JP4573204B2 - Glass for sealing and sealing material using the same - Google Patents

Glass for sealing and sealing material using the same Download PDF

Info

Publication number
JP4573204B2
JP4573204B2 JP2000143964A JP2000143964A JP4573204B2 JP 4573204 B2 JP4573204 B2 JP 4573204B2 JP 2000143964 A JP2000143964 A JP 2000143964A JP 2000143964 A JP2000143964 A JP 2000143964A JP 4573204 B2 JP4573204 B2 JP 4573204B2
Authority
JP
Japan
Prior art keywords
glass
sealing
powder
water resistance
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000143964A
Other languages
Japanese (ja)
Other versions
JP2001328837A (en
Inventor
淳一 井関
元 日方
俊郎 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2000143964A priority Critical patent/JP4573204B2/en
Publication of JP2001328837A publication Critical patent/JP2001328837A/en
Application granted granted Critical
Publication of JP4573204B2 publication Critical patent/JP4573204B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、封着用ガラス及び封着材料に関し、特に半導体集積回路、水晶振動子等の熱に弱い素子を搭載したパッケージの気密封着に適した封着材料に関するものである。
【0002】
【従来の技術】
従来より、半導体集積回路や水晶振動子等の素子を搭載した高信頼性のパッケージの気密封着には、低融点封着用ガラスを用いた封着材料が使用されている。
【0003】
この種の封着材料としては、PbO系ガラス粉末に、チタン酸鉛、ウイレマイト等の低膨張耐火性フィラー粉末を添加したものが知られており、例えば特表昭63−502583号には、PbO−V25−Bi23系ガラスを使用した封着材料が開示され、また特開昭63−315536号には、PbO−Tl2O−B23系ガラスを使用した封着材料が開示されている。
【0004】
【発明が解決しようとする課題】
上記した特表昭63−502583号や特開昭63−315536号の封着材料には、多量のPbOやTl2Oが含まれているが、鉛は有害物質であり、またタリウムは毒性を有するため多量に含有させることは好ましくない。
【0005】
また特表昭63−502583号の封着材料は、330℃程度で封着が可能であるが、このような低い温度で封着するためには、封着時に金属クリップ等を使って相当の荷重をかけなければならない。
【0006】
さらに特開昭63−315536号の封着材料も、330℃程度で封着することが可能であるが、パッケージの種類によっては、330℃で封着しても、素子等の特性が劣化することがあるため、より低温で封着できる材料が要求されている。
【0007】
近年、このような事情から、有害物質や毒性物質が少なく、低温で封着できる封着材料として、AgI−Ag O−系封着ガラス粉末と耐火性フィラーを混合してなる封着材料の開発が試みられている。このAgI−Ag O−系封着ガラスは、転移点が低く、低温での流動性が良いという長所があるが、耐水性が低下しやすいという問題がある。封着ガラスの耐水性が低いと、高湿度で温度差が発生するような環境下で長時間の使用に耐える長期信頼性を有する封着材料を得ることが困難であり、長期信頼性が要求される情報関連機器等に搭載される電子部品の封着材料としては使用できない。
【0008】
本発明の第1の目的は、AgI−Ag O−系封着ガラスでありながら、耐水性に優れた封着用ガラスを提供することである。
【0009】
また本発明の第2の目的は、荷重をかけることなく、330℃以下の低い温度でパッケージを良好に気密封着できる封着材料を提供することである。
【0010】
【課題を解決するための手段】
本発明の封着用ガラスは、ガラス組成として、モル%で、AgI 5〜45%、AgO 20〜70%、P 10〜26.0%、Nb 0.1〜30%、TeO+ZnO+WO 0〜50%を含有することを特徴とする。
【0011】
また本発明の封着材料は、上記の封着用ガラス粉末45〜90体積%と、耐火性フィラー粉末10〜55体積%を混合してなることを特徴とする。
【0012】
【発明の実施の形態】
本発明の封着用ガラスは、必須成分として、AgI、Ag2O、P25及びNb25を含有してなるものであり、耐水性に優れ、且つ流動性の良いガラスであるため、このガラス粉末に耐火性フィラー粉末を混合した封着材料は、330℃以下でパッケージを気密封着することができ、耐水性にも優れている。
【0013】
本発明の封着用ガラスの組成範囲を、上記のように限定した理由は、次のとおりである。
【0014】
AgIは、封着用ガラスの主成分であると共に、水に溶け難いためガラスの耐水性を高める効果があり、その含有量は5〜45%、好ましくは10〜40%である。AgIが5%より少ないと、ガラスの粘性が高くなり、低温封着が困難になると共に耐水性が低下する。一方、45%より多いと、ガラス化が困難になる。
【0015】
Ag2Oも、封着用ガラスの主成分であると共に、水に溶け難いためガラスの耐水性を高める効果があり、その含有量は20〜70%、好ましくは20〜60%である。Ag2Oが20%より少ないと、ガラスの粘度が高くなり、低温封着が困難になると共に耐水性が低下する。一方、70%より少ないと、ガラス化が困難になる。
【0016】
も、封着用ガラスの主成分であり、その含有量は10〜26.0%、好ましくは15〜26.0%である。Pが、10モル%より少ないと、ガラス化が困難となり、26.0モル%より多いと、ガラスの粘性が高くなりやすい。
【0017】
Nb25は、ガラスの耐水性を向上するのに著しい効果があり、その含有量は0.1〜30%、好ましくは0.2〜20%である。Nb25が0.1%より少ないと、耐水性を向上する効果に乏しくなり、30%より多いと、ガラスの粘性が高くなる。
【0018】
TeO2、ZnO、WO3は、ガラスの耐水性の向上と、熱膨張係数の低下に効果があり、合量で0〜50%、好ましくは0〜40%含有する。これらの成分の合量が50モル%より多いと、ガラスの粘性が高くなる。
【0019】
また本発明においては、上記した成分以外にも、5モル%以下のLi2O、SiO2、B23、PbO、Al23、MnO2、In23、MoO3、Bi23、CuO、Ga23、GeO2や、Li、Si、B、Pb、Al、Mn、In、Mo、Cu、Co、Ge、W、Zn、Te、Ga、P、Agのハロゲン化物(AgIを除く)や、Li、Si、B、Pb、Al、Mn、In、Mo、Cu、Co、Ge、W、Zn、Te、Ga、P、Agの硫化物を含有させることが可能である。ただし上記したように鉛成分は、有害物質であるため、含有しないことが望ましい。また本発明の封着用ガラスは、封着時にガラス中に結晶が析出するように組成設計することによって耐熱性を向上させることもできる。
【0020】
尚、ハロゲン化物とは、フッ化物、塩化物、臭化物又はヨウ化物のことであり、金属元素が同じ場合には、酸化物を使用するよりも、ガラスの粘性を低下させる効果が大きい。
【0021】
ところで上記の封着用ガラスは、30〜150℃の温度範囲における熱膨張係数が130〜250×10-7/℃と高く、またパッケージの封着材料としては機械的強度が不十分である。そのため封着対象となるパッケージに適合するように、封着用ガラス粉末45〜90体積%に対し、耐火性フィラー粉末を10〜55体積%混合して、高い熱膨張係数を調整させたり、機械的強度を向上させることが好ましい。
【0022】
主に熱膨張係数を低下させる耐火性フィラーとしては、NbZr(PO43やSr0.5Zr2312等のNaZr2(PO43型固溶体、チタン酸鉛及びその固溶体、ウイレマイト、コージエライト、ジルコン、酸化スズ、β−ユークリプタイト、リン酸ジルコニウム、五酸化ニオブ、石英ガラス、ムライト、チタン酸アルミニウム等を使用することができ、熱膨張係数を低下させない耐火性フィラーとしては、立方晶ジルコニア等を使用することができる。また主に機械的強度を向上させる耐火性フィラーとしては、アルミナ、ジルコニア、チタニア、スズ酸亜鉛、マグネシア、石英、スピネル、ガーナイト等を使用することができる。尚、これらの耐火性フィラーは、単独で使用しても良いし、2種以上を混合して使用しても良い。
【0023】
また本発明において耐火性フィラー粉末を使用する場合、封着用ガラス粉末45〜90体積%と、耐火性フィラー粉末10〜55体積%の割合で混合することが好ましい。すなわち封着用ガラス粉末が90体積%より多い場合(耐火性フィラー粉末が10体積%より少ない場合)は、熱膨張係数を調整したり、機械的強度を向上する効果に乏しくなり、一方、封着用ガラス粉末が45体積%より少ない場合(耐火性フィラー粉末が55体積%より多い場合)は、封着材料の流動性が著しく低下するからである。
【0024】
【実施例】
以下、本発明を実施例に基づいて詳細に説明する。
【0025】
表1、2は、本発明の封着用ガラス(試料No.)と比較例の封着用ガラス(試料No.10〜12)を示すものである。なお、試料No.1、2、9は参考例である。
【0026】
【表1】

Figure 0004573204
【0027】
【表2】
Figure 0004573204
【0028】
上表の各試料は、次のようにして調製した。
【0029】
まずヨウ化銀、酸化銀、正リン酸、五酸化ニオブ、二酸化テルル、酸化亜鉛、酸化タングステンの各原料を表中のガラス組成となるように調合し、白金ルツボに入れて、700℃で1〜2時間溶融し、薄板状に成形した後、粉砕し、250メッシュのステンレス篩を通過させて平均粒径が7μmの粉末とした。
【0030】
表から明らかなように、実施例であるNo.1〜9の各試料は、ガラス転移点が低いため、ガラスの粘性も低いことが理解できる。またこれらの試料は、いずれも耐水性と流動性が「良」又は「可」であったが、比較例であるNo.10〜12の各試料は、いずれも耐水性が「不良」であった。因みに比較例であるNo.10〜12の各試料は、実施例であるNo.1、4、6の各試料のNb25を、それぞれTeO2、AgI、ZnOに置換したものであり、これらの比較によって、P25系ガラスにNb25を含有させると、ガラスの耐水性が向上することが容易に理解できる。
【0031】
尚、表中のガラス転移点と熱膨張係数は、ガラスを40×10mmφの大きさとなるように成形した後、石英押棒式の熱膨張計によって測定した。
【0032】
耐水性は、液滴状に成形したガラスカレットをアルミナ製の板上に載せ、121℃、湿度95%、50時間の条件で処理する試験を行い、試験後、試料表面に異物の発生やガラス成分のしみ出しが認められたものを「良」とし、異物の発生やガラス成分のしみ出しが認められたものを「不良」とした。
【0033】
流動性は、各試料のガラス粉末を、金型を用いて外径20mm、高さ約5mmのボタン状に成形した後、330℃で10分間加熱して流動させ、外径が21mmを超えるものを「良」、19mm以上、21mm未満のものを「可」、19mm未満のものを「不良」とした。
【0034】
表3、4は、上記した表1、2の封着用ガラス粉末を、耐火性フィラー粉末と混合させた封着材料を示すものである。但し、試料No.1、2は参考例である。
【0035】
【表3】
Figure 0004573204
【0036】
【表4】
Figure 0004573204
【0037】
表3、4の各試料の耐火性フィラーは、次のようにして作製した。
【0038】
NbZr(PO43系フィラーは、五酸化ニオブ、低α線ジルコニア、リン酸二水素アンモニウム、マグネシアを所定割合となるように調合し、混合した後、1450℃で16時間焼成し、次いでこの焼成物を粉砕してから325メッシュのステンレス製篩を通過させて平均粒径5μmの粉末とした。
【0039】
コージエライト系フィラーは、酸化マグネシウム、酸化アルミニウム、光学石粉を2MgO・2Al23・5SiO2の割合となるように調合し、混合後、1400℃で10時間焼成し、次いでこの焼成物を粉砕し、250メッシュのステンレス製篩を通過させて平均粒径6μmとした。
【0040】
ジルコン系フィラーは、まず天然ジルコンサンドを一旦ソーダ分解し、塩酸に溶解した後、濃縮結晶化を繰り返すことによって、極めて高純度のオキシ塩化ジルコニウムとし、アルカリ中和後、加熱して精製ZrO2を得た。さらにこの精製ZrO2に高純度珪石粉、酸化第二鉄を重量%でZrO2 66%、SiO2 32%、Fe23 2%の組成となるように調合し、混合した後、1400℃で16時間焼成し、次いでこの焼成物を粉砕し、250メッシュのステンレス製篩を通過させて平均粒径6μmとした。
【0041】
立方晶ジルコニアフィラーは、まず高純度のジルコニア原料及び炭酸カルシウムをZrO2 80モル%、CaO 20モル%の割合となるように調合し、1550℃で16時間焼成した。その後、この焼成物をボールミルにて粉砕し、325メッシュの篩を通過させて平均粒径5μmとした。
【0042】
これらの耐火性フィラー粉末を、表3、4に示す割合で封着用ガラス粉末と混合した後、焼成することによって各試料を得た。
【0043】
表3、4の実施例(試料No.1〜7)の熱膨張係数は、67.5〜180×10-7/℃であり、封着温度は、225〜320℃以下と低かった。また各試料とも、耐水性、パッケージ強度及びパッケージ長期信頼性が「良」であった。
【0044】
一方、比較例(試料No.8、9)は、いずれも封着温度は290℃と低かったが、耐水性とパッケージ長期信頼性が「不良」であった。
【0045】
尚、表中の熱膨張係数は、表中の封着温度で焼成した焼成物を40×4mmφに大きさに成形し、石英押棒式の熱膨張計により測定した。
【0046】
封着温度は、周知のフローボタンテストによって求めた。すなわち各試料の真比重に相当する重量の粉末を、金型を用いて外径20mm、高さ約5mmのボタン状に成形した後、加熱して流動させ、その外径が約21mmとなった時の温度を封着温度とした。
【0047】
耐水性は、封着温度で焼成した焼成物を25×25×10mmのブロックに成形し、121℃、湿度95%、50時間の条件で熱処理する試験を行うことによって判定した。試験後に異物の発生やガラス成分のしみ出しが認められず、重量減少が1mg/cm2未満のものを「良」とし、異物の発生やガラス成分のしみ出しが認められ、重量減少が1mg/cm2以上のものを「不良」とした。
【0048】
パッケージ強度は、次のようにして評価した。
【0049】
まず各試料とビークル(ニトロセルロース0.3重量%の酢酸イソアミル溶液)とを重量比で10:1の割合で混練し、スラリーを得た。次に得られたスラリーを表3、4に示す被封着材料であるアルミナ(熱膨張係数 70×10-7/℃)、ガラスセラミック(熱膨張係数 120×10-7/℃)、銅ベース合金(熱膨張係数 180×10-7)からなる板状物にそれぞれ塗布した後、100℃で30分間乾燥させた。次いで同種の板状物をその上に載せてサンプルを作製し、封着温度にて10分間焼成した後で接着力を評価した。この接着力の評価は、各サンプルを1mの高さから樫の木上に自然落下させ、剥離しなかったものを「良」とした。
【0050】
パッケージ長期信頼性は、次のようにして評価した。
【0051】
まずパッケージ強度の評価に用いたサンプルを各々100個づつ作製した後、初期の気密性試験を行うことによって気密性が良好であることを確認してから、121℃、湿度95%、50時間の条件で耐水性試験を行った後で、再度パッケージの気密性試験を行うことによって長期信頼性を評価した。気密性試験は、MIL−STD−883Cに基づいて行い、「良」又は「不良」を評価した。
【0052】
【発明の効果】
以上説明したように、本発明の封着用ガラスは、AgI−Ag O−系ガラスでありながら、耐水性に優れ、このガラスを使用した本発明の封着材料は、荷重をかけることなく、240〜330℃の低温でパッケージを封着することができるため、特に熱に敏感な半導体集積回路や水晶振動子等を搭載したパッケージの封着に好適である。[0001]
[Industrial application fields]
The present invention relates to a sealing glass and a sealing material, and more particularly to a sealing material suitable for hermetic sealing of a package on which a heat-sensitive element such as a semiconductor integrated circuit or a crystal resonator is mounted.
[0002]
[Prior art]
Conventionally, a sealing material using low-melting-point sealing glass has been used for hermetic sealing of highly reliable packages on which elements such as semiconductor integrated circuits and crystal resonators are mounted.
[0003]
As this type of sealing material, a PbO glass powder added with a low expansion refractory filler powder such as lead titanate or willemite is known. For example, Japanese Patent Publication No. 63-502583 discloses PbO A sealing material using -V 2 O 5 -Bi 2 O 3 glass is disclosed, and Japanese Patent Application Laid-Open No. 63-315536 discloses sealing using PbO-Tl 2 O-B 2 O 3 glass. A material is disclosed.
[0004]
[Problems to be solved by the invention]
The sealing materials disclosed in JP-A-63-502583 and JP-A-63-315536 contain a large amount of PbO and Tl 2 O, but lead is a harmful substance and thallium is toxic. Therefore, it is not preferable to contain a large amount.
[0005]
In addition, the sealing material of JP-A-63-502583 can be sealed at about 330 ° C. However, in order to seal at such a low temperature, a metal clip or the like is used at the time of sealing. A load must be applied.
[0006]
Furthermore, the sealing material disclosed in Japanese Patent Laid-Open No. Sho 63-315536 can be sealed at about 330 ° C. However, depending on the type of package, the characteristics of the element and the like deteriorate even when sealed at 330 ° C. Therefore, a material that can be sealed at a lower temperature is required.
[0007]
Recently, such circumstances, toxic substances and toxic substances is small, as the sealing material that can be sealed at low temperatures, comprising a mixture of AgI-Ag 2 O- P 2 O 5 based sealing glass powder and the refractory filler Attempts have been made to develop sealing materials. The AgI-Ag 2 O- P 2 O 5 based sealing glass transition point is low, there is the advantage of good fluidity at low temperatures, there is a problem that the water resistance tends to decrease. If the water resistance of the sealing glass is low, it is difficult to obtain a sealing material with long-term reliability that can withstand long-term use in an environment where temperature differences occur at high humidity, and long-term reliability is required. It cannot be used as a sealing material for electronic components mounted on information-related equipment.
[0008]
A first object of the present invention, while a AgI-Ag 2 O- P 2 O 5 based sealing glass is to provide an excellent sealing glass water resistance.
[0009]
A second object of the present invention is to provide a sealing material that can satisfactorily hermetically seal a package at a low temperature of 330 ° C. or lower without applying a load.
[0010]
[Means for Solving the Problems]
The glass for sealing of the present invention has, as a glass composition, mol%, AgI 5 to 45%, Ag 2 O 20 to 70%, P 2 O 5 10 to 26.0 %, Nb 2 O 5 0.1 to 30. %, and having containing a TeO 2 + ZnO + WO 3 0~50 %.
[0011]
Moreover, the sealing material of this invention mixes 45-90 volume% of said glass powder for sealing, and 10-55 volume% of refractory filler powders, It is characterized by the above-mentioned.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The glass for sealing of the present invention contains AgI, Ag 2 O, P 2 O 5 and Nb 2 O 5 as essential components, and is a glass having excellent water resistance and good fluidity. The sealing material obtained by mixing the glass powder with the refractory filler powder can hermetically seal the package at 330 ° C. or lower, and has excellent water resistance.
[0013]
The reason why the composition range of the sealing glass of the present invention is limited as described above is as follows.
[0014]
AgI is the main component of the glass for sealing, and since it hardly dissolves in water, it has the effect of increasing the water resistance of the glass, and its content is 5-45%, preferably 10-40%. When AgI is less than 5%, the viscosity of the glass becomes high, low-temperature sealing becomes difficult, and water resistance decreases. On the other hand, if it exceeds 45%, vitrification becomes difficult.
[0015]
Ag 2 O is also a main component of the sealing glass and is hardly soluble in water, and thus has an effect of increasing the water resistance of the glass, and its content is 20 to 70%, preferably 20 to 60%. If the Ag 2 O content is less than 20%, the viscosity of the glass becomes high, making it difficult to seal at low temperature and lowering the water resistance. On the other hand, if less than 70%, vitrification becomes difficult.
[0016]
P 2 O 5 is also a main component of the sealing glass, and its content is 10 to 26.0 %, preferably 15 to 26.0 %. When P 2 O 5 is less than 10 mol%, vitrification becomes difficult, and when it is more than 26.0 mol%, the viscosity of the glass tends to increase.
[0017]
Nb 2 O 5 has a significant effect on improving the water resistance of the glass, and its content is 0.1 to 30%, preferably 0.2 to 20%. When Nb 2 O 5 is less than 0.1%, the effect of improving water resistance is poor, and when it is more than 30%, the viscosity of the glass increases.
[0018]
TeO 2 , ZnO, and WO 3 are effective in improving the water resistance of the glass and lowering the thermal expansion coefficient. The total amount is 0 to 50%, preferably 0 to 40%. When the total amount of these components is more than 50 mol%, the viscosity of the glass increases.
[0019]
In the present invention, in addition to the above components, 5 mol% or less of Li 2 O, SiO 2 , B 2 O 3 , PbO, Al 2 O 3 , MnO 2 , In 2 O 3 , MoO 3 , Bi 2 O 3 , CuO, Ga 2 O 3 , GeO 2 , Li, Si, B, Pb, Al, Mn, In, Mo, Cu, Co, Ge, W, Zn, Te, Ga, P, Ag halides (Except for AgI), and sulfides of Li, Si, B, Pb, Al, Mn, In, Mo, Cu, Co, Ge, W, Zn, Te, Ga, P, and Ag can be contained. is there. However, as described above, since the lead component is a harmful substance, it is desirable not to contain it. Moreover, the glass for sealing of this invention can also improve heat resistance by carrying out a composition design so that a crystal | crystallization precipitates in glass at the time of sealing.
[0020]
The halide means fluoride, chloride, bromide, or iodide. When the metal elements are the same, the effect of lowering the viscosity of the glass is greater than when an oxide is used.
[0021]
By the way, the sealing glass has a high coefficient of thermal expansion of 130 to 250 × 10 −7 / ° C. in a temperature range of 30 to 150 ° C., and has insufficient mechanical strength as a package sealing material. Therefore, 10 to 55 volume% of refractory filler powder is mixed with 45 to 90 volume% of glass powder for sealing so as to suit the package to be sealed, and a high thermal expansion coefficient is adjusted, or mechanically. It is preferable to improve the strength.
[0022]
As refractory fillers that mainly reduce the thermal expansion coefficient, NbZr (PO 4 ) 3 , NaZr 2 (PO 4 ) 3 type solid solutions such as Sr 0.5 Zr 2 P 3 O 12 , lead titanate and its solid solution, willemite, Cordierite, zircon, tin oxide, β-eucryptite, zirconium phosphate, niobium pentoxide, quartz glass, mullite, aluminum titanate, etc. can be used, and the refractory filler that does not decrease the thermal expansion coefficient is cubic. Crystalline zirconia or the like can be used. As the refractory filler mainly improving the mechanical strength, alumina, zirconia, titania, zinc stannate, magnesia, quartz, spinel, garnite and the like can be used. These refractory fillers may be used alone or in combination of two or more.
[0023]
Moreover, when using a refractory filler powder in this invention, it is preferable to mix in the ratio of 45-90 volume% of glass powder for sealing, and 10-55 volume% of refractory filler powder. That is, when the sealing glass powder is more than 90% by volume (when the refractory filler powder is less than 10% by volume), the effect of adjusting the thermal expansion coefficient or improving the mechanical strength is poor. This is because when the glass powder is less than 45% by volume (when the refractory filler powder is more than 55% by volume), the fluidity of the sealing material is significantly lowered.
[0024]
【Example】
Hereinafter, the present invention will be described in detail based on examples.
[0025]
Tables 1 and 2 show the sealing glass of the present invention (Sample Nos. 3 to 8 ) and the sealing glass of the comparative example (Sample Nos. 10 to 12). Sample No. 1, 2 and 9 are reference examples.
[0026]
[Table 1]
Figure 0004573204
[0027]
[Table 2]
Figure 0004573204
[0028]
Each sample in the above table was prepared as follows.
[0029]
First, each raw material of silver iodide, silver oxide, orthophosphoric acid, niobium pentoxide, tellurium dioxide, zinc oxide, and tungsten oxide is prepared so as to have the glass composition in the table, put in a platinum crucible, and 1 at 700 ° C. It was melted for ˜2 hours, formed into a thin plate, pulverized, and passed through a 250 mesh stainless steel sieve to obtain a powder having an average particle size of 7 μm.
[0030]
As is apparent from the table, Examples No. Since each sample of 1-9 has a low glass transition point, it can be understood that the viscosity of the glass is also low. These samples were both “good” or “good” in water resistance and fluidity. Each of the samples 10 to 12 was “poor” in water resistance. Incidentally, No. which is a comparative example. Each sample of No. 10-12 is No. which is an Example. Nb 2 O 5 in each of the samples 1, 4 and 6 was replaced with TeO 2 , AgI and ZnO, respectively. By comparing these, when Nb 2 O 5 was contained in the P 2 O 5 glass, It can be easily understood that the water resistance of the glass is improved.
[0031]
The glass transition point and the thermal expansion coefficient in the table were measured with a quartz push rod type thermal dilatometer after the glass was molded to have a size of 40 × 10 mmφ.
[0032]
For water resistance, a glass cullet molded into droplets is placed on an alumina plate and tested under conditions of 121 ° C., humidity 95%, 50 hours. The case where the exudation of the component was recognized was determined as “good”, and the case where the generation of foreign matter and the exudation of the glass component was observed was determined as “bad”.
[0033]
The fluidity is that the glass powder of each sample is formed into a button shape having an outer diameter of 20 mm and a height of about 5 mm using a mold, and then heated by flowing at 330 ° C. for 10 minutes, and the outer diameter exceeds 21 mm. Is “good”, 19 mm or more and less than 21 mm is “good”, and less than 19 mm is “bad”.
[0034]
Tables 3 and 4 show sealing materials in which the glass powders for sealing shown in Tables 1 and 2 are mixed with a refractory filler powder. However, sample No. Reference numerals 1 and 2 are reference examples.
[0035]
[Table 3]
Figure 0004573204
[0036]
[Table 4]
Figure 0004573204
[0037]
The refractory filler of each sample in Tables 3 and 4 was produced as follows.
[0038]
NbZr (PO 4 ) 3 filler is prepared by mixing niobium pentoxide, low α-ray zirconia, ammonium dihydrogen phosphate, and magnesia to a predetermined ratio, mixing, and firing at 1450 ° C. for 16 hours. The fired product was pulverized and then passed through a 325 mesh stainless steel sieve to obtain a powder having an average particle size of 5 μm.
[0039]
The cordierite filler is prepared by mixing magnesium oxide, aluminum oxide, and optical stone powder in a ratio of 2MgO · 2Al 2 O 3 · 5SiO 2 , mixing and firing at 1400 ° C. for 10 hours, and then pulverizing the fired product. , And passed through a 250 mesh stainless steel sieve to an average particle size of 6 μm.
[0040]
The zircon filler is obtained by first decomposing soda from natural zircon sand, dissolving it in hydrochloric acid, and repeating concentration and crystallization to obtain extremely high-purity zirconium oxychloride. After neutralization with alkali, heating is performed to obtain purified ZrO 2 . Obtained. Further, this purified ZrO 2 was mixed with high purity silica powder and ferric oxide so that the composition of ZrO 2 66%, SiO 2 32%, Fe 2 O 3 2% by weight was mixed, and then 1400 ° C. And then calcined and passed through a 250 mesh stainless steel sieve to an average particle size of 6 μm.
[0041]
The cubic zirconia filler was prepared by first blending a high-purity zirconia raw material and calcium carbonate so as to have a ratio of 80 mol% ZrO 2 and 20 mol% CaO, followed by firing at 1550 ° C. for 16 hours. Thereafter, the fired product was pulverized by a ball mill and passed through a 325 mesh sieve to obtain an average particle size of 5 μm.
[0042]
Each sample was obtained by mixing these refractory filler powders with the glass powder for sealing in the ratios shown in Tables 3 and 4 and then firing them.
[0043]
The thermal expansion coefficients of Examples (Sample Nos. 1 to 7 ) in Tables 3 and 4 were 67.5 to 180 × 10 −7 / ° C., and the sealing temperature was as low as 225 to 320 ° C. or less. Each sample was “good” in water resistance, package strength, and long-term package reliability.
[0044]
On the other hand, the comparative examples (Sample Nos. 8 and 9) all had a sealing temperature as low as 290 ° C., but the water resistance and long-term reliability of the package were “bad”.
[0045]
The thermal expansion coefficient in the table was measured by a quartz push rod type thermal dilatometer after molding a fired product fired at the sealing temperature in the table to a size of 40 × 4 mmφ.
[0046]
The sealing temperature was determined by a well-known flow button test. That is, a powder having a weight corresponding to the true specific gravity of each sample was formed into a button shape having an outer diameter of 20 mm and a height of about 5 mm using a mold, and then heated to flow, so that the outer diameter became about 21 mm. The temperature at the time was defined as the sealing temperature.
[0047]
The water resistance was determined by performing a test in which a fired product fired at a sealing temperature was formed into a 25 × 25 × 10 mm block and heat-treated at 121 ° C., 95% humidity, and 50 hours. No foreign matter or glass component exudation was observed after the test, and a weight loss of less than 1 mg / cm 2 was evaluated as “good”. Foreign matter generation or glass component exudation was observed and the weight loss was 1 mg / cm 2. The thing of cm < 2 > or more was made "defect".
[0048]
The package strength was evaluated as follows.
[0049]
First, each sample and a vehicle (nitroamylcellulose 0.3 wt% isoamyl acetate solution) were kneaded at a weight ratio of 10: 1 to obtain a slurry. Next, the obtained slurry is alumina (thermal expansion coefficient 70 × 10 −7 / ° C.), glass ceramic (thermal expansion coefficient 120 × 10 −7 / ° C.), copper base, which is a sealing material shown in Tables 3 and 4 Each was applied to a plate-like material made of an alloy (thermal expansion coefficient 180 × 10 −7 ) and then dried at 100 ° C. for 30 minutes. Next, the same kind of plate-like material was placed thereon to prepare a sample, and the adhesive strength was evaluated after baking at the sealing temperature for 10 minutes. In this evaluation of the adhesive strength, each sample was naturally dropped onto a oak tree from a height of 1 m, and a sample that did not peel was regarded as “good”.
[0050]
The long-term reliability of the package was evaluated as follows.
[0051]
First, 100 samples each used for evaluation of package strength were prepared, and after confirming that the airtightness was good by conducting an initial airtightness test, 121 ° C., humidity 95%, 50 hours After performing the water resistance test under the conditions, the long-term reliability was evaluated by performing the airtightness test of the package again. The airtightness test was performed based on MIL-STD-883C, and “good” or “bad” was evaluated.
[0052]
【The invention's effect】
As described above, the sealing glass of the present invention is to provide a AgI-Ag 2 O- P 2 O 5 based glass, excellent water resistance, the sealing material of the present invention using this glass, the load Since the package can be sealed at a low temperature of 240 to 330 ° C. without being applied, it is particularly suitable for sealing a package on which a heat-sensitive semiconductor integrated circuit, a crystal resonator, or the like is mounted.

Claims (2)

ガラス組成として、モル%で、AgI 5〜45%、AgO 20〜70%、P 10〜26.0%、Nb 0.1〜30%、TeO+ZnO+WO 0〜50%を含有することを特徴とする封着用ガラス。 As a glass composition , AgI 5 to 45%, Ag 2 O 20 to 70%, P 2 O 5 10 to 26.0 %, Nb 2 O 5 0.1 to 30%, TeO 2 + ZnO + WO 30 sealing glass, characterized in that it comprises containing 50%. 請求項1に記載の封着用ガラス粉末45〜90体積%と、耐火性フィラー粉末10〜55体積%を含むことを特徴とする封着材料。A sealing material comprising 45 to 90% by volume of the glass powder for sealing according to claim 1 and 10 to 55% by volume of a refractory filler powder.
JP2000143964A 2000-05-16 2000-05-16 Glass for sealing and sealing material using the same Expired - Fee Related JP4573204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143964A JP4573204B2 (en) 2000-05-16 2000-05-16 Glass for sealing and sealing material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143964A JP4573204B2 (en) 2000-05-16 2000-05-16 Glass for sealing and sealing material using the same

Publications (2)

Publication Number Publication Date
JP2001328837A JP2001328837A (en) 2001-11-27
JP4573204B2 true JP4573204B2 (en) 2010-11-04

Family

ID=18650704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143964A Expired - Fee Related JP4573204B2 (en) 2000-05-16 2000-05-16 Glass for sealing and sealing material using the same

Country Status (1)

Country Link
JP (1) JP4573204B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108137385A (en) * 2015-10-22 2018-06-08 日本山村硝子株式会社 Low melting point composition, sealing material and electronic unit

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183687A1 (en) * 2016-04-21 2017-10-26 日本山村硝子株式会社 Lead-free low-melting-point composition, sealing material, conductive material, and electronic component
JPWO2018131191A1 (en) * 2017-01-13 2019-11-14 日本山村硝子株式会社 Low melting point sealing material, electronic parts and sealed body
JPWO2018131190A1 (en) * 2017-01-13 2019-11-07 日本山村硝子株式会社 Low melting point sealing material and electronic parts

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147974A (en) * 1991-11-25 1993-06-15 Nippon Electric Glass Co Ltd Seal bonding material
JPH11139845A (en) * 1997-11-06 1999-05-25 Sumita Optical Glass Inc Optical glass for precision press molding
JP2000086280A (en) * 1998-09-14 2000-03-28 Nippon Electric Glass Co Ltd Starting material of glass and production of low melting point glass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05147974A (en) * 1991-11-25 1993-06-15 Nippon Electric Glass Co Ltd Seal bonding material
JPH11139845A (en) * 1997-11-06 1999-05-25 Sumita Optical Glass Inc Optical glass for precision press molding
JP2000086280A (en) * 1998-09-14 2000-03-28 Nippon Electric Glass Co Ltd Starting material of glass and production of low melting point glass

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108137385A (en) * 2015-10-22 2018-06-08 日本山村硝子株式会社 Low melting point composition, sealing material and electronic unit
CN108137385B (en) * 2015-10-22 2021-05-25 日本山村硝子株式会社 Low-melting-point composition, sealing material, and electronic component

Also Published As

Publication number Publication date
JP2001328837A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
JP3424219B2 (en) Low melting point sealing composition
JP3951514B2 (en) Silica tin phosphate glass and sealing material
US5346863A (en) Low temperature sealing composition
JPH11292564A (en) Tin borophosphate glass and sealing material
KR910001103B1 (en) Low temperature sealing composition
JPH05147974A (en) Seal bonding material
JPH08259262A (en) Low melting point seal bonding composition
US4710479A (en) Sealing glass composition with lead calcium titanate filler
JP2002037644A (en) Glass for sealing and sealing material which uses it
JPH07102982B2 (en) Frit for low temperature sealing
JP2005132650A (en) Composite material for sealing
JP2001199740A (en) Lead-free glass and composition for sealing
JP4573204B2 (en) Glass for sealing and sealing material using the same
JP2002179436A (en) Silver phosphate glass and sealing material by using the same
JP2005035840A (en) Sealing material
JPH05170481A (en) Seal bonding composition having low melting point
JP3180299B2 (en) Low melting point sealing composition
JP3425750B2 (en) Sealing material
JP3402314B2 (en) Method for producing low melting point sealing composition and method for using the same
JP3760455B2 (en) Adhesive composition
JP2968985B2 (en) Low melting point sealing composition
JPH08231242A (en) Low melting point sealing composition
JPH06171975A (en) Low melting point sealing composition
JPH05105477A (en) Seal bonding composition having low melting point
JPH0597470A (en) Sealing composition having low melting point

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100808

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees