WO2005070308A2 - Vorrichtung zur implantation von elektrisch isolierten okklusionswendeln - Google Patents

Vorrichtung zur implantation von elektrisch isolierten okklusionswendeln Download PDF

Info

Publication number
WO2005070308A2
WO2005070308A2 PCT/EP2005/000587 EP2005000587W WO2005070308A2 WO 2005070308 A2 WO2005070308 A2 WO 2005070308A2 EP 2005000587 W EP2005000587 W EP 2005000587W WO 2005070308 A2 WO2005070308 A2 WO 2005070308A2
Authority
WO
WIPO (PCT)
Prior art keywords
occlusion
helix
securing means
coil
detachment
Prior art date
Application number
PCT/EP2005/000587
Other languages
English (en)
French (fr)
Other versions
WO2005070308A3 (de
Inventor
Hermann Monstadt
Original Assignee
Dendron Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dendron Gmbh filed Critical Dendron Gmbh
Priority to US10/597,299 priority Critical patent/US8480701B2/en
Priority to EP05701105.8A priority patent/EP1708627B1/de
Publication of WO2005070308A2 publication Critical patent/WO2005070308A2/de
Publication of WO2005070308A3 publication Critical patent/WO2005070308A3/de
Priority to US13/916,770 priority patent/US9254134B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/12181Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices
    • A61B17/12195Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device formed by fluidized, gelatinous or cellular remodelable materials, e.g. embolic liquids, foams or extracellular matrices comprising a curable material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12099Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
    • A61B17/12109Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel
    • A61B17/12113Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder in a blood vessel within an aneurysm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B17/12131Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
    • A61B17/1214Coils or wires
    • A61B17/12145Coils or wires having a pre-set deployed three-dimensional shape
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12022Occluding by internal devices, e.g. balloons or releasable wires
    • A61B2017/1205Introduction devices
    • A61B2017/12054Details concerning the detachment of the occluding device from the introduction device
    • A61B2017/12063Details concerning the detachment of the occluding device from the introduction device electrolytically detachable

Definitions

  • the invention relates to a device for the implantation of occlusion coils that can be removed by electrolysis in blood vessels and body cavities, in particular aneurysms, with an insertion aid, at least one occlusion coil arranged distal to the insertion aid and at least one electrolytically corrodible release element, wherein at least one stabilization coil is arranged between the release element and the occlusion coil.
  • endovascular techniques for occluding body cavities or vessels such as arteries, veins, fallopian tubes or vascular malformations (e.g. vascular aneurysms) is known in the art.
  • vascular malformations e.g. vascular aneurysms
  • the occlusion helix is inserted through an catheter into the cavity to be occluded with the help of an endovascular guidewire which serves as an insertion aid and is deposited there.
  • EP 0 484 468 also describes a device for implanting occlusion coils based on the electrolytically corrodible design of the wire tip of the guide wire at the connection between guidewire and occlusion helix.
  • the electrical voltage applied to the occlusion coil serving as anode for electrothrombosis is used for the simultaneous separation of the wire tip and thus the release of the occlusion coil.
  • WO 03/017852 A1 proposes to form an electrolytically corrodible point in the form of a detachment element as part of the occlusion helix itself. Since these detachment elements are subject to a considerably lower bending stress during the implantation process, they can have a correspondingly smaller diameter, which leads to improved and faster electrolytic detachability of the occlusion helix. This also made it possible to use less stable, more flexible materials for the detachment element, which also accelerated and improved the detachability by means of electrolysis.
  • stabilizing coils which connect the detachment elements to the occlusion coils themselves is also known from the prior art. These stabilizing coils serve to stabilize and stiffen the implant and have a smaller diameter than the occlusion coils, so that they can at least partially be inserted into the latter.
  • the stabilizing spirals connected to the detachment elements serve to enlarge the surface at the end of the detachment element in order to ensure better connectivity to the occlusion spiral.
  • the connection is usually established with the aid of a laser welding process, the direct connection of a detachment element without a stabilizing spiral to the occlusion spiral being extremely difficult owing to the small diameter of the detachment element.
  • connection has been simplified by the additional connection of a stabilizing coil with a correspondingly larger surface area, but the laser welding technology remains very diffi zil and expensive, so that there is a need for a simpler way of making the connection of the stabilization and occlusion helix.
  • a device for the implantation of occlusion coils which can be removed by electrolysis in blood vessels and body cavities, in particular aneurysms, with an insertion aid, at least one occlusion coil arranged distal to the insertion aid and at least one detachment element which is designed to be electrolytically corrodible, at least between the detachment element and the occlusion coil a stabilizing helix is arranged and the stabilizing helix over a electrically insulating adhesive layer is connected to the occlusion coil, so that the occlusion coil is isolated from the voltage when an electrical voltage is applied to the release element.
  • the insulation according to the invention is not between the detachment point and the implant, but between individual components of the implant.
  • two problems are solved in one step, namely the simplification of the connection of the stabilization and occlusion helix and the shortening of the detachment time.
  • the latter is due to the fact that when a voltage is applied to the detachment element, the current density increases therein when other parts of the implant on which no electrolytic corrosion is to take place are insulated from the applied voltage.
  • the production of the connection between the stabilization and occlusion helix is significantly simplified compared to the prior art, where a laser welding process is generally used.
  • the procedure is usually such that the stabilizing coil is provided with an adhesive at least at the end provided for the connection to the occlusion coil and is then attached to the occlusion coil. It is particularly advantageous to provide the stabilizing coil as a whole with an electrically insulating coating, which can in particular be an adhesive coating.
  • the stabilizing helix can then be attached at one end to the occlusion helix or partially inserted into it in order to produce a permanent, insulating connection.
  • the additional insulation of the stabilizing coil with the aid of an electrically insulating coating prevents any corrosion in the area of the stabilizing coil and further increases the current density in the area of the detaching element, which is associated with a corresponding reduction in the detaching time. If necessary, several interlocking stabilizing helices can also be attached to the occlusion helix.
  • a securing means runs through the lumen of the occlusion helix.
  • Such security means have the advantage that in If the occlusion helix is incorrectly positioned or if the occlusion helix is too large for the area to be occluded, the necessary retraction of the occlusion helix, possibly completely into the catheter, becomes significantly safer.
  • the retraction of an occlusion helix without securing means carries the risk that parts of the helix are pulled apart by tensile or torsional stress and are irreversibly plastically deformed. In extreme cases, the coil can tear or break, which can result in a life-threatening embolism.
  • securing means As flexible polymer threads.
  • the securing means is a wire which is made from a material, in particular a metal, with shape memory properties.
  • a metallic securing means has significant advantages with regard to the torsional or tensile load compared to securing means which are made from a polymer material.
  • a securing means made from a shape-memory metal may also have a property which is also referred to as “superelasticity”, which is why such a securing means, in its flexible state, can be subjected to particularly great stresses due to bending or tension without the risk of tearing.
  • the shape memory properties of the securing means can be both a thermal and a mechanical shape memory effect.
  • the exact properties of the shape memory material can be controlled in a manner known to the person skilled in the art by the exact choice of the composition.
  • the diameter of such a wire serving as a securing means is typically between 0.03 and 0.05 mm.
  • the use of a shape memory material can be used for the securing means to the occlusion coil after deployment impress a desired superordinate structure from the catheter into, for example, the aneurysm. It is fundamentally advantageous if the occlusion helix forms such a secondary structure in the aneurysm, for example helical windings or a basket-like shape, since in this way the aneurysm is filled particularly effectively in order to ensure effective thrombosis of the aneurysm. If necessary, the occlusion helix itself can also be preformed into a superordinate structure for this purpose, which it assumes after being dispensed from the catheter.
  • the force emanating from the securing means is large enough to also force the occlusion helix into the shape prescribed by the securing means.
  • the force exerted by the securing means is caused by the fact that the securing means is released from the constraint exerted by the catheter when it is introduced into the aneurysm and undergoes a transformation back into its austenite phase, taking on the structure previously impressed on it. Additionally or alternatively, a temperature-induced transformation can also occur if the securing means is exposed to an elevated temperature in the blood stream when it is pushed out of the catheter.
  • the securing means expediently runs between the stabilization helix and the distal tip section of the occlusion helix, i.e. it is at its proximal end with the stabilization helix and at its distal end with the occlusion helix connected.
  • the securing means and the distal tip section of the occluding helix are expediently connected via an adhesive layer which isolates the occlusion helix from an electrical voltage applied to the detachment element.
  • the connection of the stabilizing helix and the metallic securing means can, depending on requirements, also be formed by an adhesive layer or by welding or soldering. If an adhesive layer is used, the securing means is also electrically insulated from the detaching element, while during welding or soldering, the voltage applied to the release element for the purpose of electrolytic corrosion is also present on the securing means. The latter, as described below, can be advantageous in certain cases.
  • the securing device In order to prevent a current flow in the latter case when the metallic securing agent comes into contact with the occlusion coil, the securing device should be provided with an electrically insulating coating, similar to how it can also be used for the stabilizing coil. Such a coating is also useful because it prevents the electrolytic corrosion of the securing means itself and keeps the current density at the release element high.
  • An alternative to the electrical insulation of the securing means is to provide the occlusion coil itself with an electrically insulating coating, at least on its inside. This also effectively prevents a current flow between the securing means and the occlusion coil as soon as the two elements touch.
  • the occlusion helix has a plurality of spaced apart, electrolytically corrodible detachment elements or in which a plurality of spaced apart occlusion helixes are provided, between each of which an electrolytically corrodible detachment element is arranged.
  • Such devices are basically known from WO 01/32085 A1, to which reference is hereby made. In this way, one or more variably dimensioned lengths of the occlusion helix can be removed by electrolysis and placed in the aneurysm. This allows occlusion coils to be placed in the aneurysm in exactly the right length.
  • occlusion coils which can be corroded electrolytically at several points, is based on the knowledge that when a current is applied to such a device, the detachment point of the occlusion coil closest to the distal end of the catheter is released by electrolysis. This is due to the fact that, on the one hand, the electrolytically corrodible points in the catheter are isolated from the ionic medium by the catheter and therefore cannot be subject to electrolysis and, on the other hand, the current density decreases from proximal to distal due to the increasing resistance in the occlusion coil (s) , The distal catheter end that is the first to be formed electrolytically corrodible is therefore most strongly subjected to electrolytic processes and preferably dissolves.
  • a securing means In the case of a device with a plurality of detachment elements, it is expedient for a securing means to be arranged in each of the segments of the occlusion helix or the individual occlusion helixes and to pass through the lumen of the occlusion helixes. In this way, the depositing of lengths of variable dimensions is combined with a simultaneous securing of each individual segment arranged between the electrolytically corrodible points and thus a maximum degree of protection against the tearing off of the occlusion coils is guaranteed.
  • the individual release elements are connected in an electrically conductive manner via metallic securing means.
  • the securing means is insulated from the occlusion helix, but passes the current on to the next, distally located detachment element. The transition can take place in such a way that the securing means is connected directly to the distal closest detachment element or else in the form that the securing means has a conductive connection with an additional stabilizing helix at the distal end of a segment of an occlusion helix or a single one of several Behind- having mutually arranged occlusion coils, the stabilization coil in turn being conductively connected to the detachment element.
  • the detachment elements each have a stabilizing helix at both ends, which connect the detachment element to the corresponding occlusion helix segments.
  • Each individual securing means preferably extends from the stabilization helix, which is located at the distal end of a detachment element, to the stabilization helix of the following detachment element which is closest to the distal end. In this way it is ensured that the individual detachment elements are electrically conductively connected to one another via the stabilizing coils and the securing means connected to them, so that an electrical voltage applied to detach the occlusion coil is passed on to the individual detachment elements.
  • each individual occlusion coil segment is electrically insulated from the stabilization coil, since it is connected to the stabilization coils via an electrically insulating adhesive layer.
  • the metallic securing means can also be fixed to the detachment elements themselves and in this way ensure the current flow. Only in the most distal occlusion coil segment does the securing means preferably extend to the distal tip section of the occlusion coil itself, where the securing device is connected to the distal tip section by an adhesive layer which isolates the occlusion coil from the electrical voltage that can be applied for electrolytic corrosion.
  • the securing means is preferably coated with an electrically insulating coating, so that the electrical current is passed distally through the interior of the securing means, but no electrolytic corrosion and no electrical contact with the occlusion coil can take place in this area.
  • the measures described create a very elegant possibility for creating variable removable occlusion coils and at the same time keep the current density at the separation element particularly low, which is associated with a corresponding reduction in the separation times.
  • this embodiment is also advantageous in terms of production technology, since a connection via adhesive layers is easier to produce than via the laser welding methods known from the prior art. In principle, different materials are conceivable for the formation of the adhesive layers and the electrically insulating coatings on securing means and / or stabilizing coils. Naturally, compatibility and, if possible, approval in the medical field is important.
  • the curability of the adhesive is also advantageous, in particular radiation-curable adhesives, e.g. B. UV-curable adhesives are advantageous, since sterilization is possibly caused by the radiation acting for curing.
  • radiation-curable adhesives e.g. B.
  • UV-curable adhesives are advantageous, since sterilization is possibly caused by the radiation acting for curing.
  • acrylate adhesives is particularly expedient, although in principle other adhesives with the properties mentioned are also suitable.
  • Permabond a material sold under the name "Permabond”, which is approved and has proven itself extremely well in the medical field.
  • Permabond 4L25 which is sold by the National Starche & Chemical Company (ICI)
  • ICI National Starche & Chemical Company
  • ICI National Starche & Chemical Company
  • acrylate-based adhesive that can be cured at a wavelength of 320 to 380 nm. After curing, Permabond passes USP Class VI tests Permabond is also insensitive to gamma radiation and a number of other sterilization processes.
  • the release elements which are provided for rapid corrosion, are preferably made of a steel alloy.
  • Stainless steels of the types AISI 301, 303 or 316 or subgroups of these types are particularly preferred here.
  • Such stainless steels preferably have a chromium content between 12 and 20% by weight. Examples of this are the steel grades 1.4410, 1.4310, 1.4301 and 1.4122.
  • chrome / nickel steels of quality 18/8 are suitable.
  • the diameter of the release elements is typically between 0.01 and 0.05 mm.
  • the detachment elements can be pre-corroded.
  • Such pre-corrosion can take the form of a Treatment take place by which the metal is changed in its structure so that it decomposes particularly quickly when an electrical voltage is applied in an electrolyte.
  • the heat treatment required for this can be carried out with the aid of a laser, in a conventional furnace or by means of an induction coil.
  • the temperature range required for this is approximately 500 to 1000 ° C., preferably 600 to 950 ° C. and in particular 700 to 900 ° C. It is believed that with this heat treatment, recrystallization takes place with the formation of large structural grains and hard metal carbides and thus a reduction in the grain boundary stability.
  • chromium carbides which are deposited on the grain boundaries, leads to a depletion of the matrix of chromium and to a reduction in the resistance to intergranular corrosion.
  • the surface available for corrosion is thereby rapidly expanded, so that the structure is rapidly decomposed when connected to a current in an electrolyte.
  • detachable elements particularly corrodible
  • material combinations in the corresponding areas which are suitable for forming local elements. Examples of this are combinations of stainless steels with precious metals or precious metal alloys, in particular platinum alloys.
  • the use of platinum or platinum alloys has proven itself for the formation of the occlusion coils themselves.
  • the use of platinum-iridium alloys is particularly preferred.
  • the stabilizing spirals connected to the detachment elements mostly consist, like the detachment elements themselves, of a steel alloy, but in principle it is also possible to use a platinum alloy similar to that used for the occlusion spirals for the stabilizing spirals.
  • the use of a steel alloy is advantageous in that the X-ray contrast between the detachment element and the stabilizing coil on the one hand and the occlusion coil on the other hand is increased in this way. This is due to the fact that platinum alloys have a considerably higher X-ray density than steel alloys.
  • the insertion aid is preferably a conventional guide wire, as it has been proven to guide occlusion coils through a catheter to a cavity to be occluded.
  • the device according to the invention can also be present directly in combination with a microcatheter, through which the occlusion helix is brought to its destination with the aid of the insertion aid.
  • the dimensions of the catheter and occlusion helix used should be matched to one another. If necessary, the catheter can also exert a pressure on the occlusion helix and the securing means, which has the effect that the occlusion helix only assumes a secondary structure in the aneurysm that was previously impressed on it or the securing means.
  • the catheter is also expediently provided with radiopaque markings, which enable placement in the target area with the aid of known imaging methods.
  • the invention also relates to a corresponding medical implant consisting of at least one occlusion helix, at least one detachment element and at least one stabilization helix, the stabilization helix being arranged between the detachment element and the occlusion helix in order in this way to detach the detachment element and To connect the occlusion helix indirectly to one another, and the stabilization helix being connected to the occlusion helix via an electrically insulating adhesive layer.
  • FIG. 1 shows the schematic representation of the positioning of an occlusion helix in a berry aneurysm with the aid of the device according to the invention
  • FIG. 2 shows a longitudinal section through the device according to the invention in a clearly enlarged illustration compared to FIG. 1; and Figure 3 shows a longitudinal section through the device according to the invention with a plurality of release elements.
  • FIG. 1 shows the vertical view of an occlusion helix 3 positioned in a berry aneurysm 12.
  • the occlusion coil 3 is displaced distally within the catheter 1 with the aid of the guide wire 4.
  • the occlusion coil 3 emerges from the end of the catheter 1 into the cavity formed by the berry aneurysm 12 and fills it.
  • the occlusion coil 3 forms secondary turns, which can be caused in particular by a voltage and / or temperature-induced transition of the occlusion coil 3 and / or the securing means (not shown here) inside the occlusion coil 3 from the martensite to the austenite phase. Due to the formation of secondary turns, the aneurysm 12 is filled in particularly effectively.
  • the electrolytic detachment takes place at the detachment element 2.
  • an electrical voltage is applied to the detachment element 2 with the aid of the voltage source 14, the detachment element 2 acting as the anode serves.
  • the cathode 15 is positioned on the body surface.
  • the electrolytic corrosion of the detachment element 2 takes place within particularly short times, which are generally clearly less than 1 min, at approximately 20 to 40 s (at 2 V, 2 mA).
  • a plurality of detachment elements 2 are provided in the area of the occlusion helix 3, so that the length of the occlusion helix 3 introduced can be individually adapted to the aneurysm 12.
  • the device according to the invention is shown schematically as a longitudinal section.
  • the occlusion coil 3 shown here is connected to the detachment element 2 via a stabilization coil 5, the stabilization coil 5 being a coil of smaller diameter than the occlusion coil 3 itself and the outer diameter of the stabilization Helix 5 corresponds essentially to the inner diameter of the occlusion helix 3.
  • the stabilizing coil 5 can be inserted at least partially into the occlusion coil 3.
  • Stabilizing coil 5 and occlusion coil 3 are connected to one another via an adhesive layer 7, the adhesive layer 7 simultaneously ensuring that the occlusion coil 3 is insulated from the electrical voltage applied to the detachment element 2. In this way, the current density in the separation element 2 is kept particularly high. This effect is further enhanced by an additional coating 11 on the stabilizing helix 5.
  • the power supply for the purpose of detaching the occlusion coil 3 can take place with the aid of the guide wire 4 to the detachment element 2.
  • a securing means 6 is provided in the lumen of the occlusion coil 3, which is a Nitinol wire, which is provided with an insulating coating.
  • the securing means 6 extends from the stabilizing helix 5 to the distal end 8 of the occlusion helix 3. At this point, the connection between the securing means 6 and the distal end 8 of the occlusion helix 3 is established via a further insulating adhesive layer 9. Permabond is used to produce the adhesive layers 7 and 8 and for the coating on the stabilizing coil 5.
  • a stabilizing coil 5 is first provided with a permabond layer, and then the securing means 6, which is designed as a nitinol wire, is provided with the stabilizing coil 5 at point 10, ie. H. welded at the distal end of the stabilizing coil 5. Finally, the stabilizing coil 5 is fixed to the occlusion coil 3 with the aid of Permabond.
  • FIG. 3 shows a device according to the invention with a plurality of detachment elements 2.
  • the device has several occlusion spiral segments 3, the detachment depending on the need and size of the aneurysm to be closed can be carried out on different detachment elements 2.
  • Each detachment element 2 is connected to the respective occlusion spiral segment 3 via a stabilizing spiral 5, the connection is produced according to the invention via an electrically insulating adhesive layer.
  • the stabilizing helix 5 is here also provided with an electrically insulating coating 11.
  • the metallic securing means 6 extends in each case from the stabilization coil 5, which is connected proximally to the occlusion coil segment 3, to the stabilization coil 5, which is connected distally to the occlusion coil segment 3.
  • the electric current is transferred from a detachment element 2 via the stabilization coil 5 connected to it.
  • the securing means 6 is guided to the distal adjoining stabilizing helix 5 and to the detaching element 2 connected to it.
  • the securing means 6 is accordingly advantageously used in two respects, since on the one hand it serves to increase the safety in the event of incorrect positioning of an occlusion coil 3 and on the other hand the electrically conductive connection of the individual detaching elements 2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Vascular Medicine (AREA)
  • Reproductive Health (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Neurosurgery (AREA)
  • Surgical Instruments (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Implantation von durch Elektrolyse ablösbaren Okklusionswendeln (3) in Blutgefäßen und Körperhohlräumen, insbesondere Aneurysmen (12), mit einer Einführhilfe (4), wenigstens einer distal zur Einführhilfe (4) angeordneten Okklusionswendel (3) und wenigstens einem elektrolytisch korrodierbar ausgebildeten Ablöseelement (2), wobei zwischen Ablöseelement (2) und Okklusionswendel (3) wenigstens eine Stabilisierungs­wendel (5) angeordnet worden ist und wobei die Stabilisierungswendel (5) über eine elektrisch isolierende Klebeschicht (7) mit der Okklusionswendel (3) ver­bunden ist, so daß die Okklusionswendel (3) bei Anlegen einer elektrischen Spannung an das Ablöseelement (2) von der Spannung isoliert ist. Auf diese Weise wird zum einen die Stromdichte im Ablöseelement (2) weiter erhöht, was mit kürzeren Ablösezeiten verbunden ist. Zum anderen wird die Verbindung einer der Stabilisierung des Implantates dienenden Stabilisierungswendel (5) mit der Okklusionswendel (3) im Vergleich aus dem Stand der Technik bekannten Laserschweißverfahren deutlich vereinfacht.

Description

Vorrichtung zur Implantation von elektrisch isolierten Qkklusionswendeln
Die Erfindung betrifft eine Vorrichtung zur Implantation von durch Elektrolyse ablösbaren Okklusionswendeln in Blutgefäßen und Körperhohlräumen, insbesondere Aneurysmen, mit einer Einführhilfe, wenigstens einer distal zur Einführhilfe angeordneten Okklusionswendel und wenigstens einem elektrolytisch korrodierbar ausgebildeten Ablöseelement, wobei zwischen Ablöseelement und Okklusionswendel wenigstens eine Stabilisierungswendel angeordnet ist.
Der Einsatz endovaskulärer Techniken zur Okklusion von Körperhohlräumen oder Gefäßen wie Arterien, Venen, Eileitern oder vaskulären Fehlbildungen (z. B. vaskulärer Aneurysmen) ist bekannter Stand der Technik. Die Okklu- sionswendel wird dabei in der Regel mit Hilfe eines als Einführhilfe dienenden endovaskulären Führungsdrahtes durch einen Katheter in den zu okkludieren- den Hohlraum eingeführt und dort deponiert.
Zur Abtrennung der Okklusionswendel von der Einführhilfe sind aus dem Stand der Technik verschiedene Verfahren bekannt. Besonders bewährt hat sich dabei die elektrolytische Ablösung von Edelstahl-Drahtspitzen, wie sie erstmalig bei der Elektrokoagulation durch Thompson et al. sowie McAlister et al. im Jahre 1979 beschrieben wurde (Radiology 133:335-340, Nov. 1979; AJR 132:998-1000, Juni 1979).
Darauf aufbauend beschreibt auch die EP 0 484 468 eine Vorrichtung zur Im- plantation von Okklusionswendeln, basierend auf der elektrolytisch korrodierbaren Ausbildung der Drahtspitze des Führungsdrahtes an der Verbindung zwischen Führungsdraht und Okklusionswendel. Auf diese Weise wird die zur Elektrothrombosierung an die als Anode dienende Okklusionswendel angelegte elektrische Spannung für die gleichzeitige Abtrennung der Drahtspitze und somit die Freisetzung der Okklusionswendel genutzt.
Bei derartigen Vorrichtungen macht sich nachteilig bemerkbar, daß der Führungsdraht zur sicheren Führung des Implantates vergleichsweise massiv ausgebildet werden muß, weshalb die Abtrennung der Führungsdrahtspitze mittels Elektrolyse vergleichsweise lange Zeiträume in Anspruch nimmt. Aus disem Grund schlägt die WO 03/017852 A1 vor, eine elektrolytisch korrodierbare Stelle in Form eines Ablöseelements als Teil der Okklusionswendel selbst auszubilden. Da diese Ablöseelemente während des Implantationsprozesses einer erheblich geringeren Biegebeanspruchung unterliegen, können sie einen entsprechend geringeren Durchmesser aufweisen, was zu einer verbesserten und schnelleren elektrolytischen Ablösbarkeit der Okklusionswendel führt. Darüber hinaus wurde es auf diese Weise möglich, für das Ablöseelement weniger stabile, flexiblere Werkstoffe einzusetzen, wodurch ebenfalls die Ablösbarkeit mittels Elektrolyse beschleunigt und verbessert wurde.
Aus dem Stand der Technik ist darüber hinaus die Verwendung von Stabilisierungswendeln bekannt, welche die Ablöseelemente mit den Okklusionswendeln selbst verbinden. Diese Stabilisierungswendeln dienen der Stabilisierung und Versteifung des Implantates und weisen einen geringeren Durchmesser auf als die Okklusionswendeln, so daß sie zumindest teilweise in letztere eingeführt werden können. Darüber hinaus dienen die mit den Ablöseelementen verbundenen Stabilisierungswendeln dazu, die Oberfläche am Ende des Ablöse- elementes zu vergrößern, um auf diese Weise eine bessere Verbindbarkeit zur Okklusionswendel zu gewährleisten. Üblicherweise erfolgt die Herstellung der Verbindung mit Hilfe eines Laserschweißverfahrens, wobei die direkte Verbindung eines Ablöseelementes ohne Stabilisierungswendel mit der Okklusionswendel aufgrund des geringen Durchmessers des Ablöseelements ausge- sprachen schwierig wäre. Die Herstellung der Verbindung hat sich durch die zusätzliche Verbindung einer Stabilisierungswendel mit entsprechend größerer Oberfläche zwar vereinfacht, dennoch bleibt die Laserschweißtechnik sehr diffi- zil und aufwendig, so daß hier Bedarf nach einer einfacheren Möglichkeit zur Herstellung der Verbindung von Stabilisierungs- und Okklusionswendel besteht.
Um die Ablösezeiten möglichst gering zu halten, ist es darüber hinaus aus dem Stand der Technik, beispielsweise aus der US 6 620 152 bekannt, das Implantat elektrisch zu isolieren, wodurch sich offenbar die Anfälligkeit des für die elektrolytische Ablösung vorgesehenen Abschnittes des Drahtes für eine elektrolytische Korrosion erhöht. Die Isolierung kann dabei entweder durch Vorsehen einer Isolierung zwischen Implantat und Ablösestelle oder aber durch Überziehen des Implantates mit einer Isolationsschicht vorgenommen werden.
Nachteilig macht sich jedoch bei diesem Stand der Technik bemerkbar, daß sich die Ablösestelle bei der in der genannten Druckschrift beschriebenen Vorrichtung im Führungsdraht befindet, was aus den oben ausgeführten und in der WO 03/017852 A1, auf welche hiermit ausdrücklich Bezug genommen wird, ausführlich beschriebenen Gründen im Vergleich zur Verlagerung der Ablösestelle in den Bereich der Okklusionswendel weniger vorteilhaft ist.
Darüber hinaus sind bei den genannten isolierten Implantaten aus dem Stand der Technik keine zusätzlichen Stabilisierungswendeln vorgesehen, welche der Positionierung und Verbesserung des Übergangs zur Okklusionswendel dienen.
Ausgehend von diesem Stand der Technik stellt sich daher die Aufgabe, eine Vorrichtung zur Implantation von Okklusionswendeln zu schaffen, bei der die für die elektrolytische Korrosion benötigte Zeit weiter herabgesetzt ist und bei der darüber hinaus die Verbindung von Stabilisierungswendel und Okklusionswendel vereinfacht ist.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine Vorrichtung zur Im- plantation von durch Elektrolyse ablösbaren Okklusionswendeln in Blutgefäßen und Körperhohlräumen, insbesondere Aneurysmen, mit einer Einführhilfe, wenigstens einer distal zur Einführhilfe angeordneten Okklusionswendel und wenigstens einem elektrolytisch korrodierbar ausgebildeten Ablöseelement, wobei zwischen Ablöseelement und Okklusionswendel wenigstens eine Stabili- sierungswendel angeordnet ist und wobei die Stabilisierungswendel über eine elektrisch isolierende Klebeschicht mit der Okklusionswendel verbunden ist, so daß die Okklusionswendel bei Anlegen einer elektrischen Spannung an das Ablöseelement von der Spannung isoliert ist.
Im Gegensatz zu den Isolierungen aus dem Stand der Technik befindet sich die Isolierung gemäß der Erfindung nicht zwischen Ablösestelle und Implantat, sondern zwischen einzelnen Bestandteilen des Implantates. Auf diese Weise werden gleich zwei Probleme in einem Schritt gelöst, nämlich die Vereinfachung der Verbindung von Stabilisierungs- und Okklusionswendel als auch die Verkürzung der Ablösezeit. Letzteres ist darauf zurückzuführen, daß sich bei Anle- gen einer Spannung an das Ablöseelement die Stromdichte hierin erhöht, wenn andere Teile des Implantates, an denen keine elektrolytische Korrosion stattfinden soll, von der angelegten Spannung isoliert sind.
Gleichzeitig ist die Herstellung der Verbindung zwischen Stabilisierungs- und Okklusionswendel im Vergleich zum Stand der Technik deutlich vereinfacht, wo in der Regel ein Laserschweißverfahren zum Einsatz kommt. Erfindungsgemäß wird dabei üblicherweise so vorgegangen, daß die Stabilisierungswendel mit einem Klebstoff an zumindest dem für die Verbindung mit der Okklusionswendel vorgesehenen Ende versehen und anschließend an die Okklusionswendel angesetzt wird. Besonders vorteilhaft ist es dabei, die Stabilisierungswendel im Ganzen mit einem elektrisch isolierenden Überzug zu versehen, wobei es sich insbesondere um eine Klebebeschichtung handeln kann. Anschließend kann die Stabilisierungswendel an einem Ende an die Okklusionswendel angesetzt oder teilweise in diese eingeführt werden, um eine dauerhafte, isolierende Verbindung herzustellen. Durch die zusätzliche Isolierung der Stabilisierungs- wendein mit Hilfe einer elektrisch isolierenden Beschichtung wird jegliche Korrosion im Bereich der Stabilisierungswendel verhindert und die Stromdichte im Bereich des Ablöseelements weiter erhöht, was mit einer entsprechenden Verringerung der Ablösezeit verbunden ist. Gegebenenfalls können auch mehrere ineinandergefügte Stabilisierungswendeln an der Okklusionswendel angesetzt werden.
Zusätzlich ist es zweckmäßig, daß durch das Lumen der Okklusionswendel ein Sicherungsmittel verläuft. Derartige Sicherungsmittel haben den Vorteil, daß im Falle einer fehlerhaften Positionierung der Okklusionswendel oder einer für den zu okkludierenden Bereich zu groß dimensionierten Okklusionswendel das notwendige Zurückziehen der Okklusionswendel, gegebenenfalls vollständig in den Katheter, deutlich sicherer wird. Das Zurückziehen einer Okklusionswendel ohne Sicherungsmittel birgt die Gefahr, daß Teile der Wendel durch Zug- oder Torsionsbeanspruchung auseinandergezogen und so irreversibel plastisch deformiert werden. Im Extremfall kann die Wendel reißen oder brechen, was eine lebensgefährliche Embolie nach sich ziehen kann.
Es ist bekannt, derartige Sicherungsmittel als flexible Polymerfäden auszu- bilden. Besonders bevorzugt ist jedoch eine Variante, wie sie in der DE 101 18 017 A1 beschrieben wird, derzufolge es sich bei dem Sicherungsmittel um einen Draht handelt, welcher aus einem Material, insbesondere einem Metall mit Formgedächtniseigenschaften gefertigt ist. Ein solches metallisches Sicherungsmittel weist im Vergleich zu Sicherungsmitteln, die aus einem Poly- mermaterial gefertigt sind, deutliche Vorteile hinsichtlich der Torsions- oder der Zugbelastung auf. Ein aus einem Formgedächtnismetall hergestelltes Sicherungsmittel kann darüber hinaus über eine auch als „Superelastizität" bezeichnete Eigenschaft verfügen, weshalb ein solches Sicherungsmittel in seinem flexiblen Zustand besonders stark durch Biegung oder Zug beansprucht werden kann, ohne daß die Gefahr des Reißens besteht.
Bei den Formgedächtniseigenschaften des Sicherungsmittels kann es sich sowohl um einen thermischen als auch um einen mechanischen Formgedächtniseffekt handeln. Besonders bewährt hat sich hier die Verwendung von Titan und Nickel enthaltenden Legierungen, insbesondere eine dem Fachmann unter dem Namen Nitinol bekannte Legierung. Darüber hinaus sind jedoch Alternativen, z. B. die Verwendung von Eisenbasis- oder Kupferbasislegierungen, möglich. Die genauen Eigenschaften des Formgedächtnismaterial können in für den Fachmann bekannter Weise durch die genaue Wahl der Zusammensetzung gesteuert werden. Der Durchmesser eines solchen, als Sicherungsmittel dienen- den Drahtes liegt typischerweise zwischen 0,03 und 0,05 mm.
Darüber hinaus kann die Verwendung eines Formgedächtnismaterials für das Sicherungsmittel genutzt werden, um der Okklusionswendel nach Ausbringung aus dem Katheter in beispielsweise das Aneurysma eine gewünschte übergeordnete Struktur aufzuprägen. Es ist grundsätzlich vorteilhaft, wenn die Okklusionswendel im Aneurysma eine solche Sekundärstruktur ausbildet, beispielsweise helikale Windungen oder eine korbartige Form, da auf diese Weise das Aneurysma besonders effektiv ausgefüllt wird, um eine wirkungsvolle Thrombo- sierung des Aneurysmas zu gewährleisten. Gegebenenfalls kann hierzu auch die Okklusionswendel selbst zu einer übergeordneten Struktur vorgeformt sein, welche sie nach der Ausbringung aus dem Katheter annimmt. Unter Umständen ist es jedoch ausreichend, wenn lediglich das Sicherungsmittel, nicht aber die Okklusionswendel selbst vorgeformt ist, wenn die vom Sicherungsmittel ausgehende Kraft groß genug ist, die Okklusionswendel ebenfalls in die durch das Sicherungsmittel vorgegebene Form zu zwingen. Die durch das Sicherungsmittel ausgeübte Kraft wird dadurch hervorgerufen, daß das Sicherungsmittel bei Ausbringung in das Aneurysma von dem durch den Katheter ausgeübten Zwang befreit wird und eine Rückumwandlung in seine Austenit-Phase eingeht, wobei es die ihm zuvor aufgeprägte Struktur einnimmt. Zusätzlich oder alternativ kann auch eine temperaturinduzierte Transformation auftreten, wenn das Sicherungsmittel bei Ausschieben aus dem Katheter einer erhöhten Temperatur im Blutstrom ausgesetzt wird.
Das Sicherungsmittel verläuft bei Vorsehen lediglich eines Ablöseelements bzw. bei mehreren Ablöseelementen im Bereich des am weitesten distal gelegenen Segments der Okklusionswendel sinnvollerweise zwischen Stabilisierungswendel und distalem Spitzenabschnitt der Okklusionswendel, d. h. es ist an seinem proximalen Ende mit der Stabilisierungswendel und an seinem distalen Ende mit der Okklusionswendel verbunden. Um zu gewährleisten, daß nicht über das Sicherungsmittel eine elektrische Verbindung zwischen Stabilisierungswendel und Okklusionswendel hergestellt wird, erfolgt die Verbindung von Sicherungsmittel und distalem Spitzenabschnitt der Okklusionswendel zweckmäßigerweise über eine Klebeschicht, welche die Okklusionswendel von einer an das Ablöseelement angelegten elektrischen Spannung isoliert. Die Verbindung von Stabilisierungswendel und metallischem Sicherungsmittel kann, je nach Bedarf, ebenfalls über eine Klebeschicht oder aber mittels Schweißen oder Löten ausgebildet werden. Im Falle der Verwendung einer Klebeschicht ist auch das Sicherungsmittel gegenüber dem Ablöseelement elektrisch isoliert, während bei Schweißen oder Löten die zwecks elektrolytischer Korrosion an das Ablöseelement angelegte Spannung auch am Sicherungsmittel anliegt. Letzteres kann, wie weiter unten beschrieben wird, in bestimmten Fällen vorteilhaft sein.
Um im letzteren Fall zu verhindern, daß bei Kontakt des metallischen Siche- rungsmittels mit der Okklusionswendel ein Stromfluß stattfindet, sollte das Sicherungsmittel mit einem elektrisch isolierenden Überzug versehen werden, ähnlich wie er auch für die Stabilisierungswendel eingesetzt werden kann. Ein solcher Überzug ist auch deshalb sinnvoll, weil er die elektrolytische Korrosion des Sicherungsmittels selbst verhindert und die Stromdichte am Ablöseelement hochhält.
Eine Alternative zur elektrischen Isolierung des Sicherungsmittels besteht darin, die Okklusionswendel selbst zumindest an ihrer Innenseite mit einem elektrisch isolierenden Überzug zu versehen. Auch auf diese Weise wird wirkungsvoll verhindert, daß zwischen Sicherungsmittel und Okklusionswendel ein Stromfluß stattfinden kann, sobald sich die beiden Elemente berühren.
Besonders bevorzugt sind solche Vorrichtungen, bei denen die Okklusionswendel über mehrere, voneinander beabstandete, elektrolytisch korrodierbar ausgebildete Ablöseelemente verfügt bzw. bei der mehrere voneinander beabstandete Okklusionswendeln vorgesehen sind, zwischen denen jeweils ein elektrolytisch korrodierbar ausgebildetes Ablöseelement angeordnet ist. Derartige Vorrichtungen sind grundsätzlich aus der WO 01/32085 A1 bekannt, auf welche hiermit Bezug genommen wird. Auf diese Weise können eine oder mehrere variabel dimensionierte Längen der Okklusionswendel durch Elektrolyse abgelöst und im Aneurysma platziert werden. Dies erlaubt es, daß Okklu- sionswendeln in genau der richtigen Länge in dem Aneurysma abgesetzt werden können. Gegebenenfalls können auch mehrere Längen derselben Wendel nacheinander abgelöst und in den zu okkludierenden Hohlraum eingebracht werden. Dies spart nicht nur Kosten und Zeit, sondern dient insbesondere auch der Minimierung des Operationsrisikos. Darüber hinaus wird auf diese Weise gewährleistet, daß für verschieden große Aneurysmen nicht stets unterschiedlich dimensionierte Okklusionswendeln bereitgehalten und verwendet werden müssen, sondern stattdessen eine einheitliche Vorrichtung ver- wendet werden kann, bei der je nach Bedarf unterschiedlich große Abschnitte der Okklusionswendel in das Aneurysma eingeführt werden können.
Die Verwendung derartiger, an mehreren Stellen elektrolytisch korrodierbarer Okklusionswendeln beruht auf der Erkenntnis, daß bei Anlegen eines Stroms an eine solche Vorrichtung sich spezifisch die dem distalen Ende des Katheters am nächsten liegende Ablösestelle der Okklusionswendel durch Elektrolyse löst. Dies ist darauf zurückzuführen, daß einerseits die sich im Katheter befindenden elektrolytisch korrodierbaren Stellen durch den Katheter vom ionischen Medium isoliert sind und deshalb keiner Elektrolyse unterliegen können und andererseits die Stromdichte aufgrund des nach distal zunehmenden Widerstandes in der bzw. den Okklusionswendeln von proximal nach distal abnimmt. Die sich nach distal als erstes an das distale Katheterende anschließende elektrolytisch korrodierbar ausgebildete Stelle ist deshalb am stärksten elektrolytischen Prozessen unterworfen und löst sich bevorzugt auf.
Im Falle einer Vorrichtung mit mehreren Ablöseelementen ist es zweckmäßig, daß in den zwischen den Ablöseelementen liegenden Segmenten der Okklusionswendel bzw. den einzelnen Okklusionswendeln jeweils ein Sicherungsmittel angeordnet ist und durch das Lumen der Okklusionswendeln verläuft. Auf diese Weise wird die Deponierung variabel dimensionierbarer Längen ver- bunden mit einer gleichzeitigen Sicherung jedes einzelnen, zwischen den elektrolytisch korrodierbaren Stellen angeordneten Segmentes und somit ein Höchstmaß an Sicherung gegen das Abreißen von Okklusionswendeln gewährleistet.
Gemäß einer besonders bevorzugten Ausführungsform werden die einzelnen Ablöseelemente elektrisch leitend über metallische Sicherungsmittel verbunden. Gemäß dieser Ausführungsform ist das Sicherungsmittel zwar gegenüber der Okklusionswendel isoliert, leitet jedoch den Strom weiter zum nächsten, distal gelegenen Ablöseelement. Der Übergang kann dabei so erfolgen, daß das Sicherungsmittel direkt mit dem distal nächstgelegenen Ablöseelement ver- bunden ist oder aber auch in der Form, daß das Sicherungsmittel eine leitende Verbindung mit einer zusätzlichen Stabilisierungswendel am distalen Ende eines Segmentes einer Okklusionswendel bzw. einer einzelnen von mehreren hinter- einander angeordneten Okklusionswendeln aufweist, wobei wiederum die Stabilisierungswendel leitend mit dem Ablöseelement verbunden ist. Typischerweise weisen die Ablöseelemente an beiden Enden jeweils eine Stabilisierungswendel auf, die das Ablöseelement mit den entsprechenden Okklusionswendelseg- menten verbinden. Vorzugsweise erstreckt sich dabei jedes einzelne Sicherungsmittel von der Stabilisierungswendel, die sich am distalen Ende eines Ablöseelements befindet, zur distal nächstgelegenen Stabilisierungswendel des folgenden Ablöseeleements. Auf diese Weise wird sichergestellt, daß die einzelnen Ablöseelemente über die Stabilisierungswendeln und die hiermit ver- bundenen Sicherungsmittel elektrisch leitend miteinander verbunden sind, so daß eine zur Ablösung der Okklusionswendel angelegte elektrische Spannung an die einzelnen Ablöseelemente weitergeleitet wird. Gleichzeitig ist jedoch jedes einzelne Okklusionswendelsegment elektrisch gegenüber der Stabilisierungswendel isoliert, da es mit den Stabilisierungswendeln über eine elektrisch isolierende Klebeschicht verbunden ist. Grundsätzlich kann das metallische Sicherungsmittel jedoch auch an den Ablöseelementen selbst festgelegt sein und auf diese Weise den Stromfluß sicherstellen. Lediglich beim am weitesten distal gelegenen Okklusionswendelsegment erstreckt sich das Sicherungsmittel bevorzugt bis zum distalen Spitzenabschnitt der Okklusionswendel selbst, wo das Sicherungsmittel über eine Klebeschicht mit dem distalen Spitzenabschnitt verbunden ist, welche die Okklusionswendel von der zur elektrolytischen Korrosion anlegbaren elektrischen Spannung isoliert.
Zusätzlich wird das Sicherungsmittel vorzugsweise mit einer elektrisch isolierenden Beschichtung überzogen, so daß der elektrische Strom zwar nach distal durch das Innere des Sicherungsmittels weitergeführt wird, in diesem Bereich jedoch keine elektrolytische Korrosion und kein elektrischer Kontakt mit der Okklusionswendel stattfinden kann. Durch die geschilderten Maßnahmen wird eine sehr elegante Möglichkeit zur Schaffung variabel ablösbarer Okklusionswendeln geschaffen und gleichzeitig die Stromdichte am Ablöseelement beson- ders niedrig gehalten, was mit einer entsprechenden Reduzierung der Ablösezeiten verbunden ist. Darüber hinaus ist diese Ausführungsform auch fertigungstechnisch vorteilhaft, da eine Verbindung über Klebeschichten einfacher herzustellen ist als über die aus dem Stand der Technik bekannten Laserschweißverfahren. Für die Ausbildung der Klebeschichten und der elektrisch isolierenden Überzüge auf Sicherungsmittel und/oder Stabilisierungswendeln sind grundsätzlich verschiedene Materialien denkbar. Wichtig ist hierbei naturgemäß die Verträglichkeit und möglichst auch die Zulassung im medizinischen Bereich.
Neben der Biokompatibilität und den Isolierungseigenschaften ist auch die Härtbarkeit des Klebers von Vorteil, wobei insbesondere durch Strahlung härtbare Kleber, z. B. UV-härtbare Kleber, vorteilhaft sind, da hier gegebenenfalls durch die zur Härtung einwirkende Strahlung gleichzeitig eine Sterilisation hervorgerufen wird. Zweckmäßig ist insbesondere die Verwendung von Acrylat-Kleb- Stoffen, obgleich grundsätzlich auch andere Kleber mit den angesprochenen Eigenschaften geeignet sind.
Besonders bevorzugt ist dabei der Einsatz eines unter der Bezeichnung „Permabond" vertriebenen Materials, welches zugelassen ist und sich im medizinischen Bereich ausgezeichnet bewährt hat. Permabond 4L25, das von der National Starche & Chemical Company (ICI) vertrieben wird, ist ein UV-härtbarer Klebstoff, der im medizinischen Bereich für die Verbindung einer Vielzahl von Stoffen geeignet ist. Es handelt sich um einen Klebstoff auf Acrylat-Basis, der bei einer Wellenlänge von 320 bis 380 nm gehärtet werden kann. Nach Härtung besteht Permabond USP Klasse VI Tests. Darüber hinaus ist Permabond un- empfindlich gegenüber Gammastrahlung und eine Reihe anderer Sterilisationsverfahren.
Die Ablöseelemente, die für eine rasche Korrosion vorgesehen sind, bestehen vorzugsweise aus einer Stahllegierung. Bevorzugt sind hier insbesondere nicht rostende Stähle der Typen AISI 301 , 303 oder 316 bzw. Untergruppen dieser Typen. Derartige nicht rostende Stähle haben vorzugsweise einen Chromanteil zwischen 12 und 20 Gew.-%. Beispiele hierfür sind die Stahlqualitäten 1.4410, 1.4310, 1.4301 und 1.4122. Geeignet sind beispielsweise Chrom/Nickelstähle der Qualität 18/8. Der Durchmesser der Ablöseelemente liegt typischerweise zwischen 0,01 und 0,05 mm.
Um die Ablösezeiten weiter zu verkürzen, können die Ablöseelemente vorkorrodiert sein. Eine solche Vorkorrosion kann beispielsweise in Form einer Wärme- behandlung erfolgen, durch die das Metall in seinem Gefüge so verändert wird, daß es sich bei Anlegen einer elektrischen Spannung in einem Elektrolyten besonders rasch zersetzt. Die hierzu erforderliche Wärmebehandlung kann mit Hilfe eines Lasers vorgenommen werden, in einem üblichen Ofen oder mittels einer Induktionsspule. Der dazu erforderliche Temperaturbereich liegt bei etwa 500 bis 1000°C, vorzugsweise bei 600 bis 950°C und insbesondere bei 700 bis 900°C. Es wird angenommen, daß bei dieser Wärmebehandlung eine Rekristallisation unter Ausbildung von großen Gefügekörnern und Hartmetallkarbiden stattfindet und damit eine Verringerung der Korngrenzenstabilität. Die Aus- bildung von Chromkarbiden, die sich auf den Korngrenzen abscheiden, führt zu einer Verarmung der Matrix an Chrom sowie zu einer Herabsetzung des Widerstandes gegen interkristalline Korrosion. Die für die Korrosion zur Verfügung stehende Oberfläche wird dadurch rasch erweitert, so daß es zu einer schnellen Zersetzung des Gefüges unter Stromanschluß in einem Elektrolyt kommt.
Eine weitere Möglichkeit, die Ablöseelemente besonders gut korrodierbar auszubilden, besteht darin, in den entsprechenden Bereichen Materialkombinationen zu wählen, die geeignet sind, Lokalelemente auszubilden. Beispiele hierfür sind Kombinationen aus nicht rostenden Stählen mit Edelmetallen bzw. Edelmetalllegierungen, insbesondere Platinlegierungen.
Für die Ausbildung der Okklusionswendeln selbst hat sich die Verwendung von Platin oder Platinlegierungen bewährt. Besonders bevorzugt ist dabei die Verwendung von Platin-Iridiumlegierungen. Die mit den Ablöseelementen verbundenen Stabilisierungswendeln bestehen zumeist, ähnlich wie die Ablöseelemente selbst, aus einer Stahllegierung, grundsätzlich ist jedoch auch für die Stabilisierungswendeln die Verwendung einer Platinlegierung ähnlich der für die Okklusionswendeln verwendeten möglich. Die Verwendung einer Stahllegierung ist insofern vorteilhaft, als auf diese Weise der Röntgenkontrast zwischen Ablöseelement und Stabilisierungswendel einerseits und Okklusionswendel andererseits erhöht wird. Dies ist darauf zurückzuführen, daß Platinlegierungen eine erheblich höhere Röntgendichte aufweisen als Stahllegierungen. Bei der Einführhilfe handelt es sich vorzugsweise um einen herkömmlichen Führungsdraht, wie er sich bewährt hat, um Okklusionswendeln durch einen Katheter zu einem zu okkludierenden Hohlraum zu führen.
Die erfindungsgemäße Vorrichtung kann auch direkt in Kombination mit einem Mikrokatheter vorliegen, durch den die Okklusionswendel mit Hilfe der Einführhilfe an ihren Bestimmungsort gebracht wird. Der verwendete Katheter und die verwendete Okklusionswendel sollten dabei hinsichtlich ihrer Dimensionen aufeinander abgestimmt sein. Gegebenenfalls kann der Katheter dabei auch einen Zwang auf die Okklusionswendel sowie das Sicherungsmittel ausüben, der be- wirkt, daß die Okklusionswendel erst nach Befreiung von dem Zwang eine ihr bzw. dem Sicherungsmittel zuvor aufgeprägte Sekundärstruktur im Aneurysma einnimmt. Zweckmäßigerweise ist der Katheter darüber hinaus mit röntgendichten Markierungen versehen, die die Plazierung im Zielbereich mit Hilfe bekannter Bildgebungsverfahren ermöglicht.
Neben der Vorrichtung zur Implantation von elektrolytisch ablösbaren Okklusionswendeln betrifft die Erfindung auch ein entsprechendes medizinisches Implantat, bestehend aus wenigstens einer Okklusionswendel, wenigstens einem Ablöseelement und wenigstens einer Stabilisierungswendel, wobei die Stabilisierungswendel zwischen Ablöseelement und Okklusionswendel ange- ordnet ist, um auf diese Weise Ablöseelement und Okklusionswendel indirekt miteinander zu verbinden, und wobei die Stabilisierungswendel über eine elektrisch isolierende Klebeschicht mit der Okklusionswendel verbunden ist.
Die Erfindung wird nachfolgend beispielhaft anhand der beigefügten Figuren näher erläutert. Es zeigen: Figur 1 die schematische Darstellung der Positionierung einer Okklusionswendel in einem Beerenaneurysma mit Hilfe der erfindungsgemäßen Vorrichtung;
Figur 2 einen Längsschnitt durch die erfindungs- gemäße Vorrichtung in gegenüber Figur 1 deutlich vergrößerter Darstellung; und Figur 3 einen Längsschnitt durch die erfindungsgemäße Vorrichtung mit mehreren Ablöseelementen.
In Figur 1 ist die vertikale Ansicht einer in einem Beerenaneurysma 12 posio- nierten Okklusionswendel 3 dargestellt. Die Okklusionswendel 3 wird mit Hilfe des Führungsdrahtes 4 innerhalb des Katheters 1 nach distal verschoben. Bei korrekter Positionierung tritt die Okklusionswendel 3 aus dem Ende des Katheters 1 heraus in den durch das Beerenaneurysma 12 gebildeten Hohlraum und füllt diesen aus. Innerhalb des Aneurysmas 12 bildet die Okklusionswendel 3 sekundäre Windungen aus, was insbesondere durch einen spannungs- und/oder temperaturinduzierten Übergang der Okklusionswendel 3 und/oder des hier nicht dargestellten Sicherungsmittels im Inneren der Okklusionswendel 3 von der Martensit- in die Austenitphase hervorgerufen werden kann. Aufgrund der Ausbildung von sekundären Windungen wird das Aneurysma 12 besonders effektiv ausgefüllt.
Sobald eine an das Volumen des auszufüllenden Hohlraumes angepaßte Länge der Okklusionswendel 3 in das Aneurysma 12 eingebracht ist, erfolgt die elektrolytische Ablösung am Ablöseelement 2. Hierzu wird mit Hilfe der Spannungsquelle 14 eine elektrische Spannung an das Ablöseelement 2 angelegt, wobei das Ablöseelement 2 als Anode dient. Die Kathode 15 wird auf der Körperoberfläche positioniert. Bei der erfindungsgemäßen Vorrichtung erfolgt die elektrolytische Korrosion des Ablöseelements 2 innerhalb besonders kurzer Zeiten, die in der Regel deutlich unter 1 min, bei ca. 20 bis 40 s (bei 2 V, 2 mA) liegen. Gemäß einer bevorzugten Ausführungsform sind im Bereich der Okklu- sionswendel 3 mehrere Ablöseelemente 2 vorgesehen, so daß die Länge der eingebrachten Okklusionswendel 3 jeweils individuell an das Aneurysma 12 angepaßt werden kann.
In Figur 2 ist die erfindungsgemäße Vorrichtung schematisch als Längsschnitt dargestellt. Die hier dargestellte Okklusionswendel 3 ist über eine Stabilisie- rungswendel 5 mit dem Ablöseelement 2 verbunden, wobei es sich bei der Stabilisierungswendel 5 um eine Wendel kleineren Durchmessers als die Okklusionswendel 3 selbst handelt und der Außendurchmesser der Stabilisierungs- wendel 5 im wesentlichen dem Innendurchmesser der Okklusionswendel 3 entspricht. Entsprechend kann die Stabilisierungswendel 5 zumindest teilweise in die Okklusionswendel 3 eingeführt werden.
Stabilisierungswendel 5 und Okklusionswendel 3 sind über eine Klebeschicht 7 miteinander verbunden, wobei die Klebeschicht 7 gleichzeitig für eine Isolierung der Okklusionswendel 3 von der an das Ablöseelement 2 angelegten elektrischen Spannung sorgt. Auf diese Weise wird die Stromdichte im Ablöseelement 2 besonders hoch gehalten. Dieser Effekt wird durch eine zusätzliche Beschichtung 11 auf der Stabilisierungswendel 5 weiter verstärkt. Die Strom- zufuhr zwecks Ablösung der Okklusionswendel 3 kann mit Hilfe des Führungsdrahtes 4 zum Ablöseelement 2 hin erfolgen.
Zusätzlich ist im Lumen der Okklusionswendel 3 ein Sicherungsmittel 6 vorgesehen, bei dem es sich um einen Nitinol-Draht handelt, der mit einer isolierenden Beschichtung versehen ist. Das Sicherungsmittel 6 erstreckt sich von der Stabilisierungswendel 5 zum distalen Ende 8 der Okklusionswendel 3. An dieser Stelle wird die Verbindung von Sicherungsmittel 6 und distalem Ende 8 der Okklusionswendel 3 über eine weitere isolierende Klebeschicht 9 hergestellt. Zur Herstellung der Klebeschichten 7 und 8 sowie für die Beschichtung auf der Stabilisierungswendel 5 wird Permabond verwendet.
Zur Herstellung der erfindungsgemäßen Vorrichtung wird zunächst eine Stabilisierungswendel 5 mit einer Permabond-Schicht versehen und anschließend das als Nitinoldraht ausgebildete Sicherungsmittel 6 mit der Stabilisierungswendel 5 an der Stelle 10, d. h. am distalen Ende der Stabilisierungswendel 5, verschweißt. Schließlich wird die Stabilisierungswendel 5 mit Hilfe von Permabond an der Okklusionswendel 3 festgelegt.
In Figur 3 ist eine erfindungsgemäße Vorrichtung mit mehreren Ablöseelementen 2 gezeigt. Die Vorrichtung verfügt über mehrere Okklusionswendel- segmente 3, wobei die Ablösung je nach Bedarf und Größe des zu verschließenden Aneurysmas an unterschiedlichen Ablöseelementen 2 erfolgen kann. Jedes Ablöseelement 2 ist dabei über eine Stabilisierungswendel 5 mit dem jeweiligen Okklusionswendelsegment 3 verbunden, wobei die Verbindung erfindungsgemäß über eine elektrisch isolierende Klebeschicht hergestellt wird. Zusätzlich ist die Stabilisierungswendel 5 hier mit einer ebenfalls elektrisch isolierenden Beschichtung 11 versehen.
Durch das Lumen der jeweiligen Okklusionswendelsegmente 3 verläuft ein metallisches Sicherungsmittel 6, das mit einem elektrisch isolierenden Überzug versehen ist, um die Isolierung des Sicherungsmittels 6 gegenüber der Okklusionswendel 3 sicherzustellen. Durch das Innere des Sicherungsmittels 6 wird jedoch der elektrische Strom an das entsprechende Ablöseelement 2 nach distal weitergeleitet, um hier bei Bedarf die elektrolytische Korrosion hervorrufen zu können. Innerhalb eines Okklusionswendelsegments 3 erstreckt sich das metallische Sicherungsmittel 6 jeweils von der proximai mit dem Okklusionswendelsegment 3 verbundenen Stabilisierungswendel 5 bis zur distal mit dem Okklusionswendelsegment 3 verbundenen Stabilisierungswendel 5. Auf diese Weise wird der elektrische Strom von einem Ablöseelement 2 über die hiermit verbundene Stabilisierungswendel 5, das Sicherungsmittel 6 zur distal sich anschließenden Stabilisierungswendel 5 und zum damit verbundenen Ablöseelement 2 geleitet. Das Sicherungsmittel 6 wird entsprechend gleich in doppelter Hinsicht vorteilhaft ausgenutzt, da es zum einen der Erhöhung der Sicherheit im Falle einer fehlerhaften Positionierung einer Okklusionswendel 3 und zum anderen der elektrisch leitenden Verbindung der einzelnen Ablöseelemente 2 dient.
- Patentansprüche -

Claims

Patentansprüche
1. Vorrichtung zur Implantation von durch Elektrolyse ablösbaren Okklusionswendeln (3) in Blutgefäßen und Körperhohlräumen, insbesondere Aneurysmen (12), mit einer Einführhilfe (4), wenigstens einer distal zur Einführhilfe (4) angeordneten Okklusionswendel (3) und wenigstens einem elektrolytisch korrodierbar ausgebildeten Ablöseelement (2), wobei zwischen Ablöseelement (2) und Okklusionswendel (3) wenigstens eine Stabilisierungswendel (5) angeordnet ist, d a d u r c h g e k e n n z e i c h n e t, daß die Stabilisierungswendel (5) über eine elektrisch isolierende Klebeschicht (7) mit der Okklusionswendel (3) verbunden ist, so daß die Okklusionswendel (3) bei Anlegen einer elektrischen Spannung an das Ablöseelement (2) von der Spannung isoliert ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß die
Stabilisierungswendel (5) mit einem elektrisch isolierenden Überzug (11 ) versehen ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß durch das Lumen der Okklusionswendel (3) ein Sicherungsmittel (6) verläuft.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß das
Sicherungsmittel (6) aus einem Material mit Formgedächtniseigenschaften besteht.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Sicherungsmittel (6) bei Ausbringung in das Blutgefäß oder den Körperhohlraum eine Transformation eingeht und eine ihm zuvor aufgeprägte Struktur einnimmt.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß das Sicherungsmittel (6) aus Nitinol besteht.
7. Vorrichtung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß sich zumindest ein Sicherungsmittel (6) von der Stabilisierungswendel (5) bis zum distalen Spitzenabschnitt (8) der Okklusionswendel (3) erstreckt.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, daß das zumindest eine Sicherungsmittel (6) über eine Klebeschicht (9) mit dem distalen Spitzenabschnitt (8) der Okklusionswendel (3) verbunden ist, welche die Okklusionswendel (3) von einer an das Ablöseelement (2) angelegten elektrischen Spannung isoliert.
9. Vorrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, daß das Sicherungsmittel (6) mit einem elektrisch isolierenden Überzug versehen ist.
10. Vorrichtung nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß die Okklusionswendel (3) zumindest an ihrer Innenseite mit einem elektrisch isolierenden Überzug versehen ist.
11. Vorrichtung nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Okklusionswendel (3) über mehrere, voneinander beabstandete, elektrolytisch korrodierbar ausgebildete Ablöseelemente (2) verfügt.
12. Vorrichtung nach einem der Ansprüche 1 bis 10, gekennzeichnet durch mehrere voneinander beabstandete Okklusionswendeln (3), wobei zwischen den einzelnen Okklusionswendeln (3) jeweils ein elektrolytisch korrodierbar ausgebildetes Ablöseelement (2) angeordnet ist.
13. Vorrichtung nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß in den zwischen den Ablöseelementen (2) liegenden Segmenten der Okklusionswendel (3) bzw. den einzelnen Okklusionswendeln (3) jeweils ein Sicherungsmittel (6) angeordnet ist.
14. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß sich zumindest einige der Sicherungsmittel (6) jeweils von einer mit einem Ablöseelement (2) verbundenen Stabilisierungswendel (5) zur distal nächstgelegenen Stabilisierungswendel (5) erstrecken.
15. Vorrichtung nach Anspruch 13, dadurch gekennzeichnet, daß sich zumindest einige der Sicherungsmittel (6) von einem Ablöseelement (2) zum distal nächstgelegenen Ablöseelement (2) erstrecken.
16. Vorrichtung nach einem der Ansprüche 11 bis 15, dadurch gekennzeichnet, daß die Ablöseelemente (2) über die durch das Lumen der Okklusionswendeln (3) verlaufenden Sicherungsmittel (6) elektrisch leitend mitein- ander verbunden sind.
17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, daß die Klebeschichten (7, 9) und/oder die elektrisch isolierenden Überzüge (11) aus einem Acrylat-Klebstoff bestehen.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß der Acrylat-Klebstoff Permabond ist.
19. Vorrichtung nach einem der Ansprüche 1 bis 18, dadurch gekennzeichnet, daß die Ablöseelemente (2) aus einer Stahllegierung bestehen.
20. Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, daß die Ablöseelemente (2) vorkorrodiert sind.
21. Vorrichtung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, daß die Okklusionswendeln (3) aus Platin oder einer Platinlegierung, insbesondere aus einer Platin-Iridium-Legierung bestehen.
22. Vorrichtung nach einem der Ansprüche 1 bis 21 , dadurch gekennzeichnet, daß die Einführhilfe ein Führungsdraht (4) ist.
23. Vorrichtung nach einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, daß sie in Kombination mit einem Mikrokatheter (1 ) vorliegt.
24. Medizinisches Implantat nach einem der vorstehenden Ansprüche, bestehend aus wenigstens einer Okklusionswendel (3), wenigstens einem Ablöseelement (2) und wenigstens einer Stabilisierungswendel (5), wobei die Stabilisierungsswendel (5) zwischen Ablöseelement (2) und Okklusionswendel (3) angeordnet ist und die Stabilisierungswendel (5) über eine elektrisch isolierende Klebeschicht (7) mit der Okklusionswendel (3) verbunden ist.
PCT/EP2005/000587 2004-01-21 2005-01-21 Vorrichtung zur implantation von elektrisch isolierten okklusionswendeln WO2005070308A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/597,299 US8480701B2 (en) 2004-01-21 2005-01-21 Device for implanting electrically isolated occlusion helixes
EP05701105.8A EP1708627B1 (de) 2004-01-21 2005-01-21 Vorrichtung zur implantation von elektrisch isolierten okklusionswendeln
US13/916,770 US9254134B2 (en) 2004-01-21 2013-06-13 Device for implanting electrically isolated occlusion helixes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003265.3 2004-01-21
DE102004003265A DE102004003265A1 (de) 2004-01-21 2004-01-21 Vorrichtung zur Implantation von elektrisch isolierten Okklusionswendeln

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10/597,299 A-371-Of-International US8480701B2 (en) 2004-01-21 2005-01-21 Device for implanting electrically isolated occlusion helixes
US11/597,299 A-371-Of-International US8034667B2 (en) 2004-05-27 2005-05-26 Semiconductor sealing resin sheet and semiconductor device manufacturing method using the same
US13/916,770 Continuation US9254134B2 (en) 2004-01-21 2013-06-13 Device for implanting electrically isolated occlusion helixes

Publications (2)

Publication Number Publication Date
WO2005070308A2 true WO2005070308A2 (de) 2005-08-04
WO2005070308A3 WO2005070308A3 (de) 2005-09-22

Family

ID=34745004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/000587 WO2005070308A2 (de) 2004-01-21 2005-01-21 Vorrichtung zur implantation von elektrisch isolierten okklusionswendeln

Country Status (4)

Country Link
US (2) US8480701B2 (de)
EP (1) EP1708627B1 (de)
DE (1) DE102004003265A1 (de)
WO (1) WO2005070308A2 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050085A1 (de) 2008-10-06 2010-04-08 Phenox Gmbh Implantatablösung
WO2010120694A1 (en) * 2009-04-16 2010-10-21 Boston Scientific Scimed, Inc. Electrical contact for occlusive device delivery system
WO2011147567A1 (de) 2010-05-28 2011-12-01 Phenox Gmbh Vorrichtung zum einbringen eines implantats
US9314250B2 (en) 2009-04-16 2016-04-19 Stryker Corporation Electrical contact for occlusive device delivery system
EP2846707A4 (de) * 2012-05-04 2016-11-30 Interventco Llc Vorrichtung und verfahren zum füllen eines aneurysmas oder einer körperhöhlung
WO2017220400A1 (de) * 2016-06-23 2017-12-28 Phenox Gmbh Implantat mit ablösemechanismus

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8048104B2 (en) 2000-10-30 2011-11-01 Dendron Gmbh Device for the implantation of occlusion spirals
DE102004003265A1 (de) 2004-01-21 2005-08-11 Dendron Gmbh Vorrichtung zur Implantation von elektrisch isolierten Okklusionswendeln
ES2357243T3 (es) * 2004-05-21 2011-04-20 Micro Therapeutics, Inc. Espirales metálicas entrelazadas con polímeros o fibras biológicos o biodegradables o sintéticos para la embolización de una cavidad corporal.
EP1793743B1 (de) 2004-09-22 2009-11-18 Dendron GmbH Vorrichtung zur implantation von mikrowendeln
WO2006032289A1 (de) * 2004-09-22 2006-03-30 Dendron Gmbh Medizinisches implantat
DE102005019782A1 (de) * 2005-04-28 2006-11-09 Dendron Gmbh Vorrichtung zur Implantation von Okklusionswendeln mit innenliegendem Sicherungsmittel
US8777979B2 (en) 2006-04-17 2014-07-15 Covidien Lp System and method for mechanically positioning intravascular implants
KR20090008347A (ko) 2006-04-17 2009-01-21 마이크로 테라퓨틱스 인코포레이티드 혈관내 삽입물을 기계적으로 위치설정하는 시스템 및 방법
WO2008112435A2 (en) * 2007-03-13 2008-09-18 Micro Therapeutics, Inc. An implant including a coil and a stretch-resistant member
KR20100015521A (ko) * 2007-03-13 2010-02-12 마이크로 테라퓨틱스 인코포레이티드 임플란트, 맨드릴, 및 임플란트 형성방법
US7987853B2 (en) * 2008-04-25 2011-08-02 Conceptus, Inc. Devices and methods for occluding a fallopian tube
US10028747B2 (en) 2008-05-01 2018-07-24 Aneuclose Llc Coils with a series of proximally-and-distally-connected loops for occluding a cerebral aneurysm
US10716573B2 (en) 2008-05-01 2020-07-21 Aneuclose Janjua aneurysm net with a resilient neck-bridging portion for occluding a cerebral aneurysm
CA2739603A1 (en) * 2008-10-13 2010-04-22 Stryker Corporation Vaso-occlusive coil delivery system
EP2405830A2 (de) * 2009-03-13 2012-01-18 Boston Scientific Scimed, Inc. Elektrischer kontakt für ein okklusionsvorrichtungs-abgabesystem
US9358140B1 (en) 2009-11-18 2016-06-07 Aneuclose Llc Stent with outer member to embolize an aneurysm
DE102010024085B4 (de) * 2010-06-17 2012-10-18 Acandis Gmbh & Co. Kg Zuführsystem für ein medizinisches Funktionselement
US20120209310A1 (en) * 2011-02-10 2012-08-16 Stryker Nv Operations Limited Vaso-occlusive device delivery system
WO2013049837A1 (en) 2011-09-30 2013-04-04 Medicalcue, Inc. Umbilical probe measurement systems
US9579104B2 (en) 2011-11-30 2017-02-28 Covidien Lp Positioning and detaching implants
US9011480B2 (en) 2012-01-20 2015-04-21 Covidien Lp Aneurysm treatment coils
US9072624B2 (en) 2012-02-23 2015-07-07 Covidien Lp Luminal stenting
US9687245B2 (en) 2012-03-23 2017-06-27 Covidien Lp Occlusive devices and methods of use
US9326774B2 (en) 2012-08-03 2016-05-03 Covidien Lp Device for implantation of medical devices
US10172734B2 (en) * 2013-03-13 2019-01-08 DePuy Synthes Products, Inc. Capture tube mechanism for delivering and releasing a stent
US9603610B2 (en) 2013-03-15 2017-03-28 DePuy Synthes Products, Inc. Tools and methods for tissue removal
US9782186B2 (en) 2013-08-27 2017-10-10 Covidien Lp Vascular intervention system
US10265207B2 (en) 2013-08-27 2019-04-23 Covidien Lp Delivery of medical devices
US9795400B2 (en) 2013-11-13 2017-10-24 Covidien Lp Galvanically assisted attachment of medical devices to thrombus
CN106456933B (zh) 2013-12-20 2020-03-13 微仙美国有限公司 导管系统
US9808599B2 (en) 2013-12-20 2017-11-07 Microvention, Inc. Device delivery system
US11224437B2 (en) 2014-01-14 2022-01-18 Penumbra, Inc. Soft embolic implant
US9713475B2 (en) 2014-04-18 2017-07-25 Covidien Lp Embolic medical devices
US9808256B2 (en) 2014-08-08 2017-11-07 Covidien Lp Electrolytic detachment elements for implant delivery systems
US9814466B2 (en) 2014-08-08 2017-11-14 Covidien Lp Electrolytic and mechanical detachment for implant delivery systems
US10265515B2 (en) * 2015-03-27 2019-04-23 Covidien Lp Galvanically assisted aneurysm treatment
US9717503B2 (en) 2015-05-11 2017-08-01 Covidien Lp Electrolytic detachment for implant delivery systems
BR112018016352A2 (pt) 2016-02-10 2018-12-18 Microvention Inc dispositivos para oclusão vascular
US10828037B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment with fluid electrical connection
US10828039B2 (en) 2016-06-27 2020-11-10 Covidien Lp Electrolytic detachment for implantable devices
US11051822B2 (en) 2016-06-28 2021-07-06 Covidien Lp Implant detachment with thermal activation
US10376396B2 (en) 2017-01-19 2019-08-13 Covidien Lp Coupling units for medical device delivery systems
US11071637B2 (en) 2018-04-12 2021-07-27 Covidien Lp Medical device delivery
US11413176B2 (en) 2018-04-12 2022-08-16 Covidien Lp Medical device delivery
US11123209B2 (en) 2018-04-12 2021-09-21 Covidien Lp Medical device delivery
US10786377B2 (en) 2018-04-12 2020-09-29 Covidien Lp Medical device delivery
US11413174B2 (en) 2019-06-26 2022-08-16 Covidien Lp Core assembly for medical device delivery systems
US12042413B2 (en) 2021-04-07 2024-07-23 Covidien Lp Delivery of medical devices
US12109137B2 (en) 2021-07-30 2024-10-08 Covidien Lp Medical device delivery
US11944558B2 (en) 2021-08-05 2024-04-02 Covidien Lp Medical device delivery devices, systems, and methods
CN114081570B (zh) * 2021-12-08 2024-03-08 杭州拓脉医疗科技有限公司 栓塞动脉瘤、血管的弹簧圈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5941888A (en) * 1998-02-18 1999-08-24 Target Therapeutics, Inc. Vaso-occlusive member assembly with multiple detaching points
US20020151883A1 (en) * 1990-03-13 2002-10-17 Guido Guglielmi Method and apparatus for fast electrolyitic detachment of an implant
DE10118017A1 (de) * 2001-04-10 2002-10-17 Dendron Gmbh Vorrichtung zur Implantation von Occlusionswendeln
US6468266B1 (en) * 1997-08-29 2002-10-22 Scimed Life Systems, Inc. Fast detaching electrically isolated implant

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5122136A (en) * 1990-03-13 1992-06-16 The Regents Of The University Of California Endovascular electrolytically detachable guidewire tip for the electroformation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5851206A (en) * 1990-03-13 1998-12-22 The Regents Of The University Of California Method and apparatus for endovascular thermal thrombosis and thermal cancer treatment
USRE41029E1 (en) * 1990-03-13 2009-12-01 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5354295A (en) 1990-03-13 1994-10-11 Target Therapeutics, Inc. In an endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US6083220A (en) * 1990-03-13 2000-07-04 The Regents Of The University Of California Endovascular electrolytically detachable wire and tip for the formation of thrombus in arteries, veins, aneurysms, vascular malformations and arteriovenous fistulas
US5108407A (en) 1990-06-08 1992-04-28 Rush-Presbyterian St. Luke's Medical Center Method and apparatus for placement of an embolic coil
US5250071A (en) 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5800453A (en) 1993-04-19 1998-09-01 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking hooks and slots
US5925059A (en) 1993-04-19 1999-07-20 Target Therapeutics, Inc. Detachable embolic coil assembly
US5370653A (en) 1993-07-22 1994-12-06 Micro Therapeutics, Inc. Thrombectomy method and apparatus
US5498227A (en) 1993-09-15 1996-03-12 Mawad; Michel E. Retrievable, shielded radiotherapy implant
US5624449A (en) * 1993-11-03 1997-04-29 Target Therapeutics Electrolytically severable joint for endovascular embolic devices
US5423829A (en) 1993-11-03 1995-06-13 Target Therapeutics, Inc. Electrolytically severable joint for endovascular embolic devices
US5522836A (en) 1994-06-27 1996-06-04 Target Therapeutics, Inc. Electrolytically severable coil assembly with movable detachment point
DE4445715C2 (de) 1994-12-22 1998-04-09 Hans Dr Med Henkes Anordnung zur Einbringung eines Implantats in ein Blutgefäß oder in einen Körperhohlraum
IL116561A0 (en) 1994-12-30 1996-03-31 Target Therapeutics Inc Severable joint for detachable devices placed within the body
US6059779A (en) 1995-04-28 2000-05-09 Target Therapeutics, Inc. Delivery catheter for electrolytically detachable implant
US5853418A (en) * 1995-06-30 1998-12-29 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US6013084A (en) 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US5766629A (en) 1995-08-25 1998-06-16 Sangstat Medical Corporation Oral cyclosporin formulations
US5658308A (en) * 1995-12-04 1997-08-19 Target Therapeutics, Inc. Bioactive occlusion coil
US5749894A (en) 1996-01-18 1998-05-12 Target Therapeutics, Inc. Aneurysm closure method
US5980514A (en) 1996-07-26 1999-11-09 Target Therapeutics, Inc. Aneurysm closure device assembly
US5964797A (en) * 1996-08-30 1999-10-12 Target Therapeutics, Inc. Electrolytically deployable braided vaso-occlusion device
US5690667A (en) * 1996-09-26 1997-11-25 Target Therapeutics Vasoocclusion coil having a polymer tip
US5733329A (en) 1996-12-30 1998-03-31 Target Therapeutics, Inc. Vaso-occlusive coil with conical end
DE19703482A1 (de) * 1997-01-31 1998-08-06 Ernst Peter Prof Dr M Strecker Stent
US6063070A (en) 1997-08-05 2000-05-16 Target Therapeutics, Inc. Detachable aneurysm neck bridge (II)
DE69834920T2 (de) 1997-08-05 2007-05-24 Boston Scientific Ltd., St. Michael Ablösbares system zum verschliessen eines aneurysmashalses
US5916235A (en) 1997-08-13 1999-06-29 The Regents Of The University Of California Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities
US6156061A (en) * 1997-08-29 2000-12-05 Target Therapeutics, Inc. Fast-detaching electrically insulated implant
US6511468B1 (en) * 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6146373A (en) * 1997-10-17 2000-11-14 Micro Therapeutics, Inc. Catheter system and method for injection of a liquid embolic composition and a solidification agent
US6136015A (en) 1998-08-25 2000-10-24 Micrus Corporation Vasoocclusive coil
US6241691B1 (en) 1997-12-05 2001-06-05 Micrus Corporation Coated superelastic stent
US5873907A (en) 1998-01-27 1999-02-23 Endotex Interventional Systems, Inc. Electrolytic stent delivery system and methods of use
US5935145A (en) * 1998-02-13 1999-08-10 Target Therapeutics, Inc. Vaso-occlusive device with attached polymeric materials
US6077260A (en) 1998-02-19 2000-06-20 Target Therapeutics, Inc. Assembly containing an electrolytically severable joint for endovascular embolic devices
US6168615B1 (en) 1998-05-04 2001-01-02 Micrus Corporation Method and apparatus for occlusion and reinforcement of aneurysms
JP4037958B2 (ja) 1998-05-11 2008-01-23 日清紡績株式会社 熱硬化性樹脂組成物
US6478773B1 (en) 1998-12-21 2002-11-12 Micrus Corporation Apparatus for deployment of micro-coil using a catheter
US6296622B1 (en) 1998-12-21 2001-10-02 Micrus Corporation Endoluminal device delivery system using axially recovering shape memory material
EP1109499B1 (de) 1998-09-04 2007-08-15 Boston Scientific Limited Ablösbares system zum verschliessen eines aneurysmashalses
US6835185B2 (en) 1998-12-21 2004-12-28 Micrus Corporation Intravascular device deployment mechanism incorporating mechanical detachment
US6280457B1 (en) * 1999-06-04 2001-08-28 Scimed Life Systems, Inc. Polymer covered vaso-occlusive devices and methods of producing such devices
US6602261B2 (en) 1999-10-04 2003-08-05 Microvention, Inc. Filamentous embolic device with expansile elements
US6238403B1 (en) 1999-10-04 2001-05-29 Microvention, Inc. Filamentous embolic device with expansible elements
DE10010840A1 (de) 1999-10-30 2001-09-20 Dendron Gmbh Vorrichtung zur Implantation von Occlusionswendeln
US8048104B2 (en) 2000-10-30 2011-11-01 Dendron Gmbh Device for the implantation of occlusion spirals
US6331184B1 (en) 1999-12-10 2001-12-18 Scimed Life Systems, Inc. Detachable covering for an implantable medical device
US6468301B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Repositionable and recapturable vascular stent/graft
US20030176857A1 (en) 2000-07-26 2003-09-18 Lee Kyu Ho Assembly for embolic treatments
US6416373B1 (en) 2000-10-12 2002-07-09 Bombardier Motor Corporation Of America Oil system vent with remote oil reservoir
US6743251B1 (en) 2000-11-15 2004-06-01 Scimed Life Systems, Inc. Implantable devices with polymeric detachment junction
US6494884B2 (en) 2001-02-09 2002-12-17 Concentric Medical, Inc. Methods and devices for delivering occlusion elements
CA2689598A1 (en) 2001-05-29 2002-12-05 Microvention, Inc. Method of manufacturing expansile filamentous embolization devices
US20040225279A1 (en) 2001-06-01 2004-11-11 Jean Raymond Detachable tip microcatheter for use of liquid embolic agents
JP2005500121A (ja) * 2001-08-27 2005-01-06 デンドロン・ゲー・エム・ベー・ハー 閉塞手段留置用装置
DE10155191A1 (de) * 2001-11-12 2003-05-22 Dendron Gmbh Medizinisches Implantat
US20040002732A1 (en) 2002-06-27 2004-01-01 Clifford Teoh Stretch-resistant vaso-occlusive assembly with multiple detaching points
DE10233085B4 (de) * 2002-07-19 2014-02-20 Dendron Gmbh Stent mit Führungsdraht
US7651513B2 (en) 2003-04-03 2010-01-26 Boston Scientific Scimed, Inc. Flexible embolic device delivery system
DE102004003265A1 (de) 2004-01-21 2005-08-11 Dendron Gmbh Vorrichtung zur Implantation von elektrisch isolierten Okklusionswendeln
ES2357243T3 (es) 2004-05-21 2011-04-20 Micro Therapeutics, Inc. Espirales metálicas entrelazadas con polímeros o fibras biológicos o biodegradables o sintéticos para la embolización de una cavidad corporal.
WO2006032289A1 (de) * 2004-09-22 2006-03-30 Dendron Gmbh Medizinisches implantat
EP1793743B1 (de) * 2004-09-22 2009-11-18 Dendron GmbH Vorrichtung zur implantation von mikrowendeln
US7608089B2 (en) 2004-12-22 2009-10-27 Boston Scientific Scimed, Inc. Vaso-occlusive device having pivotable coupling
DE102005019782A1 (de) * 2005-04-28 2006-11-09 Dendron Gmbh Vorrichtung zur Implantation von Okklusionswendeln mit innenliegendem Sicherungsmittel
US8002789B2 (en) 2005-05-31 2011-08-23 Stryker Corporation Stretch-resistant vaso-occlusive devices with flexible detachment junctions
US20070100414A1 (en) 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
KR20090008347A (ko) * 2006-04-17 2009-01-21 마이크로 테라퓨틱스 인코포레이티드 혈관내 삽입물을 기계적으로 위치설정하는 시스템 및 방법
WO2008112435A2 (en) * 2007-03-13 2008-09-18 Micro Therapeutics, Inc. An implant including a coil and a stretch-resistant member
KR20100015521A (ko) * 2007-03-13 2010-02-12 마이크로 테라퓨틱스 인코포레이티드 임플란트, 맨드릴, 및 임플란트 형성방법
JP5389788B2 (ja) 2007-05-18 2014-01-15 ストライカー コーポレイション 医療インプラントの分離システム
JP2009005156A (ja) * 2007-06-22 2009-01-08 Nec Corp 通信システム、受信装置及び同期検出方法
US20090143786A1 (en) 2007-12-03 2009-06-04 Boston Scientific Scimed, Inc. Implantable device with electrolytically detachable junction having multiple fine wires and method of introduction
RU2011102994A (ru) * 2008-07-22 2012-08-27 Микро Терапьютикс, Инк. (Us) Устройство для реконструкции сосудов
EP2444116B1 (de) * 2008-08-19 2016-01-06 Covidien LP Mikrokatheter mit abnehmbarer Spitze
CA2739603A1 (en) 2008-10-13 2010-04-22 Stryker Corporation Vaso-occlusive coil delivery system
US9314250B2 (en) 2009-04-16 2016-04-19 Stryker Corporation Electrical contact for occlusive device delivery system
US8221396B2 (en) 2009-08-27 2012-07-17 Silver Bullet Therapeutics, Inc. Bone implants for the treatment of infection
DE102010021947A1 (de) 2010-05-28 2011-12-01 Phenox Gmbh Implantatablösung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020151883A1 (en) * 1990-03-13 2002-10-17 Guido Guglielmi Method and apparatus for fast electrolyitic detachment of an implant
US6468266B1 (en) * 1997-08-29 2002-10-22 Scimed Life Systems, Inc. Fast detaching electrically isolated implant
US5941888A (en) * 1998-02-18 1999-08-24 Target Therapeutics, Inc. Vaso-occlusive member assembly with multiple detaching points
DE10118017A1 (de) * 2001-04-10 2002-10-17 Dendron Gmbh Vorrichtung zur Implantation von Occlusionswendeln

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008050085A1 (de) 2008-10-06 2010-04-08 Phenox Gmbh Implantatablösung
WO2010040497A1 (de) 2008-10-06 2010-04-15 Phenox Gmbh Implantatablösung
WO2010120694A1 (en) * 2009-04-16 2010-10-21 Boston Scientific Scimed, Inc. Electrical contact for occlusive device delivery system
US8398671B2 (en) 2009-04-16 2013-03-19 Stryker Corporation Electrical contact for occlusive device delivery system
US9314250B2 (en) 2009-04-16 2016-04-19 Stryker Corporation Electrical contact for occlusive device delivery system
WO2011147567A1 (de) 2010-05-28 2011-12-01 Phenox Gmbh Vorrichtung zum einbringen eines implantats
DE102010021947A1 (de) 2010-05-28 2011-12-01 Phenox Gmbh Implantatablösung
EP2846707A4 (de) * 2012-05-04 2016-11-30 Interventco Llc Vorrichtung und verfahren zum füllen eines aneurysmas oder einer körperhöhlung
US9549740B2 (en) 2012-05-04 2017-01-24 Interventco Llc Device and method for filling of aneurysm or body cavity
WO2017220400A1 (de) * 2016-06-23 2017-12-28 Phenox Gmbh Implantat mit ablösemechanismus
US11179160B2 (en) 2016-06-23 2021-11-23 Phenox Gmbh Implant having a detachable mechanism

Also Published As

Publication number Publication date
WO2005070308A3 (de) 2005-09-22
DE102004003265A1 (de) 2005-08-11
US20100076479A1 (en) 2010-03-25
US8480701B2 (en) 2013-07-09
US20140163604A1 (en) 2014-06-12
EP1708627A2 (de) 2006-10-11
EP1708627B1 (de) 2014-01-08
US9254134B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
EP1708627B1 (de) Vorrichtung zur implantation von elektrisch isolierten okklusionswendeln
EP2575697B1 (de) Vorrichtung zum einbringen eines implantats
EP1876970B1 (de) Vorrichtung zur implantation von okklusionswendeln mit innenliegendem sicherungsmittel
EP1420701B1 (de) Vorrichtung zur implantation von occlusionsmitteln
EP1443873B1 (de) Medizinisches implantat
DE10118017B4 (de) Occlusionswendel und Vorrichtung zur Implantation von Occlusionswendeln
EP1227760B1 (de) Vorrichtung zur implantation von occlusionswendeln
WO2006032289A1 (de) Medizinisches implantat
EP3165238B1 (de) Röntgenmarker für eine endoprothese
DE102008050085A1 (de) Implantatablösung
DE19610333A1 (de) Verfahren und Vorrichtung zur Ablösung von Implantaten im menschlichen Körper mittels elektrischen Stroms
DE102009033767B4 (de) Anschlusselement für Leitungswendel
DE19952387A1 (de) Vorrichtung zur Implantation von Occlusionswendeln
DE102011115238B4 (de) Körperimplantat mit verbesserter Röntgensichtbarkeit, Kombination aus einem Katheter, einem Führungsdraht und einem Körperimplantat und Verfahren zum Erhöhen der Röntgensichtbarkeit eines Körperimplantats
DE102004026830B4 (de) Verfahren zur Erzeugung von elektrolytisch korrodierbaren Ablösestellen in Okklusionsmitteln, Okklusionsmittel, Einführhilfe und Vorrichtung aus einer Einführhilfe und einem Okklusionsmittel
EP1538997B1 (de) Vorrichtung zur implantation von occlusionswendeln
DE102020115614A1 (de) Einführsystem für Implantate zur Behandlung von Bifurkationsaneurysmen
DE102018109580A1 (de) Vorrichtung zur Einbringung von Implantaten
DE102012212481A1 (de) Flow-Diverter zur Behandlung und zum Verschluss von Aneurysmen mit einer Vorrichtung zum Einbringen eines Coils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005701105

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005701105

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10597299

Country of ref document: US