside the optical fiber, and a specific portion of the optical fiber It is known that the power density increases and the inside of the optical fiber is damaged. It is also known to reduce the degree of focusing of the laser light in order to prevent convergence of the laser light inside the optical fiber. When the power peak power exceeds several MW, the laser inside the optical fiber is It is difficult to completely prevent light convergence.
  • Non-Patent Document 2 when laser light converges inside the optical fiber, the optical fiber is damaged because laser light with high peak power also has a high electric field strength. It is reasonable to assume that the refractive index of the quartz material of the fiber is partially changed by the strong electric field and self-convergence is caused by a kind of lens effect.
  • the expanded laser light is incident on an array-shaped divided lens, divided spatially by tens of minutes, and then the total number of divisions is reduced.
  • a condenser lens provided behind the optical fiber.
  • the expanded laser light is incident on an array-shaped splitting lens, divided spatially by several tens of minutes, and the total number of splits is set to the rear of the array.
  • the number of divisions is 81
  • a split lens group compound eye lens
  • nine 2 mm square convex lenses are arranged vertically and horizontally to be 18 mm ⁇ 18 mm is required.
  • the split lens group that is, the compound eye lens, is very expensive.
  • nine similar lenses horizontally to form a vertical divided lens group and combining these two lens groups, it is also possible to obtain the same effect as the above-mentioned compound eye lens.
  • the cost of the lens is slightly reduced, there is a problem that the total cost increases due to an increase in the number of parts and structural members for holding the same.
  • the sectional size (beam diameter) of the laser beam is It is required to expand to about 26mm, which is a square diagonal with 18mm sides.
  • An object of the present invention is to damage an optical fiber in a laser light incidence optical device in which laser light from a giant panoramic oscillation type solid laser oscillator having a peak power of greater than 10 MW is incident on the incident end face of the optical fiber. It is possible to transmit the laser light without any problems and to provide the transmission at low cost without lowering the transmission efficiency and eliminating the need for complicated adjustment.
  • the present invention is a laser light incidence optical device that causes a laser light from a giant pulse oscillation type solid state laser oscillator having a peak power larger than 10 MW to be incident on an incident end face of an optical fiber.
  • a condensing lens for condensing the laser light, and an incident end face of the optical fiber at a predetermined position behind the condensing point of the laser light by this condensing lens, and the laser light is made divergent to be incident on the optical fiber.
  • An optical fiber position adjusting mechanism for entering the end face; the optical fiber is made of a material containing quartz; the thickness of the cladding is 0.35 to 0.1 times the core diameter; -0.22 This is a step index type of 22.
  • a step index type optical fiber made of a material containing quartz and having a cladding thickness of 0.035 to 0.1 times the core diameter and an NA of 0.06 to 0.22 is used.
  • the laser light is transmitted without damaging the optical fiber by radiating the laser light from a giant pulse oscillation type solid laser oscillator having a peak power exceeding 10 MW into the incident end face of the optical fiber as divergence.
  • FIG. 1 is a schematic diagram showing an example of an embodiment of a laser beam incidence optical device according to the present invention.
  • FIG. 2 is a schematic diagram illustrating a transmission model of a converging optical system to which a divergent incidence method is applied.
  • FIG. 3 is a graph showing the relationship between the angle of incidence on an optical fiber and the focal length of a condenser lens.
  • FIG. 4 is a graph showing a relationship between an incident angle to an optical fiber and an incident divergence angle of a condenser lens.
  • FIG. 5 is a graph showing a relationship between a method of entering an optical fiber and transmission energy.
  • FIG. 6A is an axial sectional view of an optical fiber.
  • FIG. 6B is a cross-sectional view of the optical fiber shown in FIG. 6A in a direction orthogonal to the axial direction.
  • FIG. 7 is a graph showing the relationship between cladding thickness and transmission energy.
  • FIG. 8 is a graph showing the relationship between the core diameter and the transmission energy.
  • FIG. 9 is a graph showing a relationship between an incident angle to an optical fiber and transmission energy.
  • FIG. 10 is a schematic diagram showing another embodiment of the laser light incidence optical device of the present invention.
  • FIG. 11 is a schematic diagram showing an example of a laser-induced fluorescence analyzer incorporating the laser beam incidence optical device of the present invention.
  • the laser light incidence optical device 11 is a laser device that emits laser light generated by a giant pulse oscillation type solid laser oscillator (laser device) 111 having a peak power larger than 10 MW.
  • An optical fiber 101 having a predetermined core diameter and clad thickness. It is.
  • the laser beam incident optical device 11 includes a condenser lens 13 for condensing a laser beam L supplied by the solid-state laser oscillator 111 and having a predetermined cross-sectional beam diameter, a condenser lens 13 and an optical fiber 101. And an optical fiber position adjusting mechanism 15 for maintaining the distance between the optical fiber and the incident end face 102 at a constant distance.
  • the condensing lens 13 is a convex lens that is inexpensive and easily available. If the material and the shape of the condensing lens 13 can withstand the heat generated by the incidence of the laser beam L emitted from the solid-state laser oscillator 111, the condensing lens 13 can be specially formed. Not subject to any restrictions.
  • the condensing lens 13 may be a synthetic lens in which two thin lenses are combined as necessary.
  • the optical fiber position adjusting mechanism 15 is held by a condenser lens holder 16 that holds the condenser lens 13, an optical fiber holder 17 that holds the optical fiber 101, and a condenser lens holder 16.
  • An adjusting section 18 is provided for adjusting the interval at which the incident end face 102 of the optical fiber 101 faces the condenser lens 13.
  • the adjusting section 18 adjusts the optical fiber 101 such that the incident end face 102 of the optical fiber 101 is positioned at a predetermined distance behind the focal position of the condenser lens 13, that is, the condenser point A. .
  • the adjusting section 18 can set the distance between the optical fiber holding section 17 and the condenser lens holding section 16 to an arbitrary position by manual operation or a moving mechanism such as a motor and a gear mechanism.
  • disposing the incident end face 102 of the optical fiber 101 at the focal position of the condensing lens 13, that is, at a predetermined position behind the converging point A by a predetermined distance is equivalent to the incident end face 102 of the optical fiber 101.
  • Is to make the laser beam L incident on the laser beam divergent That is, by optimizing the distance between the incident end face 102 of the optical fiber 101 and the condenser lens 13 to make the laser light L incident on the incident end face 102 of the optical fiber 101 divergent, The laser beam L incident on the optical fiber 101 converges at a specific position in the optical fiber 101, and as a result, the peak power density at a specific position on the optical fiber 101 increases, thereby preventing the optical fiber 101 from being damaged. Is done.
  • the peak power density is a predetermined size of the laser beam L, such exceeded lOOGWZc m 2
  • the shadow of air breakdown that occurs at the focal point A of the condenser lens 13 The laser beam L cannot be transmitted stably due to the influence of air, and the plasma generated by the air breakdown reaches the incident end face 102 of the optical fiber 101 and damages the incident end face 102 of the optical fiber 101. Can be prevented.
  • the distance between the focal point A where the laser beam L is focused by the force focusing lens 13 described with reference to FIGS. 2 to 4 and the incident end face 102 of the optical fiber 101 is, for example, It is one-tenth of a millimeter.
  • the pulse energy of the laser light L is E [Wt]
  • the pulse width of the laser light L is t [sec]
  • the peak power density of the threshold at which air breakdown occurs is Pth [Wt / cm 2 ]
  • the lens focal length f the laser aperture (cross-sectional beam diameter) r, the incident angle ⁇ ⁇ ⁇ of the laser beam L incident on the optical fiber 101, Condenser lens Distance to 13 D, peak power P of laser beam L, and occurrence of air breakdown
  • the focal length f of the condenser lens 13 that does not cause air breakdown at the focal point ⁇ of the condenser lens 13 can be obtained. That is, the focal length f of the condenser lens 13 obtained from the equation (5) and the incident angle of the laser beam L incident on the condenser lens 13 from the equations (3) and (1) or (2) (that is, (Divergence angle) ⁇
  • the incident angle of the laser light L incident on the optical lens 13 is set to be ⁇ , the air
  • the laser beam L can be made incident on the optical fiber 101 with high efficiency without causing a breakdown.
  • Fig. 3 shows the result of calculating the focal length f of the condenser lens 13 that can be used for imaging
  • Fig. 4 shows the result of calculating the incident angle (divergence angle) ⁇ ⁇ ⁇ of the laser light L incident on the condenser lens 13. Show.
  • the light is incident on the optical fiber 101 from the light collecting lens 13.
  • the magnitude of the incident angle ⁇ of the optical fiber 101 is determined by the NA of the optical fiber 101 into which the laser light L is incident.
  • FIG. 3 shows a condensing lens in which an air breakdown occurs when the converging angle (the incident angle on the optical fiber 101) ⁇ ⁇ ⁇ when the laser beam L is incident on the optical fiber 101 is changed.
  • the lower limit is about 0.06 rad.
  • the actual condenser diameter is larger than the ideal condenser diameter. May be.
  • the focal length f of the condensing lens 13 is reduced until the converging diameter that does not cause air breakdown and the actual converging diameter obtained by the equation (2) become equal. It is preferable to increase the numerical aperture NA when the light enters the optical fiber 101 (see FIG. 4).
  • the laser beam L incident on the optical fiber 101 is determined by the relationship between the numerical aperture NA when the laser beam L enters the optical fiber 101 and the angle of incidence ⁇ on the condenser lens 13 suitable for the divergent incidence method.
  • the converging point A of the converging lens 13 and the installation position of the optical fiber 101 have a condensing diameter (radius) at the converging point A of ⁇ [mm]
  • the distance between point A and the incident end face 102 of the optical fiber 101 is Lf [mm]
  • the cross-sectional beam diameter when the laser beam L is incident on the core of the optical fiber 101, that is, the incident diameter is Wi (diameter) [mm ]
  • the incident angle ⁇ ⁇ ⁇ (half angle) of the laser beam L entering the optical fiber 101 is [rad],
  • the distance Lf between the focal position (focus point ⁇ ) of the condenser lens 13 and the incident end face 102 of the optical fiber 101 is set to, for example, 0.25 to 16 mm.
  • the minimum value of the incident diameter of the laser light L incident on the core of the optical fiber 101 is, for example, 420 / im (determined by the power of the laser light L to be transmitted by the optical fiber 101, that is, the energy or the peak power.
  • the range of Lf becomes the range of 0.2516 mm as described above.
  • the minimum distance at which the incident end face 102 of the optical fiber 101 can be set is 1 mm, and the distance from the light collecting point A to the incident end face 102 of the optical fiber 101 is set to be within a range of 11 to 16 mm. If the distance Lf becomes larger than necessary, the laser that does not enter the optical fiber 101 Since the light L is also increased, for example, the upper limit may be about 10 mm.
  • the distance Lf between the condenser lens 13 and the incident end face 102 of the optical fiber 101 is in the range of 1.5 to 5 mm in most cases based on the result of actual assembly adjustment.
  • the peak power obtained by the giant pulse oscillation method is several M
  • FIG. 5 shows an optical fiber 101 having a core diameter of 1000 ⁇ m, a cladding layer thickness of 50 ⁇ m, a numerical aperture NA of 0.2, and a laser beam L having a pulse width of 5 nsec (cross section).
  • Experimental results are shown in which a laser beam L with a beam diameter of 700 ⁇ m was incident using the divergent incidence method described with reference to Fig. 2 and a general convergent incidence method with an incident angle of 0.02 rad.
  • FIG. 5 shows that in the convergent-incidence method, the optical fiber 101 is damaged at a transmission energy of 30 mJ (peak power of 6 MW). On the other hand, it has been confirmed that by applying the divergent incidence method, the optical fiber 101 is not damaged even at a transmission energy of 70 mJ (peak power of 14 MW).
  • the optical fiber 101 has a core 103, It is composed of a clad 104 formed around and a coating layer 105 formed around the clad 104.
  • the thickness of the clad 104 it is known that as the thickness of the clad 104 becomes larger than a predetermined thickness, breakage due to mechanical stress occurs more easily when the optical fiber 101 is bent. It is known that when the thickness of the layer is thin, the optical fiber 101 is damaged by the laser light L leaking from the core 103 to the clad 104 when the laser light L having a peak power of several MW level is incident.
  • the thickness of the clad 104 is smaller than the diameter of the core 103, for example, the thickness of the core 103 is set to 0.
  • the peak power density becomes higher by about one digit than that of the core 103.
  • the power and the peak power are partially increased as if a standing wave were present due to the effect of diffraction that also occurs in the transmission of the normal laser light L at the boundary between the clad 104 and the core 103. Therefore, there is a lower limit in reducing the thickness of the clad 104.
  • FIG. 7 shows that an optical fiber 101 having a core diameter of 1000 ⁇ and a numerical aperture ⁇ of 0.2 is irradiated with a laser beam L having a pulse width of 5 ⁇ sec and a diameter (cross-sectional beam diameter) of 700 ⁇ .
  • the experimental results are shown in which the angle is set to 0.02 rad and the light is incident by the divergent incidence method described with reference to FIG.
  • the limit is 40 mJ (peak power 8 MW), but by setting the thickness of the clad 104 to 50 / im, the limit is 70 mJ. It is recognized that the optical fiber 101 is not damaged even at a peak power of 14 MW.
  • the thickness of the cladding 104 needs to be 35 zm or more in order to transmit the laser beam L having a peak power of 10 MW or more in FIG. Further, if the cladding 104 is thicker than 100 x m, it becomes hard and brittle, and the bending radius of the optical fiber 101 for bending becomes large.
  • a lower limit value is set for the core diameter in relation to the laser power density to be transmitted by the optical fiber 101, and the upper limit value of the core diameter is as described below with reference to FIG. For example, it can be determined as a ratio to the diameter (cross-sectional beam diameter) of the incident laser light L.
  • FIG. 8 shows that the thickness of the clad 104 is constant, and the diameter of the laser beam L (cross-sectional beam diameter) when the laser beam L is incident on the optical fiber 101 is changed. The experimental results with light L incident are shown.
  • the core diameter is preferably 500 ⁇ m or more, considering that it has a margin of about 80%.
  • the core diameter is 000 m
  • the thickness of the clad 104 is 50 ⁇ m
  • the numerical aperture is
  • An incident angle ⁇ ⁇ ⁇ of about 0.06 rad is necessary to make the laser beam L of about 80 mJ in terms of energy output with low loss.
  • the laser light L incident on the optical fiber 101 due to diffraction at the boundary between the core 103 and the clad 104 is transmitted through the optical fiber 101, and the laser light L
  • NA the numerical aperture NA when the light enters. That is, if the numerical aperture NA of the optical fiber 101 is too small, the angle of incidence ⁇ on the optical fiber 101 becomes small in the divergent incidence method, and a sufficient effect cannot be obtained. This is because, as explained earlier,
  • Laser light incident on 101 L-power converges at a specific position inside optical fiber 101, causing damage to optical fiber 101.
  • the numerical aperture NA of the optical fiber 101 increases, so that the target is irradiated with the laser light L with a predetermined sectional beam diameter.
  • the optical fiber 101 described above has a thickness of the clad 104 larger than that of a general optical fiber. Therefore, considering the decrease in mechanical strength (bending resistance), the core 103 refractive Oriritsu of n, and the refractive index of the cladding 104 is n, the numerical aperture NA,
  • NA ⁇ [(n) 2- (n) 2 ]
  • the optical fiber 101 is widely used as a method of lowering the refractive index of the cladding 104 layer in order to increase the numerical aperture NA, and the amount of fluorine or boron doped into the cladding 104 layer is increased. , Brittle and easy to break.
  • the upper limit of the numerical aperture NA defined depending on the irradiation optical system is further reduced to approximately 0.22 rad.
  • the upper limit of the numerical aperture NA of the optical fiber 101 is 0.22. Since the upper limit varies according to the structural characteristics and physical properties of the optical fiber 101 actually used, the upper limit of the numerical aperture NA that can be set for the optical fiber 101 in the divergent incidence method is not necessarily limited to 0.22. Instead, the numerical value is defined by the structural characteristics and physical properties of the optical fiber 101.
  • the lower limit is determined by the focal position of the condenser lens 13 and the incident angle ⁇ of the laser light L incident on the optical fiber 101 according to FIGS. 3 and 4, and the core diameter of the optical fiber 101 described with reference to FIG.
  • the optical fiber 101 capable of transmitting the giant pulse oscillation type laser light L of about 20 MW (100 GW / cm 2 in peak power density) by the divergent incidence method has a diameter of 500 500 1500 zm.
  • the numerical aperture NA of the optical fiber 101 is 0 ⁇ 06—0.22
  • the incident angle ⁇ of the laser light L when the laser light L is incident on the optical fiber 101 is
  • the angle be as large as possible within a range permitted by the configuration of the two-beam light incidence optical device 11.
  • the optical fiber 101 In order to enable stable transmission of the pulse laser light L having a peak power of 10 MW or more or the short pulse laser light L even if the peak power is 10 MW or less, for example, the optical fiber 101
  • the numerical aperture NA is set to 0.2
  • the incident angle ⁇ ⁇ ⁇ of the laser beam L incident on the optical fiber 101 must be up to 0.2 rad (the upper limit of the numerical aperture ⁇ of the optical fiber 101).
  • the numerical values shown below are data of the laser beam L having a peak power of 22 MW described above with reference to FIG. 9, and for example, a solid-state laser oscillator 111 which is an Nd: YAG laser oscillator of a giant panoramic oscillation method.
  • the distance D between the condenser lens 13 and the solid-state laser oscillator 111 is 600 mm
  • the entrance aperture (cross-sectional beam diameter) of the laser beam L to the optical fiber 101 700 ⁇ m (diameter).
  • the launch angle ⁇ 0.13 rad, and the range of the numerical aperture of the optical fiber 101 that can be used in the present invention.
  • the influence of the reflection loss generated at the boundary between the individual lenses is removed as compared with a known example using a composite lens divided into m ⁇ n.
  • the transmission efficiency from the entrance side of the optical lens 13 to the exit side of the optical fiber 101 can be improved by about 10%.
  • the number of optical elements is reduced, so that the cost of the entire laser light incidence optical device 11 is reduced.
  • a step index type optical fiber 101 made of a material containing quartz and having a cladding thickness of 0.035 to 0.1 times the core diameter and an NA of 0.06 to 0.22 is used.
  • the laser beam L from the giant panelless solid-state laser oscillator 111 having a peak power exceeding 10 MW is divergently incident on the incident end face 102 of the optical fiber 101, so that the laser beam is not damaged without damaging the optical fiber 101. L can be transmitted, and there is no need to reduce transmission efficiency or complicated adjustments, and it can be provided at low cost.
  • the laser light incident optical device 11 is a condensing lens 13 for giving a predetermined condensing property to the laser light L from the solid-state laser oscillator 111, and a distance between the condensing lens 13 and the incident end face 102 of the optical fiber 101.
  • a beam splitter (sampling mirror) 31 as a translucent mirror that separates the laser beam L from the solid-state laser oscillator 111 toward the condenser lens 13, and receives the reflected laser beam R separated by the beam splitter 31.
  • a CCD camera 32 as an observation means having, for example, a photoelectric conversion element.
  • An imaging lens 33 is provided between the CCD camera 32 and the beam splitter 31 for imaging the reflected laser light R separated by the beam splitter 31 on a light-receiving surface (not shown) of the CCD camera 32.
  • a light amount adjusting device 34 such as an attenuation filter for adjusting the intensity of the reflected laser light R incident on the CCD camera 32 is provided.
  • the focal length of the condenser lens 13 is f
  • the focal length of the imaging lens 33 is f
  • the position where the CCD camera 32 should be installed (the distance from the incident end face 102 of the optical fiber 101) is b, and the condenser lens 13 and the imaging lens 13 The distance d from 33 is
  • the focal length of the condenser lens 13 and the focal length f of the imaging lens 33 to be observed are determined from the equations (13) and (11).
  • the incident end face 102 of the optical fiber 101 can be observed.
  • a pulling mirror 31 is disposed at an angle of 45 degrees with respect to the principal ray of the laser beam L from the fixed laser oscillator 111 toward the condenser lens 13, and a CCD camera 32 is positioned at a predetermined position behind the imaging lens 33. And reflect the reflected laser light R from the incident end face 102 of the optical fiber 101 to CC An image was formed on the D camera 32, and the incidence was adjusted while observing with a TV monitor (not shown).
  • the distance a between the condenser lens 13 and the incident end face 102 of the optical fiber 101 is about 33 mm, the distance between the imaging lens 33 and the CCD camera 32 is about 79 mm.
  • the image magnification m is about 3.2 times from the equation (11).
  • Adjustment of the distance a between the incident end face 102 of the optical fiber 101 and the condenser lens 13 by the optical fiber position adjusting mechanism 15 is not necessarily required except during the assembly adjustment of the laser light incident optical device 11. Therefore, the configuration used for monitoring the incident state, such as the beam splitter 31, the CCD camera 32, and the imaging lens 33, can be removed from the optical path between the solid-state laser oscillator 111 and the condenser lens 13. Good.
  • FIG. 11 shows an example in which the laser beam incident optical device 11 is used for a laser-induced fluorescence analyzer (a high-speed analyzer using Laser Reduced Breakdown Spectroscopy).
  • Laser-induced fluorescence spectrometers have a slight limitation on the types of samples that can be analyzed (analyte), but the pretreatment steps for preparing the sample can be simplified, the speed is high, and the analyte is solid. It has various advantages, such as being applicable as it is, and is expected to be widely used.
  • the laser-induced fluorescence analyzer 301 includes a giant pulse (GP) oscillation type solid-state laser oscillator 111, a laser light incidence optical device (laser light transmission system: light guide optical system) 11, It has an irradiation optical system 331, a fluorescence detection optical system 341, a monochromator (photodetector or spectroscope) 351, an imaging mechanism 361, a timing adjustment mechanism 371, a data processing device 381, and the like.
  • GP giant pulse
  • the solid-state laser oscillator 111 for example, an Nd: YAG laser or the like is used.
  • the magnitude of the laser light L output from the solid-state laser oscillator 111 is, for example, about 5 ns before the pulse width, a peak power of 14 to 20 MW, and a transmission energy of 70 to 100 mJ (SOGW / peak power density). cm 2 ).
  • the solid-state laser oscillator 111 Although a control device, a power supply device, a cooling device, and the like are included, a detailed description is omitted.
  • the laser light incident optical device 11 irradiates the laser light L from the solid-state laser oscillator 111 to the incident end face 102 of the optical fiber 101 as divergent light in the same manner as described with reference to FIG. 1 or FIG. Includes a condensing lens 13 and the like.
  • the distance between the condenser lens 13 and the incident end face 102 of the optical fiber 101 is set according to the above-described embodiment.
  • the optical fiber 101 has, for example, a core diameter of 1000 xm and a cladding layer thickness of 50 Pm, is condensed by the condenser lens 13, and exhibits divergence by passing through the condenser point. It has a numerical aperture NA of 0.06-0.22 so that a laser beam L having a divergence angle of 0.06-0.22 rad and a sectional beam diameter changed can be efficiently incident.
  • the irradiation optical system 331 is configured to output the pulse laser beam L that is emitted and temporarily emits divergence to the sample S or the sample holding unit that holds the sample S. It has a condenser lens 333 that collects light in a predetermined range of 399. The characteristics of the focusing lens 333 are arbitrarily set according to the size and shape of the sample S.
  • the fluorescence detection optical system (detection light guiding optical system) 341 includes a condenser lens 343 that captures fluorescence from the sample S located on the sample holding unit 399, and a fluorescence captured by the condenser lens 343. Has an optical fiber 345 for inputting the light to a subsequent spectroscope (monochromator).
  • the monochromator 351 is arbitrarily combined with a known spectrometer including a grating (diffraction grating), a wavelength filter, or the like, or a detection mechanism adapted to the characteristics of the sample S.
  • a known spectrometer including a grating (diffraction grating), a wavelength filter, or the like, or a detection mechanism adapted to the characteristics of the sample S.
  • the imaging mechanism 361 receives light (fluorescence) of a specific wavelength extracted by the monochromator 351 and outputs an electric signal corresponding to the light intensity.
  • Multiplier or FFT analyzer etc. It is arbitrarily selected according to the characteristics of sample S.
  • the timing adjustment mechanism 371 is, for example, a main controller of the pulse generator or the laser-induced fluorescence analyzer 301, and outputs a drive timing of a driving pulse supplied to a power supply (not shown) of the solid-state laser oscillator 111, a CCD camera, For example, the operation timing and the like of a gate control type I-CCD are controlled, and the fluorescence generated from the sample S is imaged at a predetermined timing.
  • the data processing device 381 includes an image or spectral spectrum output from the imaging mechanism 361. Are temporarily stored, and stored in advance according to an “element identification program” or an “element quantification program”, or an algorithm for performing predetermined processing on image data or the like supplied from the imaging mechanism 361. Analyze the characteristics of sample S or process the data as a pre-stage
  • a drive pulse is generated at a predetermined timing by the main controller 391 (in the example shown in FIG. 11, integrated with the timing adjuster 371).
  • the solid-state laser oscillator 111 outputs a GP-type pulse laser beam L having a predetermined pulse width and a peak power of 14 to 20 MW.
  • the laser beam L output from the solid-state laser oscillator 111 is converted to divergent by the condenser lens 13, is efficiently incident on the optical fiber 101, and is transmitted to the emission end face 106 of the optical fiber 101. You.
  • the laser beam L emitted from the optical fiber 101 is irradiated onto the sample S by the condenser lens 333 of the irradiation optical system 331.
  • the laser light L has a peak power of 14 to 20 MW, and is condensed by the condenser lens 333 to a diameter of, for example, several hundreds / im, so that the laser light L is irradiated onto the sample S.
  • the peak power density is 80 GW / cm 2 .
  • This light emission (spectrum including fluorescence) is captured by the condenser lens 343 of the fluorescence detection optical system 341 and is incident on the monochromator 351 via the optical fiber 345.
  • the monochromator 351 removes spectral components and the like from the sample S main body, and extracts a spectrum unique to an element contained in the sample S.
  • the spectrum extracted by the monochromator 351 is photoelectrically converted by the imaging mechanism 361, supplied to the data processing unit 381, and the data processing unit 381 specifies the element contained in the sample S.
  • the imaging mechanism 361 is, for example, an FFT analyzer
  • the elements contained in the sample S can be specified by the eyes of an operator.
  • the plasma emission (that is, irradiation of laser light L) power is delayed by several ⁇ sec—several hundred ⁇ sec until the fluorescence spectrum specific to the element contained in sample S is obtained.
  • the operation of the imaging mechanism 361 is controlled by the timing adjustment mechanism 371 (main controller 391). For example, when the imaging mechanism 361 is a CCD camera with a gate, a predetermined delay (delay) is added to the measurement time and the gate is turned on at a predetermined timing, so that only a necessary fluorescence spectrum can be measured. Become.
  • the unit can be arbitrarily placed at any place where the object to be measured is located. Thus, the object to be measured can be analyzed.
  • a laser beam incidence optical device 11 used for processes such as laser-induced fluorescence analysis, laser abrasion, and laser peening using a giant pulse oscillation type laser beam L having a peak power exceeding 10 MW, It is small and can be provided at low cost.
  • a step-index type light having a cladding thickness of 0.035-0.1 times the core diameter and a numerical aperture NA of 0.06-0.22, which is a material containing quartz.
  • Laser light is transmitted without damaging the optical fiber by using a fiber and irradiating the laser light from a giant pulse oscillation type solid laser oscillator with a peak power exceeding 10 MW to the incident end face of the optical fiber as divergent light. It can be provided at low cost without reducing transmission efficiency or complicated adjustment.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Laser Beam Processing (AREA)

Abstract

 石英を含む材質で、コア径に対するクラッドの厚さを0.035~0.1倍、開口数NAを0.06~0.22としたステップインデックス型である光ファイバ(101)を用いる。光ファイバの入射端面(102)にピークパワーが10MWを超えるジャイアントパルス発振方式の固体レーザ発振器(111)からのレーザ光(L)を発散性として入射させることで、光ファイバを損傷させることなく、レーザ光を伝送できる。

Description

明 細 書
レーザ光入射光学装置
技術分野
[0001] 本発明は、ピークパワーが 10MW以上となるジャイアントパルス発振方式のレーザ 光を光ファイバに安定に入射させるレーザ光入射光学装置に関する。
背景技術
[0002] 従来、レーザアブレーシヨンやレーザ誘起蛍光分析あるいはレーザピーユング等に おいては、ピークパワーが数 MW以上となるジャイアントパルス(GP)発振方式の固 体レーザ発振器から得られるレーザ光が使用される。
[0003] このようなパワーの大きなレーザ光の伝送には、例えば石英を材質としたステップィ ンデッタス型の光ファイバが用いられる。
[0004] そして、石英を材質とした光ファイバは、連続発振 (CW)レーザ光の場合、数 kWま で伝送が可能である。し力し、パルス幅が数 nsec程度の短パルスレーザ光でパルス エネルギーが数十 mjを超えるレーザ光は、ピークパワーが数 MW以上となる。
[0005] 短パルスレーザ光のパルスエネルギーは、連続発振光のパルスエネルギーに比較 して 3桁以上大きぐピークパワー密度も 10— 1— 1. OGW/cm2オーダーと非常に高 くなる。このため、電子なだれ現象や多光子吸収による損傷が発生し、光ファイバが 破壊して、レーザ光を伝送できなくなることが知られている。なお、石英 (石英ガラス) 材のパルスレーザ光により損傷するしきい値は、パルス幅約 5nsecで、約 100GWZ cm2程度であるとの報告がある (「レーザハンドブック」、レーザ学会 著、オーム社、 p p. 463, 473)。
[0006] そのため、空間的、時間的に分布を持つレーザ光すなわち短パルスレーザ光を光 ファイバにより伝送する場合の実用的な限界は、例えばパルス幅 5nsec、発振繰り返 し 10Hzの Nd:YAGレーザ光を、コア径が lmmの光ファイバに入射する場合を例に 説明すると、パルスエネルギーで 30— 40mJ程度すなわちピークパワーで 6— 8MW (コア径に対するピークパワー密度は、 0· 76- 1. OGW/cm2)となる。
[0007] このこと力ら、現状では、 10MW以上の短パルスレーザ光を伝送しょうとする場合、 光ファイバの内部が損傷して、実質的にレーザ光を伝送できない。すなわち、光ファ ィバを用いる伝送を前提とした固体レーザ発振器によるレーザ光は、主に連続発振( CW)レーザ光であり、ピークパワーが数 MWを超える短パルスレーザ光は、光フアイ バにより伝送することが困難とされている。
[0008] なお、レーザ光を光ファイバにより伝送するためにレーザ光を光ファイバに入射させ る例として、レーザ光と光ファイバの空間的マッチングをとることが報告されている。こ の場合、レーザ光の光ファイバへの入射口径を光ファイバのコア径以内かつ光フアイ バの開口数 NA以内に制限するために、光ファイバの入射端面にレーザ光を集光し て入射させる報告がある(「レーザ加工技術」、川澄博通 著、 日刊工業新聞社、 pp. 34—37)。
[0009] し力、しながら、ピークパワーの高いレーザ光を集光して光ファイバに入射させると、 光ファイバの内部においてレーザ光の部分的な収束が生じて、光ファイバの特定の 部分でパワー密度が高くなり、光ファイバの内部が損傷することが知られている。また 、光ファイバの内部でのレーザ光の収束を防ぐ目的でレーザ光の集光の程度を浅く する方法も知られている力 ピークパワーが数 MWを超える場合には、光ファイバの 内部におけるレーザ光の収束を完全に防止することは困難である。
[0010] なお、非特許文献 2における報告から光ファイバの内部においてレーザ光が収束 することで、光ファイバが損傷する要因は、ピークパワーが高いレーザ光ではその電 界強度も高くなるため、光ファイバの石英材の屈折率が強い電界により部分的に変 化し、一種のレンズ効果による自己収束が生じることによる、と考えることが妥当であ る。
[0011] また、ピークパワー 10MWを超えるレーザ光伝送を可能とするには、拡大したレー ザ光をアレイ状の分割レンズに入射して空間的に数十分割した後、全分割数をァレ ィの後方に設けた集光レンズで光ファイバに入射させる方法がある。
[0012] ピークパワー 10MWを超えるレーザ光伝送を可能とするには、拡大したレーザ光を アレイ状の分割レンズに入射して空間的に数十分割した後、全分割数をアレイの後 方に設けた集光レンズで光ファイバに入射する方法があるが、アレイ状に配列された 分割レンズの製造可能な大きさが 2mm程度であることから、例えば分割数を 81分割 ( = 9 X 9)とするためには、 2mm角の凸レンズを、縦横 9個並べて 18mm X 18mmと した分割レンズ群 (複眼レンズ)が必要となる。し力 ながら、分割レンズ群すなわち 複眼レンズは、非常に高価になる問題がある。
[0013] また、分割数 81 ( = 9 X 9)を、例えば幅 2mm X長さ 18mmで幅 2mmの方向に曲 率を持たせたシリンドリカルレンズを 9個縦に並べて横方向の分割レンズ群とし、同様 のレンズを 9個横に並べて縦方向の分割レンズ群とし、これら 2つのレンズ群を組み 合わせることにより、上述した複眼レンズと同様の効果を得ることも可能である。しかし ながら、レンズのコストは僅かに低減されるものの、部品点数の増加およびその保持 のための構造部材等によりトータルコストが増大する問題がある。
[0014] また、複眼レンズを用いる場合、レンズの大きさを、分害 !j数 81 = 9 X 9で、 18mm角 とした場合であっても、レーザ光の断面サイズ(ビーム径)は、一辺が 18mmの正方 形の対角線である約 26mmに拡大することが要求される。
[0015] さらに、複眼レンズを用いる場合、上述したコストの増大に加えて、個々のレンズの 境界部分で生じる反射損失の影響により、伝送効率が 10— 20%程度低下するとレ、 う問題、複眼レンズの位置を調整しなければならないという問題がある。
発明の開示
[0016] この発明の目的は、ピークパワーが 10MWよりも大きなジャイアントパノレス発振方式 の固体レーザ発振器からのレーザ光を光ファイバの入射端面に入射させるレーザ光 入射光学装置において、光ファイバを損傷させることなくレーザ光を伝送でき、伝送 効率の低下や、複雑な調整を不要として、安価に提供することである。
[0017] この発明は、ピークパワーが 10MWよりも大きなジャイアントパルス発振方式の固体 レーザ発振器からのレーザ光を光ファイバの入射端面に入射させるレーザ光入射光 学装置であって、前記固体レーザ発振器からのレーザ光を集光する集光レンズと、こ の集光レンズによるレーザ光の集光点より後方の所定位置に光ファイバの入射端面 を設置し、前記レーザ光を発散性として光ファイバの入射端面に入射させる光フアイ バ位置調整機構とを備え、前記光ファイバは、石英を含む材質で、コア径に対するク ラッドの厚さが 0· 035—0. 1倍、開口数 NAが 0· 06-0. 22のステップインデックス 型であるものである。 [0018] そして、石英を含む材質で、コア径に対するクラッドの厚さが 0. 035— 0. 1倍、開 口数 NAが 0· 06-0. 22のステップインデックス型である光ファイバを用いること、こ の光ファイバの入射端面にピークパワー 10MWを超えるジャイアントパルス発振方式 の固体レーザ発振器からのレーザ光を発散性として入射させることにより、光ファイバ を損傷させることなくレーザ光が伝送される。
図面の簡単な説明
[0019] [図 1]図 1は、本発明のレーザ光入射光学装置の実施の形態の一例を示す概略図。
[図 2]図 2は、発散入射方式を適用した集光光学系の伝送モデルを説明する概略図
[図 3]図 3は、光ファイバへの入射角と集光レンズの焦点距離との関係を示すグラフ。
[図 4]図 4は、光ファイバへの入射角と集光レンズの入射発散角との関係を示すグラフ
[図 5]図 5は、光ファイバへの入射方式と伝送エネルギーとの関係を示すグラフ。
[図 6A]図 6Aは、光ファイバの軸線方向の断面図。
[図 6B]図 6Bは、図 6Aに示す光ファイバの軸線方向と直交する方向の断面図。
[図 7]図 7は、クラッド厚さと伝送エネルギーとの関係を示すグラフ。
[図 8]図 8は、コァ径と伝送エネルギーとの関係を示すグラフ。
[図 9]図 9は、光ファイバへの入射角と伝送エネルギーとの関係を示すグラフ。
[図 10]図 10は、本発明のレーザ光入射光学装置の別の実施の形態を示す概略図。
[図 11]図 11は、本発明のレーザ光入射光学装置を組み込んだレーザ誘起蛍光分析 装置の一例を示す概略図。
発明を実施するための最良の形態
[0020] 以下、本発明の一実施の形態を、図面を参照して説明する。
[0021] 図 1ないし図 9において、レーザ光入射光学装置の実施の形態を説明する。
[0022] 図 1に示すように、レーザ光入射光学装置 11は、ピークパワーが 10MWよりも大き なジャイアントパルス発振方式の固体レーザ発振器(レーザ装置) 111により発生さ れたノ^レスレーザ光を、所定のコア径およびクラッド厚の光ファイバ 101の入射端面 102に、光ファイバ 101を損傷することなぐし力 僅かな損失で入射可能とするもの である。
[0023] レーザ光入射光学装置 11は、固体レーザ発振器 111により供給される断面ビーム 径が所定の大きさのレーザ光 Lを集光する集光レンズ 13と、集光レンズ 13と光フアイ バ 101の入射端面 102との間の距離を一定の距離に維持する光ファイバ位置調整 機構 15とを有する。
[0024] 集光レンズ 13は、安価で容易に入手可能な凸レンズであり、固体レーザ発振器 11 1から出射されたレーザ光 Lが入射されることで生じる熱に耐える材質および形状で あれば、特別な制限を受けなレ、。なお、集光レンズ 13は、必要に応じて 2枚の薄肉レ ンズが組み合わせられた合成レンズであってもよレ、。
[0025] 光ファイバ位置調整機構 15は、集光レンズ 13を保持する集光レンズ保持部 16と、 光ファイバ 101を保持する光フアイバ保持部 17と、集光レンズ保持部 16に保持され ている集光レンズ 13に対して光ファイバ 101の入射端面 102が対向する間隔を調整 する調整部 18を有する。この調整部 18により、光ファイバ 101は、光ファイバ 101の 入射端面 102が集光レンズ 13の焦点位置つまり集光点 Aより後方に所定距離だけ 離れた位置に位置されるように調整されている。なお、調整部 18は、手動や、モータ およびギヤ機構等による移動機構などにより、光ファイバ保持部 17における集光レン ズ保持部 16との間の距離を任意の位置に設定可能としている。
[0026] なお、光ファイバ 101の入射端面 102を集光レンズ 13の焦点位置つまり集光点 Aよ り後方に所定距離だけ離れた所定位置に配置することは、光ファイバ 101の入射端 面 102に入射されるレーザ光 Lを発散性とすることである。すなわち、光ファイバ 101 の入射端面 102と集光レンズ 13との間の距離を最適化して光ファイバ 101の入射端 面 102に入射されるレーザ光 Lを発散性とすることにより、光ファイバ 101内に入射さ れたレーザ光 Lが光ファイバ 101内の特定の位置で収束し、その結果、光ファイバ 10 1の特定の位置におけるピークパワーの密度が高くなり、光ファイバ 101が損傷する ことが抑止される。
[0027] また、集光レンズ 13と光ファイバ 101の入射端面 102との間の位置関係を最適化 することにより、レーザ光 Lのピークパワー密度が所定の大きさ、例えば lOOGWZc m2を超えた際に、集光レンズ 13の集光点 Aにて発生するエアーブレークダウンの影 響で、レーザ光 Lが安定に伝送できなくなること、およびエアーブレークダウンが発生 することで生じたプラズマが光ファイバ 101の入射端面 102に到達して光ファイバ 10 1の入射端面 102が損傷することを防止できる。
[0028] 具体的には、図 2ないし図 4により説明する力 集光レンズ 13でレーザ光 Lが集光さ れる集光点 Aと光ファイバ 101の入射端面 102との間の距離は、例えば 1一 10数 m mである。
[0029] すなわち、レーザ光 Lのパルスエネルギーを E[Wt]、レーザ光 Lのパルス幅を t[se c]、エアーブレークダウンが発生するしきい値のピークパワー密度を Pth[Wt/cm2] 、集光レンズ 13により集光されたレーザ光 Lの集光径(半径)を ω [mm]とすると、集 光径 ωは、
ω =^T [E/ (Pth X π X t) ]
で表される。
[0030] また、伝送されるレーザ光 Lのピークパワーを P[W]とすると、(1)式は、
ω =^ [P/ (Pth X π ) ] …(2)
となる。
[0031] 一方、集光レンズ 13に入射するレーザ光 Lの発散角を Θ (半角) [rad]、集光レン ズ 13の焦点距離を f [mm]とすると、集光径(半径) ωは、
f X θ = ω · ' · (3)
1
により表される。
[0032] また、レーザ光 Lの断面ビーム径(口径)を r (半径) [mm]、固体レーザ発振器 111 力 集光レンズ 13までの距離を D [mm]とすれば、集光レンズ 13の焦点距離 f [mm
1
]と集光レンズ 13に入射するレーザ光 Lの発散角 Θ (半角)とにより、集光レンズ 13 により集光されたレーザ光 Lの集光角(つまり集光レンズ 13により集光されたレーザ 光 Lが光ファイバ 101に入射する際の入射角) Θ (半角) [rad]は、
Θ =-r/f + (1-D /ί) X θ · ' · (4)
1 1 1
で求められる。
[0033] 従って、(2)—(4)式から、レンズ焦点距離 f、レーザ口径(断面ビーム径 ) r、光ファ ィバ 101に入射するレーザ光 Lの入射角 Θ 、固体レーザ発振器 111から集光レンズ 13までの距離 D、レーザ光 Lのピークパワー P、およびエアーブレークダウンの発生
1
しきレ、値のピークパワー密度 Pthは、
f = [- (r- a ) { (r- a ) 2-4 X Θ X a X D } ] / (2 Χ θ )
2 1 2
: a
Figure imgf000009_0001
π ) ] …(5)
により規定される関係を持つ。
[0034] (5)式により、集光レンズ 13の集光点 Αにおいてエアーブレークダウンが生じること のない集光レンズ 13の焦点距離 fを求めることができる。すなわち、(5)式より求めら れる集光レンズ 13の焦点距離 fおよび(3)式と(1 )式もしくは(2)式から集光レンズ 1 3に入射するレーザ光 Lの入射角(すなわち発散角) Θ を求めることができるため、集
1
光レンズ 13に入射するレーザ光 Lの入射角を Θ になるように設定すれば、エアーブ
1
レークダウンを発生させることなぐ効率よぐ光ファイバ 101にレーザ光 Lを入射する ことが可能となる。
[0035] 一例として、レーザ光 Lの口径(直径)を 2— 13mmの範囲とし、集光レンズ 13と固 体レーザ発振器 1 1 1との間の距離を 10— 500mmの範囲で変化させた場合に利用 可能な集光レンズ 13の焦点距離 fを計算した結果を図 3に、集光レンズ 13に入射す るレーザ光 Lの入射角(発散角) Θ を計算した結果を図 4に、それぞれ示す。
1
[0036] 例えば、レーザ光 Lの口径を r= 3mm (直径 6mm)、固体レーザ発振器 1 1 1から集 光レンズ 13までの距離 Dを D = 100mm,集光レンズ 13から光ファイバ 101へ入射
1 1
するレーザ光 Lの入射角(集光角)を Θ = 0. 15rad、ピークパワーを P = 20MW、ェ
2
ァーブレークダウンの発生しきい値のピークパワー密度を Pth= 100GW/cm2とし て、集光レンズ 13の焦点距離 fと集光レンズ 13に入射するレーザ光の入射角 Θ を 求めると、 f = 24. 9mm、 θ = 3. 2mrad (全角で 6. 4mrad)となる。
[0037] 例えば、実測より設定した集光レンズ 13の焦点距離 fを (4)式に代入し、光ファイバ 101の入射角 Θ の大きさを、レーザ光 Lが入射される光ファイバ 101の NAを超えな
2
い範囲に、集光レンズ 13の焦点距離 fを設定する必要がある(図 3参照)。
[0038] すなわち、図 3は、光ファイバ 101にレーザ光 Lを入射する際の集光角(光ファイバ 101への入射角) Θ を変化させた際にエアーブレークダウンが発生する集光レンズ
1
13の焦点位置を示している力 レーザ光 Lの口径(断面ビーム径)と集光レンズ 13の 設置位置を変化させた結果、下限値は、 0. 06rad程度となる。
[0039] し力しながら、レーザ光 Lの質(空間モードや波面等)や集光レンズ 13の収差の影 響等により、理想的な集光径よりも実際の集光径の方が大きくなる場合がある。
[0040] このような場合には、(2)式で求められるエアーブレークダウンを起こさない集光径 と実際の集光径が同等になるまで集光レンズ 13の焦点距離 fを短くし、レーザ光しが 光ファイバ 101へ入射する際の開口数 NAを大きくすることが好ましい(図 4参照)。な お、レーザ光 Lが光ファイバ 101へ入射する際の開口数 NAと発散入射方式に適し た集光レンズ 13への入射角 Θ との関係から光ファイバ 101へ入射されるレーザ光 L
1
の入射角 Θ の下限値は、 0. 06rad程度より大きいことが好ましい。
2
[0041] また、集光レンズ 13の集光点 Aと光ファイバ 101の設置位置(入射端面 102の位置 )は、集光点 Aでの集光径(半径)を ω [mm]、集光点 Aと光ファイバ 101の入射端面 102との間の距離を Lf [mm]、レーザ光 Lが光ファイバ 101のコアへ入射する際の断 面ビーム径、すなわち入射径を Wi (直径) [mm]、レーザ光 Lが光ファイバ 101へ入 射する際の入射角 Θ (半角) [rad]とすると、
2
Lf = ( Wi-2 ω ) / ( 2 X tan θ )…(6)
2
で表される。
[0042] (6)式を用いて、集光レンズ 13の焦点位置 (集光点 Α)と光ファイバ 101の入射端 面 102との間の距離 Lfは、例えば 0. 25— 16mmに設定される。詳細には、光フアイ バ 101のコアへ入射するレーザ光 Lの入射径の最小値を、例えば 420 /i m (光フアイ バ 101により伝送すべきレーザ光 Lのパワーつまりエネルギーまたはピークパワーに より決まるコア径の最小値)、また、最大値を、例えば容易に入手可能な光ファイバ 1 01の最大コア径 1500 μ mの 90%である 1350 μ mとして、 Wi=420- 1350 μ m、 ω = 100 μ πι (ピークパワー 30MW、エアーブレークダウン発生しきい値 100GW/ cm2における最低集光径)、 Θ = 0. 06-0. 22rad (後述)として、好適な Lfの範囲
2
を計算すると、 Lfの範囲は、上述したとおり 0. 25 16mmの範囲となる。
[0043] 実用上、光ファイバ 101の入射端面 102を設定可能な最小距離を lmmとして、集 光点 Aから光ファイバ 101の入射端面 102までの距離は 1一 16mmの範囲と定める。 し力、しながら、距離 Lfが必要以上に大きくなると、光ファイバ 101に入射しないレーザ 光 Lも増大されることから、例えば上限値は、 10mm程度でよい。
[0044] より好ましくは、集光レンズ 13と光ファイバ 101の入射端面 102との間の距離 Lfは、 実際の組み立て調整の結果に基づくと、ほとんどの場合、 1. 5— 5mmの範囲である
[0045] 次に、光ファイバ 101のコア径およびクラッド層の厚さから光ファイバ 101に入射可 能なレーザ光 Lの強度について説明する。
[0046] 先に説明した通り、ジャイアントパルス発振方式により得られるピークパワーが数 M
W (ピークパワー密度で 10— 1— 1. OGW/cm2)を超えるレーザ光 Lを光ファイバ 101 に入射しょうとした場合、光ファイバ 101が損傷してレーザ光 Lが伝送できないことが 知られている。
[0047] このため、図 1、図 2ないし図 4により説明した集光レンズ 13と光ファイバ 101の入射 端面 102との間の距離 Lfならびに集光レンズ 13にレーザ光 Lが入射される際の入射 角 Θ および集光レンズ 13により集光されたレーザ光 Lを光ファイバ 101の入射端面 102に入射させる際の集光角 Θ を規定するのみでは、光ファイバ 101が損傷する場
2
合がある。
[0048] 以下、好適な光ファイバ 101の構造上の特徴およびレーザ光 Lの伝送特性につい て説明する。
[0049] 図 5に、コアの径が 1000 μ m、クラッド層の厚さが 50 μ m、開口数 NAが 0· 2の光 ファイバ 101に、パルス幅が 5nsecでレーザ光 Lの口径(断面ビーム径)力 700 μ m のレーザ光 Lを、入射角を 0. 02radとして図 2により説明した発散入射方式と一般的 な収束入射方式とにより、入射した実験結果を示す。
[0050] 図 5力、ら、収束入射方式では、伝送エネルギー 30mJ (ピークパワー 6MW)で、光フ アイバ 101が損傷することが認められる。これに対し、発散入射方式を適用することで 、伝送エネルギー 70mJ (ピークパワー 14MW)でも光ファイバ 101が損傷しないこと が確認されている。
[0051] また、光ファイバ 101の構造上の特徴としては、コア材質の純度が高いことからレー ザ光 Lのエネルギーによる損傷に強いことが知られている図 6に示すような構造のス テツプインデックス型の石英材質とする。光ファイバ 101は、コア 103、このコア 103の 周囲に形成されたクラッド 104、クラッド 104の周囲に形成された被覆層 105で構成 されている。
[0052] なお、クラッド 104の厚さについては、所定の厚さよりも厚くなるにつれて光ファイバ 101を曲げた際に機械的応力による破損が生じ易くなることが知られており、反面、ク ラッド 104の層の厚みが薄いと、数 MWレベルのピークパワーのレーザ光 Lを入射し た際に、コア 103からクラッド 104に漏れるレーザ光 Lによって光ファイバ 101が破損 することが知られている。
[0053] また、クラッド 104の厚さは、コア 103の径に比べて薄ぐ例えばコア 103の径の 0.
05-0. 1倍程度である。このため、クラッド 104に漏れたわずかなレーザ光 Lであつ ても、ピークパワー密度がコア 103の部分よりも 1桁程度高くなる。なお、クラッド 104 とコア 103との境界部における通常のレーザ光 Lの伝送においても生じる回折の影 響によりあた力、も定在波が存在するかのように、部分的にピークパワーが高くなること から、クラッド 104の厚さを薄くすることにも下限値が存在する。
[0054] 図 7に、コア径カ 1000 μ ΐη、開口数 ΝΑが 0. 2の光ファイバ 101に、パルス幅が 5η secで口径(断面ビーム径)が 700 μ ΐηのレーザ光 Lを、入射角を 0· 02radとして図 2 により説明した発散入射方式により入射し、クラッド 104の厚さを変化させた実験結果 を示す。
[0055] 図 7から明らかなように、クラッド 104の厚さが増すにつれて大きなエネルギーが伝 送可能となることが認められる。すなわち、図 7から、クラッド 104の厚さが 20 /i mであ る場合には、 40mJ (ピークパワー 8MW)が限界であつたが、クラッド 104の厚さを 50 /i mとすることで、 70mJ (ピークパワー 14MW)でも光ファイバ 101が損傷しないこと が認められる。
[0056] 従って、図 7力、ら、ピークパワー 10MW以上のレーザ光 Lを伝送可能とするために は、クラッド 104の厚さは 35 z m以上必要であることが認められる。また、クラッド 104 が 100 x mより厚くなると、硬くもろくなり、光ファイバ 101が曲がりにくぐ曲げ半径が 大きくなるため、 lOO x m以下とする。
[0057] 一方、コア径については、光ファイバ 101により伝送すべきレーザパワー密度との 関係で、下限値が設定されるが、コア径の上限値は、図 8により以下に説明する通り 、例えば入射するレーザ光 Lの口径(断面ビーム径)に対する割合として判断できる。
[0058] 図 8に、クラッド 104の厚さを一定とし、コア径を変化させた光ファイバ 101に、光フ アイバ 101に入射する際のレーザ光 Lの口径(断面ビーム径)を変えてレーザ光 Lを 入射した実験結果を示す。
[0059] 図 8から、コア径と入射するレーザ光 Lの断面ビーム径(口径)との間に差があつたと してもクラッド 104の厚さが同じであれば、この範囲の入射口径であれば同じ 10MW のピークパワーのレーザ光 Lを伝送できる結果を得た。
[0060] すなわち、図 8に示される通り、ピークパワー 10MW以上を伝送可能とするために は集光径は 420 z m以上が必要であるという結果を得た。このため、集光径に対して
80%程度の裕度を持たせることを考慮してコア径は 500 μ m以上が好ましレ、。
[0061] また、図 9に示すように、コア径カ 000 m、クラッド 104の厚さが 50 μ m、開口数
NAが 0. 2の光ファイバ 101に、発散入射方式により、口径(断面ビーム径)が 700 μ mでパルス幅が 5nsecのレーザ光 Lを入射させる際に、光ファイバ 101へ入射するレ 一ザ光 Lの入射角 Θ を変化させて実験した結果から、ピークパワーが 15MW (エネ
2
ルギー換算で 80mJ)前後のレーザ光 Lを低損失で入射させるためには、 0. 06rad 程度の入射角 Θ が必要となる。なお、入射角 Θ が大きくなるにつれて大きなェネル
2 2
ギ一が伝送可能となり、入射角 Θ を 0. 12rad程度とすることで、ピークパワーが 20
2
MWのレーザ光 Lを伝送できる結果を得た。
[0062] 一方、光ファイバ 101には、コア 103とクラッド 104との境界部における回折により光 ファイバ 101に入射したレーザ光 Lが光ファイバ 101内を伝送されることに依存して、 レーザ光 Lが入射する際の開口数 NAの上限が存在する。すなわち、光ファイバ 101 の開口数 NAは、小さすぎると発散入射方式において、光ファイバ 101への入射角 Θ が小さくなり十分な効果が得られない。このことは、先に説明した通り、光ファイバ
2
101に入射したレーザ光 L力 光ファイバ 101の内部の特定の位置で収束し、光ファ ィバ 101の損傷を引き起こす。
[0063] また、光ファイバ 101の開口数 NAが大きくなると、光ファイバ 101から出射されるレ 一ザ光 Lの角度を増大させることから、レーザ光 Lを所定の断面ビーム径で対象物に 照射するために用いられる照射光学系の大きさも増大する。例えば、屈折率 nが n= 1. 5程度のガラス材による 1枚の平凸レンズを用いて、 1以下の結像倍率で光フアイ バ 101から出射されたレーザ光 Lを対象物に集光するためには、レンズ曲率に対す るレンズ口径の製作限界の観点から、光ファイバ 101の開口数 NAは、 NA=0. 25r ad以下であるとされる。
[0064] なお、前述した光ファイバ 101は、クラッド 104の厚さが一般的な光ファイバのクラッ ド厚さよりも厚レ、ことから、機械的強度 (抗曲げ性)の低下を考慮すると、コア 103の屈 折率を n、クラッド 104の屈折率を nとすると、開口数 NAは、
1 2
NA=^ [ (n ) 2- (n ) 2]
1 2
より規定される。
[0065] また、光ファイバ 101は、開口数 NAを大きくするためにクラッド 104層の屈折率を 下げる方法として広く利用され、クラッド 104層にドープされるフッ素やホウ素の量が 増大されることにより、脆ぐ折れやすくなる。なお、図 7により求められたクラッド 104 の厚さを考慮すると、上述した照射光学系に依存して規定される開口数 NAの上限 は、さらに低下されて、概ね 0. 22radとなる。
[0066] 従って、光ファイバ 101の開口数 NAの上限は、 0. 22となる。なお、上限値は、実 際に用いられる光ファイバ 101の構造上の特徴および物性に従って変化するので、 発散入射方式において光ファイバ 101に設定可能な開口数 NAの上限は、必ずしも 0. 22に限らず、光ファイバ 101の構造上の特徴および物性により規定される数値と する。
[0067] なお、下限値は、図 3および図 4により集光レンズ 13の焦点位置と光ファイバ 101 へ入射するレーザ光 Lの入射角 Θ と、図 8により説明した光ファイバ 101のコア径と
2
光ファイバ 101へ入射するレーザ光 Lの口径(断面ビーム径)によりコア径が制約を 受けないという実験結果、ならびに図 9により説明したエネルギー伝送能力の確認結 果から、レーザ光 Lの入射角 Θ と同等であればよいことが認められるので、開口数 N
2
A=0. 06—0. 22radとなる。
[0068] 以上のことから、発散入射方式により 20MW (ピークパワー密度で 100GW/cm2) 程度のジャイアントパルス発振方式のレーザ光 Lを伝送できる光ファイバ 101は、 103の径カ 500 1500 z m クラッド 104の厚さ力 S35— 100 μ m
光ファイバ 101の開口数 NAが 0· 06—0. 22
の範囲であることが好ましレ、。
[0069] なお、光ファイバ 101にレーザ光 Lを入射する際のレーザ光 Lの入射角 Θ は、レー
2 ザ光入射光学装置 11の構成に許容される範囲内でできるだけ大きな角度であること が好ましい。
[0070] 以上から、ピークパワーが 10MW以上のパルスレーザ光 Lもしくはピークパワーが 1 0MW以下であっても短パルスレーザ光 Lを安定に伝送を可能とするためには、例え ば光ファイバ 101の開口数 NA=0. 2とした場合、光ファイバ 101に入射するレーザ 光 Lの入射角 Θ は、 0. 2rad (光ファイバ 101の開口数 ΝΑの上限値)までとすること
2
が好ましい。
[0071] 次に、レーザ光入射光学装置 11の具体的な一例を説明する。
[0072] なお、以下に示す数値は、図 9により前に説明したピークパワーが 22MWのレーザ 光 Lのデータであり、例えば、ジャイアントパノレス発振方式の Nd : YAGレーザ発振器 である固体レーザ発振器 111を用レ、、パルス幅が 5nsec、パルスエネルギーが 110 mj (ピークパワー 22MW= 110mj/5nsec)、直径 6mmのレーザ光 Lを、ステップィ ンデッタス型の石英材質の光ファイバ 101に以下の条件で伝送させた結果である。
[0073] 集光レンズ 13への入射角(入射発散角) Θ = 1. 8mrad (半角)、
1
レーザ口径(断面ビーム径) r (半径) = 3mm (直径 6mm)、
集光レンズ 13と固体レーザ発振器 111との間隔 D =600mm、
1
集光レンズ 13の焦点距離 f= 31mm、
光ファイバ 101のコア径 1000 μ m、
クラッド 104の厚さ 50 μ m、
開口数 NA=0. 2rad、
光ファイバ 101へのレーザ光 Lの入射角 θ =0. 13rad (半角)、
2
集光レンズ 13の集光点 Aから光ファイバ 101の入射端面 102までの距離 Lf= 2m m、
光ファイバ 101へのレーザ光 Lの入射口径(断面ビーム径): 700 μ m (直径)。 [0074] なお、上述したそれぞれの数値、すなわち集光レンズ 13への入射角(入射発散角) Θ = 1. 8mrad、集光レンズ 13と固体レーザ発振器 111との間隔 D = 600mm、レ 一ザ入射口径(断面ビーム径) r (半径) = 3mm、集光レンズ 13の焦点距離 f= 31m mから (4)式を用いて先に説明した光ファイバ 101への入射角 Θ を求めたところ、入
2
射角 Θ =0. 13radとなり、本発明で利用可能とした光ファイバ 101の開口数の範囲
2
である NA=0. 06-0. 22radの範囲であることが確認されている。
[0075] なお、発散入射方式によれば、 m X nに分割された複合レンズを用いる周知の例に 比較して、個々のレンズの境界部分で生じる反射損失の影響が除去されるので、集 光レンズ 13の入射側から光ファイバ 101の出射側への伝送効率が約 10%向上でき る。
[0076] また、発散入射方式では、光学要素の個数が低減されるので、レーザ光入射光学 装置 11全体のコストが低減される。
[0077] 従って、石英を含む材質で、コア径に対するクラッドの厚さが 0. 035— 0. 1倍、開 口数 NAが 0· 06-0. 22のステップインデックス型である光ファイバ 101を用いること 、この光ファイバ 101の入射端面 102にピークパワー 10MWを超えるジャイアントパ ノレス発振方式の固体レーザ発振器 111からのレーザ光 Lを発散性として入射させる ことにより、光ファイバ 101を損傷させることなくレーザ光 Lを伝送でき、伝送効率の低 下や、複雑な調整を不要とし、安価に提供できる。
[0078] 次に、図 10により、レーザ光入射光学装置 11の別の実施の形態を説明する。
[0079] なお、図 1ないし図 9に示した実施の形態により既に説明した構成と同じ、または類 似した構成には、同一の符号を付して詳細な説明を省略する。
[0080] レーザ光入射光学装置 11は、固体レーザ発振器 111からのレーザ光 Lに所定の 集光性を与える集光レンズ 13、集光レンズ 13と光ファイバ 101の入射端面 102との 間の距離を一定の距離に維持する光ファイバ位置調整機構 15、固体レーザ発振器 111と集光レンズ 13との間に設けられ、光ファイバ 101の入射端面 102で反射された 反射レーザ光(戻りレーザ光) Rを、固体レーザ発振器 111から集光レンズ 13に向か うレーザ光 Lから分離する半透明鏡としてのビームスプリッタ(サンプリングミラー) 31、 このビームスプリッタ 31により分離された反射レーザ光 Rを受光してその強度に対応 する電気信号を出力する、例えば光電変換素子を有する観測手段としての CCDカメ ラ 32を有する。なお、 CCDカメラ 32とビームスプリッタ 31との間には、ビームスプリツ タ 31により分離された反射レーザ光 Rを CCDカメラ 32の図示しない受光面に結像す る結像レンズ 33が設けられ、また、結像レンズ 33と CCDカメラ 32との間には、必要に 応じて、 CCDカメラ 32に入射される反射レーザ光 Rの強度を調整する減衰フィルタ 等である光量調整装置 34が設けられてレ、る。
[0081] CCDカメラ 32には、光ファイバ 101の入射端面 102に入射するレーザ光 Lの入射 位置に起因する情報が結像される。従って、 CCDカメラ 32により得られた入射端面 1 02の画像に基づいて、例えば光ファイバ位置調整機構 15の光ファイバ保持部 17の 位置を、例えば詳述しない移動機構により変位させることで、光ファイバ 101の入射 端面 102の位置と結像レンズ 13との間の距離を、図 2 図 4により説明した所望の位 置に設定することができる。
[0082] なお、集光レンズ 13の焦点距離を f 、結像レンズ 33の焦点距離を f 、光ファイバ 10
1 2
1の入射端面 102から結像レンズ 13までの距離を aとすると、 CCDカメラ 32を設置す べき位置(光ファイバ 101の入射端面 102からの距離)を b、集光レンズ 13と結像レン ズ 33との間の距離 dは、倍率を mとするとき、
b= (1 +m) X f -m2 X a - - - (11)
2
m=f /f ー(12)
2 1
d=f +f · ' · (13)
2 1
で表される。
[0083] よって、(12)式を用いて、集光レンズ 13の焦点距離 および観測したい像倍率 m 力 結像レンズ 33の焦点距離 f を定め、次に(13)式および(11)式より 2つのレンズ
2
相互の間隔(距離 d)および CCDカメラ 32の位置等を決めることで、光ファイバ 101 の入射端面 102の観測が可能となる。
[0084] 一例を示すと、集光レンズ 13の焦点距離を f = 3 lmmとし、ビームスプリッタ(サン
1
プリングミラー) 31を、固定レーザ発振器 111から集光レンズ 13に向力、うレーザ光 L の主光線に対して 45度の角度で配置し、結像レンズ 33の後方の所定位置に CCD カメラ 32を位置させて、光ファイバ 101の入射端面 102からの反射レーザ光 Rを CC Dカメラ 32に結像し、図示しない TVモニタにて観測しながら入射調整を実施した。
[0085] なお、像倍率 mを概ね 3倍とする場合、 (12)式より、結像レンズ 33の焦点距離を例 えば f = 100mmとすると、 (13)式より、集光レンズ 13と結像レンズ 33との間の距離
2
dは、概ね 131mmである。また、集光レンズ 13と光ファイバ 101の入射端面 102との 間の距離 aが約 33mmであることから、結像レンズ 33と CCDカメラ 32との間の距離は 、約 79mmとなる。このとき、像倍率 mは、(11)式より、約 3. 2倍となる。
[0086] 光ファイバ位置調整機構 15による光ファイバ 101の入射端面 102と集光レンズ 13 との間の距離 aの調整は、レーザ光入射光学装置 11の組立調整時を除いて必ずしも 必要ではないことから、ビームスプリッタ 31、 CCDカメラ 32および結像レンズ 33等の 入射状態のモニタに利用される構成は、固体レーザ発振器 111と集光レンズ 13との 間の光路から取り外しできるように構成されてもよい。
[0087] 次に、図 11により、レーザ光入射光学装置 11のさらに別の実施の形態を説明する
[0088] 図 11は、レーザ光入射光学装置 11を、レーザ誘起蛍光分析装置 (Laser Induce d Breakdown Spectroscopyを利用した高速の分析装置)に用いた例を示す。レ 一ザ誘起蛍光分析装置は、分析可能な試料 (分析対象物)の種類に僅力 制限を 含むが、試料を準備する前処理段階が簡素化できること、高速であること、分析対象 物が固体である場合にそのまま適用可能であること、等の様々な利点を有し、広範囲 な利用が期待されている。
[0089] 図 11に示されるように、レーザ誘起蛍光分析装置 301は、ジャイアントパルス(GP) 発振方式の固体レーザ発振器 111、レーザ光入射光学装置(レーザ光伝送システム :導光光学系) 11、照射光学系 331、蛍光検出光学系 341、モノクロメータ (光検出 器または分光器) 351、撮像機構 361、タイミング調整機構 371、およびデータ処理 装置 381等を有する。
[0090] 固体レーザ発振器 111としては、例えば Nd : YAGレーザ等である。なお、固体レ 一ザ発振器 111から出力されるレーザ光 Lの大きさは、例えば、パルス幅が 5nsec前 後、ピークパワーが 14一 20MW、伝送エネルギーが 70— lOOmJ (ピークパワー密 度で SOGW/cm2)程度である。また、固体レーザ発振器 111は、多くの場合、発振 制御装置、電源装置、冷却装置等を含むが、詳細な説明は省略する。
[0091] レーザ光入射光学装置 11は、図 1または図 10により説明したと同様に、固体レー ザ発振器 111からのレーザ光 Lを、光ファイバ 101の入射端面 102に発散性の光とし て入射させる集光レンズ 13などを含む。なお、集光レンズ 13と光ファイバ 101の入射 端面 102との間の距離は、上述した実施の形態に従って設定されている。
[0092] 光ファイバ 101は、例えばコア径が 1000 x mで、クラッド層の厚さが 50 μ mであり、 集光レンズ 13により集光され、集光点を通過することにより発散性を示し、広がり角が 0. 06-0. 22radに断面ビーム径が変化されたレーザ光 Lが効率よく入射可能に、 0 . 06—0. 22の開口数 NAを有する。
[0093] 照射光学系 331は、レーザ光入射光学装置 11の光ファイバ 101の出射端面 106 力 出射されて一旦発散性を示すパルスレーザ光 Lを、試料 Sまたは試料 Sを保持し た試料保持部 399の所定の範囲に集光する集光レンズ 333を有する。なお、集光レ ンズ 333の特性は、試料 Sの大きさや形状にあわせて任意に設定される。
[0094] 蛍光検出光学系(検出光導光光学系) 341は、試料保持部 399上に位置された試 料 Sからの蛍光を捕獲する集光レンズ 343と、集光レンズ 343により捕獲された蛍光 を後段の分光器 (モノクロメータ)に入射するための光ファイバ 345を有する。
[0095] モノクロメータ 351は、例えばグレーティング(回折格子)や波長フィルタ等を含む周 知の分光計または試料 Sの特性に合わせた検出機構が任意に組み合わせられてい る。
[0096] 撮像機構 361は、モノクロメータ 351により抜き出された特定の波長の光(蛍光)を 受光してその光強度に対応する電気信号を出力するもので、例えば周知の CCD力 メラやフォトマルチプライヤもしくは FFTアナライザ等力 試料 Sの特性に合わせて任 意に選択される。
[0097] タイミング調整機構 371は、例えばパルス発生器またはレーザ誘起蛍光分析装置 3 01の主制御装置であり、固体レーザ発振器 111の図示しない電源装置に供給され る駆動パルスの出力タイミングと CCDカメラ、例えばゲート制御型の I一 CCDの動作タ イミング等を制御して、試料 Sから発生される蛍光を、所定のタイミングで撮像させる。
[0098] データ処理装置 381は、撮像機構 361から出力される画像あるいは分光スペクトル 等を一時的に記憶し、予め記憶されてレ、る「元素同定プログラム」や「元素定量プログ ラム」もしくは撮像機構 361から供給される画像データ等に所定の処理をカ卩えるアル ゴリズム等に従って、試料 Sの特性を解析またはその前段階としてデータを処理する
[0099] 図 11に示したレーザ誘起蛍光分析装置 301においては、主制御装置 391 (図 11 に示す例では、タイミング調整装置 371と一体化されている)により、所定タイミングで 駆動パルスが生成され、この駆動パルスに基づいて固体レーザ発振器 111から、所 定パルス幅で、ピークパワーが 14一 20MWの GP方式のパルスレーザ光 Lが出力さ れる。
[0100] 固体レーザ発振器 111から出力されたノ^レスレーザ光 Lは、集光レンズ 13により発 散性に変換され、光ファイバ 101に効率よく入射され、光ファイバ 101の出射端面 10 6に伝送される。
[0101] 光ファイバ 101から出射されたレーザ光 Lは、照射光学系 331の集光レンズ 333に より、試料 Sに照射される。なお、レーザ光 Lは、既に説明した通り、ピークパワーが 1 4一 20MWであり、集光レンズ 333により、例えば数百/ i mの直径に集光されること で、試料 Sに照射される時点で、ピークパワー密度が 80GW/ cm2である。これにより 、試料 Sが、プラズマ化し、このプラズマエネルギーにより、試料中に存在する各元素 から、それぞれ固有の蛍光(蛍光を含むスペクトル)が放射される。
[0102] この発光(蛍光を含むスペクトル)は、蛍光検出光学系 341の集光レンズ 343で捕 獲され、光ファイバ 345を介してモノクロメータ 351に入射される。
[0103] 以下、モノクロメータ 351で、試料 S本体からのスペクトル成分等が除去され、試料 S に含まれる元素に固有のスペクトルが抽出される。
[0104] モノクロメータ 351により抽出されたスペクトルは、撮像機構 361により光電変換され 、データ処理部 381に供給され、データ処理部 381で、試料 Sに含まれる元素が特 定される。例えば、撮像機構 361が、例えば FFTアナライザである場合には、作業者 の目視により、試料 Sに含まれる元素が特定可能である。
[0105] なお、試料 Sに含まれる元素に固有の蛍光スペクトルが得られるまでに、プラズマ発 光(すなわちレーザ光 Lの照射)力 数 μ sec—数百 μ sec遅れることが知られてレ、る ため、タイミング調整機構 371 (主制御装置 391)により、撮像機構 361の動作が制 御される。例えば撮像機構 361がゲート付き CCDカメラである場合には、計測時間 に所定のディレイ(遅延)が付加されるとともに所定のタイミングでゲートがオンされる ことで、必要な蛍光スペクトルのみが計測可能となる。
[0106] また、上述したレーザ誘起蛍光分析装置 301では、 ICP発光分析のような試料の 前処理がほとんど不要であり、迅速な測定が可能である。なお、レーザ誘起蛍光分 析装置 11では、試料にレーザ光 Lを照射する際の空間的な (場所や大きさの)制約 が少ないので、ユニットィ匕することにより、測定対象物のある任意の場所で、測定対 象物を分析が可能となる。
[0107] 以上のように、レーザ誘起蛍光分析装置 11によれば、光学部品の数が少なぐ安 価で、高効率で、ビーム拡大用コリメータとビーム分割用アレイレンズを使用せず、集 光レンズ(凸レンズ):!枚もしくは 2枚で光ファイバへ入射させることができる。
[0108] また、ピークパワー 10MWを超えるジャイアントパルス発振方式のレーザ光 Lを用 いる例えばレーザ誘起蛍光分析、レーザアブレーシヨン、レーザピーニング等のプロ セスに利用されるレーザ光入射光学装置 11が、小型で、安価に提供できる。
[0109] なお、前記各実施の形態に限定されるものではなぐその実施の段階ではその要 旨を逸脱しない範囲で種々な変形もしくは変更が可能である。また、各実施の形態 は、可能な限り適宜組み合わせて実施されてもよぐその場合、組み合わせによる効 果が得られる。
産業上の利用可能性
[0110] 本発明によれば、石英を含む材質で、コア径に対するクラッドの厚さが 0. 035— 0 . 1倍、開口数 NAが 0. 06-0. 22のステップインデックス型である光ファイバを用い ること、この光ファイバの入射端面にピークパワー 10MWを超えるジャイアントパルス 発振方式の固体レーザ発振器からのレーザ光を発散性として入射させることにより、 光ファイバを損傷させることなくレーザ光を伝送でき、伝送効率の低下や、複雑な調 整を不要として、安価に提供できる。

Claims

請求の範囲
[1] ピークパワーが 10MWよりも大きなジャイアントパルス発振方式の固体レーザ発振 器力 のレーザ光を光ファイバの入射端面に入射させるレーザ光入射光学装置であ つて、
前記固体レーザ発振器からのレーザ光を集光する集光レンズと、
この集光レンズによるレーザ光の集光点より後方の所定位置に光ファイバの入射端 面を設置し、前記レーザ光を発散性として光ファイバの入射端面に入射させる光ファ ィバ位置調整機構と、
を備え、
前記光ファイバは、石英を含む材質で、コア径に対するクラッドの厚さが 0. 035— 0
. 1倍、開口数 NAが 0· 06-0. 22のステップインデックス型であることを特徴とする レーザ光入射光学装置。
[2] 前記光ファイバは、コア径カ S500— 1500 μ m、クラッドの厚さが 35— 100 μ mであ ることを特徴とする請求項 1記載のレーザ光入射光学装置。
[3] 前記光ファイバの入射端面に、半角で 0. 06-0. 22rad、および光ファイバに固有 の入射限界の角度のいずれか一方で、レーザ光が入射されることを特徴とする請求 項 1または 2記載のレーザ光入射光学装置。
[4] 前記光ファイバ位置調整機構は、光ファイバの入射端面を、集光レンズによるレー ザ光の集光点の後方 1一 16mmに位置させることを特徴とする請求項 1ないし 3いず れか記載のレーザ光入射光学装置。
[5] 前記光ファイバ位置調整機構は、光ファイバの入射端面を集光レンズによるレーザ 光の集光点の後方 1. 5— 5mmに設置することを特徴とする請求項 4記載のレーザ 光入射光学装置。
[6] 固体レーザ発振器と集光レンズとの間に設けられた半透明鏡と、この半透明鏡を通 じて光ファイバの入射端面の光像を観測する観測手段と、をさらに備えたことを特徴 とする請求項 1ないし 5いずれか記載のレーザ光入射光学装置。
PCT/JP2005/001061 2004-01-28 2005-01-27 レーザ光入射光学装置 WO2005073771A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004020183 2004-01-28
JP2004-020183 2004-01-28
JP2004-280297 2004-09-27
JP2004280297A JP2005242292A (ja) 2004-01-28 2004-09-27 レーザ光入射光学装置

Publications (1)

Publication Number Publication Date
WO2005073771A1 true WO2005073771A1 (ja) 2005-08-11

Family

ID=34829407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001061 WO2005073771A1 (ja) 2004-01-28 2005-01-27 レーザ光入射光学装置

Country Status (4)

Country Link
JP (1) JP2005242292A (ja)
KR (1) KR100804357B1 (ja)
TW (1) TWI277730B (ja)
WO (1) WO2005073771A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178720A (ja) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp レーザ加工装置
US8610874B2 (en) 2009-05-26 2013-12-17 Asml Holding N.V. Pulse stretcher with reduced energy density on optical components
CN111504465A (zh) * 2020-04-22 2020-08-07 上海精测半导体技术有限公司 色度计匹配方法、色度计、色度计校正方法及系统
US11408606B2 (en) * 2019-09-02 2022-08-09 Schott Ag Illumination system with a light guide and an emission element

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008250184A (ja) * 2007-03-30 2008-10-16 Fujifilm Corp ファイバ光源装置
FR2919720B1 (fr) * 2007-08-01 2010-06-11 Commissariat Energie Atomique Dispositif de spectroscopie laser
JP2019203946A (ja) * 2018-05-22 2019-11-28 三菱重工業株式会社 ファイバ結合装置及びレーザ加工装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153503U (ja) * 1988-04-15 1989-10-23
JP2000138409A (ja) * 1998-10-30 2000-05-16 Toshiba Corp 光ファイバ伝送式レーザ装置、パルスレーザ発振器、光ファイバ導光装置および光ファイバ
JP2000286488A (ja) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp レーザシステム
JP2003344802A (ja) * 2002-05-23 2003-12-03 Toshiba Corp レーザ照射装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01153503U (ja) * 1988-04-15 1989-10-23
JP2000138409A (ja) * 1998-10-30 2000-05-16 Toshiba Corp 光ファイバ伝送式レーザ装置、パルスレーザ発振器、光ファイバ導光装置および光ファイバ
JP2000286488A (ja) * 1999-03-30 2000-10-13 Mitsubishi Electric Corp レーザシステム
JP2003344802A (ja) * 2002-05-23 2003-12-03 Toshiba Corp レーザ照射装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009178720A (ja) * 2008-01-29 2009-08-13 Mitsubishi Electric Corp レーザ加工装置
US8610874B2 (en) 2009-05-26 2013-12-17 Asml Holding N.V. Pulse stretcher with reduced energy density on optical components
US11408606B2 (en) * 2019-09-02 2022-08-09 Schott Ag Illumination system with a light guide and an emission element
CN111504465A (zh) * 2020-04-22 2020-08-07 上海精测半导体技术有限公司 色度计匹配方法、色度计、色度计校正方法及系统

Also Published As

Publication number Publication date
JP2005242292A (ja) 2005-09-08
TWI277730B (en) 2007-04-01
KR100804357B1 (ko) 2008-02-15
KR20060131818A (ko) 2006-12-20
TW200535409A (en) 2005-11-01

Similar Documents

Publication Publication Date Title
US7440097B2 (en) Laser plasma spectroscopy apparatus and method for in situ depth profiling
JP4417932B2 (ja) 光ファイバ用レーザ光入射光学装置
WO2005073771A1 (ja) レーザ光入射光学装置
CN100432727C (zh) 激光入射光学装置
EP1789828B1 (en) Microscope system and method
US20130188178A1 (en) Method of and material processing apparatus for optimising the focus of a fibre laser; method of measuring changes in the focus of a fibre laser
JP2008518273A (ja) 光ファイバにおいて回折構造を形成するための超高速レーザ加工システムおよび方法
Chambonneau et al. Competing nonlinear delocalization of light for laser inscription inside silicon with a 2-µ m picosecond laser
US20130277340A1 (en) Fiber Based Spectroscopic Imaging Guided Laser Material Processing System
CN113960015A (zh) 一种基于飞秒等离子体光栅的多脉冲诱导光谱方法以及装置
Zorba et al. Optical far-and near-field femtosecond laser ablation of Si for nanoscale chemical analysis
US5917971A (en) Confocal data collection in a fiber optically coupled microscope
CN204086140U (zh) 一种结合预烧蚀和再加热的三脉冲libs探测系统
CN112309808B (zh) 光学聚焦和焦斑连续扫描的透射电子显微镜样品杆系统
JP2005221373A (ja) 元素分析装置
JP2010071815A (ja) 空間電界計測方法及び空間電界計測装置
CN113670581B (zh) 一种用于光学元件的瞬态吸收测试系统及方法
Wei et al. Generation mechanism and temporal–spatial evolution of electron excitation induced by an ultrashort pulse laser in zirconia ceramic
KR100660199B1 (ko) 고출력 레이저 펄스 빔의 광섬유 전송장치 및 방법
Demos et al. Time-resolved imaging of material response during laser-induced bulk damage in SiO2
Sugioka et al. 3D integration of microfluidics and microoptics inside photosensitive glass by femtosecond laser direct writing for photonic biosensing
Huang et al. Time-resolved spectroscopy characterization of femtosecond fiber laser induced plasma
JP2004053465A (ja) レーザ多段励起発光分光分析方法及びその装置
Pini et al. High-quality drilling with copper vapour lasers
Latty et al. Excitation of optically trapped single particles using femtosecond pulses

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580003029.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067015094

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067015094

Country of ref document: KR

122 Ep: pct application non-entry in european phase