WO2005069508A1 - 通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム - Google Patents

通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム Download PDF

Info

Publication number
WO2005069508A1
WO2005069508A1 PCT/JP2004/000171 JP2004000171W WO2005069508A1 WO 2005069508 A1 WO2005069508 A1 WO 2005069508A1 JP 2004000171 W JP2004000171 W JP 2004000171W WO 2005069508 A1 WO2005069508 A1 WO 2005069508A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
serial
parallel
transmission
phase processing
Prior art date
Application number
PCT/JP2004/000171
Other languages
English (en)
French (fr)
Inventor
Chang-Jun Ahn
Original Assignee
National Institute Of Information And Communications Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Information And Communications Technology filed Critical National Institute Of Information And Communications Technology
Priority to PCT/JP2004/000171 priority Critical patent/WO2005069508A1/ja
Priority to JP2005516936A priority patent/JP4362592B2/ja
Priority to US10/585,898 priority patent/US7826546B2/en
Publication of WO2005069508A1 publication Critical patent/WO2005069508A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3488Multiresolution systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to a communication system, a transmission device, a reception device, and a transmission method for efficiently performing communication using heterogeneous polarization antennas. , A receiving method, and a program for realizing these on a computer.
  • SDM Space Division Multiplexing
  • OFDM Orthogonal Frequencty Division Multiplexing
  • MLD Maximum Likelyhood Detection
  • polarization diversity Techniques such as (Polarization Diversity) and adaptive phase control have been proposed in the following documents.
  • Non-Patent Document 1 A. V. Zelst, R. V. Nee and G. Awater, Space Division Multiplexing (SDM) for OFDM Systems, Proc. Of VTC, pp. 15-18, 2000
  • Non-Patent Document 2 P. Vandenameele, LVPerre, MGEEngels, B. Gyselinck and HDMan, A combined OFDM / SDMA approach, IEEE Journal of seLArea in Commun., Vol. 18, no.ll, pp. 2312 2321, 2 0 0 0 years
  • Non-Patent Document 3 JJ.A. Lempianen, JKLaiho-Steffens, A. Wacker, Experimental results of cross polarization discrimination and signal correction values for a polarization diversity scheme, Proc of VTC97, vol.3, pp.1498-1502 , 1 9 9 7 years
  • Non-Patent Document 4 T.Kambayashi, T.Horinouchi, M.Shibahara, T.Fujii and I.Sasase, SDM / OFDM system using adaptive transmit phase control to mitigate co-channel interference, Pro of VTOC02 fall, pp.2091-2095, 2002
  • Non-Patent Document 1 discloses an invention combining OFDM technology and SDM technology. I have. 5 In particular, it has been shown that high transmission rates can be achieved on multiple input multiple output channels (MIMO) by using multiple antennas on both the receiving and transmitting sides.
  • MIMO multiple input multiple output channels
  • Non-Patent Document 2 discloses an MLD technology.
  • CCI co Chi Yan'neru interference
  • MM SE Minimum Mean Sauare Error
  • PIC Parallel Interference Canceler
  • SIC Serial Intenerence Canceler
  • MLD has the best performance among these.
  • Non-Patent Document 3 discloses a polarization diversity technology. It has been found that the XPD (CROSS Polarization discrimination) value when the horizontally polarized antenna and the vertically polarized antenna are combined varies between 5 dB and 15 dB depending on the environment.
  • XPD CROSS Polarization discrimination
  • the maximum diversity gain is achieved when the polarization branches have the same reception power.
  • Non-Patent Document 4 discloses a technique of adaptive phase control in SD MZO FDM communication.
  • a system is disclosed that requires a look-up table and feedback information to adaptively control the phase.
  • a communication system includes a transmitting device and a receiving device, and is configured as follows.
  • the transmission device includes an encoding unit, a serial / parallel conversion unit, a first transmission unit, and a second transmission unit.
  • Each of the first transmission unit and the second transmission unit includes a pre-phase processing unit, an inverse Fourier transform unit, and a transmission unit.
  • the encoding unit encodes data to be transmitted.
  • serial-to-parallel converter converts the encoded signal into two signal groups.
  • the first transmission unit receives one of the serial-parallel-converted signal groups.
  • the second transmission unit receives the other signal group subjected to the serial / parallel conversion.
  • the pre-phase processing unit performs pre-phase processing on each of the signals included in the signal group that has received the input. Further, the inverse Fourier transform unit performs an inverse Fourier transform on the signals resulting from the pre-phase processing. Then, the transmission unit transmits the signal resulting from the inverse Fourier transform with a predetermined polarization.
  • the predetermined polarization in the first transmission unit and the predetermined polarization in the second transmission unit have orthogonal polarities.
  • the receiving device includes a receiving unit, a Fourier transform unit, a detecting unit, a parallel-serial converting unit, and a decoding unit.
  • the receiving unit receives a signal transmitted from the transmitting device with a predetermined polarization.
  • the Fourier transform unit performs Fourier transform on the received signal.
  • the detection unit detects the signal group resulting from the Fourier transform by MLD.
  • the parallel-to-serial conversion unit performs parallel-to-serial conversion on the signal group resulting from the MLD detection.
  • the decoding unit decodes the signal resulting from the parallel / serial conversion and outputs the transmitted signal.
  • the receiving device generates feed pack information for pre-phase processing in the transmitting device and sends it to the transmitting device.
  • the transmitting device performs pre-phase processing on the basis of the feedback information sent from the transmitting device so that the probability of generating the same phase is reduced for each of the signal groups.
  • each of the first transmission unit and the second transmission unit included in the transmission device performs the pre-phase processing on the received signal group, A group and a pilot signal may be multiplexed, the resulting multiplexed signal may be serial-to-parallel converted, and a pre-phase process may be performed on the serial-parallel-converted signal group.
  • a transmitting device is a transmitting device in the communication system.
  • a receiving device is a receiving device in the communication system.
  • 'A transmission method includes an encoding step, a serial / parallel conversion step, a first transmission step, and a second transmission step.
  • Each of the first transmission step and the second transmission step includes a pre-phase processing step, an inverse Fourier transform step, and a transmission step.
  • the encoding step data to be transmitted is encoded.
  • the serial / parallel conversion step the encoded signal is serial / parallel converted into two signal groups. Further, in the first transmission step, one of the serial-to-parallel converted signal groups is received.
  • pre-phase processing is performed on each of the signals included in the signal group that has received the input.
  • the signals resulting from the pre-phase processing are subjected to inverse Fourier transform.
  • the signal resulting from the inverse Fourier transform is transmitted with a predetermined polarization.
  • the predetermined polarization in the first transmission step and the predetermined polarization in the second transmission step have orthogonal polarities.
  • pre-phase processing is performed on the respective signal groups based on the feedback information sent from the receiving device so that the probability of generating the same phase is reduced.
  • the input signal group instead of performing the pre-phase processing on the input received signal group, the input signal group;
  • the pilot signal may be multiplexed, the resulting multiplexed signal may be serial-to-parallel converted, and pre-phase processing may be performed on the serial-to-parallel converted signal group.
  • a receiving method includes a receiving step, a Fourier transform step, a detecting step, a parallel-serial converting step, and a decoding step, and is configured as follows.
  • a signal transmitted from the transmitting device is received with a predetermined polarization.
  • the received signal is subjected to Fourier transform.
  • a signal group resulting from the Fourier transform is detected by MLD.
  • the signal group resulting from the MLD detection is parallel / serial converted.
  • the decoding step the signal resulting from the parallel / serial conversion is decoded to output the transmitted signal.
  • a program according to another aspect of the present invention is configured to cause a computer to function as each unit of the transmission device. .
  • a program according to another aspect of the present invention is configured to cause a computer to function as each unit of the receiving device.
  • the transmitting device, the receiving device, the transmitting method, and the receiving method of the present invention can be realized.
  • an information recording medium on which the program of the present invention is recorded can be distributed and sold independently of the computer.
  • the program of the present invention can be transmitted, distributed, and sold via a computer communication network such as the Internet.
  • FIG. 1 is a schematic diagram showing a schematic composition of a communication device according to an embodiment of the present invention:
  • FIG. 2 is a schematic diagram showing a schematic configuration of the transmission device.
  • FIG. 3 is a schematic diagram showing a schematic configuration of the receiving device.
  • FIG. 4 is a constellation diagram of a replica signal in the prior art:
  • FIG. 5 is a constellation diagram of the replica signal in the present embodiment.
  • C FIG. 6 is a graph showing an experimental result by computer simulation.
  • FIG. 7 is a graph showing experimental results obtained by computer simulation.
  • FIG. 8 is a graph showing experimental results obtained by computer simulation. BEST MODE FOR CARRYING OUT THE INVENTION
  • BEST MODE FOR CARRYING OUT THE INVENTION the best embodiment for carrying out the present invention will be described. However, this embodiment is an exemplification for explanation, and other embodiments according to the principle of the present invention also cover the scope of the present invention. Included in the box.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a communication system according to one of the embodiments of the present invention. Hereinafter, description will be made with reference to this figure.
  • the transmission device 13 1 of the communication system 101 receives data to be transmitted and transmits signals from the two antennas 14 1 and 14 2.
  • the two antennas 14 1 and 14 2 are heterogeneous polarization antennas whose polarities are orthogonal to each other. Typically, one is a horizontal antenna and the other is a vertical antenna.
  • receiving apparatus 15 1 receives signals transmitted from two antennas 14 1 and 14 2 by one antenna 16 1, and obtains transmitted data.
  • This antenna 161 is also an antenna having a predetermined pole response, and is typically a vertical antenna, but may have a polarization pole in another direction. That is, the transmitting device 13 1 transmits using the heterogeneous polarization antennas 14 1 and 14 2 having different polarities, and the receiving device 15 1 side transmits a polarized antenna 16 1 having a polarity in a certain direction. Reception using only one is one of the features of the present embodiment.
  • FIG. 2 is a schematic diagram illustrating a schematic configuration of the transmission device 13 1 according to the present embodiment. Hereinafter, description will be made with reference to this figure.
  • the transmitting device 13 1 Upon receiving the data to be transmitted, the transmitting device 13 1 passes the data to the encoder 201.
  • the encoder 201 and the data modulator 202 perform various kinds of encoding and modulation of data.
  • QPSK is used as a data modulation method.
  • the serial-to-parallel converter 203 sequentially supplies the obtained data to the first transmission unit 211 and the second transmission unit 212.
  • the first transmitting section 2 11 and the second transmitting section 2 12 are respectively configured as follows.
  • the data supplied from the serial / parallel converter 203 and the pilot signal are multiplexed by the multiplexer 221, and the serial / parallel converter 222 converts the data into a plurality of channels.
  • the pre-phase processing section 223 performs pre-phase processing for each channel, and the inverse Fourier transform section 224 performs high-speed inverse Fourier transform.
  • a guard interval is inserted in the GI (Guard Interval) input section 2 25, and the corresponding signal is transmitted from the antenna 144 or the antenna 142.
  • FIG. 3 is a schematic diagram illustrating a schematic configuration of the receiving device 151 according to the present embodiment. Hereinafter, description will be made with reference to this figure.
  • the receiving device 15 1 receives the signal transmitted from the antenna 14 1 and the antenna 14 2 of the transmitting device 13 1 with one antenna 16 1.
  • the guard interval is removed by the GI remover 301, and a high-speed Fourier transform is performed by the Fourier transformer 302 to obtain a plurality of signals.
  • the MLD section 303 performs MLD detection to detect a signal of each channel.
  • the basic configuration of MLD detection is the same as that disclosed in Non-Patent Document 2, as will be described later, in the present embodiment, MLD technology is used extremely effectively.
  • the parallel / serial conversion section 304 performs parallel / serial conversion
  • the decoding section 305 performs demodulation and decoding of the QPSK to obtain transmitted data.
  • the MLD section 303 of the receiving device 15 1 converts the signal of each channel.
  • Figure 4 shows the constellation of the replica when trying to detect it.
  • the polarities of the antennas 14 1 and 14 2 of the transmitting device 13 1 are made different (typically orthogonal), and at the same time, the phase adaptation is performed. By performing pre-phase processing to control, degeneration is prevented.
  • Non-Patent Document 3 when a signal is transmitted using a heterogeneous polarization antenna, the XPD value on the receiving side differs by about 5 dB to 15 dB depending on the environment.
  • the constellation of the replica according to the present embodiment is dispersed as the XPD value changes, as shown in FIG.
  • the constellation of the replica appears in 16 places.
  • five circles are drawn in each of the four quadrants.
  • the center indicates the reference position, and the circles located around the reference position correspond to the replica signal.
  • the XPD value is the ratio P1 / P2 of the distance (P1) from the center in the constellation diagram to the deviation (P2) orthogonal thereto, and P1 and P2 are the two antennas on the transmitting side. , 142 corresponds to the reception power on the reception side.
  • Non-Patent Document 4 in an SDM / OFDM system, feedback information is sent from a receiving device to a transmitting device in order to adaptively control the phase, and the transmitting device refers to a look-up tape to transmit data for each channel. Is preprocessed.
  • the amplification factor has a difference of 5 dB or more.
  • the phase control is more controlled than that disclosed in Non-Patent Document 4. Can be reduced. For example, even if the phase difference in the pre-phase processing is set to about 10 degrees, sufficient performance can be obtained as described later.
  • the SDM / OFDM system according to the present embodiment can perform only simple phase control, and can improve the detection performance as compared with the conventional SD MZ OFDM system. It is. ⁇
  • transmitters 13 1 and receivers 15 1 can provide software to various computers, FPGAs (Field Programmable Gate Arrays), and DSPs (Digital Signal Processors) by using software radio and other technologies. It can be realized by.
  • Fig. 6, Fig. 7, and Fig. 8 are graphs showing the results of examining the performance of this system by computer simulation under the following specifications.
  • the vertical axis represents B ER (Bit Error Rate).
  • Frame size 1 2 symbols (2 pilot symbols per frame, 10 data symbols)
  • FIG. 6 is a graph showing the BER performance under the AGWN channel for various XPD values (P1 / P2).
  • the horizontal axis is the XPD value (P1 / P2).
  • the BER performance is lower when the same reception power is used than when different reception powers are used.
  • the absolute value of the XPD value (P1 / P2) is considered to be about 5 dB to 15 dB, it is possible to perform communication in a range where the BER performance does not drop significantly.
  • FIG. 7 shows a conventional SDM / OFDM system (a system with two antennas on the transmitting side and one antenna on the receiving side using only vertical polarization), and the SDMZOFDM system according to the present embodiment (XPD value is 5 dBB). , 10 dB, and 15 dB).
  • XPD value is 5 dBB). , 10 dB, and 15 dB.
  • each graph is drawn in white rhombus, black circle, black square, and black rhombus. If different signals are transmitted between the vertically polarized antenna and the horizontally polarized antenna, the XPD value on the receiving side will be 5 dB to 15 dB depending on the environment. As can be seen, in each case, the BER performance was improved.
  • Fig. 8 shows a conventional SDMZOFDM system (a system with two antennas on the transmitting side and one antenna on the receiving side using only vertical polarization), a conventional SDMZOFDM system (one that uses pre-phase processing), and this embodiment. It shows the BER performance of the SDM / OFDM system according to the above. For each of the above three cases, white circles, white squares, and black circles denote the respective graphs. In the present embodiment, a different polarization antenna is used on the transmission side, and the pre-phase processing is further applied. It can be seen that the BER performance has been improved more than that.
  • a communication system a transmission device, a reception device, a transmission method, a reception method, and a communication method for efficiently performing communication using a heterogeneous polarization antenna are provided.
  • Program can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)

Abstract

送信装置は、伝送すべきデータを符号化し、これを、2つの信号群に直並列変換し、その一方を第1伝送部に、他方を第2伝送部に与え、当該第1伝送部と、当該第2伝送部と、の、それぞれは、入力を受け付けた信号群に含まれる信号のそれぞれについて、前位相処理を施し、逆フーリエ変換し、所定の偏波で送信し、第1伝送部における所定の偏波と、第2伝送部における所定の偏波と、は、その極性が直交し、受信装置は、送信装置から送信される信号を所定の偏波で受信し、これをフーリエ変換し、さらに、MDL(Maximum Likelihood Detector)検出し、並直列変換する並直列変換部し、並直列変換された結果の信号を復号化して伝送された信号を出力し、送信装置は、受信装置から送られたフィードバック情報により、当該信号群のそれぞれについて、同じ位相が生成される確率が低くなるように前位相処理を行う。

Description

明細書 通信システム、 送信装置、 受信装置、 送信方法、 受信方法、 ならびに、 プログラム 技術分野 本発明は、 異種偏波アンテナを用いて効率良く通信を行う通信システム、 送信装置、 受 信装置、 送信方法、 受信方法、 ならびに、 これらをコンピュータ上にて実現するためのプ ログラムに関する。 背景技術 無線通信においては、 高データレートの要望が高まっている。 このような要望に応える 技術として、 S DM (Space Division Multiplexing;空間分割多重)、 O F DM (Orthogonal Frequencty Division Multiplexing;直交周波数分割多重)、 M L D (Maximum Likelyhood Detection;最大尤度検出)、 偏波ダイバーシティ (Polarization Diversity)、 適応位相制御 (adaptive phase controll) などの技術が、 以下のような文献において提案されている。
[非特許文献 1 ] A. V. Zelst, R. V. Nee and G. Awater, Space Division Multiplexing (SDM) for OFDM Systems, Proc.of VTC, pp.15-18, 2 0 0 0年
[非特許文献 2 ] P.Vandenameele, L.V.Perre, M.G.E.Engels, B.Gyselinck and H.D.Man, A combined OFDM/SDMA approach, IEEE Journal of seLArea in Commun., vol.18, no.l l, pp.2312-2321, 2 0 0 0年
[非特許文献 3 ] JJ.A.Lempianen, J.K.Laiho-Steffens, A.Wacker, Experimental results of cross polarization discrimination and signal correction values for a polarization diversity scheme, Proc of VTC97, vol.3, pp.1498-1502, 1 9 9 7年
!≡特許文献 4 ] T.Kambayashi, T.Horinouchi, M.Shibahara, T.Fujii and I.Sasase, SDM/OFDM system using adaptive transmit phase control to mitigate co-channel interference, Pro of VTOC02 fall, pp.2091-2095 , 2 0 0 2年 非特許文献 1には、 O F DM技術と S D M技術を組み合わせた発明が開示されている。 5 特に、 受信側と送信側の両側で複数のアンテナを用いることにより複数入力複数出力チヤ ンネル (M I MO; Multiple Input Multiple Output) 上で高い伝送レートを実現できること が示されている。
しかしながら、 O F DMZ S DM技術においても、 さらに高速度、 髙品質の通信を実現 できるような種々の技術が求められている。
0 また、 非特許文献 2には、 M L D技術が開示されている。 S DM技術においては、 共チ ャンネル干渉 (C0-Channel interference; C C I ) によつて伝送品質が悪化することが知ら れており、 共チャンネル干渉を緩和するための技術としては、 MM S E (Minimum Mean Sauare Error)、 P I C (.Parallel Interference Canceler)、 S I C (Serial Intenerence Canceler) などもあるが、 M L Dはこれらの中でも最良の性能を有する。 特に、 受信信号のレプリカ5 を生成し、 パイロット信号を用いることにより、 所望の信号と C C I信号とを分離する技 , 術が開示されている。
しかしながら、 異なるアンテナから受信した所望のシンボルの受信パワーが近い場合に は、 同じレプリカが生成されてしまうため、 M L Dの検出性能が劣化することが知られて いる。
0 さらに、 非特許文献 3には、 偏波ダイバーシティ技術が開示されている。 そして、 水平 偏波アンテナと垂直偏波アンテナとを組み合わせた場合における X P D ( CROSS Polarization discrimination) 値が、 環境によって 5 d B〜l 5 d Bの間で変化することが判 明している。
これは、 直交ダイバーシティ分枝 (orthogonal diversity branch) における受信パワーの5 比を計測したものである。 そして、 偏波分枝のそれぞれが同じ受信パワーとなった場合に 最大ダイバ一シティ利得を達成される。
しかし、 受信パワーの不均衡が大きくなると、 ダイバ一シティシステム全体が動作しな くなる。 これは、 ダイバーシティを結合する段階で、 弱いチャンネルが無視されてしまう ことによる。
そして、 非特許文献 4には、 S D MZO F D M通信における適応位相制御の技術が開示 されている。 特に、 位相を適応的に制御するためのルックアップテーブルとフィードバッ ク情報を必要とするシステムが開示されている。
しかしながら、 同じ増幅率、 同じ位相となってしまう場合を考慮すると、 ルックアップ テ一ブルやフィードバック情報を巨大なものにしなければならない。
本発明は、 以上のような公知のシステムの種々の問題点を解決するためになされたもの で、 異種偏波アンテナを用いて効率良く通信を行う通信システム、 送信装置、 受信装置、 送信方法、 受信方法、 ならびに、 これらをコンピュータ上にて実現するためのプログラム を提供することを目的とする。 発明の開示 以上の目的を達成するため、 本発明の原理にしたがって、 以下の発明を開示する。 本発明の第 1の観点に係る通信システムは、 送信装置と、 受信装置と、 を備え、 以下の ように構成する。
まず、 送信装置は、 符号化部と、 直並列変換部と、 第 1伝送部と、 第 2伝送部と、 を備 える。
そして、 第 1伝送部と、 第 2伝送部と、 のそれぞれは、 前位相処理部と、 逆フーリエ変 換部と、 送信部と、 を備える。
ここで、 符号化部は、 伝送すべきデータを符号化する。
—方、 直並列変換部は、 符号化された信号を 2つの信号群に直並列変換する。
さらに、 第 1伝送部は、 直並列変換された一方の信号群を受け付ける。
そして、 第 2伝送部は、 直並列変換された他方の信号群を受け付ける。
—方、 前位相処理部は、 入力を受け付けた信号群に含まれる信号のそれぞれについて、 前位相処理を施す。 さらに、 逆フーリエ変換部は、 前位相処理された結果の信号群を逆フーリエ変換する。 そして、 送信部は、 当該逆フーリエ変換された結果の信号を所定の偏波で送信する。 —方、 第 1伝送部における所定の偏波と、 第 2伝送部における所定の偏波と、 は、 その 極性が直交する。
さらに、 受信装置は、 受信部と、 フーリエ変換部と、 検出部と、 並直列変換部と、 復号 化部と、 を備える。
ここで、 受信部は、 送信装置から送信される信号を所定の偏波で受信する。
—方、 フーリエ変換部は、 受信された結果の信号をフーリエ変換する。
さらに、 検出部は、 フーリエ変換された結果の信号群を M L D検出する。
そして、 並直列変換部は、 M L D検出された結果の信号群を並直列変換する。
一方、 復号化部は、 並直列変換された結果の信号を復号化して伝送された信号を出力す る。
さらに、 受信装置は、 送信装置における前位相処理のためのフィードパック情報を生成 してこれを送信装置に送る。
そして、 送信装置は、 信装置から送られたフィードバック情報により、 当該信号群の それぞれについて、 同じ位相が生成される確率が低くなるように前位相処理を行う。 また、本発明の通信システムにおいて、送信装置が備える第 1伝送部と、第 2伝送部と、 のそれぞれは、 入力を受け付けた信号群に前位相処理を施すのにかえて、 入力された信号 群と、 パイロット信号とを多重化し、 当該多重化された結果の信号を直並列変換し、 当該 直並列変換された結果の信号群に前位相処理を施すように構成することができる。
本発明の他の観点に係る送信装置は、 上記通信システムにおける送信装置である。 本発明の他の観点に係る受信装置は、 上記通信システムにおける受信装置である。 ' 本発明の他の観点に係る送信方法は、 符号化工程と、 直並列変換工程と、 第 1伝送工程 と、 第 2伝送工程と、 を備える。
そして、 第 1伝送工程と、 第 2伝送工程と、 のそれぞれは、 前位相処理工程と、 逆フー リエ変換工程と、 送信工程と、 を備える。
ここで、 符号化工程では、 伝送すべきデータを符号化する。 一方、 直並列変換工程では、 符号化された信号を 2つの信号群に直並列変換する。 さらに、 第 1伝送工程では、 直並列変換された一方の信号群を受け付ける。
そして、 第 2伝送工程では、 直並列変換された他方の信号群を受け付ける。
一方、 前位相処理工程では、 入力を受け付けた信号群に含まれる信号のそれぞれについ て、 前位相処理を施す。
さらに、 逆フーリエ変換工程では、 前位相処理された結果の信号群を逆フーリエ変換す る。
そして、送信工程では、当該逆フーリェ変換された結果の信号を所定の偏波で送信する。 一方、 第 1伝送工程における所定の偏波と、 第 2伝送工程における所定の偏波と、 は、 その極性が直交する。
さらに、 前位相処理工程では、 受信装置から送られたフィードバック情報により、 当該 信号群のそれぞれについて、 同じ位相が生成される確率が低くなるように前位相処理を行 。 - また、 本発明の送信方法の第 1伝送工程と、 第 2伝送工程と、 のそれぞれにおいて、 入 力を受け付けた信号群に前位相処理を施すのにかえて、 入力された信号群と、 パイロット 信号とを多重化し、 当該多重化された結果の信号を直並列変換し、 当該直並列変換された 結果の信号群に前位相処理を施すように構成することができる。
本発明の他の観点に係る受信方法は、 受信工程と、 フーリエ変換工程と、 検出工程と、 並直列変換工程と、 復号化工程と、 を備え、 以下のように構成する。
ここで、 受信工程では、 送信装置から送信される信号を所定の偏波で受信する。
一方、 フーリエ変換工程では、 受信された結果の信号をフーリエ変換する。
さらに、 検出工程では、 フーリエ変換された結果の信号群を M L D検出する。
そして、 並直列変換工程では、 M L D検出された結果の信号群を並直列変換する。 一方、 復号化工程では、 並直列変換された結果の信号を復号化して伝送された信号を出 力する。
さらに、 送信装置における前位相処理のためのフィードバック情報を生成してこれを送 信装置に送る。 本発明の他の観点に係るプログラムは、 コンピュータを、 上記の送信装置の各部として 機能させるように構成する。 .
本発明の他の観点に係るプログラムは、 コンピュータを、 上記の受信装置の各部として 機能させるように構成する。
本発明のプログラムを、 他の機器と通信可能なコンピュータに実行させることにより、 本発明の送信装置、 受信装置、 送信方法、 ならびに、 受信方法を実現することができる。 また、 当該コンピュータとは独立して、 本発明のプログラムを記録した情報記録媒体を 配布、 販売することができる。 また、 本発明のプログラムを、 インターネット等のコンビ ユータ通信網を介して伝送し、 配布、 販売することができる。
特に、 当該コンピュータが D S P (Digital Signal Processor) や F P G A (Field Programmable Gate Array) などのプログラム可能な電子回路を有する場合には、 本発明の 情報記録媒体に記録されたプログラムを当該コンピュータに伝送し、 当該コンピュータ内 の D S Pや F P G Aにこれを実行させて、 本発明の送信装置や受信装置を実現するソフト ウェアラジォ形式の手法を利用することができる。 図面の簡単な説明 図 1は、 本発明の実施形態に係る通信装置の概要構球を示す模式図である:
図 2は、 送信装置の概要構成を示す模式図である。
図 3は、 受信装置の概要構成を示す模式図である。
図 4は、 従来の技術におけるレプリカ信号のコンステレ一シヨン図である:
図 5は、 本実施形態におけるレプリカ信号のコンステレ一シヨン図である c 図 6は、 計算機シミュレーションによる実験結果を示すグラフである。
図 7は、 計算機シミュレーションによる実験結果を示すグラフである。
図 8は、 計算機シミュレーションによる実験結果を示すグラフである。 発明を実施するための最良の形態 以下では、 本発明を実施するための最良の実施形態について説明するが、 当該実施形態 は説明のための例示であり、 本発明の屌理にしたがった他の実施形態もまた、 本発明の範 囲に含まれる。
図 1は、 本発明の実施形態の一つに係る通信システムの概要構成を示す模式図である。 以下、 本図を参照して説明する。
通信システム 1 0 1の送信装置 1 3 1は、 伝送すべきデータの入力を受け付けて、 2つ のアンテナ 1 4 1、 1 4 2から信号を送信する。 2つのアンテナ 1 4 1、 1 4 2は、 その 極性が互いに直交するような異種偏波アンテナであって、 典型的には、 一方が水平アンテ ナ、 他方が垂直アンテナである。
一方、 受信装置 1 5 1は、 2つのアンテナ 1 4 1、 1 4 2から送信された信号を 1つの アンテナ 1 6 1で受信して、 伝送されたデータを得る。 このアンテナ 1 6 1もまた、 所定 の極†生を有するアンテナであって、 典型的には垂直アンテナであるが、 その他の方向に偏 波極^ を有するものであっても良い。 すなわち、 送信装置 1 3 1側で極性の異なる異種偏 波アンテナ 1 4 1、 1 4 2を用いて送信し、 受信装置 1 5 1側ではある方向に極性を有す る偏波アンテナ 1 6 1を 1つだけ用いて受信するところが、 本実施形態の特徵の一つとな る。
(送信装置)
図 2は、 本実施形態に係る送信装置 1 3 1の概要構成を示す模式図である。 以下、 本図 を参照して説明する。
送信装置 1 3 1は、伝送すべきデータを受け付けると、これをエンコーダ 2 0 1に渡す。 エンコーダ 2 0 1とデータモジユレータ 2 0 2では、 データの各種の符号化ならびに変調 を行う。 本実施形態では、 データの変調方式として Q P S Kを用いる。
データの符号化変調が終了すると、 これをまず、 1入力 2出力の直並列変換器 2 0 3に 渡す。 直並列変換器 2 0 3では、 得られたデータを順に第 1送信部 2 1 1と第 2送信部 2 1 2に与えるのである。 第 1送信部 2 1 1と第 2送信部 2 1 2は、 それぞれ、 以下のように構成される。
すなわち、 直並列変換器 2 0 3から与えられたデータと、 パイロット信号とをマルチプ レクサ 2 2 1で多重化し、 さらに直並列変換器 2 2 2で複数のチャンネルに直並列変換す る。
多重化の際には、 たとえば、 所定数のシンボルからなるパイロット信号と、 所定数のシ ンボノレからなるデータと、を 1つのフレームにまとめるなどの手法を用レ、ることができる。 そして、 前位相処理部 2 2 3で各チャンネルごとに前位相処理を行い、 逆フーリエ変換 部 2 2 4で高速逆フーリェ変換をする。
ついで、 G I (Guard Interval) 揷入部 2 2 5でガードインターバルを挿入し、 アンテナ 1 4 1もしくはアンテナ 1 4 2から、 当該信号を送信する。
(受信装置)
図 3は、 本実施形態に係る受信装置 1 5 1の概要構成を示す模式図である。 以下、 本図 を参照して説明する。
受信装置 1 5 1は、 送信装置 1 3 1のアンテナ 1 4 1およびアンテナ 1 4 2から送信さ れた信号を 1つのアンテナ 1 6 1で受信する。
そして、 G I除去部 3 0 1でガードインターバルを除去し、 フーリエ変換部 3 0 2で高 速フーリェ変換を行つて複数の信号を得る。
さらに、 M L D部 3 0 3で M L D検出を行い、 各チャンネルの信号を検出する。 M L D 検出の基本的な構成は非特許文献 2に開示されているものと同様であるが、 後述するよう に、 本実施形態においては、 M L D技術を極めて効果的に利用している。
そして、 並直列変換部 3 0 4が並直列変換を行い、 復号化部 3 0 5で、 Q P S Kの復調 ならびに復号化を行って、 伝送されたデ一タを得る。
さて、 かりに送信装置 1 3 1のアンテナ 1 4 1、 1 4 2から送信される信号の受信パヮ 一が同じであるとすると、 受信装置 1 5 1の M L D部 3 0 3で各チャンネルの信号を検出 しょうとする際のレプリカのコンステレーションは図 4に示す通りとなる。
すなわち、 送信側では増幅率と位相が異なるシンポルが 1 6種類あるのに対し、 受信側 では、 9種類に縮退してしまう。
そこで、 本実施形態では、 上記のように、 送信装置 1 3 1のアンテナ 1 4 1、 1 4 2の 偏波極性を異なる (典型的には直交する) ものとするのと同時に、 位相の適応制御を行う 前位相処理を行うことによって、 縮退を防止するのである。
非特許文献 3に開示されるように、異種偏波アンテナを用いて信号を伝送する場合には、 受信側での X P D値は、 環境によって 5 d B〜l 5 d B程度の差異が現れる。
一般に、 受信パワーに大きな不均衡があるとダイバーシティ系全体が動作しなくなると 言われているが、 これは、 ダイバーシティ結合技術においては、 弱いチャンネルが無視さ れてしまう力 らである。 しかしながら、 本実施形態では、 このような不均衡を積極的に利 用することによって、 M L Dの性能を向上させる。
すなわち、 異なるアンテナから受信されるシンボルの受信パワーが異なれば、 レプリカ もまた異なるものとなる。 したがって、 本実施形態に係るレプリカのコンステレーシヨン は、 図 5に示すように、 X P D値が変化することによって分散するのである。
本図に示すように、 レプリカのコンステレーシヨンは、 1 6箇所に現れている。 本図で は、 4つの象限のそれぞれには丸が 5個描かれているが、 中央は基準となる位置を示し、 その周囲に配置されている丸がレプリカ信号に相当する。
また、 X P D値は、 コンステレーシヨン図における中心からの距離 (P1) と、 これに 直交するずれ (P2) との比 P1/P2であり、 P1 と P2は送信側の 2つのアンテナ 1 4 1、 1 4 2に対する受信側での受信パワーに相当する。
さらに、 上述のような動的位相制御を積極的に用いることにより、 各チャンネルで同じ 位相が生成されることをできるだけ防止するのである。
非特許文献 4に開示されるように、 S D M/O F DMシステムでは位相を適応的に制御 するために受信装置から送信装置へフィ一ドバック情報を送り、 送信装置ではルックアツ プテープ を参照してチャンネルごとの位相の前処理を行う。
本実施形態では、 上述のように異種偏波を用いており、 増幅率には 5 d B以上の差があ ることが期待されるため、 同じ位相 ·同じ増幅率となることは稀である。
したがって、 本実施形態においては、 非特許文献 4に開示されるものよりも、 位相制御 の範囲を小さくすることができる。 たとえば、 前位相処理における位相の差を 1 0度程度 としても、 後述するように、 十分な性能が得られるのである。
そして、 位相制御の範囲が小さくなると、 フィードバック情報のサイズも小さくなり、 ノレックアップテーブルのサイズも小さくて済む。 これは、 通信システム全体の複雑さを低 減し、 コストを削減するのに役立つ。
これらの技術を採用することにより、本実施形態に係る S DM/O F DM系においては、 単純な位相制御しか行わなレ、従来の S D MZ O F D M系に比べて、 検出性能を向上させる ことができるのである。 ■
なお、 これらの送信装置 1 3 1、 受信装置 1 5 1は、 ソフトウェアラジオなどの技術を 用いれば、各種のコンピュータ、 F P G A (Field Programmable Gate Array)、 D S P (Digital Signal Processor) にソフトウエアを与えることによって実現することができる。
(実験結果)
図 6、 図 7、 図 8は、 以下の諸元において本システムの性能を計算機シミュレーション によって調べた結果を表すグラフである。 これらめグラフにおいて、 縦軸はいずれも B E R (Bit Error Rate) を表す。
データ変調方式 … Q P S K
フレームサイズ … 1 2シンボル ( 1フレームにっきパイロット 2シンボル、 デー タ 1 0シンボル)
フーリエ変換サイズ … 1 0 2 4
キヤリァ数 ·■· 1 0 2 4
ガードィンターパル … 1シンボルにっき 2 5 6サンプル
フエーデイングのモデル … 1 8経路レイリーフエーデイング
ドッブラ周波数 … 1 O H z
F E C … コンボリューシヨンコード (r = l/2, Κ = 7)
インターリーブの種類 … ビットインターリーブ、 ビタビのソフトデコーディング アンテナ … 送信側は 2つの異種偏波極性アンテナ、 受信側は垂直極性アンテナ 図 6は、 さまざまな XPD値 (P1/P2) に対する AGWNチャンネル下での B ER性能 を示すグラフであり、 横軸は XPD値 (P1/P2) である。 本図を見ればわかる通り、 同じ 受信パヮ一となる場合には異なる受信パヮ一となる場合に比べて、 B E R性能が落ちるこ とがわかる。 本実施形態では、 XPD値 (P1/P2) の絶対値は 5 d B〜 1 5 d B程度と考 えられるので、 B E R性能が大きく落ち込むことのないような範囲での通信が可能となる。 図 7は、 従来の S DM/O F DMシステム (垂直偏波極性のみを用いた送信側 2アンテ ナ、 受信側 1アンテナのシステム)、 本実施形態にかかる SDMZOFDMシステム (X PD値が 5 d B、 1 0 d B、 1 5 d B) の場合の B E R性能を示すものである。 上記の 4 通りについて、 白菱形、 黒丸、 黒正方形、 黒菱形で、 それぞれのグラフを描いてある。 垂直偏波極性アンテナと水平偏波極性アンテナとで異なる信号を送信した場合には、 受 信側では、 環境によって XPD値が 5 d B〜l 5 d Bとなるが、 本グラフを見ればわかる 通り、 そのいずれの場合においても、 BER性能が向上していることがわかる。
図 8は、 従来の SDMZOFDMシステム (垂直偏波極性のみを用いた送信側 2アンテ ナ、 受信側 1アンテナのシステム)、 従来の SDMZOFDMシステム (さらに前位相処 理を用いたもの)、 本実施形態にかかる SDM/OFDMシステムの B ER性能を示すも のである。 上記の 3通りについて、 白丸、 白正方形、 黒丸で、 それぞれのグラフを fいて 本実施形態においては、 送信側で異種偏波アンテナを用いるとともに、 前位相処理をさ らに適用することにより、 従来よりも BER性能が向上していることがわかる。 産業上の利用の可能性 本発明により、異種偏波ァンテナを用いて効率良く通信を行う通信システム、送信装置、 受信装置、 送信方法、 受信方法、 ならびに、 これらをコンピュータ上にて実現するための プログラムを提供することができる。

Claims

請求の範囲
1 . 送信装置と、 受信装置と、 を備える通信システムであって、
( a ) 前記送信装置は、
伝送すベきデータを符号化する符号化部と、
前記符号化された信号を 2つの信号群に直並列変換する直並列変換部と、
前記直並列変換された一方の信号群を受け付ける第 1伝送部と、
前記直並列変換された他方の信号群を受け付ける第 2伝送部と、 を備え、
当該第 1伝送部と、 当該第 2伝送部と、 の、 それぞれは、
前記入力を受け付けた信号群に含まれる信号のそれぞれについて、 前位相処理を施す前 位相処理部と、
前位相処理された結果の信号群を逆フーリェ変換する逆フーリェ変換部と、 当該逆フーリェ変換された結果の信号を所定の偏波で送信する送信部と、
を備え、
前記第 1伝送部における所定の偏波と、 前記第 2伝送部における所定の偏波と、 は、 そ の極性が直交し、
( b ) 前記受信装置は、
前記送信装置から送信される信号を所定の偏波で受信する受信部と、
前記受信された結果の信号をフーリェ変換するフーリェ変換部と、
前記フーリエ変換された結果の信号群を M L D (Maximum Likelihood Detector) 検出す る検出部と、
前記 M L D検出された結果の信号群を並直列変換する並直列変換部と、
前記並直列変換された結果の信号を復号化して伝送された信号を出力する復号化部と、 を備え、
( c ) 前記受信装置は、 前記送信装置における前位相処理のためのフィードバック情報 を生成してこれを前記送信装置に送り、 前記送信装置は、 前記受信装置から送られたフィードバック情報により、 当該信号群の それぞれについて、 同じ位相が生成される確率が低くなるように前位相処理を行う ことを特徴とするもの。
2 . 請求項 1に記載の通信システムにおいて、
前記送信装置が備える第 1伝送部と、 第 2伝送部と、 のそれぞれは、
前記入力を受け付けた信号群に前位相処理を施すのにかえて、
前記入力された信号群と、 パイロット信号とを多重化し、 当該多重化された結果の信号 を直並列変換し、 当該直並列変換された結果の信号群に前位相処理を施す
ことを特徴とするもの。
3 . 請求項 1または 2に記載の通信システムにおける送信装置。
4. 請求項 1または 2に記載の通信システムにおける受信装置。
5 . 伝送すべきデータを符号化する符号化工程と、
前記符号化された信号を 2つの信号群に直並列変換する直並列変換工程と、
前記直並列変換された一方の信号群を受け付ける第 1伝送工程と、
前記直並列変換された他方の信号群を受け付ける第 2伝送工程と、 を備え、
当該第 1伝送ェ寧と、 当該第 2伝送工程と、 の、 それぞれは、
前記入力を受け付けた信号群に含まれる信号のそれぞれについて、 前位相処理を施す前 位相処理工程と、
前位相処理された結果の信号群を逆フーリエ変換する逆フーリエ変換工程と、 当該逆フーリェ変換された結果の信号を所定の偏波で送信する送信工程と、
を備え、
前記第 1伝送工程における所定の偏波と、前記第 2伝送工程における所定の偏波と、は、 その極性が直交し、 前記前位相処理工程では、 受信装置から送られたフィードパック情報により、 当該信号 群のそれぞれについて、 同じ位相が生成される確率が低くなるように前位相処理を行う ことを特徴とする送信方法。
6 . 請求項 5に記載の送信方法であって、
前記第 1伝送工程と、 前記第 2伝送工程と、 のそれぞれにおいて、
前記入力を受け付けた信号群に前位相処理を施すのにかえて、
前記入力された信号群と、 パイロット信号とを多重化し、 当該多重化された結果の信号 を直並列変換し、 当該直並列変換された結果の信号群に前位相処理を施す
ことを特徴とする方法。
7 . 送信装置から送信される信号を所定の偏波で受信する受信工程と、
前記受信された結果の信号をフーリェ変換するフーリェ変換工程と、
前記フーリエ変換された結果の信号群を M L D (Maximum Likelihood Detector) 検出す る検出工程と、
前記 M L D検出された結果の信号群を並直列変換する並直列変換工程と、
前記並直列変換された結果の信号を複号化して伝送された信号を出力する復号化工程 と、
を備え、
前記送信装置における前位相処理のためのフィードパック情報を生成してこれを前記送 信装置に送る
ことを特徴とする受信方法。
8 . コンピュータを、 請求項 1または 2に記載の通信システムにおける送信装置として 機能させることを特徴とするプログラム。
9 . コンピュータを、 請求項 1または 2に記載の通信システムにおける受信装置として 機能させることを特徴とするプログラム
PCT/JP2004/000171 2004-01-14 2004-01-14 通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム WO2005069508A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2004/000171 WO2005069508A1 (ja) 2004-01-14 2004-01-14 通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム
JP2005516936A JP4362592B2 (ja) 2004-01-14 2004-01-14 通信システム、送信装置、受信装置、通信方法、ならびに、プログラム
US10/585,898 US7826546B2 (en) 2004-01-14 2004-01-14 Communication system, transmitter, receiver, transmitting method, receiving method, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/000171 WO2005069508A1 (ja) 2004-01-14 2004-01-14 通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム

Publications (1)

Publication Number Publication Date
WO2005069508A1 true WO2005069508A1 (ja) 2005-07-28

Family

ID=34792045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/000171 WO2005069508A1 (ja) 2004-01-14 2004-01-14 通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム

Country Status (3)

Country Link
US (1) US7826546B2 (ja)
JP (1) JP4362592B2 (ja)
WO (1) WO2005069508A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286469A (zh) * 2018-09-19 2019-01-29 西安电子科技大学 基于同轴天线阵列uca的涡旋电磁波的最大似然检测方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105577298B (zh) * 2014-11-05 2018-10-16 辰芯科技有限公司 一种自适应相位检测方法及系统
CN105430421A (zh) * 2015-10-31 2016-03-23 深圳大学 一种基于极化码属性降低图像传输失真率的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2371384C (en) * 1999-05-19 2006-02-21 Nokia Networks Oy Transmit diversity method and system
CA2361247C (en) * 2000-11-06 2008-10-07 Ntt Docomo, Inc. Transmitter, transmitting method, receiver, and receiving method for mc-cdma communication system
US7310379B2 (en) * 2002-12-30 2007-12-18 Motorola, Inc. Polarization state techniques for wireless communications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Antenna-phase controlled SDM/OFDM with polarization diversity for dynamic parameter controlled OFDM system", vol. 103, no. 553, 9 January 2004 (2004-01-09), pages 33 - 39, XP002979607 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109286469A (zh) * 2018-09-19 2019-01-29 西安电子科技大学 基于同轴天线阵列uca的涡旋电磁波的最大似然检测方法

Also Published As

Publication number Publication date
JPWO2005069508A1 (ja) 2007-08-23
US7826546B2 (en) 2010-11-02
JP4362592B2 (ja) 2009-11-11
US20080025198A1 (en) 2008-01-31

Similar Documents

Publication Publication Date Title
Başar Multiple-input multiple-output OFDM with index modulation
US9960831B2 (en) Multiple input multiple output orthogonal frequency division multiplexing with index modulation, MIMO-OFDM-IM, communications system
US8693964B2 (en) Power amplifier adjustment for transmit beamforming in multi-antenna wireless systems
EP1608081B1 (en) Apparatus and method for space-frequency block coding/decoding in a communication system
EP1655874A2 (en) Apparatus and method for transmitting and receiving data using space-time block coding
KR102417324B1 (ko) 안테나 선택을 통한 공간 변조 및 시공간 블록 코딩을 위한 간소화된 검출 기법
KR100950645B1 (ko) 다중 입력 다중 출력 방식을 사용하는 이동 통신시스템에서 신호 송수신 장치 및 방법
WO2005125043A1 (en) Apparatus and method for full-diversity, full- rate space-time block coding for even number of transmit antennas
JP4505025B2 (ja) 時空間周波数ブロック符号化装置及び方法
JP4406732B2 (ja) 通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム
KR20070059659A (ko) 다중안테나를 사용하는 다중 반송파 시스템의 송신 장치 및 수신 장치
Manikandan et al. OFDM techniques for MIMO-OFDM system: A review
JP4377435B2 (ja) 2個の送信アンテナ使用する最大ダイバーシチと最大送信率の時空間ブロック符号化装置及び方法
Drotar et al. Receiver technique for iterative estimation and cancellation of nonlinear distortion in MIMO SFBC-OFDM systems
Naeiny et al. PAPR reduction of space-frequency coded OFDM systems using active constellation extension
WO2005069508A1 (ja) 通信システム、送信装置、受信装置、送信方法、受信方法、ならびに、プログラム
Pallavi et al. Performance of a MIMO-OFDM-Based Opto-Acoustic Modem for High Data Rate Underwater Wireless Communication (UWC) System
US8223876B2 (en) Apparatus for receiving signals in OFDM communication system having multiple antennas and method thereof
Wu et al. Probabilistic constellation shaping-aided underwater acoustic communication with vector approximate message passing iterative equalization
KR101018572B1 (ko) 부분 응답 코딩을 이용한 알라모우티 sfbc―ofdm 시스템 및 통신 방법
KR20200025136A (ko) Mimo 신호 수신 장치 및 방법
KR20090099422A (ko) 다중 송신 안테나를 사용하는 광대역 무선접속 시스템에서송신 다이버시티 획득을 위한 장치 및 방법
Naeiny et al. Metric based symbol predistortion for peak power reduction of space frequency coded OFDM systems
Singh et al. Improving QoS in Underwater Wireless Communication with MIMO-OFDM
Kumar et al. Secured Text Message Transmission with Implementation of Concatenated CFB Cryptographic Algorithm

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516936

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 10585898

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10585898

Country of ref document: US