WO2005073142A1 - Sealing composition - Google Patents

Sealing composition Download PDF

Info

Publication number
WO2005073142A1
WO2005073142A1 PCT/JP2005/001110 JP2005001110W WO2005073142A1 WO 2005073142 A1 WO2005073142 A1 WO 2005073142A1 JP 2005001110 W JP2005001110 W JP 2005001110W WO 2005073142 A1 WO2005073142 A1 WO 2005073142A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
sealing
thermal expansion
sealing composition
glass
Prior art date
Application number
PCT/JP2005/001110
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitaka Mayumi
Tsuyoshi Fujimoto
Tomoyuki Taguchi
Yoshinori Tanigami
Original Assignee
Nihon Yamamura Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Yamamura Glass Co., Ltd. filed Critical Nihon Yamamura Glass Co., Ltd.
Priority to KR1020067015027A priority Critical patent/KR101125169B1/en
Publication of WO2005073142A1 publication Critical patent/WO2005073142A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes

Definitions

  • the present invention relates to a sealing composition, and more particularly, to a sealing composition substantially free of lead.
  • lead glass powder such as PbO-SiO-BO-based glass and PbTi
  • a composition comprising a ceramic filler having a low coefficient of thermal expansion such as o is known. Shi
  • this conventional sealing composition contains lead in both the glass and the ceramic filler.
  • BiO-based glass is often used.
  • Patent Document 1 JP 2003-95697 A
  • the sealing composition comprising the Bi 2 O-based glass and the inorganic filler has a low temperature.
  • the thermal expansion coefficient of the sealing composition can be reduced to a desirable value s, while the sealing temperature must be raised to an undesirably high temperature. .
  • the sealing temperature can be lowered, the coefficient of thermal expansion increases, and the type of the object to be sealed is limited.
  • the sealing temperature is 52
  • the present invention solves the above-mentioned problems of the conventional sealing composition, and is a lead-free sealing composition that can be sealed at a lower temperature and has a coefficient of thermal expansion (coefficient of thermal expansion). ) Is to provide a smaller sealing composition. Specifically sealable temperature 520 ° C or less, and an object of the invention to provide a thermal expansion coefficient of 80 X 10- 7 (1 / K ) or less of sealing composition, for further sealing temperature, 480 ° An object of the present invention is to provide a sealing composition having a temperature of not more than C or 450 ° C or less.
  • the inventor of the present invention has conducted intensive studies to solve the above-mentioned problems, and as a result, using a zirconium phosphate compound having a small thermal expansion coefficient (including those exhibiting a negative value) as an inorganic filler, and a specific glass as a glass.
  • a zirconium phosphate compound having a small thermal expansion coefficient including those exhibiting a negative value
  • a specific glass as a glass.
  • the sealing composition of the present invention that achieves the above object does not substantially contain Pb, and contains an inorganic filler containing glass powder 80 98% by weight and a zirconium phosphate compound. 70-85% by weight of Bi 2 O in terms of oxides
  • the first characteristic is that it has a composition.
  • Sealing composition of the present invention may also, in addition to the first feature, the glass powder is in terms of oxide, 80- 83 weight 0/0, BO to the Bi_ ⁇ : 4. 5 8 weight 0 / 0 , Zn ⁇ 8.00 12 weight
  • the second feature is that the composition contains 0.1 to 0.5% by weight of Al 2 O 3.
  • the dinoreconium phosphate compound contained in the inorganic filler may be 2% by weight or more based on the total amount of the sealing composition.
  • the third characteristic is A fourth feature of the sealing composition of the present invention is that, in addition to any one of the features of the thirteenth feature, the zirconium phosphate compound further includes dinoreconium tungstate phosphate.
  • the fifth aspect of the sealing composition of the present invention is that, in addition to any one of the above-mentioned features, the total amount of the zirconium phosphate compound is zirconium tungstate phosphate.
  • the glass powder is composed of 80 to 98% by weight of a glass powder and 2 to 20% by weight of an inorganic filler containing a zirconium phosphate compound.
  • Bi ⁇ is 70-85 weight 0 /. , 8. 4. 5-10 weight 0/0, ZnO the B_ ⁇ 0-
  • Sealing can be performed at a sufficiently low temperature and with a sufficiently small coefficient of thermal expansion (sufficiently low coefficient of thermal expansion).
  • the sealing temperature can be below 520 ° C, and the thermal expansion coefficient becomes possible to 80 X 10 _ 7 below.
  • the sealing composition of the present invention does not contain lead, it is also preferable from an environmental point of view.
  • Al 2 O 3 glass can lower the melting temperature
  • the glass can be hardly crystallized.
  • the composition of the glass powder is further limited, so that the glass powder is converted into oxide.
  • the dinoreconium phosphate compound contained in the inorganic filler is sealed.
  • the dinoreconium phosphate compound contained in the inorganic filler is sealed.
  • the thermal expansion coefficient of the sealing composition can be ensured to 80 X 10- 7 or less.
  • the composition further contains dinoreconium tungstate phosphate as the dinoreconium phosphate compound.
  • the effect of the negative coefficient of thermal expansion of zirconium tungstate phosphate is given to the coefficient of thermal expansion of the sealing composition as a whole, so that a small amount of filler makes it possible to use a sealing composition having a low sealing temperature and a low coefficient of thermal expansion. It can be provided reliably.
  • zirconium tungstate phosphate can be used as a Bi ⁇
  • the thermal expansion coefficient of the sealing composition is much smaller than that of the actual sealing composition, whereby the sealing composition having a lower sealing temperature and a lower thermal expansion coefficient can be obtained with a smaller amount of filler. Can be reliably provided.
  • the total amount of the zirconium phosphate compound is reduced to the total amount of zirconium phosphate tungstate.
  • the sealing composition having a lower coefficient of thermal expansion at a lower sealing temperature can be surely obtained. Can be provided.
  • the sealing composition of the present invention includes ceramics such as alumina, soda lime glass, glass such as glass substrates for plasma display panels, metals such as Kovar and high Ni alloys such as 50 alloy, and other various materials. It can be used for sealing.
  • substantially free of Pb means that no raw material containing lead as a main component such as PbO is used at all, and the raw materials of each component constituting the glass and the impurities of the inorganic filler are not used. It does not exclude the inclusion of trace amounts of lead from products.
  • the sealing composition of the present invention comprises 80-98% by weight of glass powder and zirconium phosphate compound.
  • the composition contains 0.13 to 1% by weight of 2 3 2 3 2 3.
  • Bi O which is a component of the glass powder, lowers the melting temperature of glass.
  • the content of Bi ⁇ ⁇ ⁇ in the glass powder is less than 70% by weight, the low melting of the glass is insufficient.
  • the glass is crystallized at the time of baking for sealing and does not immediately sinter as a sealing material.
  • the content of Bi ⁇ in the glass powder is preferably 80-83% by weight.
  • the component B O forms a glass network and seals and fires.
  • the glass becomes unstable and has no effect on suppressing crystallization of the glass.
  • the content of B O in the glass powder is preferably 4.5-8% by weight.
  • ZnO which is a constituent component of the glass powder, is an essential component for reducing the melting of glass. If the Zn content in the glass powder is less than 8.0% by weight, the low melting of the glass is insufficient, and if it exceeds 20% by weight, the glass crystallizes at the time of sealing and firing, so that it is preferably fired as a sealing material. Do not tie.
  • the content of Zn ⁇ in the glass powder is preferably 9.0 to 12% by weight.
  • Al O which is a component of the glass powder, not only enhances the stability of the glass during melting, but also seals
  • Al O in glass powder is less than 0.1% by weight, stability during glass melting and firing during sealing
  • the content of Al 2 O 3 in the glass powder is preferably 0.1 to 0.5% by weight.
  • the glass powder is composed of 5% by weight of BaO and SiO in total for the purpose of enhancing stability during melting of the glass and suppressing crystallization of the glass during sealing and firing. Less than Below can be included.
  • the inorganic filter containing the dinoconium phosphate compound is contained at 220% by weight. Preferably, the content is 520% by weight.
  • zirconium phosphate compound contained in the inorganic filler examples include zirconium phosphate (Zr (WO) (PO)) and zirconium phosphate ((ZrO) PO).
  • Ca Zr (PO 3) calcium zirconium phosphate
  • the compounds can be contained alone or in combination together.
  • the dinoconium phosphate compound has a small or negative coefficient of thermal expansion and has a function of lowering the coefficient of thermal expansion of the sealing composition.
  • the dinorconium phosphate compound is contained in an amount of 2 to 20% by weight based on the total amount of the sealing composition. If the content is less than 2% by weight, the thermal expansion coefficient of the sealing composition is insufficiently reduced, which is not preferable. On the other hand, if it exceeds 20% by weight, sintering of the sealing composition is hindered, which is not preferred.
  • the content of the zirconium phosphate compound relative to the total amount of the sealing composition is more preferably 5 to 20% by weight. More preferably, the content is 10 to 20% by weight.
  • the zirconium phosphate compound preferably contains zirconium tungstate phosphate.
  • Zirconium phosphate tungstate has a negative coefficient of thermal expansion and is contained in the sealing composition, whereby the thermal expansion coefficient of the sealing composition can be effectively reduced.
  • zirconium phosphate tungstate is used for Bi ⁇ _B O -ZnO-Al ⁇ glass.
  • the thermal expansion coefficient of the actual sealing composition is more than the thermal expansion coefficient of the sealing composition theoretically calculated from the mixing ratio of the two.
  • the effect has been found to be considerably smaller, which makes it possible to reliably provide a lower sealing temperature, a lower coefficient of thermal expansion sealing composition with a lower amount of filler.
  • the whole amount of the zirconium phosphate compound can be zirconium tungstate phosphate. That is, the total amount of the zirconium phosphate compound contained in the sealing composition is reduced. It can be made of zirconium tungstate.
  • the thermal expansion coefficient of the sealing composition can be greatly reduced with a small amount of filler, and the effect of lowering the sealing temperature is increased by increasing the mixing ratio of the glass powder.
  • a sealing composition having a sufficiently low sealing temperature and a sufficiently low thermal expansion coefficient can be provided.
  • Zirconium tungstate phosphate is preferably used in an amount of 220% by weight based on the total amount of the sealing composition. If the amount is less than 2% by weight, the thermal expansion coefficient of the sealing composition will not be sufficiently reduced, and if it exceeds 20% by weight, sintering of the sealing composition will be impaired.
  • the content (220% by weight) of zirconium phosphate tungstate relative to the total amount of the sealing composition is preferably 5% by weight or more, more preferably 10% by weight.
  • an inorganic filler having a low coefficient of thermal expansion such as j3-eucryptite can be contained in addition to the dinoleconium phosphate compound.
  • inorganic filler in addition to the zirconium phosphate compound, cordierite, aluminum titanate, zircon, mullite, ⁇ -spodumene, anoremina, senorocyan, willemite, silica ( ⁇ - A ceramic filler such as quartz, cristobalite, or tridymite) or a quartz glass filler can be contained.
  • the inorganic filter is made to have an average particle size of S10-20 ⁇ m by passing through a sieve having an opening of 44 ⁇ , for example.
  • the particle size distribution of the inorganic filler is preferably low in fine powder of 1 ⁇ m or less from the viewpoint of stability of thermal expansion coefficient. preferable.
  • the raw materials used in the examples were Bi ⁇ , HBO, Zn ⁇ , Al (OH), Ba (NO),
  • the average particle size of the glass powder, the glass transition point Tg of the glass powder, the sealing property (flow property) of the sealing composition, and the thermal expansion coefficient of the sealing composition are as follows. It was measured by the method.
  • the temperature was determined from the temperature at the first endothermic end (outer ⁇ point) of the DTA curve obtained when the temperature was raised from room temperature at 20 ° C./min.
  • DTA differential thermal analyzer
  • 10 g of the powder of the sealing composition was formed into a cylindrical shape with a diameter of 20 mm, placed on soda lime glass, and fired at the sealing temperatures shown in Tables 1 and 2, and the maximum value of the outer shape of the obtained sintered body was measured. I got it. If this flow diameter (maximum outer shape) is less than 22 mm, it cannot be used as a sealing material.
  • the fired body obtained in (3) was cut into a piece of about 3 mm X about 3 mm X about 1 Omm, and the temperature was raised from room temperature to 10 ° C / min using a quartz glass as a standard sample using a thermomechanical analyzer (TMA). The thermal expansion coefficient at 50-250 ° C was determined from the TMA curve obtained in this case.
  • TMA thermomechanical analyzer
  • Raw materials were prepared and mixed so as to have the chemical compositions shown in Tables 1 and 2, and the prepared raw materials were put into a platinum crucible, melted at 1000 ° C. for 1 hour, and quenched to produce glass.
  • the obtained glass was put into a ball mill and pulverized by a dry method, and then passed through a sieve having openings of 106 ⁇ m to obtain glass powder.
  • the average particle size of the obtained glass powder was 3-6 x m.
  • Tables 1 and 2 show the glass transition point Tg of the glass powder.
  • Mouth PT 100 100 100 100 100 Glass transition temperature T g (° C) 401 365 346 343 377
  • Example 1 and Comparative Example 1 are different from each other in the amount of the inorganic filler.
  • the content of ZWP as an inorganic filler is 21% by weight, the flow diameter becomes 17.5 mm and the sealing property is improved. Problems arise.
  • Example 3 and Comparative Example 2 are different from the inorganic filler used as the filler.
  • the inorganic filler changes from ZWP to ⁇ SPJ, the coefficient of thermal expansion increases.
  • Comparative Example 1 the amount of zirconium tungstate phosphate as an inorganic filler exceeds 20% by weight, and the actual sealing at 520 ° C. or lower is difficult because of poor flowability.
  • Comparative Examples 3-5 the composition of the glass was out of the range in any case, and the glass was easily crystallized at the time of firing, so that the flowability was poor and it was difficult to seal at low temperatures.
  • both materials in a sealing composition obtained by blending dinorcone tungstate phosphate (ZWP) as a filler with the Bi-BO-ZnO-AI-based glass used in the present invention are blending dinorcone tungstate phosphate (ZWP) as a filler with the Bi-BO-ZnO-AI-based glass used in the present invention.
  • ZWP dinorcone tungstate phosphate
  • the following shows the theoretical thermal expansion coefficient that can be calculated from the individual thermal expansion coefficients and the compounding ratios, and the actually measured thermal expansion coefficient.
  • the thermal expansion coefficient of the sealing composition tends to be lower (smaller) than the theoretically calculated thermal expansion coefficient.
  • SPJ or Al O is blended as a filler, the thermal expansion of the sealing composition
  • sealing materials such as ceramics, glass, and metals.
  • As a lead-free sealing glass it can be used in a wide range of applications, adapting to the environment.

Abstract

Disclosed is a sealing composition containing no lead which enables sealing at low temperatures and has a smaller coefficient of thermal expansion (thermal expansivity). The sealing composition does not substantially contain Pb and is composed of 80-98 weight% of a glass powder and 2-20 weight% of an inorganic filler containing a zirconium phosphate compound. The glass powder contains 70-85 weight% of Bi2O3, 4.5-10 weight% of B2O3, 8.0-20 weight% of ZnO and 0.1-1 weight% of Al2O3 in terms of oxides.

Description

明 細 書  Specification
封着用組成物  Sealing composition
技術分野  Technical field
[0001] 本発明は封着用組成物に関し、更に言えば、実質的に鉛を含有しない封着用組 成物に関する。  The present invention relates to a sealing composition, and more particularly, to a sealing composition substantially free of lead.
背景技術  Background art
[0002] 従来、封着用組成物として、 PbO-SiO -B O系ガラス等の鉛ガラス粉末と PbTi  [0002] Conventionally, lead glass powder such as PbO-SiO-BO-based glass and PbTi
2 2 3  2 2 3
o等との低い熱膨張率を有するセラミックフィラーからなる組成物が知られている。し A composition comprising a ceramic filler having a low coefficient of thermal expansion such as o is known. Shi
3 Three
かし、この従来の封着用組成物はガラスとセラミックフィラーの何れにも鉛を含有した ものである。  However, this conventional sealing composition contains lead in both the glass and the ceramic filler.
近年、鉛を含有する製品は環境上の観点から、その使用が避けられる傾向にある。 一方、鉛を含有しない封着用組成物に用いることができるガラスとして、例えば!3In recent years, products containing lead tend to be avoided from an environmental point of view. On the other hand, as a glass which can be used in sealing compositions not containing lead, for example,! 3
2 一 ZnO系、 P〇一 Sn〇系、 Bi O系のガラスが知られており、中でも化学的耐久性 2 ZnO, P〇 Sn〇, and Bi O glasses are known, with chemical durability
5 2 5 2 3 5 2 5 2 3
の観点から Bi O系ガラスが使用されることが多い。  In view of this, BiO-based glass is often used.
2 3  twenty three
Bi〇系のガラスと無機フィラーからなる封着用組成物として、出願人は、例えば特 As a sealing composition comprising Bi-based glass and an inorganic filler, the applicant has
2 3 twenty three
開 2003— 95697を提供してレ、る。  Open 2003—Providing 95697.
特許文献 1 :特開 2003 - 95697号公報  Patent Document 1: JP 2003-95697 A
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] し力しながら、上記 Bi O系のガラスと無機フィラーからなる封着用組成物は、低温 [0003] While pressing, the sealing composition comprising the Bi 2 O-based glass and the inorganic filler has a low temperature.
2 3  twenty three
での封着を可能にすることと熱膨張率を低くすることの両立が困難であった。即ち、フ イラ一を多く含有させると封着用組成物の熱膨張係数は好ましい値にまで低下させる ことができる力 s、その一方、封着温度を好ましくない高温まで上げなければならなくな つてしまう。またフィラーの量を少なくすると、封着温度は低くすることができる力 熱 膨張係数が高くなり、被封着物の種類が限定されてしまうのである。例えば従来の Bi O系のガラスと無機フィラーからなる鉛フリーの封着用組成物では、封着温度を 52 However, it was difficult to achieve both sealing at the same time and lowering the coefficient of thermal expansion. That is, if a large amount of filler is contained, the thermal expansion coefficient of the sealing composition can be reduced to a desirable value s, while the sealing temperature must be raised to an undesirably high temperature. . In addition, when the amount of the filler is reduced, the sealing temperature can be lowered, the coefficient of thermal expansion increases, and the type of the object to be sealed is limited. For example, in a conventional lead-free sealing composition comprising a BiO-based glass and an inorganic filler, the sealing temperature is 52
2 3 twenty three
0°C以下にし、且つ熱膨張係数を 80 X 10— 7 (1/K)以下にすることができない。 また封着用組成物に必要な封着温度が上がると、その封着時の高温により被封着 物やその他の使用材料に及ぼす劣化やその他の悪影響が顕著になるのである。 0 ° C and below, it is impossible and the coefficient of thermal expansion 80 X 10- 7 (1 / K ) or less. In addition, when the sealing temperature required for the sealing composition increases, the high temperature at the time of the sealing causes deterioration and other adverse effects on the object to be sealed and other materials used.
[0004] そこで本発明は上記従来の封着用組成物の問題点を解消し、鉛を含有しない封着 用組成物で、より低温での封着が可能であり且つ熱膨張係数 (熱膨張率)がより小さ い封着用組成物の提供を課題とする。具体的には封着可能温度が 520°C以下、熱 膨張係数が 80 X 10— 7 (1/K)以下の封着用組成物の提供を課題とし、更に封着温 度については、 480°C以下、或いは更に 450°C以下となるような封着用組成物の提 供を課題とする。 Therefore, the present invention solves the above-mentioned problems of the conventional sealing composition, and is a lead-free sealing composition that can be sealed at a lower temperature and has a coefficient of thermal expansion (coefficient of thermal expansion). ) Is to provide a smaller sealing composition. Specifically sealable temperature 520 ° C or less, and an object of the invention to provide a thermal expansion coefficient of 80 X 10- 7 (1 / K ) or less of sealing composition, for further sealing temperature, 480 ° An object of the present invention is to provide a sealing composition having a temperature of not more than C or 450 ° C or less.
課題を解決するための手段  Means for solving the problem
[0005] 本発明者は上記課題を解決すべく鋭意研究をした結果、無機フイラ一として熱膨 張係数が小さい (負の値を示すものを含む)リン酸ジルコニウム化合物を用い、ガラス として特定の組成の Bi O -B O -ZnO-Al O系のガラスを用い、この両者を特定 [0005] The inventor of the present invention has conducted intensive studies to solve the above-mentioned problems, and as a result, using a zirconium phosphate compound having a small thermal expansion coefficient (including those exhibiting a negative value) as an inorganic filler, and a specific glass as a glass. Using Bi O -BO -ZnO-Al O based glass with composition, specify both
2 3 2 3 2 3  2 3 2 3 2 3
の割合で配合した無鉛の封着用組成物とすることで、低温で良好に封着することが できると共に、熱膨張係数 (熱膨張率)を小さくすることができることを見出し、更に封 着用組成物の熱膨張係数は、リン酸ジルコニウム化合物とガラスとの各熱膨張係数 力 その配合割合に応じて理論的に計算できる算出熱膨張係数よりも、更にかなり 低く(小さく)なることを見出し、本発明を完成した。  It has been found that by using a lead-free sealing composition blended at a ratio of 1%, it is possible to seal well at a low temperature and to reduce the coefficient of thermal expansion (coefficient of thermal expansion). It has been found that the coefficient of thermal expansion of the zirconium phosphate compound and the glass is much lower (smaller) than the calculated coefficient of thermal expansion that can be theoretically calculated according to the mixing ratio of the zirconium phosphate compound and the glass. Was completed.
[0006] 即ち、上記課題を達成する本発明の封着用組成物は、実質的に Pbを含有せず、 且つガラス粉末 80 98重量%と、リン酸ジルコニウム化合物を含有する無機フイラ 一 2— 20重量%からなり、前記ガラス粉末力 酸化物換算で、 Bi Oを 70— 85重量  [0006] That is, the sealing composition of the present invention that achieves the above object does not substantially contain Pb, and contains an inorganic filler containing glass powder 80 98% by weight and a zirconium phosphate compound. 70-85% by weight of Bi 2 O in terms of oxides
2 3  twenty three
%、 B〇を 4. 5— 10重量%、 Zn〇を 8. 0— 20重量%、 A1〇を 0. 1— 1重量%含 %, B〇 4.5-10% by weight, Zn〇 8.0-20% by weight, A1〇 0.1-1% by weight
2 3 2 3 2 3 2 3
有する組成であることを第 1の特徴としている。  The first characteristic is that it has a composition.
また本発明の封着用組成物は、上記第 1の特徴に加えて、ガラス粉末が、酸化物 換算で、 Bi〇を 80— 83重量0 /0、 B Oを: 4. 5— 8重量0 /0、 Zn〇を 8. 0 12重量 Sealing composition of the present invention may also, in addition to the first feature, the glass powder is in terms of oxide, 80- 83 weight 0/0, BO to the Bi_〇: 4. 5 8 weight 0 / 0 , Zn〇 8.00 12 weight
2 3 2 3  2 3 2 3
%、 Al Oを 0· 1 -0. 5重量%含有する組成であることを第 2の特徴としている。  The second feature is that the composition contains 0.1 to 0.5% by weight of Al 2 O 3.
2 3  twenty three
また本発明の封着用組成物は、上記第 1又は第 2の特徴に加えて、無機フィラーに 含有されるリン酸ジノレコニゥム化合物は封着用組成物の全量に対して 2重量%以上 とすることを第 3の特徴としてレ、る。 また本発明の封着用組成物は、上記第 1一 3の何れかの特徴に加えて、リン酸ジル コニゥム化合物として、リン酸タングステン酸ジノレコニゥムを含有することを第 4の特徴 としている。 Further, in the sealing composition of the present invention, in addition to the first or second feature, the dinoreconium phosphate compound contained in the inorganic filler may be 2% by weight or more based on the total amount of the sealing composition. The third characteristic is A fourth feature of the sealing composition of the present invention is that, in addition to any one of the features of the thirteenth feature, the zirconium phosphate compound further includes dinoreconium tungstate phosphate.
また本発明の封着用組成物は、上記第 1一 3の何れかの特徴に加えて、リン酸ジル コニゥム化合物の全量がリン酸タングステン酸ジルコニウムであることを第 5の特徴と している。  The fifth aspect of the sealing composition of the present invention is that, in addition to any one of the above-mentioned features, the total amount of the zirconium phosphate compound is zirconium tungstate phosphate.
発明の効果  The invention's effect
[0007] 請求項 1に記載の封着用組成物によれば、ガラス粉末 80— 98重量%と、リン酸ジ ルコニゥム化合物を含有する無機フィラー 2— 20重量%からなり、前記ガラス粉末が 、酸化物換算で、 Bi〇を 70— 85重量0 /。、 B〇を 4. 5— 10重量0 /0、 ZnOを 8. 0— [0007] According to the sealing composition of claim 1, the glass powder is composed of 80 to 98% by weight of a glass powder and 2 to 20% by weight of an inorganic filler containing a zirconium phosphate compound. In terms of material, Bi〇 is 70-85 weight 0 /. , 8. 4. 5-10 weight 0/0, ZnO the B_〇 0-
2 3 2 3  2 3 2 3
20重量%、 Al Oを 0. 1— 1重量%含有する組成からなることで、  With a composition containing 20% by weight and 0.1-1% by weight of Al 2 O,
2 3  twenty three
十分に低温で且つ十分に小さい熱膨張係数 (十分に低い熱膨張率)をもって封着 を行うことが可能となる。  Sealing can be performed at a sufficiently low temperature and with a sufficiently small coefficient of thermal expansion (sufficiently low coefficient of thermal expansion).
具体的には、封着温度を 520°C以下にすることができ、且つ熱膨張係数を 80 X 10 _7以下にすることが可能となる。 Specifically, the sealing temperature can be below 520 ° C, and the thermal expansion coefficient becomes possible to 80 X 10 _ 7 below.
また本発明の封着用組成物は鉛を含有しないので、環境上の観点からも好ましい また本発明の封着用組成物では、ガラス成分として上記した Bi O -B O -ZnO- Further, since the sealing composition of the present invention does not contain lead, it is also preferable from an environmental point of view.In the sealing composition of the present invention, the above-mentioned Bi O -B O -ZnO-
2 3 2 3 2 3 2 3
Al O系ガラスを用いているので、溶融温度を低くすることができる上に封着焼成時 The use of Al 2 O 3 glass can lower the melting temperature,
2 3 twenty three
にガラスが結晶化し難くすることができる。  The glass can be hardly crystallized.
[0008] また請求項 2に記載の封着用組成物によれば、上記請求項 1に記載の構成による 効果に加えて、ガラス粉末の組成を更に限定して、前記ガラス粉末が、酸化物換算 で、 Bi〇を 80— 83重量0 /0、 B Oを 4. 5— 8重量0 /0、 Zn〇を 8. 0 12重量0 /0、 A1 [0008] Further, according to the sealing composition of claim 2, in addition to the effect of the configuration of claim 1, the composition of the glass powder is further limited, so that the glass powder is converted into oxide. in, Bi_〇 a 80- 83 weight 0/0, BO 4. 5-8 wt 0/0, 8.0 12 weight Zn_〇 0/0, A1
2 3 2 3 2 2 3 2 3 2
Oを 0. 1-0. 5重量%含有する組成からなることで、 By having a composition containing 0.1-0.5% by weight of O,
3  Three
封着組成物の一層の低溶融化と封着焼成時におけるガラスの結晶化の抑制効果 を良好に達成することができる。  The effect of further reducing the melting of the sealing composition and suppressing the crystallization of the glass during the sealing and firing can be satisfactorily achieved.
[0009] また請求項 3に記載の封着用組成物によれば、上記請求項 1又は 2に記載の構成 による効果に加えて、無機フィラーに含有されるリン酸ジノレコニゥム化合物は封着用 組成物の全量に対して 2重量%以上とすることにより、 [0009] According to the sealing composition of claim 3, in addition to the effect of the configuration of claim 1 or 2, the dinoreconium phosphate compound contained in the inorganic filler is sealed. By making it 2% by weight or more based on the total amount of the composition,
封着用組成物の熱膨張係数を 80 X 10— 7以下に確実にすることができる。 The thermal expansion coefficient of the sealing composition can be ensured to 80 X 10- 7 or less.
[0010] また請求項 4に記載の封着用組成物によれば、上記請求項 1一 3の何れかに記載 の構成による効果に加えて、リン酸ジノレコニゥム化合物として、リン酸タングステン酸 ジノレコニゥムを含有することにより、 [0010] Further, according to the sealing composition of claim 4, in addition to the effect of the configuration according to any one of claims 13 to 13, the composition further contains dinoreconium tungstate phosphate as the dinoreconium phosphate compound. By doing
リン酸タングステン酸ジルコニウムが有する負の熱膨張係数による効果を封着用組 成物全体としての熱膨張係数に与えて、少ないフィラーの量で低封着温度、低熱膨 張係数の封着用組成物を確実に提供することが可能になる。  The effect of the negative coefficient of thermal expansion of zirconium tungstate phosphate is given to the coefficient of thermal expansion of the sealing composition as a whole, so that a small amount of filler makes it possible to use a sealing composition having a low sealing temperature and a low coefficient of thermal expansion. It can be provided reliably.
特に発明者は、リン酸タングステン酸ジルコニウムが請求項 1、 2に示すような Bi〇  In particular, the inventor has found that zirconium tungstate phosphate can be used as a Bi〇
2 3 系のガラスと組み合わされて封着用組成物を構成する場合には、リン酸タングステン 酸ジノレコニゥムとガラスとの配合割合力 理論計算値として算出される封着用組成物 の熱膨張係数に比較して実際の封着用組成物の熱膨張係数の方が更にかなり小さ くなるという効果を見出しており、これによつて、より少ないフィラーの量で低封着温度 、低熱膨張係数の封着用組成物を確実に提供することが可能になる。  When the sealing composition is composed in combination with a 23-series glass, it is compared with the thermal expansion coefficient of the sealing composition calculated as the theoretically calculated value of the mixing ratio force of dinoleconium tungstate phosphate and glass. Therefore, it has been found that the thermal expansion coefficient of the actual sealing composition is much smaller than that of the actual sealing composition, whereby the sealing composition having a lower sealing temperature and a lower thermal expansion coefficient can be obtained with a smaller amount of filler. Can be reliably provided.
[0011] また請求項 5に記載の封着用組成物によれば、上記請求項 1一 3に記載の構成に よる効果に加えて、リン酸ジルコニウム化合物の全量がリン酸タングステン酸ジルコ二 ゥムであることにより、 [0011] Further, according to the sealing composition of claim 5, in addition to the effect of the configuration of claim 13, the total amount of the zirconium phosphate compound is reduced to the total amount of zirconium phosphate tungstate. By being
リン酸タングステン酸ジルコニウムが有する負の熱膨張係数による効果と前記理論 計算値を超えて熱膨張係数を下げる効果により、より一層、低い封着温度で低い熱 膨張係数の封着用組成物を確実に提供することが可能になる。  By the effect of the negative coefficient of thermal expansion of zirconium tungstate phosphate and the effect of lowering the coefficient of thermal expansion beyond the theoretically calculated value, the sealing composition having a lower coefficient of thermal expansion at a lower sealing temperature can be surely obtained. Can be provided.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明の封着用組成物は、アルミナ等のセラミックス、ソーダライムガラス、プラズマ ディスプレイパネル用ガラス基板等のガラス、コバールや 50合金等の高 Ni合金等の 金属、その他の種々の材料の封着に用いることが可能である。  The sealing composition of the present invention includes ceramics such as alumina, soda lime glass, glass such as glass substrates for plasma display panels, metals such as Kovar and high Ni alloys such as 50 alloy, and other various materials. It can be used for sealing.
本発明でいう「実質的に Pbを含有せず」とは、 PbO等の鉛を主成分とする原料を一 切使用しないの意であり、ガラスを構成する各成分の原料及び無機フィラーの不純 物に由来する微量の鉛が混入したものを排除するものではない。  The term "substantially free of Pb" as used in the present invention means that no raw material containing lead as a main component such as PbO is used at all, and the raw materials of each component constituting the glass and the impurities of the inorganic filler are not used. It does not exclude the inclusion of trace amounts of lead from products.
[0013] 本発明の封着用組成物は、ガラス粉末 80— 98重量%及びリン酸ジルコニウム化合 物を含有する無機フィラー 2— 20重量%からなり、前記ガラス粉末が酸化物換算で、 Bi〇を 70— 85重量0 /0、 B Oを 4· 5— 10重量0 /0、 Zn〇を 8. 0— 20重量0 /0、 A1〇[0013] The sealing composition of the present invention comprises 80-98% by weight of glass powder and zirconium phosphate compound. An inorganic filler 2-20 weight percent containing objects, in the glass powder in terms of oxide, Bi_〇 a 70-85wt 0/0, BO 4-5- 10 weight 0/0, the Zn_〇 8 . 0 20 weight 0/0, A1_rei
2 3 2 3 2 3 を 0· 1— 1重量%含有する組成である。 The composition contains 0.13 to 1% by weight of 2 3 2 3 2 3.
[0014] 前記ガラス粉末において、その構成成分である Bi Oは、ガラスを低溶融化させる [0014] In the glass powder, Bi O, which is a component of the glass powder, lowers the melting temperature of glass.
2 3  twenty three
ために必須の成分である。  Indispensable component for.
ガラス粉末中の Bi〇が 70重量%未満ではガラスの低溶融化が不十分であり、ま  If the content of Bi ガ ラ ス in the glass powder is less than 70% by weight, the low melting of the glass is insufficient.
2 3  twenty three
た 85重量%を超えると封着焼成時にガラスが結晶化しやすぐ封着材料として好まし く焼結しない。  If it exceeds 85% by weight, the glass is crystallized at the time of baking for sealing and does not immediately sinter as a sealing material.
Bi〇のガラス粉末中における含有量は、好ましくは 80— 83重量%である。  The content of Bi〇 in the glass powder is preferably 80-83% by weight.
2 3  twenty three
[0015] ガラス粉末において、その構成成分である B Oは、ガラスの網目を形成し、封着焼  [0015] In the glass powder, the component B O forms a glass network and seals and fires.
2 3  twenty three
成時のガラスの結晶化を抑制するために必須の成分である。  It is an essential component for suppressing crystallization of the glass at the time of formation.
ガラス粉末中の B Oが 4. 5重量%未満では封着焼成時のガラスの結晶化の抑制  If B O in glass powder is less than 4.5% by weight, suppression of crystallization of glass during sealing firing
2 3  twenty three
に効果がなぐまた 10重量%を超えるとガラスが不安定になり、ガラスの結晶化の抑 制に効果がない。  If the content exceeds 10% by weight, the glass becomes unstable and has no effect on suppressing crystallization of the glass.
B Oのガラス粉末中における含有量は、好ましくは 4. 5— 8重量%である。  The content of B O in the glass powder is preferably 4.5-8% by weight.
2 3  twenty three
[0016] ガラス粉末の構成成分の ZnOは、ガラスを低溶融化させるために必須の成分であ る。 ガラス粉末中の Zn〇が 8. 0重量%未満ではガラスの低溶融化が不十分であり 、また 20重量%を超えると封着焼成時にガラスが結晶化しやすぐ封着材料として好 ましく焼結しない。  [0016] ZnO, which is a constituent component of the glass powder, is an essential component for reducing the melting of glass. If the Zn content in the glass powder is less than 8.0% by weight, the low melting of the glass is insufficient, and if it exceeds 20% by weight, the glass crystallizes at the time of sealing and firing, so that it is preferably fired as a sealing material. Do not tie.
Zn〇のガラス粉末中における含有量は、好ましくは 9. 0— 12重量%である。  The content of Zn〇 in the glass powder is preferably 9.0 to 12% by weight.
[0017] ガラス粉末の構成成分の Al Oは、ガラス溶融時の安定性を高めると共に、封着焼 [0017] Al O, which is a component of the glass powder, not only enhances the stability of the glass during melting, but also seals
2 3  twenty three
成時のガラスの結晶化を抑制するために必須の成分である。  It is an essential component for suppressing crystallization of the glass at the time of formation.
ガラス粉末中の Al Oが 0. 1重量%未満ではガラス溶融時の安定性と封着焼成時  If Al O in glass powder is less than 0.1% by weight, stability during glass melting and firing during sealing
2 3  twenty three
のガラスの結晶化の抑制に効果がなぐまた 1重量%を超えるとガラスの低溶融化が 不十分となる。  It is not effective in suppressing the crystallization of the glass. If it exceeds 1% by weight, the low melting of the glass becomes insufficient.
Al Oのガラス粉末中における含有量は、好ましくは 0. 1 -0. 5重量%である。  The content of Al 2 O 3 in the glass powder is preferably 0.1 to 0.5% by weight.
2 3  twenty three
[0018] ガラス粉末の構成成分は上記した成分の他に、ガラス溶融時の安定性を高めたり、 封着焼成時のガラスの結晶化を抑制する目的で、 BaO、 SiOを合計で 5重量%以 下を含有させることができる。 [0018] In addition to the above-mentioned components, the glass powder is composed of 5% by weight of BaO and SiO in total for the purpose of enhancing stability during melting of the glass and suppressing crystallization of the glass during sealing and firing. Less than Below can be included.
更に上記構成成分に加えて、 CaO、 Mg〇、 Sr〇、 Ti〇、 ZrO等を含有させること  Furthermore, in addition to the above components, CaO, Mg〇, Sr〇, Ti〇, ZrO, etc.
2 2  twenty two
ができる。  Can do.
[0019] 上記リン酸ジノレコニゥム化合物を含有する無機フイラ一は、 2 20重量%含有させ る。好ましくは 5 20重量%含有させるのがよい。  [0019] The inorganic filter containing the dinoconium phosphate compound is contained at 220% by weight. Preferably, the content is 520% by weight.
[0020] 上記無機フィラーに含有されるリン酸ジルコニウム化合物としては、例えばリン酸タ ングステン酸ジルコニウム(Zr (WO ) (PO ) )、リン酸ジルコニウム((ZrO) P O ) [0020] Examples of the zirconium phosphate compound contained in the inorganic filler include zirconium phosphate (Zr (WO) (PO)) and zirconium phosphate ((ZrO) PO).
2 4 4 2 2 2 7 2 4 4 2 2 2 7
、リン酸ジルコニウムカルシウム(Ca Zr (PO ) )を挙げることができる。これらの各 And calcium zirconium phosphate (Ca Zr (PO 3)). Each of these
O. 5 2 4 3  O. 5 2 4 3
化合物は単独で、又は一緒に組み合わせて含有させることができる。  The compounds can be contained alone or in combination together.
リン酸ジノレコニゥム化合物は熱膨張係数が小さレ、か負の値を示し、封着用組成物 の熱膨張係数を低くする働きがある。  The dinoconium phosphate compound has a small or negative coefficient of thermal expansion and has a function of lowering the coefficient of thermal expansion of the sealing composition.
リン酸ジノレコニゥム化合物は、封着用組成物全量に対して 2— 20重量%含有させ る。 2重量%未満では封着用組成物の熱膨張係数の低下が不十分となり、好ましくな レ、。また 20重量%を超えると封着用組成物の焼結を阻害するため好ましくない。 封着用組成物の全量に対するリン酸ジルコニウム化合物の含有量は、 5— 20重量 %がより好ましい。更に好ましくは 10— 20重量%がよい。  The dinorconium phosphate compound is contained in an amount of 2 to 20% by weight based on the total amount of the sealing composition. If the content is less than 2% by weight, the thermal expansion coefficient of the sealing composition is insufficiently reduced, which is not preferable. On the other hand, if it exceeds 20% by weight, sintering of the sealing composition is hindered, which is not preferred. The content of the zirconium phosphate compound relative to the total amount of the sealing composition is more preferably 5 to 20% by weight. More preferably, the content is 10 to 20% by weight.
[0021] 上記リン酸ジルコニウム化合物としては、リン酸タングステン酸ジルコニウムを含有さ せるのが好ましい。 [0021] The zirconium phosphate compound preferably contains zirconium tungstate phosphate.
リン酸タングステン酸ジルコニウムは、熱膨張係数が負の値を示し、封着用組成物 に含有されることで、封着用組成物の熱膨張係数を効果的に低減させることができる 。特に、リン酸タングステン酸ジルコニウムが Bi〇 _B O -ZnO-Al〇系ガラスに  Zirconium phosphate tungstate has a negative coefficient of thermal expansion and is contained in the sealing composition, whereby the thermal expansion coefficient of the sealing composition can be effectively reduced. In particular, zirconium phosphate tungstate is used for Bi〇_B O -ZnO-Al〇 glass.
2 3 2 3 2 3  2 3 2 3 2 3
組み合わされて封着用組成物が構成される場合には、両者の配合割合から理論的 に計算される封着用組成物の熱膨張係数よりも実際の封着用組成物の熱膨張係数 の方が更にかなり小さくなるという効果を見出しており、これによつて、より少ないフィ ラーの量でより低温の封着温度、より小さい熱膨張係数の封着用組成物を確実に提 供することが可能になる。  When the sealing composition is composed in combination, the thermal expansion coefficient of the actual sealing composition is more than the thermal expansion coefficient of the sealing composition theoretically calculated from the mixing ratio of the two. The effect has been found to be considerably smaller, which makes it possible to reliably provide a lower sealing temperature, a lower coefficient of thermal expansion sealing composition with a lower amount of filler.
[0022] 上記リン酸ジルコニウム化合物の全量をリン酸タングステン酸ジルコニウムとするこ とができる。即ち、封着用組成物に含有されるリン酸ジルコニウム化合物の全量がリ ン酸タングステン酸ジルコニウムからなるようにすることができる。 [0022] The whole amount of the zirconium phosphate compound can be zirconium tungstate phosphate. That is, the total amount of the zirconium phosphate compound contained in the sealing composition is reduced. It can be made of zirconium tungstate.
このようにすることで、封着用組成物の熱膨張係数を少ないフィラーの量で大きく低 減させることができ、且つガラス粉末の配合割合を多くして封着温度低減効果をその 分だけ大きくすることができるので、結果として十分に封着温度が低く且つ熱膨張係 数も十分に小さい封着用組成物を提供することができる。  By doing so, the thermal expansion coefficient of the sealing composition can be greatly reduced with a small amount of filler, and the effect of lowering the sealing temperature is increased by increasing the mixing ratio of the glass powder. As a result, a sealing composition having a sufficiently low sealing temperature and a sufficiently low thermal expansion coefficient can be provided.
[0023] リン酸タングステン酸ジルコニウムは、封着用組成物の全量に対して、 2 20重量 %とするのがよい。 2重量%未満では、封着用組成物の熱膨張係数の低下が不十分 となり、 20重量%を超えると、封着組成物の焼結を阻害するため好ましくない。 [0023] Zirconium tungstate phosphate is preferably used in an amount of 220% by weight based on the total amount of the sealing composition. If the amount is less than 2% by weight, the thermal expansion coefficient of the sealing composition will not be sufficiently reduced, and if it exceeds 20% by weight, sintering of the sealing composition will be impaired.
封着用組成物の全量に対するリン酸タングステン酸ジルコニウムの含有量(2 20 重量%)は 5重量%以上がより好ましぐ更に言えば 10重量%が更に好ましい。  The content (220% by weight) of zirconium phosphate tungstate relative to the total amount of the sealing composition is preferably 5% by weight or more, more preferably 10% by weight.
[0024] 前記無機フィラーとして、リン酸ジノレコニゥム化合物に加えて、 j3—ユークリプタイト 等の低熱膨張率を有する無機フィラーを含有させることができる。 [0024] As the inorganic filler, an inorganic filler having a low coefficient of thermal expansion such as j3-eucryptite can be contained in addition to the dinoleconium phosphate compound.
また無機フィラーとして、リン酸ジルコニウム化合物に加えて、熱膨張係数の低下を 阻害しない程度に、コーディエライト、チタン酸アルミニウム、ジルコン、ムライト、 β— スポジュメン、ァノレミナ、セノレシアン、ウィレマイト、シリカ(α—クォーツ、クリストバライト 、トリジマイト)等のセラミックフィラーや石英ガラスフィラーを含有させることができる。  As an inorganic filler, in addition to the zirconium phosphate compound, cordierite, aluminum titanate, zircon, mullite, β-spodumene, anoremina, senorocyan, willemite, silica (α- A ceramic filler such as quartz, cristobalite, or tridymite) or a quartz glass filler can be contained.
[0025] なおガラス、無機フイラ一共に所定の組成のものをそれぞれ粉碎し、ガラス粉末は、 例えば目開き 106 μ mのふるレ、を通過させることにより平均粒径が 2— 7 β mとしたも の、無機フイラ一は、例えば目開き 44 μ ΐηのふるいを通過させることにより平均粒径 力 S10— 20 μ mとしたものとすることが好ましい。 [0025] Note that glass, and Kona碎respective ones inorganic FILLER one together predetermined composition, glass powder, for example, shake of mesh 106 mu m les, average particle size by passing it was 2-7 beta m Preferably, the inorganic filter is made to have an average particle size of S10-20 μm by passing through a sieve having an opening of 44 μΐη, for example.
無機フィラーの粒度分布は 1 β m以下の微紛が少ないことが熱膨張係数の安定性 の点から好ましぐ 44 a m以上の粗粒も少ないことが封着用組成物の均質性の面か ら好ましい。  The particle size distribution of the inorganic filler is preferably low in fine powder of 1 βm or less from the viewpoint of stability of thermal expansion coefficient. preferable.
実施例  Example
[0026] 以下に、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施 例により何ら限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
なお実施例において使用した原料は、 Bi〇、 H BO 、 Zn〇、 Al (OH) 、 Ba (NO  The raw materials used in the examples were Bi〇, HBO, Zn〇, Al (OH), Ba (NO
2 3 3 3 3  2 3 3 3 3
) 、 Si〇である。 [0027] 実施例にぉレ、て、ガラス粉末の平均粒径、ガラス粉末のガラス転移点 Tg、封着用 組成物の封着性 (フロー性)、封着用組成物の熱膨張係数は次の方法により測定し た。 ), Si〇. The average particle size of the glass powder, the glass transition point Tg of the glass powder, the sealing property (flow property) of the sealing composition, and the thermal expansion coefficient of the sealing composition are as follows. It was measured by the method.
(1)ガラス粉末の平均粒径  (1) Average particle size of glass powder
レーザー散乱式粒度分布計を用いて、体積分布モードの D50の値を求めた。  Using a laser scattering particle size distribution meter, the value of D50 in the volume distribution mode was determined.
(2)ガラス粉末のガラス転移点 Tg  (2) Glass transition point Tg of glass powder
示差熱分析測定装置(DTA)を用いて、室温から 20°C/minで昇温した時に得ら れる DTA曲線の最初の吸熱開始の温度(外揷点)から求めた。  Using a differential thermal analyzer (DTA), the temperature was determined from the temperature at the first endothermic end (outer 揷 point) of the DTA curve obtained when the temperature was raised from room temperature at 20 ° C./min.
(3)封着性 (フロー性)  (3) Sealability (flowability)
封着用組成物の粉末 10gを直径 20mmの円筒形にし、ソーダライムガラスの上に 載せて、表 1、 2に示す封着温度で焼成し、得られた焼結体の外形の最大値を測定 して得た。このフロー径 (外形の最大値)が 22mm未満の場合、封着材料として使用 できない。  10 g of the powder of the sealing composition was formed into a cylindrical shape with a diameter of 20 mm, placed on soda lime glass, and fired at the sealing temperatures shown in Tables 1 and 2, and the maximum value of the outer shape of the obtained sintered body was measured. I got it. If this flow diameter (maximum outer shape) is less than 22 mm, it cannot be used as a sealing material.
(4)熱膨張係数  (4) Thermal expansion coefficient
(3)で得られた焼成体を約 3mm X約 3mm X約 1 Ommに切り出し、熱機械分析測 定装置 (TMA)を用い、石英ガラスを標準試料として室温から 10°C/minで昇温し たときに得られる TMA曲線より、 50— 250°Cでの熱膨張係数を求めた。  The fired body obtained in (3) was cut into a piece of about 3 mm X about 3 mm X about 1 Omm, and the temperature was raised from room temperature to 10 ° C / min using a quartz glass as a standard sample using a thermomechanical analyzer (TMA). The thermal expansion coefficient at 50-250 ° C was determined from the TMA curve obtained in this case.
[0028] 実施例 1一 6、比較例 1一 5 Example 1-6, Comparative Example 1-5
(ガラス粉末の作製)  (Preparation of glass powder)
表 1、 2に示す化学組成となるように原料を調合、混合して、この調合原料を白金る つぼに入れて 1000°Cで 1時間溶融後、急冷してガラスを作製した。得られたガラスを ボールミルに入れて乾式粉砕した後、 目開き 106 μ mのふるいを通過させ、ガラス粉 末を得た。得られたガラス粉末の平均粒径は 3— 6 x mであった。ガラス粉末のガラス 転移点 Tgを表 1、 2に示す。  Raw materials were prepared and mixed so as to have the chemical compositions shown in Tables 1 and 2, and the prepared raw materials were put into a platinum crucible, melted at 1000 ° C. for 1 hour, and quenched to produce glass. The obtained glass was put into a ball mill and pulverized by a dry method, and then passed through a sieve having openings of 106 μm to obtain glass powder. The average particle size of the obtained glass powder was 3-6 x m. Tables 1 and 2 show the glass transition point Tg of the glass powder.
(封着用組成物の作製)  (Preparation of sealing composition)
ガラス粉末と無機フィラー(共立マテリアル株式会社製、リン酸タングステン酸ジルコ ニゥム (ZWP)、リン酸ジノレコニゥム (ZP) )を表 1、 2に示す配合比で混合し、封着用 組成物を作製した。得られた封着用組成物の封着性 (フロー性)、熱膨張係数を測定 した。結果を表 1、 2に示す。なおフロー性の測定において、フロー径が 22mm未満 の場合は封着材料として使用できないため、熱膨張係数の測定は実施していない。 Glass powder and an inorganic filler (manufactured by Kyoritsu Materials Co., Ltd., zirconium phosphate tungstate (ZWP), dinorecone phosphate (ZP)) were mixed at the compounding ratios shown in Tables 1 and 2 to prepare a sealing composition. Measure the sealing properties (flow properties) and thermal expansion coefficient of the obtained sealing composition did. The results are shown in Tables 1 and 2. In the measurement of the flow property, when the flow diameter is less than 22 mm, it cannot be used as a sealing material, so the measurement of the thermal expansion coefficient was not performed.
[表 1] [table 1]
Figure imgf000010_0001
Figure imgf000010_0001
[表 2] 比 較 例 [Table 2] Comparative example
1 2 3 4 5 1 2 3 4 5
B ! 2 ° 3 70.6 82.2 85.4 85.0 82.2 ガ B ! 2 ° 3 70.6 82.2 85.4 85.0 82.2
8.4 4.8 5.0 4.3 8.4 ラ B 2 ° 3 8.4 4.8 5.0 4.3 8.4 LA B 2 ° 3
 S
Z n O 17.8 10.9 9.2 10.0 7.3 組  Z n O 17.8 10.9 9.2 10.0 7.3 pairs
成 A 1 2 °3 0.8 0.4 0.4 0.4 0.4 A 1 2 ° 3 0.8 0.4 0.4 0.4 0.4
B a O 0.4 0.3 0.3 0.3 里 B a O 0.4 0.3 0.3 0.3 ri
% s i o2 2.0 1.4 1.4 % sio 2 2.0 1.4 1.4
≡±  ≡ ±
口 PT 100 100 100 100 100 ガラス転移点 T g (°C) 401 365 346 343 377 フ  Mouth PT 100 100 100 100 100 Glass transition temperature T g (° C) 401 365 346 343 377
ィ ZWP S P J ZWP ZWP ZWP ラ  Z ZWP S P J ZWP ZWP ZWP ラ
I 配合量 (%) 21 5 10 10 10 封着温度 (°c) 520 450 450 450 450 フロー径 (■) 17.5 22.0 21.5 19.5 19.0 封着材料の熱膨張係数  I Content (%) 21 5 10 10 10 Sealing temperature (° c) 520 450 450 450 450 Flow diameter (■) 17.5 22.0 21.5 19.5 19.0 Thermal expansion coefficient of sealing material
― 90 ― ― ―  ― 90 ― ― ―
X 1 0— 7 ( 1 ZK) β S P J : βースポジュメン X 1 0— 7 (1 ZK) β SPJ: β-spodumene
表 1、 2から明らかなように、本発明に係る封着用組成物の実施例 1一 5においては 、全て 520°C以下の低温で封着することができ、且つ熱膨張係数を 80 X 10-7以下 に小さくすることができることがわかる。 As is clear from Tables 1 and 2, in Examples 115 of the sealing composition according to the present invention, all can be sealed at a low temperature of 520 ° C. or less, and the thermal expansion coefficient is 80 × 10 It can be seen that it can be reduced to -7 or less.
実施例 1と比較例 1とは、無機フィラーの配合量を変えたものである。無機フィラーと しての ZWPの配合量が 21重量%のものは、フロー径が 17.5mmとなって封着性に 問題が生じる。 Example 1 and Comparative Example 1 are different from each other in the amount of the inorganic filler. When the content of ZWP as an inorganic filler is 21% by weight, the flow diameter becomes 17.5 mm and the sealing property is improved. Problems arise.
実施例 3と比較例 2とは、使用フィラーする無機フィラーを変えたものである。無機フ イラ一が ZWPから β SPJに変ることで、熱膨張係数が大きくなる。  Example 3 and Comparative Example 2 are different from the inorganic filler used as the filler. When the inorganic filler changes from ZWP to β SPJ, the coefficient of thermal expansion increases.
比較例 1は無機フィラーとしてのリン酸タングステン酸ジルコニウムの量が 20重量% を超えており、フロー性が悪ぐ 520°C以下での実際の封着が困難となる。  In Comparative Example 1, the amount of zirconium tungstate phosphate as an inorganic filler exceeds 20% by weight, and the actual sealing at 520 ° C. or lower is difficult because of poor flowability.
比較例 2は、無機フィラーとして βースポジュメン( j3 SPJ)を使用しており、低温での 封着はできるものの、熱膨張係数が大きい点において劣っている。  In Comparative Example 2, β-spodumene (j3 SPJ) was used as the inorganic filler, and although sealing could be performed at a low temperature, it was inferior in that the coefficient of thermal expansion was large.
比較例 3— 5は、ガラスの組成が何れかにおいて範囲を超えており、焼成時にガラ スが結晶化しやすいためにフロー性が悪ぐ低温での封着が困難となる。  In Comparative Examples 3-5, the composition of the glass was out of the range in any case, and the glass was easily crystallized at the time of firing, so that the flowability was poor and it was difficult to seal at low temperatures.
(熱膨張係数の理論計算値と実測値との違い) (Difference between theoretically calculated and actual measured values of thermal expansion coefficient)
特にリン酸タングステン酸ジノレコニゥム(ZWP)をフイラ一として本発明に用いられる Bi〇 _B O -ZnO-AI〇系ガラスに配合してなる封着用組成物における、両材料 In particular, both materials in a sealing composition obtained by blending dinorcone tungstate phosphate (ZWP) as a filler with the Bi-BO-ZnO-AI-based glass used in the present invention.
2 3 2 3 2 3 2 3 2 3 2 3
の個々の熱膨張係数と配合比とから演算できる理論熱膨張係数と、実際に測定した 熱膨張係数とを次に示す。 The following shows the theoretical thermal expansion coefficient that can be calculated from the individual thermal expansion coefficients and the compounding ratios, and the actually measured thermal expansion coefficient.
( 1 )実施例 1に示す封着用組成物(ガラス粉末 82重量%、 ZWP 18重量%)  (1) The sealing composition shown in Example 1 (glass powder 82% by weight, ZWP 18% by weight)
理論計算熱膨張係数: 60 X 10— 7 ( 1 /K) Theoretical thermal expansion coefficient: 60 X 10- 7 (1 / K)
実測熱膨張係数 :40 X 10— 7 ( 1/K) Found thermal expansion coefficient: 40 X 10- 7 (1 / K)
(2)実施例 3のガラス粉末 90重量%に∑\ ?10重量%を配合した封着用組成物 理論計算熱膨張係数: 78 X 10— 7 ( 1/K) (2) sealing composition theoretically calculated thermal expansion coefficient was blended sigma \ 10 wt% in the glass powder 90 wt% of Example 3:? 78 X 10- 7 ( 1 / K)
実測熱膨張係数 : 64 X 10— 7 ( 1/K) Found coefficient of thermal expansion: 64 X 10- 7 (1 / K)
(3)実施例 3のガラス粉末 90重量%に∑?10重量%を配合した封着用組成物  (3) Sealing composition containing 90% by weight of the glass powder of Example 3 and 10% by weight
理論計算熱膨張係数: 82 X 10— 7 ( 1 /Κ) Theoretical calculation coefficient of thermal expansion: 82 X 10— 7 (1 / Κ)
実測熱膨張係数 : 79 X 10— 7 (1ZK) Found coefficient of thermal expansion: 79 X 10- 7 (1ZK)
(4)実施例 3のガラス粉末 90重量%に β 3?>[10重量%を配合した封着用組成物 理論計算熱膨張係数: 91 X 10— 7 ( 1/Κ) (4) Example Glass powder 90% by weight beta 3 of 3> blending 10 wt% was sealing composition theoretically calculated thermal expansion coefficient:? 91 X 10- 7 (1 / Κ)
実測熱膨張係数 : 90 X 10— 7 (1ΖΚ) Found coefficient of thermal expansion: 90 X 10- 7 (1ΖΚ)
(5)実施例 3のガラス粉末 90重量%に Al Ο 10重量%を配合した封着用組成物  (5) A sealing composition in which 90% by weight of the glass powder of Example 3 and 10% by weight of Al were blended.
2 3  twenty three
理論計算熱膨張係数: 95 X 10"7 ( 1/Κ) 実測熱膨張係数 : 96 X 10— 7 (1/K) Theoretical calculation coefficient of thermal expansion: 95 X 10 " 7 (1 / Κ) Found coefficient of thermal expansion: 96 X 10- 7 (1 / K)
[0033] 上記段落 0032に示す理論計算熱膨張係数と実測熱膨張係数とから明らかなよう に、リン酸タングステン酸ジノレコニゥム(ZWP)がフイラ一として配合される場合は、理 論的に考えられる熱膨張係数よりもかなり顕著に低い(小さい)熱膨張係数を持つ封 着用組成物を得ることができる。 [0033] As is clear from the theoretically calculated thermal expansion coefficient and the measured thermal expansion coefficient shown in the above paragraph 0032, when dinoreconium tungstate phosphate (ZWP) is blended as a filler, the theoretically considered thermal expansion coefficient is considered. Sealing compositions having a coefficient of thermal expansion significantly lower (smaller) than the coefficient of expansion can be obtained.
またリン酸ジルコニウム (ZP)がフイラ一として配合される場合にも、封着用組成物の 熱膨張係数が理論計算熱膨張係数よりも低く(小さく)なる傾向があるようである。 またフィラーとして SPJ、 Al Oが配合される場合には、封着用組成物の熱膨張  Also, when zirconium phosphate (ZP) is blended as a filler, the thermal expansion coefficient of the sealing composition tends to be lower (smaller) than the theoretically calculated thermal expansion coefficient. When SPJ or Al O is blended as a filler, the thermal expansion of the sealing composition
2 3  twenty three
係数に改善の傾向はほとんど見られないことがわかる。  It can be seen that there is little tendency for improvement in the coefficient.
産業上の利用可能性  Industrial applicability
[0034] プラズマディスプレイパネル製造やその他の集積回路製造等において、セラミック ス、ガラス、金属等の材料の封着に用いることができる。鉛を含有しない封着ガラスと して環境に適応し、広い用途に使用することができる。 In the manufacture of plasma display panels and other integrated circuits, it can be used for sealing materials such as ceramics, glass, and metals. As a lead-free sealing glass, it can be used in a wide range of applications, adapting to the environment.

Claims

請求の範囲 The scope of the claims
実質的に Pbを含有せず、且つガラス粉末 80 98重量0 /0と、リン酸ジノレコニゥム化 合物を含有する無機フィラー 2— 20重量%からなり、 Substantially contains no Pb, and a glass powder 80 98 wt 0/0, an inorganic filler 2-20 weight percent containing phosphate Jinorekoniumu of compounds,
前記ガラス粉末が、酸化物換算で、  The glass powder, in terms of oxide,
Bi O : 70— 85重量%  Bi O: 70-85% by weight
2 3  twenty three
B〇 : 4. 5— 10重量%  B〇: 4.5-10% by weight
2 3  twenty three
ZnO : 8. 0— 20重量%  ZnO: 8.0-20% by weight
A1〇 : 0. 1— 1重量%  A1〇: 0.1-1% by weight
2 3  twenty three
を含有する組成であることを特徴とする封着用組成物。 A composition for sealing, which is a composition containing:
ガラス粉末が、酸化物換算で、  Glass powder is converted to oxide,
Bi O : 80— 83重量%  Bi O: 80-83% by weight
2 3  twenty three
B〇 : 4. 5— 8重量%  B〇: 4.5-8% by weight
2 3  twenty three
ZnO : 8. 0— 12重量%  ZnO: 8.0-12% by weight
A1〇 : 0. 1—0. 5重量0 /0 A1_rei:. 0. 1-0 5 weight 0/0
2 3  twenty three
を含有する組成であることを特徴とする請求項 1に記載の封着用組成物。 2. The sealing composition according to claim 1, wherein the composition comprises:
無機フィラーに含有されるリン酸ジルコニウム化合物は封着用組成物の全量に対し て 2重量%以上とすることを特徴とする請求項 1又は 2に記載の封着用組成物。 リン酸ジノレコニゥム化合物として、リン酸タングステン酸ジルコニウムを含有すること を特徴とする請求項 1一 3の何れかに記載の封着用組成物。  3. The sealing composition according to claim 1, wherein the zirconium phosphate compound contained in the inorganic filler is at least 2% by weight based on the total amount of the sealing composition. 14. The sealing composition according to claim 13, wherein the composition comprises zirconium tungstate phosphate as the dinoreconium phosphate compound.
リン酸ジルコニウム化合物の全量がリン酸タングステン酸ジルコニウムであることを 特徴とする請求項 1一 3の何れかに記載の封着用組成物。  14. The sealing composition according to claim 13, wherein the total amount of the zirconium phosphate compound is zirconium tungstate phosphate.
PCT/JP2005/001110 2004-01-30 2005-01-27 Sealing composition WO2005073142A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020067015027A KR101125169B1 (en) 2004-01-30 2005-01-27 Sealing composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-022735 2004-01-30
JP2004022735A JP4498765B2 (en) 2004-01-30 2004-01-30 Sealing composition

Publications (1)

Publication Number Publication Date
WO2005073142A1 true WO2005073142A1 (en) 2005-08-11

Family

ID=34823843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001110 WO2005073142A1 (en) 2004-01-30 2005-01-27 Sealing composition

Country Status (4)

Country Link
JP (1) JP4498765B2 (en)
KR (1) KR101125169B1 (en)
CN (1) CN1914129A (en)
WO (1) WO2005073142A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099864A1 (en) * 2006-02-28 2007-09-07 Matsushita Electric Industrial Co., Ltd. Method for manufacturing plasma display panel
JP2008281306A (en) * 2007-05-14 2008-11-20 Denso Corp Holding structure and glow plug
US8871348B2 (en) 2009-07-24 2014-10-28 Nippon Electric Glass Co. Ltd. Glass substrate with conductive film for solar cell

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006169047A (en) * 2004-12-16 2006-06-29 Central Glass Co Ltd Lead-free low melting point glass
JP4826137B2 (en) * 2005-05-17 2011-11-30 日本電気硝子株式会社 Bismuth-based lead-free glass composition
KR101005167B1 (en) * 2006-02-28 2011-01-04 파나소닉 주식회사 Method of manufacturing plasma display panel
EP1879209B1 (en) * 2006-03-31 2011-03-16 Panasonic Corporation Plasma display panel
JP5257827B2 (en) * 2006-09-14 2013-08-07 日本電気硝子株式会社 Sealing material
JP5321934B2 (en) * 2007-03-23 2013-10-23 日本電気硝子株式会社 Crystalline bismuth-based material
JP5257829B2 (en) * 2007-08-31 2013-08-07 日本電気硝子株式会社 Sealing material
JP5476691B2 (en) * 2007-08-31 2014-04-23 日本電気硝子株式会社 Sealing material
WO2009128527A1 (en) * 2008-04-18 2009-10-22 日本電気硝子株式会社 Glass composition for dye-sensitized solar cell and material for dye-sensitized solar cell
KR20120085267A (en) 2009-09-22 2012-07-31 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Glass package for sealing a device, and system comprising glass package
CN102358682A (en) * 2011-08-03 2012-02-22 中国计量学院 Bismuthate low-melting point and lead-free sealing grass and preparation method thereof
JP5957847B2 (en) * 2011-10-13 2016-07-27 セントラル硝子株式会社 Bismuth glass composition
JP5983536B2 (en) * 2013-05-28 2016-08-31 日本電気硝子株式会社 Crystalline bismuth-based material
CN103936284B (en) * 2014-02-27 2016-02-24 上海天马有机发光显示技术有限公司 Glass frit compositions, frit paste composition and electrical element
CN105402696A (en) * 2015-11-18 2016-03-16 惠州市华阳光电技术有限公司 LED power source, filling glue and encapsulating technique for filling glue
CN106051640A (en) * 2016-06-24 2016-10-26 安庆市奥立德光电有限公司 LED power source and packaging technology for filler of LED power source
JP2019214481A (en) * 2018-06-11 2019-12-19 日本電気硝子株式会社 Bismuth glass powder and composite powder including the same
JP6907295B2 (en) * 2019-03-07 2021-07-21 日本化学工業株式会社 Modified Zirconium Tungate Phosphate, Negative Thermal Expansion Filler and Polymer Composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037644A (en) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd Glass for sealing and sealing material which uses it
JP2003095697A (en) * 2001-09-18 2003-04-03 Nihon Yamamura Glass Co Ltd Sealing composition

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970008770A (en) * 1995-07-05 1997-02-24 김정석 Fabrication of Sealed Sintered Crystallized Glass and Improvement of Sealing Process
JP2001322832A (en) 2000-05-15 2001-11-20 Asahi Techno Glass Corp Sealing composition
JP2005035840A (en) * 2003-07-15 2005-02-10 Kcm Corp Sealing material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037644A (en) * 2000-05-16 2002-02-06 Nippon Electric Glass Co Ltd Glass for sealing and sealing material which uses it
JP2003095697A (en) * 2001-09-18 2003-04-03 Nihon Yamamura Glass Co Ltd Sealing composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099864A1 (en) * 2006-02-28 2007-09-07 Matsushita Electric Industrial Co., Ltd. Method for manufacturing plasma display panel
EP1858052A1 (en) * 2006-02-28 2007-11-21 Matsushita Electric Industrial Co., Ltd. Method for manufacturing plasma display panel
EP1858052A4 (en) * 2006-02-28 2010-04-28 Panasonic Corp Method for manufacturing plasma display panel
US7922555B2 (en) 2006-02-28 2011-04-12 Panasonic Corporation Method of manufacturing plasma display panel
JP2008281306A (en) * 2007-05-14 2008-11-20 Denso Corp Holding structure and glow plug
US8871348B2 (en) 2009-07-24 2014-10-28 Nippon Electric Glass Co. Ltd. Glass substrate with conductive film for solar cell

Also Published As

Publication number Publication date
JP2005213103A (en) 2005-08-11
KR101125169B1 (en) 2012-03-19
JP4498765B2 (en) 2010-07-07
CN1914129A (en) 2007-02-14
KR20070006711A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
WO2005073142A1 (en) Sealing composition
JP4136346B2 (en) Sealing composition
US8288298B2 (en) Glass composition for sealing
WO2014103973A1 (en) Glass composition for sealing
TWI586623B (en) Lead free glass and sealing material
JP7129782B2 (en) Low-melting-point glass composition with excellent water resistance
JP2001048579A (en) Silica phosphate tin-based glass and sealing material
WO2007132754A1 (en) Bismuth-based sealing material and bismuth-base paste material
KR100984753B1 (en) Process for melting glass
WO2015029792A1 (en) Lead-free glass and sealing material
JP2000072473A (en) Low melting point glass and sealing composition
JP2005132650A (en) Composite material for sealing
JPWO2001090012A1 (en) Glass composition and glass-forming material containing the composition
JP2002037644A (en) Glass for sealing and sealing material which uses it
JP2001199740A (en) Lead-free glass and composition for sealing
JP2005035840A (en) Sealing material
JP2002179436A (en) Silver phosphate glass and sealing material by using the same
JP2001322832A (en) Sealing composition
JP5683778B2 (en) Lead free bismuth glass composition
WO2010013692A1 (en) Lead-free glass composition
JP4573204B2 (en) Glass for sealing and sealing material using the same
JP5887339B2 (en) Sealing glass composition and sealing material
JPH05170481A (en) Seal bonding composition having low melting point
JP3402314B2 (en) Method for producing low melting point sealing composition and method for using the same
JP4406918B2 (en) Composite material for sealing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067015027

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580003475.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 1020067015027

Country of ref document: KR

122 Ep: pct application non-entry in european phase