WO2005072679A2 - Formulación adyuvante conteniendo una emulsión oleosa con aceite de jojoba - Google Patents

Formulación adyuvante conteniendo una emulsión oleosa con aceite de jojoba Download PDF

Info

Publication number
WO2005072679A2
WO2005072679A2 PCT/CU2005/000001 CU2005000001W WO2005072679A2 WO 2005072679 A2 WO2005072679 A2 WO 2005072679A2 CU 2005000001 W CU2005000001 W CU 2005000001W WO 2005072679 A2 WO2005072679 A2 WO 2005072679A2
Authority
WO
WIPO (PCT)
Prior art keywords
oil
formulations
adjuvant
emulsion
water
Prior art date
Application number
PCT/CU2005/000001
Other languages
English (en)
French (fr)
Other versions
WO2005072679A3 (es
Inventor
Gerardo Enrique GUILLÉN NIETO
Anaiza PÉREZ MARTINTO
Erik Bo Lindblad
Julio César AGUILAR RUBIDO
Original Assignee
Centro De Ingenieria Genetica Y Biotecnologia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centro De Ingenieria Genetica Y Biotecnologia filed Critical Centro De Ingenieria Genetica Y Biotecnologia
Publication of WO2005072679A2 publication Critical patent/WO2005072679A2/es
Publication of WO2005072679A3 publication Critical patent/WO2005072679A3/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/44Oils, fats or waxes according to two or more groups of A61K47/02-A61K47/42; Natural or modified natural oils, fats or waxes, e.g. castor oil, polyethoxylated castor oil, montan wax, lignite, shellac, rosin, beeswax or lanolin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants

Definitions

  • the present invention relates to the field of vaccine development, specifically, to the development of adjuvants and vaccine formulations resulting from their use.
  • the present invention describes the development of oily formulations water in oil or oil in water where the oil phase is composed of jojoba oil in order to favor an increase in the immune response against the antigens administered in the formulations described .
  • These new formulations are obtained from the use of jojoba oil with one or more high and / or low lipophilic surfactants in an emulsion with one or more vaccine antigens.
  • formulations are applicable in the pharmaceutical industry as preventive or therapeutic vaccine formulations.
  • the adjuvant is one of the most important components, in addition to the active substance, which must be taken into account when formulating a vaccine preparation.
  • This term comes from the Latin adjuvare which means to help, are those substances that used in combination with a specific antigen produces more immunity than the antigen alone. Hence, substances that receive this name have the ability to accelerate, prolong or increase the quality of the specific immune response for an antigen when they are incorporated into a formulation. Advances in genetic engineering have made it possible to obtain increasingly pure antigens, sometimes completely synthetic (USP 5,422,109 June, 1995 Branet et al). Although the purity of the antigen has an undeniable value, from the point of view of vaccine safety, this could be accompanied by a decrease in immunological efficacy.
  • adjuvants are substances foreign to the organism and, from the chemical point of view, they constitute a highly heterogeneous group whose only Common feature is adyuvanticity. Although it is not feasible to make distinctions of all adjuvants, there are three major areas in which they could exercise their activity (Morein B et al. 1996. In: SHE Kaufmann (Editor).
  • Empowerment and / or modulation of the immune response which includes mechanisms that regulate quantitative and qualitative aspects of the immune response to be generated. These mechanisms could include intracellular transport of the antigen, its proteolytic processing, association with Major Histocompatibility Complex (MHC) class molecules! or II and the expansion of T cells with different cytokine production profiles.
  • MHC Major Histocompatibility Complex
  • Emulsions generally consist of 3 components: the oil phase, the aqueous phase and an emulsifier. Each of these components and the method by which they are prepared and combined contributes to the type and stability of the emulsion. There are many methods to determine the type of emulsion that is obtained (Myers D. Surfaces, Interfaces and Colloids. VCH Publishers, Inc. 1990. at page 232).
  • the adjuvant resulting from the association of 85% fluid mineral oil (Bayol F) with 15% mannitol ester such as manide monooleate (Arlacel A) is known in the literature as Freund's Adjuvant.
  • the difference between Freund's Incomplete Adjuvant (AIF) and Freund's Complete Adjuvant (ACF) is that the latter contains, in addition to the aforementioned components, dead rhinobacteria or cell wall debris, which enhances the immune effect.
  • Freund's Complete Adjuvant has been used as the classic oily adjuvant due to its highly effective immunopotentiating effect, in particular, when used in combination with an inactive antigen (USP 5,814,321 Miyahara et al., Sept 1998). This adjuvant shows a high immunopotentiating effect but produces collateral reactions, which includes severe reaction after inoculation and the formation of aseptic lesions and granulomas around the site of inoculation, cysts and carcinogenicity in mice.
  • the water / oil emulsion obtained with IDA has been used successfully in a number of veterinary vaccines and improves the immunogenicity of influenza virus and polio in humans (Allison AC et al. In: New Generation Vaccine. 1990 (Woodrow GC, Levine MM, eds) 129-140; Gupta RK et al. Vaccine. 1993; 11 (3): 293-306).
  • immunogens such as HSV, adenovirus and trachoma, among others, has been found.
  • the AIF is not licensed in the United States due to the adverse events reported. But billions of doses of AIF adjuvant vaccines were administered before carcinogenicity was observed in murine studies (Beebe GW et al. Am J. Epidemiol. 1972; 95: 337-246).
  • the stability of oil vaccines can be affected by the type of emulsion, the way they are prepared, in addition to the selected oil component and the types of surfactants used to achieve the emulsion.
  • MDP muramyldypeptide
  • MDP muramyl tripeptide
  • MTP-PE alanyl phosphatidylethanolamine
  • MTP-PE alanyl phosphatidylethanolamine
  • MTP-PE has also demonstrated toxicity in dogs and rabbits such as uveitis, synovitis and carditis, but its incorporation into liposomes has diminished some of its toxic effects.
  • MDP-based formulations tend to be more effective in emulsions than in aqueous solutions.
  • SAF Syntex Adjuvant Formulation
  • MF-59 Two emulsions commonly combined with MDP derivatives are SAF (Syntex Adjuvant Formulation) and MF-59, each of which show adjuvant properties when tested with immunogens.
  • the SAF formulation consists of an oil / water emulsion of Pluronic L121, squalene and Tween 80, to which appropriate concentrations of threonyl-MDP are added (McEIrath, Cancer Biology, 1995; 6: 375-385).
  • Squalane is an unsaturated hydrocarbon extracted from shark liver oil.
  • Pluronic L121 is a linear copolymer that acts as a surfactant. It consists of a hydrophobic polyoxypropylene group flanked by two hydrophilic polyoxyethylene moieties.
  • this copolymer acts as an adjuvant by possessing hydrogen bonds in hydrophilic groups that tend to bind to hydrophilic domains of the antigen to be formulated.
  • the hydrophobic group would be oriented inside the lipid vesicle and the hydrophilic groups would be oriented outward, allowing the presentation of the antigen to antigen presenting cells (In: The theory and practical application of adjuvants. Eds Stewart-Tull. 1995, pp 21-35).
  • the SAF preparation formulated with albumin improves immunity mediated by cells and antibodies, as well as the lymphoproliferative response or DTH response in guinea pigs (Byars NE et al. Vaccine. 1987: 223-228) It has similar activity when formulated with the anti-vaccine - Type 1 simian retrovirus inactivated in formalin and administered to resus monkeys (Marx PA et al. J Virol. 1986, in press; Desrosiers RC et al. Proc Nati Acad Sci. 1989; 86: 6353-57).
  • Adjuvant Formulation (AF) which is obtained as an oil / water emulsion by microfluidization of the squalene components, Tween 80 and Pluronic L121 in phosphate buffered saline at reduced temperature. It is a vaccine vehicle that when administered with an antigen induces cellular and humoral immune response. The diameter of the drops that form reaches values between 150-175 nm. Pathological and toxicological studies indicate that this poorly viscous emulsion is well tolerated and the immunizations performed exhibit a good cellular and humoral immune response.
  • AF Adjuvant Formulation
  • the MF59 consists of an emulsion containing 5% squalene and the Tween 80 and Span 85 surfactants.
  • the emulsification is carried out in a high pressure homogenizer (microfluidizer) and a very stable water / oil emulsion with a droplet size 200 is obtained. -300 nm (Ott G elt al. MF59. Desing and evaluation of a safe and potent adjuvant for human vaccines. In: Vaccine Desing: the subunit and adjuvant approach.
  • MF59 in combination with some immunogens has generated a 50-fold humoral immune response compared to alumina.
  • This formulation can be used alone or in combination with MTP-PE.
  • Several studies have been carried out to determine the efficacy of this new adjuvant, among which it has been shown to improve the immunogenicity of the influenza vaccine (Ott G et al. Vaccine, 13 (16): 1557-62, 1995).
  • the response in old mice increased to levels equivalent to those found in young mice, as well as protection levels, which could suggest that this vaccine combined with this adjuvant could significantly improve the immune response in the elderly (Higgins DA et al. Vaccine 14 (6): 478-84).
  • This adjuvant has also been tested with the oligosaccharide of Neisseria meningitidis type C and Haemophil ⁇ s influenzae type b.
  • the Specol adjuvant has in its composition Marcol that contains mineral oil, paraffins and cycloparaffins, and as surfactants a combination of Span 85: Tween 85 is used in a 9: 1 ratio. Finally, a stable low viscosity water / oil emulsion is obtained and this has generally been used for veterinary use because of its similar adjuvant activity when compared to ACF. It works as a reservoir and polyclonal activator (independent of the presence of an antigen) for immune system cells (cytokine release). Formulated with a synthetic antigen primarily induces IgG antibodies. The antibody levels it generates are similar to AF although it has fewer pathological effects than ACF.
  • the family of oily adjuvants Montanide is made by SEPPIC (Paris, France). It consists of double water / oil, oil / water and multiple emulsions (water / oil / water) whose fundamental composition is mineral, non-mineral (metabolizable) oils or a mixture of them in their oil phase. The most used are ISA 720 and ISA 51 that form water / oil emulsions, although ISA 25 and ISA 206 are also used.
  • the emulsifier is highly refined and belongs to the family of manide monooleate (Arlacel A).
  • oil / water and water / oil / water types are preferred when less viscous and more stable emulsions are required, although the latter proves to be less effective than the previous ones.
  • An important feature of these formulations is that generally no side effects are observed at the site of inoculation. It has been used in human studies, replacing ACF. They have a strong humoral and cellular response, especially in viral infections. This family has proven to be potent in different experimental vaccines in mice, rats, dogs and pigs, both with synthetic peptides and viral antigens. Some preliminary studies have been conducted with Montanide ISA 720 and ISA 888.
  • Lipids that are used as adjuvants in emulsions must meet a number of requirements, including: a) they must be less toxic than mineral oil preparations; b) they must have properties required to prepare emulsions; c) they must be stable to ensure the effect of deposit; d) they must be metabolizable by the routes of lipid catabolism; e) must be liquid at room temperature.
  • emulsions produced from vegetable oils are more difficult to obtain than those based on mineral oils, especially if good stability and an adequate drop size are required.
  • Vegetable lipids that may form water / oil emulsions may be less toxic than mineral oil preparations.
  • AIF is an excellent adjuvant, but it is of interest to find a less toxic vegetable oil, even if its action in terms of efficacy is less than this.
  • Jules Freund was the first to explore the replacement of petrolatum with a vegetable triglyceride, based on the tissue reactions that mineral oils cause (Murray R et al.
  • the ethyl stearate present in these oils has considerable adjuvant properties, but the effects of both oils were dose-dependent and was influenced by the time of administration relative to the antigen.
  • C15-C20 intermediate length hydrocarbons, liquid at room temperature were effective as substitutes for mineral oil.
  • paraffins of length C24 are solid at room temperature and were ineffective, although in other studies they found that both liquid and solid paraffins can show adjuvant properties.
  • the possibility that vegetable oils are solid at room temperature represents a disadvantage, since it would be very difficult to carry out the preparation of the formulation and once obtained, it would be even more difficult to inoculate it.
  • Adjuvant 65 oily formulations based on metabolizable vegetable oils and with good adjuvant effect have been reported: the formulation called "Adjuvant 65", developed by Hilleman, and Kimura's water / oil / water multiple emulsion.
  • Adjuvant 65 is composed of 86% peanut oil, 10% Arlacel A (as surfactant) and 4% aluminum monostearate (as emulsion stabilizer).
  • Peanut oil is made up of metabolizable triglycerides that can be degraded by glycerol lipases and free fatty acids, which are degraded by the body.
  • Adjuvant 65 has been evaluated in numerous animal and human studies (Hilleman MR, Woodhour A, Friedman A, Weibel RE and Stokes J.
  • the dual water / oil / water emulsion obtained by Kimura is composed of sesame oil, Span 65 as an emuisifier and aluminum monostearate as a stabilizer. Tween 80 was added to change the water / oil emulsion.
  • This emulsion contained small droplets of less than 10 ⁇ m in diameter and was as potent as standard oily preparations, as well as being less viscous, thus facilitating its administration and reducing the risk of producing nodules at the injection site (Powell MF et al. J Vaccine Desing. Plenum Publishing Co. NY, 1995).
  • the emulsion behaved as an inefficient adjuvant against T-independent antigens due to the interaction with the aluminum surface.
  • aluminum gels were not good adjuvants in influenza vaccines when they were used as sole adjuvants, hence the possibility of a synergistic effect between aluminum and sesame oil.
  • these two formulations contained aluminum monostearate as an emulsion stabilizer, and all the aluminum compounds that have been evaluated so far (aluminum aluminate, aluminum phosphate, aluminum salicylate and aluminum hydrochloride) have an adjuvant effect. for themselves. It is surprising that in the various publications on the emulsion of Kimura and Adjuvant 65, the possibility that part of the adjuvanticity of these preparations is attributed to the aluminum content of the emulsion stabilizer is not discussed. In addition, it is important to note that the lipolysis of these oils produces oleic and linoleic acid, which act as immunosuppressants and suppressors of IL-2 in vitro.
  • the surfactants used were Arlacel 80 dissolved in the oil phase, and Tween 80 dissolved in the aqueous phase.
  • the antigen used was the Newcastle disease virus (NDV).
  • NDV Newcastle disease virus
  • the emulsions obtained showed similar protection and hemagglutination inhibition title, however the emulsions that both surfactants possessed were more stable and had lower viscosity than those containing only one of surfactants (Stone HD, Brugh M and Beard CW Avian Dis. 1983; 27 (3): 688-97).
  • NDV Newcastle disease virus
  • the formulations tested in chicken showed titres of NDV-induced hemagglutination inhibition lower than the positive control group corresponding to a mineral oil based formulation but no statistically significant differences were found, and the viscosity values found for these formulations were higher.
  • the associated adverse reactions at the inoculation site were mild and moderate for most of the animal groups tested with non-mineral oils, however they were severe in the positive control group. Even with the use of these surfactants, the viscosity and immunogenicity of the non-mineral oils tested were not improved.
  • Jojoba oil is a compound that is extracted from the seed of the Simmondsia chinensis plant and is part of the diet of some indigenous tribes of the Amazon (Greene RA et al. The liquid wax of seeds of Simmondsia californica. Bot. Gazette. 1933 , 94: 826-8). It has been used and today it is used in the cosmetics industry with great success replacing whale sperm, by the similarity in composition and physical properties (Daugherty PM et al. Industrial Raw Materals of Plants Origin. VI A survery of Simmondsia chinensis (jojoba) Bull, Eng. Exp. Sta. Georgia Inst. Tech. 1953, 15: 1-36; Taguhci M and Kunimoto T.
  • Jojoba oil is formed by monoester chains of fatty and acidic alcohols with two double bonds. More than 85% of the esters present in jojoba wax are combinations of acids and alcohols of 20 and 22 carbon atoms. The proportion of the oil constitutes 50-60% (w / w) of the seed. At room temperature it is an oily, odorless, light yellow to light, non-volatile liquid. It is very stable and does not oxidize by subjecting it to temperatures of 285-370 ° C for 4 days (Ngoupayou JD et al Ariz Agrie Expp Stn 1982. 3501: 1692). It is soluble in petroleum ether, benzene, carbon tetrachloride, chloroform and carbon disulfide and immiscible in alcohol and acetone.
  • Toxicity data shows jojoba oil as non-toxic with an acute LD 50 greater than 251mL / Kg in male albino rats and LD 50 less than 170 mg / k in mice (Wells FB Cereal Chem 1955, 32: 157-9). Heise et al. they found that jojoba oil was less susceptible to digestive enzymes than fats commonly used in the diet and that absorption was reduced without inducing weight detriments (Heise O et al. J. Vital Nutr Res 1982, 52: 216-220 ). A digestibility of 40% was found in rats fed 12% jojoba oil. Because of this, jojoba oil has been suggested as a low digestibility diet oil (Verschuren PM Food Chem .. Toxic.
  • Jojoba oil has been widely used in the cosmetics industry as a base for cosmetics, as a protective layer in base creams for skin and for the whole body, and in the pharmaceutical industry as a sexual lubricant (USP 4664914, Stillman, May 1987. Jojoba oil compositions and methods). Roberts and collaborators prepared a patent where jojoba oil is used together with a series of components as a vehicle for the application of insecticides, pesticides and herbicides in agriculture, increasing the solubility, volatility, suspension, solubility and chemical stability of the subject components of application. It improves the biological activity of pesticides and reduces, minimizes and eliminates the problem of spray application.
  • the vegetable oils used are soy, peanut, olive, sunflower, cotton, flax and coconut oil (USP 5,741,502, Roberts JR; April 1998).
  • Jojoba oil has been used successfully in the microencapsulation of the BCG vaccine antigen.
  • a study was conducted with 5 oils, including sesame, almond, chamomile, perhydrosqualene, and jojoba.
  • the primary objective was to obtain a polyionic membrane that covered drops of calcium alginate that was emulsified with the oil in question and in which the subsequent gelation process containing live attenuated Micobacterium bovis cells was guaranteed.
  • the best results in terms of viscosity, droplet size, physical appearance, reconstitution of lyophilisates and microscopic evaluation were the microcapsules obtained with sesame and jojoba oil (Esquiza et al., J Microencapsul 1997; 14 (15): 627- 38). Detailed description of the invention.
  • the present invention relates to the field of vaccine development, specifically, to the development of adjuvants and vaccine formulations resulting from their use.
  • the present invention describes the development of oily formulations water in oil or oil in water where the oil phase is composed of jojoba oil in order to favor an increase in the immune response against the antigens administered in the formulations described .
  • These new formulations are obtained from the use of jojoba oil with one or more high and / or low lipophilic surfactants in an emulsion with one or more vaccine antigens.
  • the vaccine formulations of the present invention together with jojoba oil and the aqueous phase as components of the emulsion may contain one or more components, which exert an immunopotentiating or adjuvant effect.
  • These Components can be amino acidic nature such as cytosine, particulate antigens such as HBsAg or viral capsids, peptides, toxoids such as tetanus toxoid, diphtheria, bacterins such as pertussis nactivated cells, epitopes, peptides or protein fragments that stimulate T cells or facilitate antigen presentation by antigen presenting cells.
  • the emulsions object of the present invention can support or immunopotentiate antigens of a protein, nucleotide, lipid, amino acid or protein-polysaccharide conjugate, or particles of viral capsids, viral envelopes or protein vesicles of bacterial origin.
  • the saccharide portion corresponds to an anti-Haemophilus influenzae type b vaccine candidate, Neisseria meningitidis polysaccharide C, Pneumococcus pneumoniae vaccine polysaccharides, or in general one or more soluble proteins of Purified vaccine interest obtained from recombinant way. It is also an object of the present invention multivalent formulations for systemic administration that may contain one or more antigen of the same or different nature.
  • the amounts of antigen to be inoculated should be in the range between 0.1 micrograms and 2 mg, depending on the size and species to be immunized.
  • a particular case of the present invention is the double adjuvant where, before obtaining the oil emulsion with jojoba oil, the antigen or additives added to the aqueous phase were previously adjuvated with aluminum or calcium aluminum alumina or phosphate, which gives an additional capacity. of stimulating a potent humoral response mediated by class 2 helper T cells.
  • the oily emulsions object of the present invention can be of either the water-in-oil or oil-in-water type where the oily phase constitutes not less than 70% of the emulsion and no more than 15% of surfactant is part of this oil phase, where the surfactant can be of low hydrophilic-lipophilic balance or a mixture of high and low hydrophilic-lipophilic balance surfactants.
  • the vaccine formulations of the present invention can be used to achieve an effective immunization of human or animals in a preventive or therapeutic manner.
  • the negative control group (C (-)) is similar to formulation 872 without antigen.
  • the values are expressed as the Geometric Average of the Titles and the standard deviation (MGT + DE).
  • oily vaccine formulations whose oil component is jojoba oil are first reported. These formulations are capable of potentiating the immune response of protein-like molecules, conjugated polysaccharides, peptides and DNA when administered systemically.
  • the prepared water: oil formulations contain a range of 5-70 (v / v) oil phase, and within this a proportion of 7-20% of Arlacel A as a surfactant.
  • the preparations are obtained using an aqueous phase: oily phase ratio between 5:95 to 70:30 (v / v), and more preferably in a ratio between 30:70 to 50:50 (v / v).
  • the Arlacel A surfactant is added to the oil phase in a percentage between 7-20, and preferably between 7-15%.
  • the mixture is stirred in a mechanical mixer Top mixer (Bioblock, France) for 30 seconds and boiled in a water bath for 20 minutes.
  • the aqueous phase contains the TAB 9 immunogen and is prepared in phosphate buffered pH 7.2 buffer according to the dose to be inoculated.
  • the oil phase is deposited in a 10 mL syringe and the homogenizer propeller is introduced. It is stirred at a speed of 2000 RPM and the aqueous phase is added dropwise onto the oil phase. After 1 minute of adding the aqueous phase completely, the equipment is turned off to favor the distribution and orientation of the surfactant charges in the system, and then the process is completed by emulsifying for 20 minutes.
  • the formation of the emulsion is verified when a drop of the preparation obtained is deposited on a container containing water, and this does not break within the interval of one hour; or when trying to dissolve a drop of the emulsion obtained in a small portion of the external phase.
  • Example 2 Obtaining water-in-oil emulsions by mechanical agitation.
  • the oily and aqueous phases are prepared in the same manner and in the same proportions as Example 1.
  • the oily phase is placed in a container and the aqueous phase is slowly added thereto.
  • This system is dispersed in a mechanical mixer Top mixer (Bioblock, France) at maximum speed for 3 minutes.
  • the formation of the emulsion is verified when a drop of the preparation obtained is deposited on a container containing water, and this does not break in the interval of one hour, or when trying to dissolve a drop of the emulsion obtained in a small portion External phase
  • the oily and aqueous phases are prepared in the same manner and in the same proportions as example 1.
  • an syringe A the oil phase is placed and in another syringe B the aqueous phase. Both syringes are connected through a 4 mm diameter rubber.
  • the plunger of the syringe B is forced to slowly pass a small amount of volume of the contents into the A.
  • the syringe A is carefully shaken and the plunger of the syringe A is pushed and the same amount of volume is passed to the syringe B.
  • oil-in-water emulsions in the 7: 3 ratio is described, using the Griffins method.
  • Different mixtures of high and low balance hydrophilic-lipophilic (BHL) surfactants were used.
  • the surfactants used were combinations of Tween 20 or 80 of high BHL, with Span 20 or 80, or Arlacel A of low BHL.
  • the preparation of these preparations was carried out by adding 7-15% mixture of high and low BHL surfactants to a volume of jojoba oil, where the amounts of each of them in each formulation to be tested are varied.
  • the table shows the formulations in which a 10% mixture of surfactants is used in the oil phase (table 2). Each of these mixtures is boiled in a water bath for 20 minutes.
  • the preparation is emulsified in a mechanical mixer Top mixer (Bioblock, France) at maximum speed for 1 minute.
  • the stability time of the emulsion obtained is determined by the rupture of the emulsion (see table 2).
  • Table 2 Selection of the surfactant system to obtain the highest stability formulation.
  • mice in the immunized groups seroconverted at 30 days.
  • All jojoba oil based formulations show antibody titers against TAB 9 protein regardless of the type of formulation to be evaluated. It is possible to note that after three doses, antibody titer values higher than the positive control are reached in jojoba oil formulations 872 and 97, while the rest of them do not present statistically significant differences (by the Kruskal-Wallis test ).
  • the formulations that have the highest amount of jojoba oil are those that show the highest antibody titres, as well as those that have the highest amount of surfactant.
  • After a dose of reinforcement there is a very notable increase in the level of antibodies in all formulations with respect to the positive control group. In general, it was observed that the immune response increases more markedly with jojoba than with Montanide after the third dose.
  • jojoba oil based formulations have adjuvant capacity depending on the amount of surfactant and the proportion of the oil phase in the formulation. How I know Evidence, all formulations tested based on jojoba oil exhibit an immune response, being superior when using a 3: 7 ratio (water: oil) and a 15% surfactant content in the oil phase.
  • Example 6 Demonstration of the adjuvant capacity of jojoba oil in water-in-oil emulsion.
  • jojoba oil as an adjuvant in a water-in-oil emulsion was evaluated compared to Montanide ISA 720.
  • Arlacel A acts as a surfactant in 15% of the total volume of the oil phase.
  • the emulsion selected was that of the 95: 5 oil phase: aqueous phase ratio.
  • the immunogen used is the TAB 9 muliepitopic chimeric protein that contains epitopes V3 of the gp120 protein of six strains of the human immunodeficiency virus (Heterologous antigen expression system as fusion proteins. Cuban patent No. 22559. CTP patent WO 97 / 26359).
  • the preparation was obtained by emulsifying in a mechanical mixer Top mixer (Bioblock, France); and then an extrusion process was performed, passing the formulation three times through a 0.8 mm diameter needle syringe.
  • the stability of the emulsion was verified by checking that there is no rupture of a drop of the emulsion when it is added on a container with water.
  • Two formulations based on jojoba oil were tested as an oil phase, in one of them the antigen was previously adsorbed with alumina.
  • mice Four groups of 10 female Balb / C mice 6-8 weeks old were immunized, and anti-TAB 9 antibody levels were evaluated.
  • the formulations corresponded to Montanide ISA720, and jojoba formulations with and without alumina.
  • the negative control group corresponded to the jojoba oil formulation without immunogen.
  • Each mouse was inoculated with 10 ⁇ g of protein in a volume of 0.2 mL following a 0-10-20 day schedule. Blood extractions were performed by retrorbital puncture at 0-30-45 days. The sera were obtained by centrifugation at 12000 RPM for 10 minutes and stored at -20 ° C until the time of evaluation.
  • the geometric mean of the titers was determined 30 and 45 days after the start of immunization; as well as the subclasses of generated immunoglobulins and the Specific immune response against TAB 9 protein epitopes at 45 days (Table 4).
  • the Montanide and Jojoba formulation preferably have Th1 response since the Th1 / Th2 ratio is greater than one.
  • the Jojoba + Alumina formulation preferably had a humoral response, where high levels of IgG 1 may be due to the presence of Alumina. From these results it is concluded that both jojoba formulations induce high levels of IgG 1 and IgG 2a, higher than those obtained with Montanide, the formulation containing alumina is preferable if it is desired that a humoral response prevail.
  • the adjuvant capacity of water in jojoba oil formulations 2 ug / mouse of protein is immunized to 5 groups of 10 mice intramuscularly, corresponding to different proportions of oil and surfactant, and of aqueous and oily phase obtained by the homogenization method.
  • the oil phase contains the surfactant Arlacel A (manide monooleate).
  • the immunogen used is the P64 k outer membrane protein of Neisseria meningitidis type b.
  • the formulations tested are 872 and 97 (see example 2).
  • Freund's adjuvant was used, and as a negative control a formulation similar to 872 without the addition of the immunogen.
  • a group of animals was immunized with a formulation similar to 872 but with the antigen previously absorbed in alumina.
  • Ten female Balb / c mice between 6-8 weeks were immunized intraperitoneally with 5 ug of TAB 9 protein per formulation. The experiment is performed following an immunization schedule 0-15-30 days. Blood extractions were performed by retrorbital puncture at 0-28-45 days. The sera were obtained by centrifugation at 12000 RPM for 10 minutes and stored at -20 ° C.
  • the immune response pattern for jojoba oil based formulations has a Th2 type behavior.
  • the presence of alumina in the formulation with jojoba also induces immunomodulation, when an increase in this ratio is observed when it is part of the emulsion.
  • the jojoba oil formulation combined with alumina generates the highest titers against P64k and the IgG 1 / IgG 2a ratio is increased compared to the rest of the formulations, which favors a Th2 response (humoral response).
  • mice Five groups of 10 female Balb / c mice were immunized between 6-8 weeks with the capsular polysaccharide of N. meningitidis type C conjugated to the carrier protein P64 k of N. meningitidis.
  • the formulations tested are 97 and 872 with the conjugate without adjuvant and adjuvant with alumina prior to the oily formulation.
  • Each mouse was immunized intramuscularly with 2.5 ug the three doses taken at 0-15-30 days. Blood extractions were performed at 0-30-45 days by retroorbital puncture and the sera were obtained by centrifugation of the blood 15 minutes at 12,000 rpm and stored at -20 ° C.
  • formulations 872 and 97 show very significant differences with respect to alumina (p ⁇ 0.01), indicating that formulations with jojoba oil produce high levels of IgG 1.
  • formulation 97 shows significant differences with 872-alumina and alumina (p ⁇ 0.05).
  • the relationship between the subclasses shows that all the formulations tested exhibit a Th2 response pattern, which is increased when alumina is incorporated into the formulation.
  • mice were immunized intramuscularly with surface antigen of Hepatitis B virus alone and aggregate, which is obtained by modification Chemistry with cyclodextrin (CD) (Aguilar JC, et al., Method to obtain vaccine compositions containing HBsAg aggregated structures. OCPI Patent Appl. No. 2000-279).
  • the groups to be immunized were: 872, 97 and Freund's Adjuvant with AgsHB; and 872 with CD.
  • the group Immunized with Freund's adjuvant the first immunization with the ACF and the remaining 2 with AIF was performed.
  • the negative control group is formulation 872 without antigen.
  • Preimmune sera were analyzed and showed no humoral immune response against AgsHB. With respect to the sera after 30 days, 100% seroconversion was observed for all mice immunized with the respective antigens, the antibody titres being increased for all the formulations tested.
  • the results of the titres obtained with the sera after the third dose no significant differences were found between the groups of mice immunized with AgsHB, since there was a similar behavior in all the formulations tested with respect to the positive control.
  • the geometric mean values of the IgG 1 and IgG 2a immunoglobulin titres are shown in Figure 9.
  • subclass IgG 1 the 2 groups of mice immunized with 872 show significant difference with the group inoculated with Freund's Adjuvant (p ⁇ 0.05). These results reflect that jojoba oil preparations produce a significant increase in type 1 immunoglobulins. In subclass IgG 2a, Freund's adjuvant shows significant difference with formulation 97.
  • the immune response pattern of formulations 872 and 97 tend to be a typically Th2 response, so it can be correlated with a preferably humoral immune response.
  • No immunomodulation was observed in formulation 872 due to the influence of the AgsHB antigen added, which in itself tends to increase the Th1 response. It has been reported that Freund's adjuvant tends to modulate the response to a Th1 response pattern (Kensll CR, 1991) by induction of IgG 2a, due to the immunomodulatory activity of mycobacterial wall components present in the formulation .
  • the fact of having immunized the last two doses with IDA seems to have contributed to a decrease in this activity, so there is an increase in the generation of the IgG 1 subclass.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

En la presente invención se describe el desarrollo de formulaciones oleosas agua en aceite o aceite en agua donde la fase oleosa esta compuesta por el aceite de jojoba con el objetivo de favorecer un incremento en la respuesta inmune contra los antígenos administrados en las formulaciones que se describen. Estas nuevas formulaciones se obtienen a partir del uso del aceite de jojoba con uno o más surfactantes de alto y/o bajo contenido lipofílico en una emulsión con uno o más antigenos vacunales. Estas formulaciones son aplicables en la industria farmacéutica como formulaciones vacunales preventivas o terapéuticas

Description

MEMORIA DESCRIPTIVA
FORMULACIÓN ADYUVANTE CONTENIENDO UNA EMULSIÓN OLEOSA CON ACEITE DE JOJOBA.
La presente invención se relaciona con el campo del desarrollo de vacunas, específicamente, con el desarrollo de adyuvantes y las formulaciones vacunales resultantes de su uso. En la presente invención se describe el desarrollo de formulaciones oleosas agua en aceite o aceite en agua donde la fase oleosa esta compuesta por el aceite de jojoba con el objetivo de favorecer un incremento en la respuesta inmune contra los antígenos administrados en las formulaciones que se describen. Estas nuevas formulaciones se obtienen a partir del uso del aceite de jojoba con uno o más surfactantes de alto y/o bajo contenido lipofílico en una emulsión con uno o más antigenos vacunales.
Estas formulaciones son aplicables en la industria farmacéutica como formulaciones vacunales preventivas o terapéuticas.
El adyuvante es uno de los componentes más importantes, además del principio activo, que debe tenerse en cuenta a la hora de formular un preparado vacunal. Este término proviene del latín adjuvare que significa ayudar, son aquellas sustancias que usadas en combinación con un antígeno específico produce más inmunidad que el antígeno solo. De ahí que las sustancias que reciben este nombre tengan la capacidad de acelerar, prolongar o aumentar la calidad de la respuesta inmune específica para un antígeno cuando son incorporados a una formulación. Los avances en la ingeniería genética han hecho posible la obtención de antígenos cada vez más puros, en algunas ocasiones totalmente sintéticos (USP 5,422,109 Junio, 1995 Branet et al). Aunque la pureza del antígeno tenga un valor innegable, desde el punto de vista de la seguridad de la vacuna, esto pudiera estar acompañado de una disminución de la eficacia inmunológica. En nuestros días se incrementa la demanda de adyuvantes, que mejoren la respuesta del sistema inmune a un antígeno. Sin embargo, la presencia de los adyuvantes no debe comprometer la alta seguridad de las preparaciones vacunales modernas. Fisiológicamente, los adyuvantes son sustancias extrañas al organismo y, desde el punto de vista químico, constituyen un grupo altamente heterogéneo cuya única característica común es la adyuvanticidad. Aunque no resulta factible hacer distinciones de todos los adyuvantes, existen tres grandes áreas en las cuales podrían ejercer su actividad (Morein B et al. 1996. In: SHE Kaufmann (Editor).
Concepts in Vaccine Development Ed. Walter de ruyter an Co. Chapter 3, pp 224): • Presentación física del antígeno; definido por la apariencia física del antígeno en la vacuna. Incluye la estabilización y la exposición de epitopos conformacionales nativos del antígeno, la habilidad del adyuvante de formular el antígeno en pequeñas partículas solubles o agregados o por algún otro mecanismo que porta al antígeno en una estructura multimérica organizada. • Internalización y distribución del antígeno adyuvado, la cual cubre un rango de mecanismos que incluyen la liberación lenta del antígeno desde el sitio de deposición, iniciación de la respuesta inmune por atracción de células presentadoras de antígeno apropiadas y otros mecanismos que conducen a incrementar la internalización del antígeno y su transporte a órganos linfáticos relevantes.
• Potenciación y/o modulación de la respuesta inmune, la cual incluye mecanismos que regulan aspectos cuantitativos y cualitativos de la respuesta inmune a generar. Estos mecanismos pudieran incluir el transporte intracelular del antígeno, su procesamiento proteolítico, asociación con moléculas de Complejo Mayor de Histocompatibilidad (MHC) clase ! o II y la expansión de células T con diferentes perfiles de producción de citoquinas.
El uso de los adyuvantes en la fabricación de vacunas reporta numerosas ventajas (Baken PJ et al. Infecí Immunol. 1988; 565:3064-6; Mbawuike IN et al. Vaccine. 1990; 8:347-352; Hibbard Pl et al. Ann ínter Med. 1989; 100:955-6), entre las que se destacan:
• El aumento de la inmunogenidad cuando se trabaja con inmunógenos débiles (antígenos altamente purificados o antígenos recombinantes).
• La reducción de la cantidad de antígeno a administrar o de la frecuencia de reinmunización requerida para lograr una buena inmunidad protectora.
• El aumento de la eficacia de las vacunas en recién nacidos, ancianos y pacientes inmunodeprimidos. Salvo en algunas ocasiones, la estimulación de la respuesta inmune va aparejado a la producción de efectos adversos, lo que ha propiciado que muchos adyuvantes no han podido ser aceptados en la preparación de vacunas. La hiperactivación de la respuesta inmune debido a la acción de los adyuvantes pueden acompañarse de diversos efectos sistémicos adversos que incluyen varios mecanismos del sistema inmune en dependencia de la cantidad y tipo de mediador que se libere, y las reacciones farmacológicas generadas inherentes a la preparación (Gupta RK et al. Vaccine. 1993; 11(3): 293-306). De ahí que se hace necesario el estudio del balance toxicidad/adyuvanticidad, el cual debe estar basado en un análisis riesgo/beneficio para que se cumpla con el objetivo de la formulación.
Hasta el momento los compuestos con propiedades adyuvantes más empleados en la fabricación de vacunas son el adyuvante de Freund y los compuestos de Aluminio (especialmente hidróxido y fosfato), siendo estos últimos los generalmente autorizados para el uso en medicina humana. A través del tiempo se han ido desarrollando una serie de compuestos con la finalidad de ayudar o reemplazar a la alúmina en las formulaciones vacunales, pero el éxito no ha sido completo debido a que muchos de ellos presentan problemas con la adsorción, la liberación y la posterior degradación. También se ha estudiado una serie de compuestos que han sido empleados para inducir respuestas inmunes por vía oral y mucosal, además de las vías tradicionales de administración, con las que se han obtenido excelentes resultados. Entre los compuestos del grupo anterior se encuentran los complejos inmunoestimuladores, los liposomas y las microesferas biodegradables (Allison AC et al, Nature 1974; 252: 252-258; van Rooijen N et al. Methods Enzymol. 1983; 93: 83-5; Eldrlge JA et al; Mol Immunol 1991 ; 28: 287-90; Morein B et al; Immunostimulating Complexs. In Gregoriadis G. et al (editors) Immunologiacal adjuvants and vaccines. New York. Plenum Poblishing Co. 1989 p. 153-61). Las emulsiones aceite en agua son las más frecuentes usadas como vacunas. Sin embargo, las emulsiones agua/aceite y las múltiples (agua/aceite/agua) son preferibles para muchas aplicaciones y se pudieran utilizar más ampliamente si se pudieran superar los problemas de inestabilidad que padecen (USP 5,622,649 Abril, 1997 Hunter et al; Becher, P. Medical and Pharmaceutical Applications of Emulsions. Chapter 3 of Encyclopedia of Emulsión Technology, volume 2. Marcel Dekker, NY. 1985. ISBN 0-8247-1877-1 (v.2) at page 160). Las emulsiones generalmente consisten en 3 componentes: la fase oleosa, la fase acuosa y un emulsificador. Cada uno de esos componentes y el método por el cual son preparadas y combinadas contribuye al tipo y la estabilidad de la emulsión. Existen muchos métodos para determinar el tipo de emulsión que se obtiene (Myers D. Surfaces, Interfaces and Colloids. VCH Publishers, Inc. 1990. at page 232).
El adyuvante que resulta de la asociación de 85 % de aceite mineral fluido (Bayol F) con un 15 % de éster de manitol como el monooleato de manide (Arlacel A) es conocido en la literatura como el Adyuvante de Freund. La diferencia entre el Adyuvante Incompleto de Freund (AIF) y el Adyuvante Completo de Freund (ACF) es que éste último contiene, además de los componentes mencionados, rnicobacterias muertas o restos de pared celular de ésta, la cual potencia el efecto inmune. Estos adyuvantes se consideran aún como productos de referencia para estudios inmunológicos de laboratorio en todo el mundo. El Adyuvante Completo de Freund se ha utilizado como el adyuvante oleoso clásico debido a su alto efecto inmunopotenciador muy efectivo, en particular, cuando se usa en combinación con un antígeno inactivo (USP 5,814,321 Miyahara et al., Sept 1998). Este adyuvante muestra un alto efecto inmunopotenciador pero produce reacciones colaterales, las que incluye reacción severa tras su inoculación y la formación de lesiones asépticas y granulomas alrededor del sitio de inoculación, quistes y carcinogenicidad en ratones.
La emulsión agua/aceite obtenida con el AIF se ha utilizado exitosamente en un número de vacunas veterinarias y mejora la inmunogenicidad del virus de la influenza y la poliomielitis en humanos (Allison AC et al. In: New Generation Vaccine. 1990 (Woodrow GC, Levine MM, eds) 129-140; Gupta RK et al. Vaccine. 1993; 11(3):293-306). Sin embargo, no se ha encontrado aumento en la respuesta inmune de inmunógenos como HSV, adenovirus y tracoma, entre otros. Al igual que el ACF, el AIF no está licenciado en los Estados Unidos debido a los eventos adversos reportados. Pero se administraron miles de millones de dosis de vacunas con adyuvante AIF antes que se observara la carcinogenicidad en estudios murinos (Beebe GW et al. Am J. Epidemiol. 1972; 95:337-246).
Sin embargo, en los últimos años se realizan estudios para controlar la toxicidad asociada al uso de AIF mediante el empleo de aceites minerales de alto grado de pureza y surfactantes purificados. Una limitación del AIF es que no aumenta la respuesta inmune de tipo celular, que se piensa sea clave en el control de muchas enfermedades infecciosas virales y de tumores. Sin embargo, al mezclarlas o usarla en unión a compuestos como saponinas y citoquinas, puede controlarse o corregirse la toxicidad y la actividad adyuvante limitada del AIF, haciéndolo un producto utilizable en la industria de vacunas. Se ha probado exitosamente en ensayos con animales y puede ser pronto evaluado en ensayos clínicos (Jensen FC Adv Drug Deliv Rev 1998;32(3): 173-186).
A pesar de tener un efecto ¡nmunopotenciador, la estabilidad de las vacunas oleosas puede verse afectadas por el tipo de emulsión, la forma de prepararlas, además del componente oleoso seleccionado y los tipos de surfactantes utilizados para lograr la emulsión.
Los esfuerzos encaminados a reproducir el efecto adyuvante del ACF en una preparación menos tóxica han conducido al desarrollo y evaluación de derivados de micobacterias. Uno de los componentes responsables de la actividad adyuvante del ACF es el N-acetilmuramil-L-alanil-D-isoglutamina, llamado muramildipéptido (MDP) (Ellouz FA et al., Biochem Biophys Res Com. 1974; 59:1317-25). Se ha sustituido la L-alanina por L-valina, L-serina o L-treonina y aún mantiene el efecto adyuvante. La forma natural del MDP es pirogénica, por lo que se han desarrollado otros análogos de este compuesto, el muramil tripéptido (MTP) y derivados llpofílicos como el alanil-fosfatidiletanolamina (MTP-PE) que son menos tóxicos (Allison AC et al. In New Generation Vaccine. 1990; Woodrow GC, Levine MM, eds, 129-140). MTP-PE ha demostrado también toxicidad en perros y conejos como uveitis, sinovitis y carditis, pero su incorporación en liposomas ha disminuido alguno de sus efectos tóxicos. Las formulaciones basadas en MDP tienden a ser más efectivas en emulsiones que en soluciones acuosas. Dos emulsiones comúnmente combinadas con derivados del MDP son SAF (Syntex Adjuvant Formulation) y MF-59, cada una de las cuales muestran propiedades adyuvantes cuando son testadas con inmunógenos. La formulación SAF consiste en una emulsión tipo aceite/agua de Pluronic L121 , escualeno y Tween 80, a la que se adiciona concentraciones apropiadas de treonil- MDP (McEIrath, Cáncer Biology, 1995; 6:375-385). El escualeno es un hidrocarburo no saturado extraído del aceite de hígado de tiburón. Pluronic L121 es un copolímero lineal que actúa como surfactante. Consiste en un grupo polioxipropileno de naturaleza hidrofóbica flanqueado por dos restos de polioxietileno de naturaleza hidrofílica. Se ha planteado que este copolímero actúa como adyuvante al poseer enlaces de hidrógeno en los grupos hidrofílicos que tienden a unirse a dominios hidrofílicos del antígeno a formular. El grupo hidrofóbico quedaría orientado hacia el interior de la vesícula lipídica y los grupos hidrofílicos quedarían orientados hacia el exterior, permitiendo la presentación del antígeno a células presentadoras de antígeno (In: The theory and practical application of adjuvants. Eds Stewart-Tull. 1995, pp 21-35).
La preparación SAF formulada con albúmina mejora la inmunidad mediada por células y anticuerpos, también como la respuesta linfoproliferativa o respuesta DTH en guinea pigs (Byars NE et al. Vaccine. 1987: 223-228) Tiene actividad similar cuando es formulado con la vacuna anti-retrovirus de simio tipo 1 inactivado en formalina y administrado a monos resus (Marx PA et al. J Virol. 1986, in press; Desrosiers RC et al. Proc Nati Acad Sci. 1989; 86:6353-57). Sin el derivado de MDP en la formulación, esta preparación se conoce como Formulación de Adyuvante (AF) que se obtiene como una emulsión aceite/agua por microfluidización de los componentes escualeno, Tween 80 y Pluronic L121 en buffer fosfato salino a temperatura reducida. Es un vehículo vacunal que al administrarse con un antígeno induce respuesta inmune celular y humoral. El diámetro de las gotas que se forman alcanza valores entre 150-175 nm. Los estudios patológicos y toxicológicos indican que esta emulsión poco viscosa es bien tolerada y las inmunizaciones realizadas exhiben una buena respuesta inmune celular y humoral. Cuando se formula con antígenos solubles recombinantes induce una potente respuesta celular T citotóxica que conducen a la destrucción de tumores o células infectadas con virus in vitro e in vivo. El MF59 consiste en una emulsión que contiene 5 % de escualeno y los surfactantes Tween 80 y Span 85. La emulsificación se realiza en un homogenizador de alta presión (microfluidizador) y se obtiene una emulsión agua/aceite muy estable con un tamaño de gota 200-300 nm (Ott G elt al. MF59. Desing and evaluation of a safe and potent adjuvant for human vaccines. In: Vaccine Desing: the subunit and adjuvant approach. Michael F. Powell and Mark J. Newman (Edltors) Plenium Press, NY, 1995; Ledgate DM et al. Pharm Research. 1989; 6:748-52). Es una emulsión de muy baja viscosidad, estable y fácilmente biodegradable, todo ello explica su actividad inmunológica.
El MF59 en combinación con algunos inmunógenos ha generado una respuesta inmune humoral 50 veces superior en comparación a la alúmina. Se ha demostrado altos niveles de respuesta T cooperadora y en algunos casos respuesta CTL clase 1. Esta formulación puede usarse sola o en combinación con MTP-PE. Se han realizado varios estudios para determinar la eficacia de este nuevo adyuvante, entre los cuales se ha comprobado que mejora la inmunogenicidad de la vacuna de la influenza (Ott G et al. Vaccine, 13(16): 1557-62, 1995). La respuesta en ratones viejos aumentó a niveles equivalentes a los encontrados en los ratones jóvenes, así como los niveles de protección, lo que podría sugerir que esta vacuna combinada con este adyuvante pudiera mejorar significativamente la respuesta inmune en ancianos (Higgins DA et al. Vaccine 14(6):478-84). Se ha probado también este adyuvante con el oligosacárido de Neisseria meningitidis tipo C y Haemophilυs influenzae tipo b.
El adyuvante Specol tiene en su composición Marcol que contiene aceite mineral, parafinas y cicloparafinas, y como surfactantes se utilizan una combinación de Span 85:Tween 85 en una relación 9:1. Se obtiene finalmente una emulsión agua/aceite de baja viscosidad estable y ésta ha sido empleada generalmente para uso veterinario por su actividad adyuvante similar cuando se compara con el ACF. Funciona como depósito y activador policlonal (independiente de la presencia de un antígeno) para células del sistema inmune (liberación de citoquinas). Formulado con un antígeno sintético induce principalmente anticuerpos IgG. Los niveles de anticuerpos que genera son similares a AF aunque posee menos efectos patológicos que el ACF.
La familia de los adyuvantes oleosos Montanide es elaborada por SEPPIC (París, Francia). Consiste en emulsiones dobles agua/aceite, aceite/agua y múltiples (agua/aceite/agua) cuya composición fundamental son aceites minerales, no minerales (metabolizables) o mezcla de ellos en su fase oleosa. Los más usados son ISA 720 e ISA 51 que forman emulsiones agua/aceite, aunque también se utilizan ISA 25 e ISA 206. El emulsificador resulta altamente refinado y pertenece a la familia del monooleato de manide (Arlacel A). Los tipos aceite/agua y agua/aceite/agua se prefieren cuando se requieren emulsiones menos viscosas y más estables, aunque ésta última resulta ser menos efectiva que las anteriores. Una característica importante de estas formulaciones es que generalmente no se observan efectos secundarios en el sitio de inoculación. Se ha utilizado en estudios humanos, sustituyendo al ACF. Tienen fuerte respuesta humoral y celular, sobre todo en infecciones virales. Esta familia ha probado ser potente en diferentes vacunas experimentales en ratones, ratas, perros y cerdos, tanto con péptidos sintéticos como antígenos virales. Se ha realizado algunos estudios preliminares con Montanide ISA 720 e ISA 888. Se ha demostrado efectos positivos de esta familia de adyuvantes cuando se combina con adenovirus replicativamente defectuosos que expresan antígenos del virus de la pseudorabia en ratones. En estos estudios se ha demostrado la inducción de anticuerpos contra el antígeno a testar así como protección en pruebas de reto, tanto para formulaciones agua/aceite, aceite/agua y agua/aceite/agua (Ganne V et al. Vaccine 1994. 12(13): 1190-6). En fase I se encuentra en estudio una vacuna contra la malaria para uso en 12 voluntarios sanos, utilizando como adyuvante el ISA 720, en el que no se presentaron eventos adversos cuando se administró por vía intramuscular (Jones GL, Imm Letters; 1990, 24: 253-60; Lawrence CW et al. Vaccine 1997. 15(12): 176-8). Otros estudios se conducen con mayor número de individuos para ratificar esos estudios preliminares. La búsqueda de aceites vegetales con propiedades adyuvantes surgió como una alternativa a los problemas de toxicidad confrontados con los aceites minerales. Los lípidos que se emplean como adyuvantes en emulsiones deben cumplir una serie de requerimientos, dentro de los que se incluyen: a) deben ser menos tóxicos que las preparaciones de aceite mineral; b) deben tener propiedades requeridas para prepara emulsiones; c) deben ser estables para asegurar el efecto de depósito de la misma; d) deben ser metabolizables por las rutas del catabolismo lipídlco; e) deben ser líquidos a temperatura ambiente.
Muchas emulsiones producidas a partir de aceites vegetales son más difíciles de obtener que las basadas en aceites minerales, sobre todo si se requiere de una buena estabilidad y un tamaño de gota adecuado. Los lípidos vegetales que pudiesen formar emulsiones agua/aceite pudieran ser menos tóxicos que las preparaciones con aceite mineral. El AIF es un excelente adyuvante, pero resulta de interés encontrar un aceite vegetal menos tóxico, aun si su acción en términos de eficacia sea inferior a este. Varios tipos de emulsiones con diferentes aceites vegetales han sido evaluados en la búsqueda de un adyuvante mejor y más estable como una alternativa a las emulsiones de aceite mineral. Jules Freund fue el primero en explorar la sustitución del petrolato por un triglicérido vegetal, basándose en las reacciones tisulares que los aceites minerales provocan (Murray R et al. AnnAllergy. 1972; 3:146-151). También comparó el efecto de las emulsiones de aceite mineral con el aceite de maní emulsificado con Faifa™ (una mezcla de oxicolestrinas y colestrinas de la lanolina), en formulaciones donde empleó como inmunógeno Salmonella typhimurium. El resultado fue que el aceite de maní tuvo muy poco o casi ningún efecto comparado con el petrolato líquido. También Woodhour y colaboradores investigaron varios trlglicéridos de aceites vegetales con el virus de la influenza en conejillos de indias (Davenport FA. Am Allergy. 1968; 26:288-292), utilizando aquellos aceites vegetales que eran aceptados por la USP para ser aplicados en preparaciones parenterales (aceite de maní, ajonjolí, de alazor y semilla de amapola), empleando como emulsificadores el alginato y Tween 80. De todos los aceites probados sólo se encontró efecto adyuvante en los aceites de ajonjolí y maní; el efecto del primero fue muy similar al encontrado en los aceites minerales, sin embargo, el efecto adyuvante del aceite de maní fue inferior al de las emulsiones de aceite mineral. En otros estudios realizados por Hott se encontró muy poco efecto adyuvante cuando empleó el aceite de almendra con antígenos de la difteria, tétano y pertusis (Beebe GW et al. J Epidemiol. 1972; 95:337-346). Los aceites minerales muestran menos degradación por las lipasas de los tejidos de los animales que los aceites vegetales ya que estos últimos son biodegradables (Freund J. Am Clin Pathol. 1951; 21:645-56), lo que pudiera estar relacionado con una disminución de las reacciones locales tras la inoculación (Stone HD, Avian Diseases 1997; 41(3): 591-597). La presencia de estas lipasas podría dar explicación a la pobre adyuvanticidad de los aceites vegetales. Además de que la toxicidad de estos aceites es relativamente baja con respecto a los aceites minerales, además de que por lo general pueden ser degradados por el organismo de forma más fácil que los anteriores. Sin embargo, el aceite de maní y el de soya han sido usado con estos fines. El etil estearato presente en estos aceites posee considerables propiedades adyuvantes, pero los efectos de ambos aceites fueron dosis-dependiente y fue influenciado por el tiempo de administración con relación al antígeno. Los hidrocarburos de longitud intermedia C15-C20, líquidos a temperatura ambiente, fueron efectivos como sustitutos del aceite mineral. Sin embargo, las parafinas de longitud C24 son sólidas a temperatura ambiente y fueron inefectivas, aunque en otros estudios encontraron que tanto las parafinas liquidas como las sólidas pueden mostrar propiedades adyuvantes. La posibilidad de que los aceites vegetales sean sólidos a temperatura ambiente representa una desventaja, pues sería muy difícil realizar la preparación de la formulación y una vez obtenida, sería más difícil aún su inoculación.
Solamente se han reportados formulaciones oleosas basadas en aceites vegetales metabolizables y con buen efecto adyuvante: la formulación llamada "Adyuvante 65", desarrollada por Hilleman, y la emulsión múltiple agua/aceite/agua de Kimura. El adyuvante 65 está compuesto por 86 % de aceite de maní, 10 % de Arlacel A (como surfactante) y 4 % de monoestearato de aluminio (como estabilizador de la emulsión). El aceite de maní está formado por triglicéridos metabolizables que pueden degradarse por las lipasas a glicerol y ácidos grasos libres, los cuales son degradados por el organismo. Adjuvant 65 se ha evaluado en numerosos estudios animales y humanos (Hilleman M. R., Woodhour A, Friedman A, Weibel R. E. and Stokes J. The clinical application of adjuvant 65. Annals of Allergy, 1972 30: 152- 158; Hilleman M.R. Considerations for safety and application of emulsified oil adjuvants to vital vaccines. International Symposium on Adjuvants of Immunity 1967. 6:13-26). Sin embargo, se debe tener cuidado, pues pudieran existir especies de esta planta cuyos frutos contiene aflatoxina B1 , compuesto con posibles propiedades carcinogénicas.
Cuando este adyuvante fue aplicado en ensayos clínicos, parecía ser seguro y potente, aunque con menos adyuvanticidad que el AIF. Sin embargo, en ensayos de toxicidad a corto plazo realizados con influenza se encontraron reacciones parecidas a las que se manifiestan en presencia de una sustancia medianamente irritante (Hibbard PL et al. Ann ínter Med. 1989; 119:955-6; Gupta RK et al. Vaccine. 1995; 13:1263-76). El cuadro clínico inicial fue una inflamación aguda acompañada de una infiltración de leucocitos polimorfonucleares, la cual se redujo en un período de días y la que se debe, según Walls, a que el adyuvante de aluminio presente en la formulación atrajo a eosinófilos al sitio de inyección. A pesar de que este adyuvante fue aprobado para uso general, fue suspendido por la reactogenicidad en humanos en ciertos lotes en que se aplicaron y por la reducción de la adyuvanticidad observada cuando se empleaban emulsificadores purificados o sintéticos en sustitución del Arlacel A (Edelman R. Rev Infecí Dis. 1980; 2:370-83). Otras preparaciones que contenía aceite de maní altamente refinado emulsionado en una vacuna de arbovirus con glicerol y lecitina, incrementaron la producción de anticuerpos e indujo una inmunidad protectora en varios animales experimentales. Esta fórmula de aceite de maní, glicerol y lecitina, que a diferencia del Arlacel A son metabolizables, ha sido descrita como relativamente reactogénica sobre los tejidos. La emulsión doble agua/aceite/agua obtenida por Kimura está compuesta por aceite de ajonjolí, Span 65 como emuisificador y monoestearato de aluminio como estabilizador. Para cambiar la emulsión agua/aceite se añadió Tween 80. Esta emulsión contenía pequeñas gotas de menos de 10 μm de diámetro y fue tan potente como las preparaciones oleosas estándar, además de ser menos viscosa facilitando así su administración y disminuyendo el riesgo de producción de nodulos en el sitio de inyección (Powell MF et al. J Vaccine Desing. Plenum Publishing Co. NY, 1995). Según Kimura, la emulsión se comportó como un adyuvante ineficiente frente a antígenos T-independientes debido a la interacción con la superficie del aluminio. Por otra parte, los geles de aluminio no fueron buenos adyuvantes en vacunas de influenza cuando fueron empleados como únicos adyuvantes, de ahí que exista la posibilidad de un efecto sinérgico entre el aluminio y el aceite de ajonjolí.
Hay que mencionar que estas dos formulaciones contenían monoestearato de aluminio como estabilizador de la emulsión, y todos los compuestos de aluminio que han sido evaluados hasta el momento (aluminato de aluminio, fosfato de aluminio, salicilato de aluminio e hidrocloruro de aluminio) tienen efecto adyuvante por sí mismos. Es sorprendente que en las diversas publicaciones sobre la emulsión de Kimura y el Adyuvante 65 no se discuta la posibilidad de que parte de la adyuvanticidad de estas preparaciones esté atribuida al contenido de aluminio del estabilizador de la emulsión. Además, es importante destacar que la lipólisis de estos aceites producen ácido oleico y linoleico, los cuales actúan como inmunosupresores y supresores de la IL-2 in vitro. No se sabe si el bajo efecto adyuvante de estos compuestos sea debido a que los triglicérldos son eliminados muy rápido o porque la respuesta inmune sea suprimida por los ácidos grasos oleico y linoleico. A pesar de los problemas encontrados en el desarrollo de los adyuvantes para vacunas de uso en humanos, ha habido un avance en los últimos años, principalmente en el conocimiento de las bases moleculares de la acción de los diferentes grupos de adyuvantes. Aunque los compuestos de aluminio seguirán siendo preferidos para la fabricación de vacunas por su magnífica adyuvanticidad y seguridad para un amplio espectro de antígenos, para la formulación de vacunas purificadas, de subunidades o sintéticas además de las combinaciones de vacunas, es necesario el empleo de adyuvantes muy potentes. En estos casos el uso de compuestos de aluminio se ve limitado debido a su incapacidad para inducir o generar una respuesta inmune mediada por células, tales como la respuesta citotóxica de células T. De aquí que en los últimos años se hayan desarrollado diferentes formulaciones explicadas anteriormente como el MF59, SAF-1 y otros. Se ha probado que las vacunas agua/aceite son mucho más eficaces que las vacunas aceite/agua acuosas o oleosas solas (Stone, Avian Diseases; 27(3): 688- 6977, 1993; Ganne V et al. Vaccine 1994 12(3): 1190-6. Enhance of the efficacy of a replication-defective adenovirus-vectored vaccine by the addition of oil adjuvants). Stone y colaboradores realizaron diversas formulaciones utilizando diferentes cantidades de surfactantes, mezclados o no. Los surfactantes empleados fueron Arlacel 80 disuelto en fase oleosa, y Tween 80 disuelto en fase acuosa. El antígeno empleado fue el virus de la enfermedad de Newcastle (NDV) Las emulsiones obtenidas mostraban similares protección y título de inhibición de la hemaglutinación, sin embargo las emulsiones que poseían ambos surfactantes eran más estables y presentaban menor viscosidad que las que contenían uno solo de los surfactantes (Stone HD, Brugh M and Beard CW Avian Dis. 1983; 27 (3): 688- 97).
Este mismo grupo de investigadores revelaron el uso de aceites terpénicos, escualeno y escualano en la vacuna contra el virus de la enfermedad de Newcastle (NDV) en lugar del aceite mineral (Stone, Avian Diseases; 34:979-983, 1990). Encontraron que los títulos obtenidos de inhibición de la hemaglutlnación luego de inmunizaciones con estas emulsiones fueron similares a la emulsión basada en aceite mineral pero la viscosidad era 4 veces superior a la formulación control, lo que constituía una gran desventaja; y, además, la fuente de suministro de los aceites terpénicos fue limitada y más costosa. Para la formulación de vacunas basadas en aceites no minerales, el uso de los emulsificadores estándares aceptados como el Arlacel A, Arlace 80 y Tween 20 y 80, genera emulsiones mucho más viscosas que la generada con aceites minerales. La alta viscosidad y la poca estabilidad de los aceites vegetales como el de maní y soya, o animal como el escualeno y escualano pudieran preferirse al aceite mineral por sus múltiples limitaciones. Sin embargo, ellos son más difíciles de emulsificar y son emulsiones mucho menos estables. Las emulsiones agua/aceite de aceites vegetales requieren relativamente altas concentraciones de un emulsificador hidrofóbico como Span 80 y un estabilizador. Aluminio o estearato de magnesio han sido usados exitosamente como estabilizadores. Sin embargo, ellos aumentan la complejidad y toxicidad de las emulsiones. Otro problema es la solubilidad de los surfactantes no iónicos y su habilidad para producir emulsiones estables que pudiese variar con la temperatura. Esto produce problemas en el almacenamiento de las emulsiones donde la temperatura pudieran variar desde la congelación hasta superiores a 45° O (United States Patent 5,622,649 Hunter et al. April 22, 1997. Múltiple emulsions and methods of preparation )
La producción de emulsiones agua/aceite o aceite/agua estables requiere cuidado en el control de las cantidades de aceite y emulsificador a mezclar. Además, se debe escoger el correcto surfactante de acuerdo al balance de grupos hidrofílicos e hidrofóbicos.(USP 5,422,109 Junio, 1995 Brancq et al). La cuestión fundamental para lograr la eficiencia de vacunas agua/aceite que contengan aceites vegetales o animales es el uso de surfactantes con la capacidad de mejorar la inmunoactividad de estos aceites no minerales. La baja viscosidad es una característica importante para emulsiones vacunales debido a que facilita el proceso de Inoculación, ahorra tiempo y trabajo cuando se inocula grandes cantidades de individuos.
Debido a la necesidad de sustituir los aceites minerales por aceites de origen no mineral, Stone y colaboradores revelaron la utilización de partículas de cera de abejas suspendidas en aceite para la obtención de emulsiones agua/aceite utilizando aceites no minerales (vegetales, sintéticos y animales) (Stone HD. Avian Disease 37:399-405. 1993; Stone HD Avian Dis 1997; 41(3): 591-7). Entre los aceites vegetales se encontraba el aceite de jojoba. Los resultados muestran que no hubo diferencias significativas en la inhibición de la hemaglutinación entre el control positivo utilizado (aceite mineral) y el resto de las formulaciones ensayadas, utilizando virus de la influenza aviar y en la enfermedad de Newcastle. Sin embargo, las reacciones asociadas a tejido luego de la inmunización fueron menos severas para los aceites ensayados que las asociadas al control positivo, a pesar de ser éstas de 1 a 3 veces más viscosas que el control positivo. Estos resultados indican que cualquiera de los aceites empleados podría estar más asequible que la preparación con aceite mineral para utilizarlos como adyuvantes inmunológicos de vacunas para animales.
Para lograr un incremento en la actividad adyuvante de los aceites no minerales Stone y colaboradores utilizaron mezclas de dos surfactantes no iónicos en la proporción 1:1 , la cual se adicionó a la fase oleosa. La mezcla de surfactantes se realizó con Marlowet LVS/K (aceite etoxiolato de castor), Imwitor 412 y 408K (laurato y caprilato de propilengicol, respectivamente); y Imwitor 780K (succinato de isosteril-diglicerilo). Diferentes grupos de pollos fueron inmunizados con antígenos provenientes de las cepas de virus de la enfermedad de Newcastle (NDV), virus de la influenza y antígeno de Salmonella enteritidis (Stone HD, April 1998; USP 5,744,137). Las formulaciones ensayadas en pollo mostraron títulos de inhibición de la hemaglutinación inducida por NDV menores que el grupo control positivo correspondiente a una formulación basada en aceite mineral pero no se encontraron diferencias estadísticamente significativas, y fueron superiores los valores de viscosidad encontrados para estas formulaciones. Las reacciones adversas asociadas en el sitio de inoculación fueron ligeras y moderadas para la mayoría de los grupos de animales ensayados con los aceites no minerales, sin embargo fueron severas en el grupo control positivo. Aún con la utilización de estos surfactantes no se mejoró la viscosidad ni la inmunogenicidad de los aceites no minerales ensayados.
El aceite de jojoba es un compuesto que se extrae de la semilla de la planta Simmondsia chinensis y forma parte de la dieta de algunas tribus indígenas del Amazonas (Greene R.A. et al. The liquid wax of seeds of Simmondsia californica. Bot. Gazette. 1933, 94:826-8). Ha sido empleado y hoy se emplea en la industria de los cosméticos con mucho éxito sustituyendo al esperma de ballena, por la semejanza en la composición y las propiedades físicas (Daugherty P.M. et al. Industrial Raw Materals of Plants Origin. VI A survery of Simmondsia chinensis (jojoba). Bull. Eng. Exp. Sta. Georgia Inst. Tech. 1953, 15:1-36; Taguhci M and Kunimoto T. Cosmet Toilet 1977, 92:53-61). El aceite de jojoba está formado por cadenas de monoésteres de alcoholes grasos y ácidos con dos dobles enlaces. Más de 85% de los esteres presentes en la cera del jojoba son combinaciones de ácidos y alcoholes de 20 y 22 átomos de carbono. La proporción del aceite constituye del 50-60 % (w/w) de la semilla. A temperatura ambiente es un líquido oleoso, inodoro, amarillo ligero a claro, no volátil. Es muy estable y no se oxida sometiéndolo a temperaturas de 285-370° C durante 4 días (Ngoupayou J. D. et al Ariz Agrie Expp Stn 1982. 3501:1692). Es soluble en éter de petróleo, benceno, tetracloruro de carbono, cloroformo y disulfuro de carbono e inmiscible en alcohol y acetona.
Los datos de toxicidad muestran al aceite de jojoba como no tóxico con una DL50 aguda mayor de 251mL/Kg de peso en ratas albinas machos y DL50 menor de 170 mg/k de peso en ratones (Wells F. B. Cereal Chem 1955, 32: 157-9). Heise y col. encontraron que el aceite de jojoba era menos susceptible a enzimas digestivas que las grasas comúnmente utilizadas en la dieta y que la absorción se reducía sin inducir detrimentos en el peso (Heise O et al. J. Vital Nutr Res 1982, 52:216-220 ). Se encontró una digestibilidad de un 40% en ratas alimentadas con 12 % de aceite de jojoba. Debido a esto se ha sugerido el aceite de jojoba como aceite para la dieta de baja digestibilidad (Verschuren P. M. Food Chem.. Toxic. 1989, 27:35-44). En un ensayo para determinar la digestibilidad de este aceite, varios grupos de conejos que recibieron pequeñas cantidades de aceite de jojoba disminuyeron los niveles de colesterol en sangre (Abdellatif A. M. Nutr Metab 121971 , 13:65-74; Clarke J. A. and Yérmanos D. M. Biochem Biophis Res Com. 1982 1002:1409-15). Sin embargo, otros autores reportaron que las ratas con dietas basadas en altas cantidades de este aceite (más de 9% de la dieta) retardaron su crecimiento y se observó cambios histopatológicos en el intestino delgado, yeyuno e íleon (Pina M. et al. Lipids 1987, 22:358-61). Además se observó una masiva vacuolización de los entericitos que condujeron supuestamente a reducir la capacidad absortiva del intestino. Esta aparente paradoja entre esta observación y el dato de que los animales del desierto toleran el consumo de semillas de jojoba llama a una explicación: se pudiera pensar si los animales del desierto pudieran tener una adaptación metabólica o a la posibilidad que aunque los animales del desierto coman dichas semillas, esto no constituya una fuente significativa de su alimentación (Greene R.A. et al. The llquid wax of seeds of Simmondsia californica. Bot. Gazette. 1933, 94:826-8, Verschuren P. M. Food Chem.. Toxic. 1989, 27:35- 44).
El aceite de jojoba ha sido ampliamente utilizado en la industria de los cosméticos como base para cosméticos, como capa protectora en cremas base para cutis y para todo el cuerpo, y en la industria farmacéutica como lubricante sexual (USP 4664914, Stillman, May 1987. Jojoba oil compositions and methods). Roberts y colaboradores elaboraron una patente donde se utiliza el aceite de jojoba junto a una serie de componentes como vehículo para la aplicación de insecticidas, pesticidas y herbicidas en la agricultura, aumentando la solubilidad, volatilidad, suspensión, solubilidad y estabilidad química de los componentes objeto de aplicación. Mejora la actividad biológica de los pesticidas y reduce, minimiza y elimina el problema de aplicación del spray. Dentro de los aceites vegetales que se emplean figuran aceite de soya, maní, oliva, girasol, algodón, linaza y coco (USP 5.741.502, Roberts JR; April 1998).
El aceite de jojoba se ha utilizado con éxito en la microencapsulación de antígeno de la vacuna del BCG. Se realizó un estudio con 5 aceites, entre ellos sésamo, almendra, manzanilla, perhidroescualeno, y jojoba. El objetivo primordial estaba en función de obtener una membrana poliónica que recubriera gotas de alginato de calcio que se emulsificaba con el aceite en cuestión y en el cual se garantizara el proceso de gelificación posterior que contenían células vivas atenuadas de Micobacterium bovis. Los mejores resultados en cuanto a viscosidad, tamaño de gota, apariencia física, reconstitución de liofilizados y evaluación microscópica fueron las micrrocápsulas obtenidas con el aceite de sésamo y jojoba (Esquiza el et al., J Microencapsul 1997; 14(15): 627-38). Descripción detallada de la invención.
La presente invención se relaciona con el campo del desarrollo de vacunas, específicamente, con el desarrollo de adyuvantes y las formulaciones vacunales resultantes de su uso. En la presente invención se describe el desarrollo de formulaciones oleosas agua en aceite o aceite en agua donde la fase oleosa esta compuesta por el aceite de jojoba con el objetivo de favorecer un incremento en la respuesta inmune contra los antígenos administrados en las formulaciones que se describen. Estas nuevas formulaciones se obtienen a partir del uso del aceite de jojoba con uno o más surfactantes de alto y/o bajo contenido lipofílico en una emulsión con uno o más antigenos vacunales.
Las formulaciones vacunales de la presente invención, junto al aceite de jojoba y a la fase acuosa como componentes de la emulsión pueden contener uno o rnás componentes, que ejercen un efecto inmunopotenciador o adyuvante. Estos componentes pueden ser de naturaleza aminoacídica como citosina, antígenos particulados como el HBsAg o cápsidas virales, péptidos, toxoides como el toxoide tetánico, el diftérico, bacterinas como células ¡nactivadas de pertussis, epitopos, péptidos o fragmentos de proteínas que estimulen células T o faciliten la presentación de antígenos por células presentadoras de antígenos. También pueden ser componentes de naturaleza polisacarídica, Ilpídica o nucleosídica que ejercen un efecto inmunoestimulador como el acemanano, polisacáridos capsulares de bacterias como el polisacárido C de N. meningitidis, la inulina, el MDP o el MTP, etc. Las emulsiones objeto de la presente invención pueden adyuvar o inmunopotenciar antígenos de naturaleza proteica, nucleotídica, lipídica, aminoacídica o conjugados proteína - polisacárido, o partículas de cápsidas virales, envolturas virales o vesículas proteicas de origen bacteriano. En el caso de conjugados polisacárido - proteína la porción sacarídica se corresponde con un candidato vacunal anti Haemophilus influenzae tipo b, polisacárido C de Neisseria meningitidis, polisacáridos vacunales de Pneumococcus pneumoniae, o en general una o más proteínas solubles de Interés vacunal purificadas u obtenidas de manera recombinante. Es también un objeto de la presente Invención las formulaciones multivalentes para administración sistémica que puedan contener uno o más antígeno de igual o diferente naturaleza.
Las cantidades de antígeno a inocular deben estar en el rango entre 0.1 microgramos y 2 mg, en dependencia del tamaño y la especie a inmunizar. Un caso particular de la presente invención lo constituye la doble adyuvaclón donde antes de obtenerse la emulsión oleosa con el aceite de jojoba el o los antígenos adicionados a la fase acuosa fueron previamente adyuvados con alumina o fosfato de aluminio o calcio lo que confiere una capacidad adicional de estimular una potente respuesta humoral mediada por células T ayudadoras de clase 2. Las emulsiones oleosas objeto de la presente invención pueden ser tanto del tipo agua en aceite o aceite en agua donde la fase oleosa constituye no menos de un 70 % de la emulsión y forma parte de esta fase oleosa no más de un 15% de surfactante, donde el surfactante puede ser de bajo balance hidrofílico - lipofílico o una mezcla de surfactantes de alto y bajo balance hidrofílico - lipofílico. Las formulaciones vacunales de la presente invención se pueden utilizar para lograr una inmunización efectiva de humano o animales de modo preventivo o terapéutico.
Descripción de la figuras.
Figura 1. Respuesta específica anti-TAB 9 a los 28 días de iniciado el esquema de inmunización en ratones BALB/c con diferentes formulaciones de aceite de jojoba.
El grupo control negativo (C(-)) es similar a la formulación 872 sin antígeno. Los valores son expresados como Media Geométrica de los Títulos y la desviación estándar (MGT + DE).
Figura 2. Media geométrica de los títulos obtenidos en la determinación de las subclases IgG 1 e IgG 2a después de inmunizar con tres dosis (45 días) en ratones
BALB/c con diferentes formulaciones de aceite de jojoba comparado con Montanide
ISA720. Los valores son expresados como Media Geométrica de los Títulos y la desviación estándar (MGT + DE).
Figura 3. Dinámica de respuesta inmune anti-TAB 9 de las formulaciones de aceite de jojoba ensayadas en comparación con el adyuvante Montanide ISA 720. A los 200 días se inoculó una dosis de refuerzo.
Figura 4. Respuesta específica antl-P64k obtenida en ratones BALB/c después de
15 días de inmunizar con la segunda dosis (30 días) y con la tercera dosis (45 días) con diferentes formulaciones de adyuvantes. Los valores son expresados como media geométrica de los títulos (MGT).
Figura 5. Media geométrica de los títulos obtenidos en la determinación de las subclases lgG1 e IgG 2a después de inmunizar con tres dosis (45 días) de P64 k a ratones BALB/c con diferentes formulaciones de aceite de jojoba comparado con
Adyuvante de Freund. Figura 6. Respuesta específica anti-polisacárido C obtenida en ratones Balb/c a los
15 días de la segunda dosis (30 días) y de la tercera dosis (45 días) con diferentes formulaciones de adyuvantes. Los valores son expresados como media geométrica de los títulos (MGT± DE).
Figura 7. Media geométrica de los títulos obtenidos en la determinación de las subclases lgG1 e IgG 2a tras inmunizar con tres dosis (45 días) del antígeno polisacárido C en ratones en diferentes formulaciones oleosas con aceite de jojoba comparado con alúmina.
Figura 8. Respuesta específica anti-AgsHB obtenida en ratones BALB/c después de
15 días de inmunizar con la segunda (30 días) y tercera dosis (45 días) con las diferentes formulaciones de adyuvantes. Los valores son expresados como media geométrica de los títulos (MGT± DE).
Figura 9. Media geométrica de los títulos obtenidos en la determinación de las subclases lgG1 e IgG 2a tras inmunizar con tres dosis (45 días) de AgsHB en ratones BALB/c comparado con Freund. EJEMPLOS DE REALIZACIÓN.
En el trabajo objeto de la presente invención se reporta por primera vez métodos para obtener formulaciones vacunales oleosas cuyo componente oleoso es el aceite de jojoba. Estas formulaciones son capaces de potenciar la respuesta inmune de moléculas de naturaleza proteica, polisacáridos conjugados, péptidos y ADN cuando son administrados por vía sistémica.
En la presente aplicación describimos la metodología de obtención de las formulaciones acuoleosas y oleoacuosas basadas en el aceite de jojoba utilizando diversos sistemas de surfactantes y diferentes proporciones de los componentes. La presente invención tiene una serie de ventajas respecto de otros adyuvantes convencionales utilizados, pues presenta una baja toxicidad al ser de naturaleza vegetal, lo que lo hace más fácilmente degradable por las lipasas del organismo, disminuyendo así la reactividad en el sitio de inoculación con respecto a los adyuvantes convencionales. Todos los componentes que se incluyen en las formulaciones fueron esterilizados por calor o filtración, lo cual fue seleccionado tomando en cuenta las características particulares de cada componente. Además, las operaciones como agitación y emulsificación fueron llevadas a cabo dentro de un flujo laminar bajo condiciones asépticas. Ejemplo 1
Obtención de emulsiones agua en aceite por homogenizador. Las formulaciones agua:aceite preparadas contienen un rango de 5-70 (v/v) de fase oleosa, y dentro de esta una proporción de 7-20 % de Arlacel A como surfactante. Las preparaciones se obtienen utilizando una proporción de fase acuosa:oleosa entre 5:95 a 70:30 (v/v), y más preferiblemente en una relación entre 30:70 a 50:50 (v/v). El surfactante Arlacel A es añadido a la fase oleosa en un porciento entre 7- 20, y preferiblemente entre 7-15 %. Para su completa homogenización la mezcla es agitada en agitador mecánico Top mixer (Bioblock, Francia) por 30 segundos y calentada a ebullición en baño de María por 20 minutos. La fase acuosa contiene el inmunógeno TAB 9 y se prepara en buffer fosfato salino pH 7.2 de acuerdo a la dosis a inocular. La fase oleosa es depositado en una jeringuilla de 10 mL y se introduce la propela del homogenizador. Se agita a una velocidad de 2000 RPM y se comienza a añadir la fase acuosa gota a gota sobre la fase oleosa. Luego de 1 minuto de añadida la fase acuosa completamente, el equipo se apaga para favorecer la distribución y orientación de las cargas del surfactante en el sistema, y después se culmina el proceso emulsionando por 20 minutos.
Tabla 1. Diferentes proporciones de los componente utilizados en las formulaciones de aceite de jojoba a evaluar.
Figure imgf000021_0001
La formación de la emulsión se verifica cuando se deposita una gota de la preparación obtenida sobre un recipiente que contenga agua, y esta no se rompe en el intervalo de una hora; o cuando se intenta disolver una gota de la emulsión obtenida en una pequeña porción de fase externa.
Si la formulación a obtener presentara dentro de sus componentes Alúmina, ésta se mezcla in situ con el antígeno inmediatamente antes de realizarse la formulación. Ejemplo 2 Obtención de emulsiones agua en aceite por agitación mecánica.
Las fases oleosa y acuosa son preparadas de igual forma y en las mismas proporciones que el ejemplo 1. La fase oleosa es colocada en un recipiente y sobre ésta se añade lentamente la fase acuosa. Este sistema es dispersado en un agitador mecánico Top mixer (Bioblock, Francia) a velocidad máxima durante 3 minutos. La formación de la emulsión se verifica cuando se deposita una gota de la preparación obtenida sobre un recipiente que contenga agua, y esta no se rompe en el intervalo de una hora, o cuando se intenta disolver una gota de la emulsión obtenida en una pequeña porción de fase externa. Ejemplo 3
Obtención de emulsiones agua en aceite por extrusión. Las fases oleosa y acuosa son preparadas de Igual forma y en las mismas proporciones que el ejemplo 1. En una jeringuilla A es colocada la fase oleosa y en otra jeringuilla B la fase acuosa. Se conectan ambas jeringuilla a través de una goma de diámetro 4 mm. Se fuerza el émbolo de la jeringuilla B para hacer pasar lentamente una pequeña cantidad de volumen del contenido hacia la A. Se agita cuidadosamente y se empuja el émbolo de la jeringuilla A y se hace pasar la misma cantidad de volumen hacia la jeringuilla B. Se repite el proceso de mezclado aumentando gradualmente la cantidad de volumen a pasar de una jeringuilla a otra hasta que la mezcla se torne amarillo clara homogénea y viscosa. Se cambia la goma por una aguja de jeringuilla que posea aditamentos en cada extremo para ser conectadas a ambas jeringuillas (por ejemplo Terumo 21 Gx1 diámetro 0.8 mm y longitud 25 mm). Se realiza el mismo procedimiento pasando el contenido de la jeringuilla B a la jeringuilla A y viceversa. Finalmente se comprueba que se haya formado la emulsión, depositando una gota de la preparación obtenida sobre un recipiente que contenga agua, y ésta no se rompe en el Intervalo de una hora; o cuando se Intenta disolver una gota de la emulsión obtenida en una pequeña porción de fase externa. Ejemplo 4 Selección y obtención de preparaciones aceite en agua.
En este ejemplo se descibe la obtención de emulsiones aceite en agua en la proporción 7:3, utilizando el método de Griffins. Se utilizaron diferentes mezclas de surfactantes de alto y bajo balance hldrofíllco-llpofílico (BHL). Los surfactantes empleados fueron combinaciones de Tween 20 ó 80 de alto BHL, con Span 20 ó 80, o Arlacel A de bajo BHL.
La obtención de estas preparaciones se realizó añadiendo a un volumen de aceite de jojoba un 7-15 % de mezcla de surfactantes de alto y bajo BHL, donde se varían las cantidades de cada uno de ellos en cada formulación a ensayar. En la tabla se muestran las formulaciones en que se emplea un 10% de mezcla de surfactantes en la fase oleosa (tabla 2). Cada una de estas mezclas es calentada a ebullición en baño de María por 20 minutos.
Siete partes de la fase oleosa preparada son mezcladas con 3 partes de la fase acuosa. La preparación es emulsificada en agitador mecánico Top mixer (Bioblock, Francia) a velocidad máxima por 1 minuto. Se determina el tiempo de estabilidad de la emulsión obtenida dado por la ruptura de la misma (ver tabla 2).
Tabla 2: Selección del sistema de surfactantes para la obtención de la formulación de mayor estabilidad.
Figure imgf000023_0001
Para la obtención de la emulsión más estable bajo estas condiciones, se realiza el mismo procedimiento tomando como valores de proporción de la mezcla de surfactantes a ensayar los utilizados en las preparaciones 7 y 8, que fueron las más estables. Estos surfactantes promueven un empacado molecular cerrado en la inferíase aceite/agua, asegurando la fuerza y la estabilidad de las partículas emulsionadas. Estas propiedades de las partículas de la emulsión se evidencian por una gran estabilidad (excelente tiempo de vida de anaquel). La capacidad de metabolizar las partículas de la emulsión del aceite de jojoba por los tejidos celulares favorece la baja reactividad en los tejidos. Coincidentemente, la fuerza estructural de las partículas emulsionadas retarda la velocidad de metabolizar los componentes de la fase oleosa por las enzimas de los tejidos, suficientemente como para que se induzca una respuesta inmune. Ejemplo 5
Influencia de relación agua:aceite y el contenido de surfactante de formulaciones de aceite de jojoba sobre la inmunopotenciación de la proteína Tab 9 en ratones Balb/C. Este estudio evalúa la influencia de diferentes proporciones de aceite de jojoba y surfactante sobre la capacidad adyuvante de las formulaciones agua en aceite que se describen en el ejemplo 2, y se obtienen por el método de homogeneización. Se inmunizaron por vía intraperitoneal 5 ug de la proteína TAB 9 a 7 grupos de 10 ratones Balb/c hembras entre 6-8 semanas. La formulación que se utiliza como control positivo es la formulación vacunal Montanide ISA720 el cual se realiza en una relación 7:3 de fase oleosa-fase acuosa. El grupo control negativo se inmuniza con una formulación similar a 872 sin la adición del ¡nmunógeno. El experimento se realiza siguiendo un esquema de inmunización 0-15-30 días. Las extracciones de sangre se realizaron por punción retrorbital a los 0-28-45 días. Los sueros fueron obtenidos por centrifugación a 12000 RPM durante 10 minutos y almacenados a -20 °C.
Todos los sueros fueron analizados mediante ensayo inmunoenzimático contra el antígeno, con el objetivo de determinar la media geométrica de los títulos y las subclases de inmunoglobulinas generadas en cada grupo en estudio. Los sueros pre-inmunes no mostraron respuesta anti-TAB9. El 100% de los ratones de los grupos inmunizados seroconvirtió a los 30 días.
Todas las formulaciones basadas en aceite de jojoba muestran títulos de anticuerpos contra la proteína TAB 9 con independencia del tipo de formulación a evaluar. Es posible notar que luego de tres dosis, se alcanzan valores de título de anticuerpos superiores al control positivo en las formulaciones de aceite de jojoba 872 y 97, mientras que el resto de ellas no presentan diferencias estadísticamente significativas (por el test de Kruskal-Wallis). Las formulaciones que poseen mayor cantidad de aceite de jojoba son las que muestran mayores títulos de anticuerpos, así como las que presentan mayor cantidad de surfactante. Luego de una dosis de refuerzo, hay un incremento muy notable del nivel de anticuerpos en la totalidad de las formulaciones con respecto al grupo control positivo. En general, se observó que la respuesta inmune se incrementa más marcadamente con jojoba que con Montanide después de la tercera dosis. A los 45 días se realizó la determinación de las subclases de anticuerpos lgG1 e lgG2a (Figura 2). En el análisis de los títulos para la subclase IgG 1 no se observan diferencias significativas entre todas las formulaciones; excepto 872 que muestra diferencia significativa con la formulación 95 (p< 0.05). Con respecto a la subclase IgG 2a, las formulaciones no muestran diferencias significativas con el control positivo Montanide, excepto las formulaciones 95 (p< 0.5) y 93 (p< 0.05). Estas formulaciones resultan ser las que poseen menor cantidad de surfactante y aceite de jojoba de todas las formulaciones ensayadas. No obstante, los títulos son más elevados en todas los ensayos con las formulaciones 872 y 97 que contienen aceite de jojoba. Las emulsiones agua/aceite presentan una actividad inmunomoduladora que tiende a exhibir un patrón de respuesta inmune humoral (Cox JC et al., 1997). La relación IgG 1 / IgG 2a para todas las formulaciones permite predecir que el patrón de respuesta obtenida es humoral al inmunizar por vía intraperitoneal (Tabla 3). El dato correspondiente al Montanide concuerda con el obtenido por Herrera y colaboradores (Herrera AM, 1999), donde se observa una preferencia por generar el tipo de subclase IgG 1 mayoritariamente.
Tabla 3. Relación de la media geométrica de los títulos anti-TAB 9 obtenidos entre las subclases lgG1 y IgG 2a después de inmunizar con tres dosis de TAB 9 a ratones BALB/c con diferentes formulaciones oleosas.
Figure imgf000025_0001
De estos resultados puede evidenciarse que las formulaciones basadas en el aceite de jojoba, poseen capacidad adyuvante en dependencia de la cantidad de surfactante y de la proporción de la fase oleosa en la formulación. Como se evidencia, todas las formulaciones ensayadas basadas en el aceite de jojoba exhiben respuesta inmune, siendo superior al usar una proporción 3:7 (agua:aceite) y un 15 % de contenido de surfactante en la fase oleosa. Ejemplo 6 Demostración de la capacidad adyuvante del aceite de jojoba en emulsión agua en aceite.
Se evaluó el uso del aceite de jojoba como adyuvante en una emulsión agua en aceite comparado con el Montanide ISA 720. El Arlacel A actúa como surfactante en un 15% del volumen total de la fase oleosa. La emulsión seleccionada fue la de la proporción 95: 5 fase oleosa: fase acuosa. El inmunógeno utilizado es la proteína quimérica muliepitópica TAB 9 que contiene epitopos V3 de la proteína gp120 de seis cepas del virus de la inmunodeficlencia humana (Sistema de expresión de antígenos heterólogos como proteínas de fusión. Patente cubana No. 22559. Patente CTP WO 97/26359). La preparación fue obtenida emulsificando en un agitador mecánico Top mixer (Bioblock, Francia); y luego se le realizó un proceso de extrusión, pasando la formulación tres veces por una jeringuilla de aguja 0.8 mm de diámetro. La estabilidad de la emulsión se verificó comprobando que no hay ruptura de una gota de la emulsión cuando se adiciona sobre un recipiente con agua. Se probaron dos formulaciones basadas en el aceite de jojoba como fase oleosa, en una de ellas se adsorbió previamente el antígeno con Alúmina.
Cuatro grupos de 10 ratones hembras Balb/C de 6-8 semanas de edad fueron inmunizados, y se evaluaron los niveles de anticuerpos anti-TAB 9. Las formulaciones correspondieron a Montanide ISA720, y las formulaciones de jojoba con y sin alúmina. El grupo control negativo correspondió a la formulación de aceite de jojoba sin inmunógeno. A cada ratón se le inoculó 10 μg de proteína en un volumen de 0.2 mL siguiendo un esquema 0-10-20 días. Las extracciones de sangre se realizaron por punción retrorbital a los 0-30-45 días. Los sueros fueron obtenidos por centrifugación a 12000 RPM durante 10 minutos y almacenados a -20 °C hasta el momento de su evaluación.
Se determinó la media geométrica de los títulos a los 30 y 45 días de comenzada la inmunización; así como las subclases de inmunoglobulinas generadas y la respuesta inmune específico contra los epitopos de la proteína TAB 9 a los 45 días (Tabla 4).
Tabla 4. Media geométrica de los títulos de IgG totales tras inmunización con TAB 9 en emulsiones agua/aceite a 30 y 45 días.
Figure imgf000027_0001
Los mayores valores de medias geométricas de los títulos se observan para el grupo inmunizado con aceite de jojoba en las extracciones realizadas.
Tabla 5. Valores de unidades (MGT) de subclases de Inmunoglobulinas generadas tras inoculación de TAB9 a los 45 días.
Figure imgf000027_0002
En los resultados sólo se observaron diferencias significativas en la subclase lgG1 entre las formulaciones Jojoba-Montanide y Jojoba+Alumina-Montanide (p < 0.05 ). La determinación de los títulos de subclases de inmunoglogulinas permite hacer ciertas deducciones acerca de la respuesta inmune por células auxiliadoras Th1 y Th2 y de la producción de linfocitos T citotóxicos, y por ende la capacidad de loa adyuvantes de modular la respuesta inmune a las diferentes células T auxiliadoras. La estimulación de las células Th1 va acompañado de a aparición de IL-2 e IFN γ. La estimulación de este tipo de respuesta tiene expresión en la producción de lgG2a. En la respuesta por células Th2, las citoquinas involucradas son IL-4 e IL-10, y la estimulación de este tipo de respuesta conlleva a la producción de altos niveles de lgG
La formulación Montanide y Jojoba tienen respuesta preferentemente Th1 pues la relación Th1/Th2 es superior a uno. La formulación Jojoba+Alúmina tuvo respuesta preferentemente humoral, donde los altos niveles de IgG 1 pueden deberse a la presencia de la Alúmina. De estos resultados se concluye que ambas formulaciones de jojoba inducen altos niveles de IgG 1 e IgG 2a, superiores a los obtenidos con Montanide, la formulación que contiene alúmina es preferible en caso de desearse que prevalezca una respuesta humoral. Ejemplo 7
Estudio de la dinámica de respuesta inmune e inducción de memoria en formulaciones agua en aceite utilizando el inmunógeno TAB 9. Para la evaluación de la capacidad de inducción de respuesta de anticuerpos de memoria de las formulaciones anteriormente ensayadas se realizaron extracciones de sangre parciales a partir de la tercera extracción cada 30 días para determinar la dinámica de de respuesta inmune y comprobar si se induce memoria tras una dosis de refuerzo, la que se inocula a los 200 días de iniciado el esquema. Los sueros fueron obtenidos por centrifugación a 12000 RPM durante 10 minutos y almacenados a -20 °C. El comportamiento en el tiempo de los valores de título de anticuerpos IgG totales anti-TAB9 para todos los grupos se muestran muy similares, observándose una disminución gradual en todas las formulaciones evaluadas.
Los niveles de anticuerpos luego de la dosis de refuerzo a los 200 días se comporta de forma similar, mostrándose muy buena respuesta anannéstica y no encontrándose diferencias significativas entre las formulaciones ensayadas y el grupo control positivo, excepto el grupo inmunizado con la formulación 93 que muestra menor título y presenta diferencias altamente significativas con el resto de las formulaciones. Esta formulación resulta ser la de menor cantidad de surfactante y aceite de jojoba de todas las formulaciones ensayadas. Ejemplo 8
Estudio de la inmunogenicidad de formulaciones agua en aceite con la proteína P64 k.
Para evaluar la capacidad adyuvante de las formulaciones agua en aceite de jojoba, se inmunizan 2 ug/ratón de proteína a 5 grupos de 10 ratones por vía intramuscular, correspondientes a diferentes proporciones de aceite y surfactante, y de fase acuosa y oleosa obtenidas por el método de homogeneización. La fase oleosa contiene el surfactante Arlacel A (monooleato de manide). El inmunógeno utilizado es la proteína P64 k de membrana externa de Neisseria meningitidis tipo b. Las formulaciones ensayadas son la 872 y 97 (ver ejemplo 2). Como control positivo se utilizó el adyuvante de Freund, y como control negativo una formulación similar a 872 sin la adición del inmunógeno. Se inmunizó a un grupo de animales con una formulación similar a la 872 pero con el antígeno absorbido previamente en alumina. Diez ratones Balb/c hembras entre 6-8 semanas se Inmunizaron por vía intraperitoneal con 5 ug de la proteína TAB 9 por formulación. El experimento se realiza siguiendo un esquema de inmunización 0-15-30 días. Las extracciones de sangre se realizaron por punción retrorbital a los 0-28-45 días. Los sueros fueron obtenidos por centrifugación a 12000 RPM durante 10 minutos y almacenados a -20 °C.
Los sueros preinmunes fueron analizados y no mostraron respuesta específica. De los datos obtenidos se observó un 100 % de seroconversión después de 2 dosis para todos los ratones inmunizados (Figura 4). En el análisis de los sueros luego de la tercera extracción, se puede observar un incremento notable en los niveles de título de anticuerpos. Los grupos inmunizados no muestran diferencias significativas con respecto al grupo control positivo (adyuvante de Freund). El grupo 872-Alúmina sí muestra diferencias altamente significativas en relación al grupo 97 (p< 0.01) En el análisis de los títulos para la subclase IgG 1, los valores de los títulos para todas las formulaciones dan elevados y no muestran diferencias significativas entre sí. Los títulos obtenidos para la subclase IgG 2a no muestran diferencias estadísticamente significativas entre sí, con la excepción de 872 y 97 (p<0.05). De estos resultados se puede definir que el patrón de respuesta inmune para las formulaciones basadas en aceite de jojoba tiene un comportamiento tipo Th2. La presencia de la Alúmina en la formulación con jojoba induce también inmunomodulación, al observarse un aumento de esta relación cuando forma parte de la emulsión.
La formulación de aceite de jojoba combinada con alúmina genera los mayores títulos contra P64k y se incrementa la relación IgG 1 / IgG 2a respecto al resto de las formulaciones, lo que favorece una respuesta Th2 (respuesta humoral).
Ejemplo 9 Estudio de la inmunogenicidad de formulaciones agua en aceite del conjugado polisacárido C-P64k.
Se inmunizaron 5 grupos de 10 ratones Balb/c hembras entre 6-8 semanas con el polisacárido capsular de N. meningitidis tipo C conjugado a la proteína portadora P64 k de N. meningitidis. Las formulaciones ensayadas son la 97 y la 872 con el conjugado sin adyuvar y adyuvado con alúmina previo a la formulación oleosa. Como control positivo se utilizó alúmina, y como control negativo una formulación similar a 872 sin la adición del inmunógeno. Cada ratón se inmunizó por vía intramuscular con 2.5 ug las tres dosis realizada a los 0-15-30 días. Las extracciones de sangre se realizaron a los 0-30-45 días por punción retroorbital y los sueros se obtuvieron por centrifugación de la sangre 15 minutos a 12000 rpm y se conservaron a -20°C.
Los sueros preinmunes fueron analizados y no mostraron respuesta inmune específica contra Men O De los datos obtenidos se observó un 100 % de seroconversión para todos los ratones inmunizados desde los 30 días, evidenciándose un aumento superior en los grupos inmunizados con 872 con y sin alúmina.
Al analizar los resultados de los títulos obtenidos con los sueros de los ratones inmunizados luego de la tercera dosis en la Figura 7, se observa un incremento estadísticamente notable en los niveles de título de anticuerpos en cada grupo, destacándose el grupo inmunizado con la formulación 97, el cual no recibió la segunda dosis. Los grupos de ratones inmunizados con las preparaciones 872 y 97 mostraron diferencias significativas con respecto a Alúmina (p< 0.05). Estos resultados indican que las formulaciones con aceite de jojoba producen títulos superiores a las formulaciones con alúmina y jojoba con alúmina para este antígeno. Además se destaca la formulación 97 que a pesar de recibir sólo dos inmunizaciones manifiesta títulos similares a 872.
Los valores de la media geométrica de los títulos contra las inmunoglobulinas IgG 1 e IgG 2a se realizó con la segunda extracción y se muestran en la Figura 7.
En el análisis de los títulos para la subclase IgG 1 , las formulaciones 872 y 97 muestran diferencias muy significativas con respecto a la alúmina (p<0.01), indicando que las formulaciones con aceite de jojoba producen elevados niveles de IgG 1. Para los títulos de IgG 2a, la formulación 97 muestra diferencias significativas con 872-alúmina y alúmina (p<0.05). En la relación entre las subclases se muestra que todas las formulaciones ensayadas exhiben un patrón de respuesta Th2, el cual se incrementa cuando es incorporada la alúmina en la formulación. Ejemplo 10 Estudio de la inmunogenicidad de formulaciones agua en aceite con el Antígeno de superficie de la Hepatitis B.
Para llevar a cabo la determinación del efecto adyuvante de las formulaciones 872 y 97 de aceite de jojoba, se inmunizaron 5 grupos de 10 ratones por vía intramuscular con antígeno de superficie del virus de la Hepatitis B solo y agregado, el cual se obtiene por modificación química con la ciclodextrina (CD) (Aguilar JC, et al., Method to obtain vaccine compositions containing HBsAg agregated structures. OCPI Patent Appl. No. 2000-279). Los grupos a inmunizar fueron: 872, 97 y Adyuvante de Freund con AgsHB; y 872 con CD. Para el grupo Inmunizado con adyuvante de Freund, se realizó la primera inmunización con el ACF y las 2 restantes con AIF. El grupo control negativo es la formulación 872 sin antígeno. Los sueros preinmunes fueron analizados y no mostraron respuesta inmune humoral contra AgsHB. Con respecto a los sueros luego de 30 días, se observó un 100 % de seroconversión para todos los ratones inmunizados con los antígenos respectivos, incrementándose los títulos de anticuerpos para todas las formulaciones ensayadas. En los resultados de los títulos obtenidos con los sueros después de la tercera dosis, no se encontraron diferencias significativas entre los grupos de de ratones inmunizados con AgsHB, pues hubo un comportamiento similar en todas las formulaciones ensayadas con respecto al control positivo. En la Figura 9 se muestran los valores de la media geométrica de los títulos de las inmunoglobulinas IgG 1 e IgG 2a. Para la subclase IgG 1, los 2 grupos de ratones inmunizados con 872 muestra diferencia significativa con el grupo inoculado con el Adyuvante de Freund (p<0.05). Estos resultados reflejan que las preparaciones con aceite de jojoba producen un incremento significativo de inmunoglobulinas G tipo 1. En la subclase IgG 2a, el adyuvante de Freund muestra diferencia significativa con la formulación 97.
La relación entre las subclases es muy superior a uno, por lo que el patrón de respuesta inmune de las formulaciones 872 y 97 tienden a ser una respuesta típicamente Th2, por lo que se puede correlacionar con una respuesta inmune preferentemente humoral. No se observó inmunomodulación en la formulación 872 por influencia del antígeno AgsHB agregado, que de por si tiende a incrementar la respuesta Th1. Se ha reportado que el adyuvante de Freund tiende a modular la respuesta hacia un patrón de respuesta Th1 (Kensll CR, 1991) por la inducción de IgG 2a, debido a la actividad inmunomoduladora de los componentes de la pared de la micobacteria presentes en la formulación. Pero, el hecho de haber inmunizado las últimas dos dosis con AIF parece haber contribuido a una dismunución de esta actividad, por lo que se observa un incremento en la generación de la subclase IgG 1.

Claims

REIVINDICACIONESFORMULACIÓN ADYUVANTE CONTENIENDO UNA EMULSIÓN OLEOSA CONACEITE DE JOJOBA.
1. Una formulación adyuvante caracterizada por ser una emulsión oleosa agua en aceite y contener uno o más antígenos vacunales, donde la fase oleosa es al menos el 70%, conteniendo al menos un 85% de aceite de jojoba y no más de un 15% de surfactante.
2. Una formulación según la reivindicación 1, caracterizada porque el efecto adyuvante se incrementa con la adición de otras sustancias de naturaleza lipídica, aminoacídica, polisacarídica, nucleotídica, alumina, fosfato de aluminio o fosfato de calcio.
3. Una formulación según la reivindicación 1 caracterizada porque los antígenos son de naturaleza aminoacídica o polisacáridos conjugados a una proteína portadora.
4. Una formulación según la reivindicación 1 caracterizada porque el surfactante puede ser de bajo balance hidrofílico— lipofílico o una mezcla de surfactantes de alto y bajo balance hidrofílico— lipofílico.
5. Una formulación según las reivindicaciones de la 1 a la 4, caracterizada por producir en el organismo receptor efectos terapéuticos o profilácticos.
6. Una formulación según las reivindicaciones de la 1 a la 5, caracterizada porque el organismo receptor puede ser un humano o un animal.
7. Uso de la formulación de acuerdo con las reivindicaciones de la 1 a la 6, en humanos o animales.
8. Uso de la formulación de acuerdo con las reivindicaciones de la 1 a la 6, como una preparación profiláctica o terapéutica.
PCT/CU2005/000001 2004-01-29 2005-01-28 Formulación adyuvante conteniendo una emulsión oleosa con aceite de jojoba WO2005072679A2 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CUCU2004/0020 2004-01-29
CU20040020A CU23476A1 (es) 2004-01-29 2004-01-29 Formulación adyuvante conteniendo una emulsión oleosa con aceite de jojoba

Publications (2)

Publication Number Publication Date
WO2005072679A2 true WO2005072679A2 (es) 2005-08-11
WO2005072679A3 WO2005072679A3 (es) 2006-03-16

Family

ID=34812869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CU2005/000001 WO2005072679A2 (es) 2004-01-29 2005-01-28 Formulación adyuvante conteniendo una emulsión oleosa con aceite de jojoba

Country Status (3)

Country Link
AR (1) AR047791A1 (es)
CU (1) CU23476A1 (es)
WO (1) WO2005072679A2 (es)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5744137A (en) * 1995-02-06 1998-04-28 The United States Of America As Represented By The Secretary Of The Agriculture Oil emulsion vaccines prepared with animal, vegetable, and synthetic oils using a mixture of nonionic surfactants
DE69636889T2 (de) * 1995-11-30 2007-12-06 Nof Corp. Öladjuvierter Impfstoff und Verfahren zu seiner Herstellung
SE9900495D0 (sv) * 1999-02-12 1999-02-12 Pharmatrix Ab Vaccine composition

Also Published As

Publication number Publication date
WO2005072679A3 (es) 2006-03-16
AR047791A1 (es) 2006-02-22
CU23476A1 (es) 2009-12-17

Similar Documents

Publication Publication Date Title
ES2374628T3 (es) Vacunas contra la bordetella bronchiséptica.
JP3455226B2 (ja) 抗原、またはアミノ酸配列を含有する化合物のインビボジェネレーターを具備してなる治療用組成物
ES2228454T3 (es) Mejora de la actividad bacteriana de antigenos de neisseria con oligonucleotidos que contienen motivos cg.
Chen et al. Non‐viral vector as vaccine carrier
CA2700828C (en) Compositions comprising an antigen, an amphipathic compound and a hydrophobic carrier, and uses thereof
FR2596990A1 (fr) Adjuvant immunologique a base d&#39;emulsion de lipide et d&#39;un adjuvant bacterien
WO1998053799A2 (en) Immunogenic compositions
EP0918541A1 (en) Immunstimulating lipid formulation
CN109528652B (zh) 一种注射用自乳化药物乳剂及其制备方法和应用
AU769375B2 (en) Vaccine formulation
US7815910B2 (en) Vaccine composition and use of surfactants as adjuvants of immunity
WO2014131809A1 (fr) Composition immunogène sous forme d&#39;émulsion
AU769390B2 (en) Vaccine composition
WO2005072679A2 (es) Formulación adyuvante conteniendo una emulsión oleosa con aceite de jojoba
JP2016532712A (ja) 薬物中毒に対するワクチン組成物
O'Hagan Recent advances in immunological adjuvants: the development of particulate antigen delivery systems
JPH09268130A (ja) オイルアジュバントワクチンおよびその調製方法
US6689370B1 (en) Therapeutic composition comprising an antigen or an in vivo generator of a compound comprising an amino acid sequence
JP2002121151A (ja) 層状化して冷凍貯蔵したワクチン、それらを調製するための方法
IL183518A (en) Pharmaceutical composition in the form of oily isotropes including at least one oil, at least one surfactant and an aqueous phase
FR2692148A1 (fr) Composition adjuvante de l&#39;immunité humorale et à médiation cellulaire n&#39;induisant pas de réponse vis-à-vis de déterminants auto-antigéniques.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase