WO2005065848A1 - Vorrichtung und verfahren zur trennung von schüttgütern - Google Patents

Vorrichtung und verfahren zur trennung von schüttgütern Download PDF

Info

Publication number
WO2005065848A1
WO2005065848A1 PCT/DE2004/002615 DE2004002615W WO2005065848A1 WO 2005065848 A1 WO2005065848 A1 WO 2005065848A1 DE 2004002615 W DE2004002615 W DE 2004002615W WO 2005065848 A1 WO2005065848 A1 WO 2005065848A1
Authority
WO
WIPO (PCT)
Prior art keywords
conveyor belt
sensor
blow
ray
radiation
Prior art date
Application number
PCT/DE2004/002615
Other languages
English (en)
French (fr)
Inventor
Guenther Petzold
Hartmut Harbeck
Gerd Reischmann
Original Assignee
Commodas Daten- Und Systemtechnik Nach Mass Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34716502&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2005065848(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Commodas Daten- Und Systemtechnik Nach Mass Gmbh filed Critical Commodas Daten- Und Systemtechnik Nach Mass Gmbh
Priority to CA002531172A priority Critical patent/CA2531172C/en
Priority to AU2004311489A priority patent/AU2004311489B2/en
Priority to EP04802824A priority patent/EP1703996B1/de
Priority to DE502004005299T priority patent/DE502004005299D1/de
Publication of WO2005065848A1 publication Critical patent/WO2005065848A1/de
Priority to ZA2006/00342A priority patent/ZA200600342B/en
Priority to US11/561,224 priority patent/US20070086568A1/en
Priority to US12/732,834 priority patent/US20100185319A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/3416Sorting according to other particular properties according to radiation transmissivity, e.g. for light, x-rays, particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/346Sorting according to other particular properties according to radioactive properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material

Definitions

  • the invention relates to a device and a method for separating bulk goods according to the preamble of the main claim.
  • Devices for separating bulk goods require a large number of sensors, in particular optical and electromagnetic sensors, as described, for example, in EP Bl-1 253 981 by the applicant.
  • this is of interest when separating ores, where the decision whether or not to discard a particle depends crucially on whether and, if applicable, which metal is present in a particular bulk material particle.
  • the process can also be used to separate waste particles.
  • the not inconsiderable spatial dimensions of the X-ray sources and also of the detectors, as well as the necessary shielding resulted in spatial requirements that required a precise evaluation, as required for the control of blow-out nozzles for blowing out even small bulk material particles are, not or only very complex.
  • the object of the invention is now to provide a space-saving arrangement with which even small metal parts, such as screws and nuts, can not only be reliably recognized, but can also be safely separated from the rest of the bulk material flow by means of blow-off nozzles directly downstream from the observation location.
  • the spatial arrangement of the filters can be fixed, so that due to the movement of the bulk material particles, a suitable mirroring of the X-ray radiation downstream of the filters, for example by crystals on a detector line, when two measurement results recorded at different times are assigned for the same bulk material particles traveling on the bulk material conveyor belt is possible.
  • the device it is also possible to work with two sensors which are arranged one behind the other transversely to the extent of the conveyor belt, for example below it.
  • the image information obtained in succession can then be assigned to individual bulk material particles and, after arithmetic evaluation, can be used accordingly to control the blow-out nozzles.
  • an X-ray source which emits in a broader spectrum, restricts the X-ray radiation to a certain energy level by placing filters in front of it before it hits the bulk material particle. Between Bulk particles and a downstream sensor then no further filter is necessary.
  • the device with a shield, which is of course provided in a radiopaque manner around the X-ray source and the location of the irradiation of the bulk material particles and the sensors, but also further on the surface of the bulk material conveyor belt up to one over an inclined chute Filling device filling conveyor extends. This ensures that operating personnel can be around the sorting and separating device. Covering hoods must be secured so that the device cannot be operated if removed.
  • the method according to the invention for separating bulk goods with the aid of a blow-out device works with blow-out nozzles arranged on a drop section arranged downstream of a conveyor belt, the blow-out nozzles being dependent on computer-aided evaluation means as a function of sensor results of a penetrating the bulk material flow on the conveyor belt, emitted from an X-ray source and in sensor means collected radiation can be controlled.
  • the X-ray radiation that has passed through the bulk material particles is filtered in at least two different spectra for spatially resolved collection of the X-ray radiation that is passing through the bulk material particles in at least one line sensor integrated over a predetermined energy range.
  • a sensor means a long line made up of many individual detectors
  • this can be done by passing through different filters and collecting the transmitted radiation one after the other, or - preferably by using two sensor lines, each with a different filter, whereby the filters pass different spectra, which tend to soften , have a rather hard character.
  • a Z classification and normalization of image areas takes place to determine the atomic density class on the basis of the sensor signals of the X-ray photons of different energy spectra collected in the at least two sensor lines.
  • Control of the blow-out nozzles on the basis of both the detected average transmission of the bulk material particles in the collected by the at least two sensor lines different X-ray energy spectra as well as the density information obtained by a Z standardization can be advantageously achieved.
  • Fig. 1 shows the device according to the invention in a schematic
  • Fig. 2 shows the device according to the invention in perspective
  • Fig. 3 is a schematic representation of the structure of the
  • Fig. 4 is a schematic representation of the structure of the X-ray signal processing.
  • FIG. 1 a schematically indicated flat detector 10, which is arranged below the conveyor belt 20, and an X-ray source 12 located above it schematically show how a rejection product can be separated from a passage product from the bulk material flow by downstream blow-out nozzles 24 in two different product chambers.
  • a wedge-like separating element 26 between the two product streams can be adjusted in its inclination, so that easy adaptation to products of different weights with different flight characteristics is possible without the pressure of the blow-out air having to be readjusted.
  • FIG. 1 it can also be seen how there is a cover 16 above the conveyor belt 20 which prevents X-radiation reflected against the product conveying direction from escaping to the separating device.
  • An inclined material feed chute 18 on the conveyor belt 20 also provides a closure of the conveyor belt box 16 on the feed side, so that it also runs parallel to the direction of transport
  • the device for separating bulk goods with the aid of a blow-out device with blow-out nozzles 24 arranged on a drop section 22 arranged downstream of a conveyor belt 20 thus essentially consists of computer-aided evaluation means which, depending on sensor results, of two collected and penetrating the flow of bulk goods on the conveyor belt consist of one X-ray source 12 emitted and captured in sensor means 10 can be controlled, two filter devices (not shown) for forwarding X-ray radiation in relation to different energies, which are arranged in front of the at least one sensor means, and the sensor means 10 with a plurality of line sensors individual pixels arranged transversely to the conveyor belt 20.
  • a sensor line can be provided for each filter.
  • a sensor line corresponding to the width of the conveyor belt will be formed by a row of photodiode arrays, the active surface of which is covered with a fluorescent paper.
  • the filters can be metal foils through which X-rays of different energy levels are transmitted.
  • the filters can also be formed by crystals which reflect X-rays of different energy levels from one another, in particular reflect the X-rays in different energy areas at different solid angles.
  • More than two filters can also be easily provided to use more than two energy levels.
  • the filters are advantageously below the
  • Conveyor belt 10 is arranged in front of the sensor means 10, and an X-ray tube 12 that generates a braking spectrum will be arranged above the conveyor belt 20.
  • the device is provided with a shielding box 14, 16 substantially above the conveyor belt, which surrounds the conveyor belt and the blow-out section 22, and furthermore, as a cover 16, covers the conveyor belt a distance in front of the X-ray source, whereby At the beginning of the treadmill, an inclined chute 18 covers the entrance cross section (FIG. 2 shows this in perspective).
  • glass ceramic is separated from bottle glass, among other things.
  • the different types of glass used in display tubes, some of which have significantly higher melting points than “normal glass”, have hitherto been a material which has been difficult to separate in the recycling of broken glass, and can now be separated for the first time using the device according to the invention.
  • Suitable X-ray sensors must first be used for this purpose. This is achieved through a filter technique with spectral resolution.
  • Appropriate filtering of the X-rays in front of the respective sensor of the two-channel system initially creates spectral selectivity.
  • the arrangement of the sensor rows then allows independent filtering, so that the optimal selectivity can be achieved for a given separation task.
  • a spectrum of higher energy and a spectrum of lower energy are detected.
  • a high-pass filter is used for the former, which strongly attenuates the lower frequencies with less energy content.
  • the high frequencies are let through with low attenuation.
  • a metal foil made of a metal with a higher density class e.g. a 0.45 mm thick copper foil.
  • the filter in front of the sensor in question is used as an absorption filter, which suppresses a certain wave range of higher energy. It is designed so that the absorption is in the immediate vicinity of the elements with higher density.
  • a metal foil made of a metal with a lower density class e.g. a 0.45 mm thick aluminum foil.
  • Each of the two sensor lines Sl.i and S2.i (i, for example, from n times 1 to n times 64 for all n rows of arrays across the conveyor width) consists of a number of photodiodes denarrays, which are equipped with a scintillator for converting the X-rays into visible light.
  • a typical array has 64 pixels (in a row) with either 0.4 mm or 0.8 mm pixel grid.
  • the intensity is digitized with 14-bit dynamics via analog amplifiers and analog / digital converters 32 and read out line-synchronously via FIFO (first in / first out) memory 34 and a serial interface 36.
  • FIFO first in / first out
  • the line that is cut by the material to be conveyed first due to the conveying direction of the material is delayed until the data is available at the same time as that of the line cut later (with the other energy spectrum).
  • the data correlated in this way in time is converted into a byte serial data stream by the multiplexer 38 and transmitted over the standard interface Camera Link 40 to the evaluation electronics over a distance of several meters.
  • each covering 300 mm conveyor width maximum conveyor widths of 1800mm can be built up in two channels.
  • the required operating voltages are newly generated on each module and the clock signals are reprocessed.
  • the actual X-ray signal processing then takes place (as shown schematically in FIG. 4) on the data stream transmitted via Camera Link 40, which is first separated again into the two sensor channels via the demultiplexer 42.
  • a black / white correction is now carried out in an electronics unit 44 for each channel separately.
  • the black value in the absence of radiation and the white value in the case of 100% radiation are determined for each pixel and a comparison table is created.
  • the raw data are corrected using the comparison table.
  • an image is temporarily built up separately for each channel by buffering a few successive lines. This image is smoothed by an average filter, the size of which can be set in rows and columns. This significantly reduces the noise.
  • the Z transformation (unit 50) generates n classes of medium atomic density (abbreviated Z) from the intensities of two channels of different spectral imaging, the assignment of which is largely independent of the X-ray transmission and thus of the material thickness.
  • Standardizing the values to an average atomic density of one or more selected representative materials allows the image area on this side and beyond the standard curve to be classified differently.
  • Such a calibration in which the relationship is established non-linearly over the collected spectrum, allows apparatus effects to be “faded out”.
  • the atomic density class generated when normalizing to a certain Z represents the typical density of the materials involved.
  • a further channel is calculated in unit 48, which provides the resulting (average) transmission over the entire spectrum.
  • the pixels can be assigned a property class in unit 52, which is then used after morphological filtering 54 to differentiate materials in unit 56.
  • an image of a few lines in height is temporarily created in order to suppress interference information with a two-dimensional filter.
  • unwanted misinformation at the edge of the particles can be suppressed by cut pixels.
  • the data stream of property classes is treated like image material.
  • the property class "machine idling" describes the state when the X-ray source is switched on without any material to be sorted in the measuring section. All property pixels deviating from the machine idling are treated as foreground and are segmented into line segments and finally combined into areas. The property distribution over these areas is described by object data sets. These data records also contain information about the position, shape and size of the connected property areas. In the evaluation, quantity relations of the property pixels as well as shape and size per object are compared with learned parameters per material. The object is assigned to a specific material class on this basis.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Control And Other Processes For Unpacking Of Materials (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

Vorrichtung und Verfahren zur Trennung von Schüttgütern mit Hilfe einer Ausblaseinrichtung mit an einer einem Förderband (20) nachgeordneten Fallstrecke angeordneten Ausblasdüsen, wobei die Ausblasdüsen von rechnergestützten Auswertemitteln in Abhängigkeit von Sensorergebnissen einer, den Schüttgutstrom auf dem Förderband durchdringenden, aus einer Röntgenquelle emittierten und in Sensormitteln (10) aufgefangenen Strahlung gesteuert werden, wobei mit Filtern eine Filterung der die Schüttgutteilchen passierten Röntgenstrahlung in wenigstens zwei Spektren unterschiedlicher Energiebereiche erfolgt, bevor mit wenigstens einen Sensormittel (10) die Strahlung ortsaufgelöst auf dem Sensormittel (10) integriert über Energiebereichs aufgefangen wird.

Description

Vorrichtung und Verfahren zur Trennung von Schüttgütern
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zur Trennung von Schüttgü- tern nach dem Oberbegriff des Hauptanspruches.
Vorrichtungen zur Trennung von Schüttgütern setzen eine Vielzahl von Sensoren voraus, insbesondere optische und elektromagnetische Sensoren, wie beispielsweise in der EP Bl - 1 253 981 der Anmelderin beschrieben.
Neben derartigen Sensoren ist vorteilhaft, auch Röntgenstrahlung zur nicht-destruktiven Untersuchung von Materialeigenschaften aller möglichen Objekte zu verwenden, die an der Oberfläche nicht ohne weiteres erfassbar sind.
Hierzu gibt die US 6,122,343 nur die im einleitenden Teil des Anspruches 1 angeführte
Information, wobei allein der Hinweis, daß übereinanderliegende Arrays als Sensormittel Verwendung finden können, einen Hinweis darauf gibt, wie die Filter an den Detektoren aussehen können. Die Datenverarbeitung wird nicht näher erläutert, es wird lediglich ein Bild mit erhöhtem Kontrast als Ergebnis angestrebt.
Insbesondere durch die Beobachtung eines hochauflösenden Bildes unter Betrachtung zweier Röntgenstrahlungsenergieniveaus und die rechnerische Auswertung eines sich ergebenden Differenzbildes lassen sich Informationen über die Inhaltsstoffe einzelner Schüttgutpartikel gewinnen. Hierzu lehrt die US 6,122,343 nichts.
Beispielsweise ist dies von Interesse bei der Trennung von Erzen, wo die Entscheidung ob ein Teilchen verworfen wird oder nicht, entscheidend davon abhängt ob, und ggf. welches Metall in einem bestimmten Schüttgutteilchen vorhanden ist. Bei der Trennung von Abfallpartikeln kann das Verfahren ebenfalls eingesetzt werden. In bisher bekannten Vorrichtungen, bei denen Röntgenquellen eingesetzt wurden, ergaben sich durch die nicht unbeträchtlichen räumlichen Abmessungen der Röntgenquellen und auch der Detektoren sowie die notwendige Abschirmung räumliche Erfordernisse, die eine ortsgenaue Auswertung, wie sie für die Ansteuerung von Ausblasdüsen zum Ausblasen auch kleinerer Schüttgutteilchen notwendig sind, nicht oder nur sehr aufwendig realisieren ließen.
Aufgabe der Erfindung ist nun, eine platzsparende Anordnung zu schaffen, mit der auch kleine Metallteile, wie Schrauben und Muttern nicht nur sicher erkannt, sondern auch mittels dem Beobachtungsort unmittelbar nachgeordneter Ausblasdüsen sicher vom übrigen Schüttgutstrom getrennt werden können.
Erfindungsgemäß wird dies durch die Merkmale des Hauptanspruches gelöst, wobei durch zwei Röntgenfilter für unterschiedliche Energieniveaus, die jeweils vor die Senso- ren gebracht werden, unterschiedliche Information über die Schüttgutteilchen gewonnen werden kann. Alternativ können die Filter auch direkt der Röntgenquelle nachgeordnet werden, oder Röntgenquellen mit unterschiedlichen abgestrahlten Energien Verwendung finden.
Die räumliche Anordnung der Filter kann dabei fest sein, so dass durch die Bewegung der Schüttgutteilchen eine geeignete, den Filtern nachgeschaltete Spiegelung der Röntgenstrahlung beispielsweise durch Kristalle auf eine Detektorzeile bei einer Zuordnung zweier zu unterschiedlichen Zeiten aufgenommener Messergebnisse für die selben sich auf dem Schüttgutförderband fortbewegenden Schüttgutteilchen möglich ist.
In einer anderen Variante der Vorrichtung kann jedoch auch mit zwei Sensoren, die einander nachgeordnet quer zur Erstreckung des Förderbandes beispielsweise unter diesem angeordnet sind, gearbeitet werden. Durch geeignete rechnerische Verzögerungsschleifen lassen sich dann die nacheinander gewonnenen Bildinformationen einzelnen Schütt- gutteilchen zuordnen und entsprechend nach rechnerischer Auswertung zur Ansteuerung der Ausblasdüsen nutzen.
Es ist aber auch möglich, dass von einer Röntgenquelle, die in einem breiteren Spektrum abstrahlt, durch Vorsetzen von Filtern die Röntgenstrahlung auf ein bestimmtes Ener- gieniveau eingeschränkt wird, bevor sie das Schüttgutteilchen trifft. Zwischen den Schüttgutteilchen und einem nachgeordneten Sensor ist dann kein weiterer Filter notwendig.
Weiter wird vorgeschlagen, die Vorrichtung mit einer Abschirmung zu versehen, die selbstverständlich um die Röntgenquelle und den Ort der Bestrahlung der Schüttgutteilchen und die Sensoren herum röntgendicht vorgesehen ist, jedoch weiter auch auf der Oberfläche des Schüttgutförderbandes sich bis zu einer über eine schräge Schütte- das Förderband befüllenden Bef lleinrichtung hin erstreckt. Auf diese Weise ist sichergestellt, dass sich rund um die Sortier- und Trenneinrichtung Bedienpersonal aufhalten kann. Abdeckhauben sind so zu sichern, dass bei einer Entfernung die Vorrichtung nicht betrieben werden kann.
Das erfindungsgemäße Verfahren zur Trennung von Schüttgütern mit Hilfe einer Ausblaseinrichtung arbeitet mit an einer einem Förderband nachgeordneten Fallstrecke an- geordneten Ausblasdüsen, wobei die Ausblasdüsen von rechnergestützten Auswertemitteln in Abhängigkeit von Sensorergebnissen einer, den Schüttgutstrom auf dem Förderband durchdringenden, aus einer Röntgenquelle emittierten und in Sensormitteln aufgefangenen Strahlung gesteuert werden.
Ein Filtern der die Schüttgutteilchen passierten Röntgenstrahlung erfolgt in wenigstens zwei unterschiedlichen Spektren zum ortsaufgelösten Auffangen der die Schüttgutteilchen passierenden Röntgenstrahlung in wenigstens einem Zeilensensor integriert über einen vorbestimmten Energiebereich. Dies kann bei Nutzung eines Sensormittels (einer langen aus vielen Einzeldetektoren aufgebauten Zeile) durch passieren verschiedener Filter und nacheinander Auffangen der transmittierten Strahlung, oder - bevorzugt durch zwei Sensorzeilen mit je einem anderen Filter erfolgen, wobei die Filter unterschiedliche Spektren durchlassen, die einmal eher weichen, einmal eher harten Charakter haben.
Eine Z-Klassifizierung und Normierung von Bildbereichen erfolgt zur Bestimmung der atomaren Dichteklasse aufgrund der Sensorsignale der in den wenigstens zwei Sensorzeilen aufgefangenen Röntgenphotonen unterschiedlicher Energiespektren.
Schließlich ist das Ziel über eine Segmentierung der Eigenschaftsklassenbildung zur
Steuerung der Ausblasdüsen auf der Grundlage sowohl der erfassten mittleren Transmis- sion der Schüttgutteilchen in den durch die wenigstens zwei Sensorzeilen aufgefangenen unterschiedlicher Röntgenenergiespektren als auch der durch eine Z-Normierung gewonnenen Dichteinformation vorteilhaft erreichbar.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus nachfolgender Be- Schreibung eines bevorzugten Ausfuhrungsbeispiels anhand der beigefügten Zeichnung.
Dabei zeigt:
Fig. 1 die erfindungsgemäße Vorrichtung in einer schematischen
Darstellung von der Seite,
Fig. 2 die erfindungsgemäße Vorrichtung in perspektivischer
Darstellung mit abgenommenem Strahlungsschutz oberhalb des Förderbandes, und
Fig. 3 eine schematische Darstellung des Aufbaus der
Röntgensensorik, und
Fig. 4 eine schematische Darstellung des Aufbaus der Röntgensignalverarbeitung.
In Fig. 1 ist anhand eines schematisch angedeuteten Flachdetektors 10, der unterhalb des Förderbands 20 angeordnet ist, und einer darüber befindlichen Röntgenquelle 12 schematisch ersichtlich, wie durch nachgeschaltete Ausblasdüsen 24 in zwei verschiedene Produktkammern ein Abweisprodukt von einem Durchlassprodukt aus dem Schüttgutstrom abgetrennt werden kann. Ein keilartiges Trennelement 26 zwischen den beiden Produktströmen kann in seiner Neigung verstellt werden, so dass an unterschiedlich schwere Produkte mit unterschiedlichen Flugeigenschaften eine leichte Anpassung möglich ist, ohne dass der Druck der Ausblasluft nachgestellt werden müsste.
Da sich bei metallischen Teilen, die ausgeblasen werden, ganz erhebliche Anforderungen an gleichmäßige Luftzufuhr ergeben, andererseits jedoch teilweise erhebliche Luftmengen gleichzeitig abgegeben werden, wird vorgeschlagen, mit einem Zwischenspeicher 28 jeweils ein größeres Druckluftvolumen zwischenzuspeichern, das an die Aus- blasdüsen angeschlossen ist. Eine kontinuierlich arbeitende Druckluftpumpe wird zur
Nachförderung von Druckluft an dieses Volumen eingesetzt. In der Fig. 1 ist weiter erkennbar, wie sich oberhalb des Förderbandes 20 eine Abdeckung 16 befindet, die verhindert, dass gegen die Produktförderrichtung reflektierte Röntgenstrahlung zur Trenneinrichtung austritt. Durch eine schräg stehende Material- aufgabeschütte 18 auf das Förderband 20 ist zudem ein Abschluss des Förderbandkas- tens 16 befüUseitig vorgesehen, so dass auch gegen die Transportrichtung parallel zum
Förderband eine Strahlung nicht austreten kann.
Die Vorrichtung zur Trennung von Schüttgütern mit Hilfe einer Ausblaseinrichtung mit an einer einem Förderband 20 nachgeordneten Fallstrecke 22 angeordneten Ausblasdü- sen 24, besteht also im wesentlichen aus rechnergestützten Auswertemitteln, die in Abhängigkeit von Sensorergebnissen zweier aufgefangener, den Schüttgutstrom auf dem Förderband durchdringenden, aus einer Röntgenquelle 12 emittierten und in Sensormitteln 10 aufgefangenen Röntgendurchlichtbildern ansteuerbar sind, wobei zwei Filtereinrichtungen (nicht dargestellt) zur Weiterleitung von Röntgenstrahlung in Relation zuein- ander unterschiedlicher Energien, die vor dem wenigstens einen Sensormittel angeordnet sind, und wobei die Sensormittel 10 Zeilensensoren mit einer Vielzahl von quer zu dem Förderband 20 angeordneten einzelnen Pixeln sind. Dabei kann insbesondere zu jedem Filter eine Sensorzeile vorgesehen werden.
Eine der Breite des Förderbandes entsprechende Sensorzeile wird dabei durch aneinandergereihte Photodiodenarrays, deren aktive Fläche mit einem fluoreszierenden Papier bedeckt ist, gebildet werden. Die Filter können im bevorzugten Ausführungsfall Metallfolien sein, durch die Röntgenstrahlung zueinander unterschiedlicher Energieniveaus transmittiert wird. Die Filter können jedoch auch durch Kristalle gebildet werden, die Röntgenstrahlung zueinander unterschiedlicher Energieniveaus reflektieren, insbesondere die Röntgenstrahlung in unterschiedlicher Energiebereichen in unterschiedlichen Raumwinkeln reflektieren.
Es können ohne weiteres auch mehr als zwei Filter zur Nutzung von mehr als zwei E- nergieniveaus vorgesehen werden. Vorteilhafterweise werden die Filter unterhalb des
Transportbandes 10 vor den Sensormitteln 10 angeordnet, und eine ein Bremsspektrum erzeugende Röntgenröhre 12 wird oberhalb des Förderbandes 20 angeordnet sein.
Die Vorrichtung ist mit einem Abschirmkasten 14, 16 im wesentlichen oberhalb des Förderbandes versehen, der das Förderband und die Ausblasstrecke 22 umgibt, und weiter als Abdeckung 16 das Förderband eine Strecke vor der Röntgenquelle abdeckt, wobei am Beginn des Laufbands eine schräge Schütte 18 den Eingangsquerschnitt verdeckt (Fig. 2 zeigt dies perspektivisch). In der dargestellten Vorrichtung wird u.a. Glaskeramik von Flaschenglas getrennt. Aber auch die bei Bildschirmröhren verwendeten unterschiedlichen Glassorten, die teilweise erheblich höhere Schmelzpunkte als „normales Glas" aufweisen, sind ein beim Glasrecycling von Bruchglas bisher ein nur schwierig abzutrennendes Material, das nun erstmals mit der erfindungsgemäßen Vorrichtung abgetrennt werden kann.
Weiter wird für das Verständnis des Trennverfahrens eine technische Beschreibung der Röntgensignalverarbeitung mittels zweier Röntgentransmissionsspektren und einer
Segmentierung in Eigenschaftsklassen im folgenden skizziert. Dabei ist zunächst im Rahmen der Röntgensensorik für eine geeignete Erfassung zu sorgen. Dies wird durch eine Filtertechnik mit spektraler Auflösung erreicht.
Durch eine geeignete Filterung der Röntgenstrahlung vor dem jeweiligen Sensor des zweikanalig ausgeführten Systems entsteht zunächst eine spektrale Selektivität. Die Anordnung der Sensorzeilen erlaubt dann eine unabhängige Filterung, so dass die optimale Selektivität für eine gegebenen Trennaufgabe erzielt werden kann.
Im allgemeinen wird ein Spektrum höherer Energie und ein Spektrum niedrigerer Energie erfaßt. Dazu wird für ersteres ein Hochpassfilter verwendet, das die niedrigeren Frequenzen mit geringerem Energieinhalt stark bedämpft. Die hohen Frequenzen werden mit geringer Dämpfung durchgelassen. Zu diesem Zweck kann insbesondere eine Metallfolie aus einem Metall mit höherer Dichteklasse, wie z.B. eine 0,45 mm dicke Kup- ferfolie dienen.
Bei dem Spektrum geringerer Energie ist das Filter vor dem betreffenden Sensor als Absorptionsfilter eingesetzt, das eine bestimmten Wellenbereich höherer Energie unterdrückt. Er wird so ausgelegt, dass die Absorption in nächster Nachbarschaft zu den Ele- menten höherer Dichte liegt. Zu diesem Zweck kann insbesondere eine Metallfolie aus einem Metall mit niedrigerer Dichteklasse, wie z.B. eine 0,45 mm dicke Aluminiumfolie dienen.
Jede der zwei Sensorzeilen Sl.i und S2.i (i z.B. von n mal 1 bis n mal 64 für alle n anei- nandergereihten Arrays über die Förderbreite) besteht dabei aus einer Anzahl Photodio- denarrays, die mit einem Szintillator zur Wandlung der Röntgenstrahlung in sichtbares Licht versehen sind.
Ein typisches Array hat 64 Pixel (in einer Reihe) mit wahlweise 0,4 mm oder 0,8 mm Pixelraster. Wie in Fig. 3 schematisch dargestellt wird über Analogverstärker und Analog/Digital- Wandler 32 die Intensität mit 14-Bit Dynamik digitalisiert und über FIFO (First In / First Out-) Speicher 34 und eine serielles Interface 36 zeilensynchron ausgelesen. Hierbei wird die Zeile, die gegeben durch die Förderrichtung des Materials zuerst von dem Sortiergut geschnitten wird, solange verzögert, dass die Daten quasi gleichzei- tig mit denen der später geschnittenen Zeile (mit dem anderen Energiespektrum) zur Verfügung stehen.
Die so zeitlich korrelierten Daten werden durch den Multiplexer 38 in einen byteseriellen Datenstrom gewandelt und über die Standardschnittstelle Camera Link 40 über meh- rere Meter Entfernung zur Auswerteelektronik übertragen.
Durch Aneinanderreihen von Elektronikmodulen, die jeweils 300 mm Förderbreite abdecken, können maximale Förderbreiten von 1800mm zweikanalig aufgebaut werden. Zu diesem Zweck werden auf jedem Modul die erforderlichen Betriebspannungen neu erzeugt und die Taktsignale erneut aufbereitet.
Die eigentliche Röntgensignalverarbeitung findet dann (wie in Fig. 4 schematisch dargestellt) an dem über Camera Link 40 übertragenen Datenstrom statt, der zunächst über den Demultiplexer 42 wieder in die zwei Sensorkanäle aufgetrennt wird.
Für jeden Kanal getrennt wird nun eine Schwarz / Weiß-Korrektur in einer Elektronik- einheit 44 durchgeführt. Beim Einmessen dieser Korrekturstufe wird für jeden Pixel der Schwarzwert bei Abwesenheit von Strahlung sowie der Weißwert bei 100% Strahlung bestimmt und eine Abgleichtabelle angelegt. Im Normalbetrieb werden die Rohdaten mit Hilfe der Abgleichtabelle korrigiert.
Zur Unterdrückung von Signalrauschen (Baueinheit 46) wird getrennt für jeden Kanal durch Zwischenspeichen von einigen aufeinanderfolgenden Zeilen temporär ein Bild aufgebaut. Dieses Bild wird durch ein Mittelwertfilter, dessen Größe in Zeilen und Spal- ten einstellbar ist, geglättet. Hierbei wird das Rauschen signifikant reduziert. Die Z-Transformation (Baueinheit 50) erzeugt aus den Intensitäten zweier Kanäle unterschiedlicher spektraler Abbildung n Klassen mittlerer atomarer Dichte (abgekürzt Z), deren Zuordnung weitestgehend unabhängig von der Röntgentransmission und somit von der Materialstärke ist.
Eine Normierung der Werte auf eine mittlere atomare Dichte eines oder mehrerer ausgewählter repräsentativer Werkstoffe erlaubt es, Bildbereiches diesseits und jenseits der Normkurve verschieden zu klassifizieren. Eine derartige Kalibrierung bei der über das aufgefangene Spektrum jeweils nicht-linear der Zusammenhang hergestellt wird, erlaubt es apparative Effekte „auzublenden".
Die bei der Normierung auf ein bestimmtes Z (Ordungszahl eines Elementes, oder allgemeiner mittlere atomare Dichte des Materials) generierte atomare Dichteklasse bildet hierbei die typische Dichte der beteiligten Materialien ab. Parallel dazu wird in Bauein- heit 48 ein weiterer Kanal berechnet, der die resultierende (mittlere) Transmission über das gesamte Spektrum bereitstellt.
Durch rechnergestützte Kombination der atomaren Dichteklasse mit einem Transmissionsintervall (Tmjn..Tmax) kann den Pixeln eine Eigenschaftsklasse in Baueinheit 52 zu- gewiesen werden, die schließlich nach einer morphologischen Filterung 54 zur Materialunterscheidung in Baueinheit 56 herangezogen wird.
Auch hier wird temporär ein Bild von einigen Zeilen Höhe aufgebaut, um mit eine zwei- dimensionalen Filter Störinformationen zu unterdrücken. Es können z.B. unerwünschte Fehlinformationen am Rand der Partikel durch angeschnittene Pixel unterdrückt werden.
Der Datenstrom von Eigenschaftsklassen wird behandelt wie Bildmaterial. Die Eigenschaftsklasse „Maschinenleerlauf' beschreibt den Zustand bei eingeschalteter Röntgenquelle ohne Sortiergut in der Messstrecke. Alle von dem Maschinenleerlauf abweichen- den Eigenschaftspixel werden als Vordergrund behandelt und durch die Segmentierung zu Zeilensegmenten und schließlich zu Flächen zusammengefasst. Die Eigenschaftsverteilung über diese Flächen wird durch Objektdatensätze beschrieben. Ferner enthalten diese Datensätze auch Informationen über Position Form und Größe der zusammenhängenden Eigenschaftsflächen. In der Auswertung werden Mengenrelationen der Eigenschaftspixel sowie Form und Größe je Objekt mit gelernten Kenngrößen je Material verglichen. Das Objekt wird auf dieser Basis einer bestimmten Materialklasse zugeordnet.

Claims

PATENTANSPRÜCHE
1. Vorrichtung zur Trennung von Schüttgütern mit Hilfe einer Ausblaseinrichtung mit an einer einem Förderband (20) nachgeordneten Fallstrecke angeordneten Ausblasdüsen, mit einer Röntgenquelle, rechnergesteuerten Auswertemitteln und Sensormitteln (10)
wobei die Ausblasdüsen von den rechnergestützten Auswertemitteln in Abhängigkeit von Sensorsignalen ansteuerbar sind, die aus einer den Schüttgutstrom auf dem Förderband durchdringenden, aus der Röntgenquelle emittierten und in den Sensormitteln aufgefangenen Strahlung resultieren, gekennzeichnet durch
wenigstens zwei Filtereinrichtungen zum Passierenlassen von Röntgenstrahlung in Relation zueinander unterschiedlicher Energiespektren, die vor dem wenigstens einen Sensormittel (10) angeordnet sind,
Zeilensensoren mit einer Vielzahl von quer zu dem Förderband (20) angeordneten einzelnen Pixeln als Sensormittel.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zu jedem Filter eine Sensorzeile vorgesehen ist.
3. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß eine der Breite des Förderbandes entsprechende Sensorzeile durch aneinandergereihte Photodiodenarrays, deren aktive Fläche mit einem fluoreszierenden Papier bedeckt ist, gebildet wird.
4. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Filter Metallfolien sind, durch die Röntgenstrahlung zueinander unterschiedliche Energieniveaus transmittiert.
5. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Filter unterhalb des Transportbandes (20) vor den Sensoren angeordnet sind, und eine ein Bremsspektrum erzeugende Röntgenröhre (12) oberhalb des Förderbandes (20) angeordnet ist.
6. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Vorrichtung mit einem Abschirmkasten (14) im wesentlichen oberhalb des Förderbandes (20) versehen ist, der das Förderband (20) und die Ausblasstrecke (22) um- gibt, als Abdeckung (16) das Förderband eine Strecke vor der Röntgenquelle abdeckt, wobei am Beginn des Laufbands eine schräge Schütte (18) den Eingangsquerschnitt abdeckt.
7. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß mehr als zwei Filter zur Nutzung von mehr als zwei Energieniveaus vorgesehen sind.
8. Verfahren zur Trennung von Schüttgütern mit Hilfe einer Ausblaseinrichtung mit an einer einem Förderband (20) nachgeordneten Fallstrecke angeordneten Ausblasdüsen, wobei die Ausblasdüsen von rechnergestützten Auswertemitteln in Abhängigkeit von Sensorergebnissen einer, den Schüttgutstrom auf dem Förderband durchdringenden, aus einer Röntgenquelle emittierten und in Sensormitteln aufgefangenen Strahlung gesteuert werden, gekennzeichnet durch
Filtern der die Schüttgutteilchen passierten Röntgenstrahlung in wenigstens zwei unterschiedlichen Spektren zum ortsaufgelösten Auffangen der die Schüttgutteilchen passierenden Röntgenstrahlung in wenigstens einem Zeilensensor integriert über einen vorbe- stimmten Energiebereich.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß eine Z-Klassifizierung und Normierung von Bildbereichen zur Bestimmung der atomaren Dichteklasse auf- grund der Sensorsignale der in den wenigstens zwei Sensorzeilen aufgefangenen Rönt- genphotonen unterschiedlicher Energiespektren erfolgt.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß eine Segmentierung der Eigenschaftsklassenbildung zur Steuerung der Ausblasdüsen auf der Grundlage sowohl der erfassten mittleren Transmission der Schüttgutteilchen in den durch die wenigstens zwei Sensorzeilen aufgefangenen unterschiedlicher Röntgenenergiespektren als auch der durch eine Z-Normierung gewonnenen Dichteinformation erfolgt.
PCT/DE2004/002615 2004-01-12 2004-11-25 Vorrichtung und verfahren zur trennung von schüttgütern WO2005065848A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002531172A CA2531172C (en) 2004-01-12 2004-11-25 Device and method for separating bulk materials
AU2004311489A AU2004311489B2 (en) 2004-01-12 2004-11-25 Device and method for separating bulk materials
EP04802824A EP1703996B1 (de) 2004-01-12 2004-11-25 Vorrichtung und verfahren zur trennung von schüttgütern
DE502004005299T DE502004005299D1 (de) 2004-01-12 2004-11-25 Vorrichtung und verfahren zur trennung von schüttgütern
ZA2006/00342A ZA200600342B (en) 2004-01-12 2006-01-09 Device and method for deparating bulk materials
US11/561,224 US20070086568A1 (en) 2004-01-12 2006-11-17 Device and method for separating bulk materials
US12/732,834 US20100185319A1 (en) 2004-01-12 2010-03-26 Device and Method for Separating Bulk Material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004001790A DE102004001790A1 (de) 2004-01-12 2004-01-12 Vorrichtung zur Trennung von Schüttgütern
DE102004001790.5 2004-01-12

Publications (1)

Publication Number Publication Date
WO2005065848A1 true WO2005065848A1 (de) 2005-07-21

Family

ID=34716502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002615 WO2005065848A1 (de) 2004-01-12 2004-11-25 Vorrichtung und verfahren zur trennung von schüttgütern

Country Status (10)

Country Link
US (1) US20070086568A1 (de)
EP (1) EP1703996B1 (de)
AT (1) ATE375825T1 (de)
AU (1) AU2004311489B2 (de)
CA (1) CA2531172C (de)
DE (2) DE102004001790A1 (de)
ES (1) ES2295954T3 (de)
RU (1) RU2344885C2 (de)
WO (1) WO2005065848A1 (de)
ZA (1) ZA200600342B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011993A1 (de) 2006-07-27 2008-01-31 Thomas Adamec Verfahren zum zerkleinern von verbundstoffmaterialien
DE202009014431U1 (de) 2009-10-26 2010-03-18 Procon Gmbh Vorrichtung zur Anwendung der Röntgenfluoreszenzanalyse für die Trennung eines Vielkomponentensystems
EP2198983A1 (de) 2008-12-19 2010-06-23 Omya Development AG Verfahren zur Trennung von Mineralunreinheiten aus Calcium-Carbonat-haltigen Steinen mittels Röntgensortierung
EP2862950B1 (de) 2012-10-08 2017-03-15 Hydro Aluminium Recycling Deutschland GmbH Verfahren zur mechanischen Aufbereitung von Aluminiumschrott
US9945394B2 (en) 2012-10-26 2018-04-17 Hydac Technology Gmbh Separating device for fluid media
EP3839886A1 (de) * 2019-12-18 2021-06-23 Vito NV Verfahren und system zur durchführung einer charakterisierung von einem oder mehreren materialien
CN114130704A (zh) * 2021-09-17 2022-03-04 中国人民解放军63653部队 一种分选设备及车辆

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2359691B1 (es) * 2007-12-27 2012-03-30 Marcos Furió Bruno M�?quina de tr�?a de part�?culas emisoras de radiación (con o sin estimulación f�?sica) a partir de materiales geológicos.
DE102009056813B4 (de) * 2009-12-04 2018-04-12 Weingart Und Kubrat Gmbh Verfahren und Vorrichtung zur Trennung unterschiedlicher Materialsorten einer Materialmischung
WO2012094568A2 (en) 2011-01-07 2012-07-12 Huron Valley Steel Corporation Scrap metal sorting system
US8812149B2 (en) * 2011-02-24 2014-08-19 Mss, Inc. Sequential scanning of multiple wavelengths
RU2569528C9 (ru) * 2014-10-13 2016-02-27 Открытое акционерное общество "Ведущий научно-исследовательский институт химической технологии" Способ покусковой сепарации руд
CN109772742A (zh) * 2019-01-28 2019-05-21 深圳市贝优通新能源技术开发有限公司 一种具有分拣功能的自动化x射线检测装置
DE102020113814A1 (de) 2020-05-22 2021-11-25 minrocon GmbH Schüttgutanalysevorrichtung, Schüttguttrennvorrichtung sowie Verfahren zur Analyse und/oder Trennung von Schüttgütern
WO2022035331A1 (en) 2020-08-14 2022-02-17 Comex Polska Sp. Z O.O. Material analysis and separation system for the determination of their chemical composition and material analysis and separation method for the determination of their chemical composition
DE102022114041A1 (de) 2022-06-02 2023-12-07 minrocon GmbH Verfahren zur orientierten Dichteauswertung an Einzelkörnern eines Schüttgutstromes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341094A2 (de) * 1988-05-06 1989-11-08 Gersan Establishment Identifikation von spezifischen Objekten oder Gebieten
US5339962A (en) * 1990-10-29 1994-08-23 National Recovery Technologies, Inc. Method and apparatus for sorting materials using electromagnetic sensing
GB2285506A (en) * 1994-01-07 1995-07-12 De Beers Ind Diamond Detecting diamond inclusions in kimberlite particles
WO2003046533A2 (en) * 2001-11-20 2003-06-05 Spectral Fusion Technologies Limited X-ray grading apparatus and process

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0064810A1 (de) * 1981-04-28 1982-11-17 Sphere Investments Limited Sortieren von stückigem Gut
US4626688A (en) * 1982-11-26 1986-12-02 Barnes Gary T Split energy level radiation detection
JPS6193936A (ja) * 1984-10-13 1986-05-12 Furukawa Electric Co Ltd:The 放射線による被測定物の組成分析方法
JPS61167846A (ja) * 1985-01-21 1986-07-29 Furukawa Electric Co Ltd:The X線による被測定物の組成分析方法
US5138167A (en) * 1991-01-23 1992-08-11 University Of Alabama - Birmingham Split energy radiation detection
US5841832A (en) * 1991-02-13 1998-11-24 Lunar Corporation Dual-energy x-ray detector providing spatial and temporal interpolation
GB9211734D0 (en) * 1992-06-03 1992-07-15 Gersan Ets Prospecting for diamonds
AUPN226295A0 (en) * 1995-04-07 1995-05-04 Technological Resources Pty Limited A method and an apparatus for analysing a material
DE10003562A1 (de) * 2000-01-27 2001-08-16 Commodas Gmbh Vorrichtung und Verfahren zum Aussortieren von metallischen Fraktionen aus einem Schüttgutstrom
NL1016916C2 (nl) * 2000-12-15 2002-07-02 Univ Delft Tech Werkwijze en inrichting voor het analyseren en het scheiden van materiaalstromen.
JP2003279503A (ja) * 2002-03-22 2003-10-02 Shimadzu Corp X線検査装置
US7099433B2 (en) * 2004-03-01 2006-08-29 Spectramet, Llc Method and apparatus for sorting materials according to relative composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341094A2 (de) * 1988-05-06 1989-11-08 Gersan Establishment Identifikation von spezifischen Objekten oder Gebieten
US5339962A (en) * 1990-10-29 1994-08-23 National Recovery Technologies, Inc. Method and apparatus for sorting materials using electromagnetic sensing
GB2285506A (en) * 1994-01-07 1995-07-12 De Beers Ind Diamond Detecting diamond inclusions in kimberlite particles
WO2003046533A2 (en) * 2001-11-20 2003-06-05 Spectral Fusion Technologies Limited X-ray grading apparatus and process

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8074908B2 (en) 2006-07-27 2011-12-13 Thomas Adamec Process for the comminution of composite materials
WO2008011993A1 (de) 2006-07-27 2008-01-31 Thomas Adamec Verfahren zum zerkleinern von verbundstoffmaterialien
US8847094B2 (en) 2008-12-19 2014-09-30 Omya International Ag Method for separating mineral impurities from calcium carbonate-containing rocks by X-ray sorting
EP2198983A1 (de) 2008-12-19 2010-06-23 Omya Development AG Verfahren zur Trennung von Mineralunreinheiten aus Calcium-Carbonat-haltigen Steinen mittels Röntgensortierung
US8742277B2 (en) 2008-12-19 2014-06-03 Omya International Ag Method for separating mineral impurities from calcium carbonate-containing rocks by X-ray sorting
US8841571B2 (en) 2008-12-19 2014-09-23 Omya International Ag Method for separating mineral impurities from calcium carbonate-containing rocks by X-ray sorting
DE202009014431U1 (de) 2009-10-26 2010-03-18 Procon Gmbh Vorrichtung zur Anwendung der Röntgenfluoreszenzanalyse für die Trennung eines Vielkomponentensystems
EP2862950B1 (de) 2012-10-08 2017-03-15 Hydro Aluminium Recycling Deutschland GmbH Verfahren zur mechanischen Aufbereitung von Aluminiumschrott
US9945394B2 (en) 2012-10-26 2018-04-17 Hydac Technology Gmbh Separating device for fluid media
EP3839886A1 (de) * 2019-12-18 2021-06-23 Vito NV Verfahren und system zur durchführung einer charakterisierung von einem oder mehreren materialien
WO2021123197A1 (en) * 2019-12-18 2021-06-24 Vito Nv A method and system for performing characterization of one or more materials
EP4198891A1 (de) * 2019-12-18 2023-06-21 Vito NV Verfahren und system zur durchführung der charakterisierung eines oder mehrerer materialien
US11756201B2 (en) 2019-12-18 2023-09-12 Vito Nv Method and system for performing characterization of one or more materials
CN114130704A (zh) * 2021-09-17 2022-03-04 中国人民解放军63653部队 一种分选设备及车辆
CN114130704B (zh) * 2021-09-17 2023-08-18 中国人民解放军63653部队 一种分选设备及车辆

Also Published As

Publication number Publication date
CA2531172C (en) 2007-03-06
US20070086568A1 (en) 2007-04-19
EP1703996B1 (de) 2007-10-17
CA2531172A1 (en) 2005-07-21
ES2295954T3 (es) 2008-04-16
EP1703996A1 (de) 2006-09-27
DE102004001790A1 (de) 2005-08-04
DE502004005299D1 (de) 2007-11-29
RU2344885C2 (ru) 2009-01-27
ZA200600342B (en) 2006-12-27
RU2006104365A (ru) 2006-08-27
ATE375825T1 (de) 2007-11-15
AU2004311489B2 (en) 2007-03-29
AU2004311489A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
EP1703996B1 (de) Vorrichtung und verfahren zur trennung von schüttgütern
EP3055079B1 (de) Vorrichtung und verfahren zum sortieren von schüttgut
EP1186909B1 (de) Verfahren zur Ermittlung der Materialart
DE69629906T3 (de) Nachweis von sprengstoffen und anderer schmuggelware unter verwendung transmittierter und gestreuter röntgenstrahlung
EP2490650B1 (de) SENSORVORRICHTUNG FÜR EINE ALS KAPSELFÜLL- UND VERSCHLIEßMASCHINE AUSGEBILDETE VERPACKUNGSMASCHINE ODER FÜR EINE KAPSELKONTROLLVORRICHTUNG
US20100185319A1 (en) Device and Method for Separating Bulk Material
EP2335837B1 (de) Vorrichtung und Verfahren zur Abtrennung von schweren, mit unerwünschten Zusammensetzungen anfallenden Brocken
DE102006023309A1 (de) Verfahren und Vorrichtung zur Erkennung von Material mittels Schnellneutronen und eines kontinuierlichen spektralen Röntgenstrahles
EP1711800A1 (de) Verfahren und vorrichtung zur bestimmung eines objektmaterials
DE102009027213A1 (de) Vorrichtung und Verfahren zum Echtzeitkennzeichnen eines Substanzidentifikationssystems
EP3336208B1 (de) Verfahren zur mechanischen aufbereitung von aluminiumschrott
WO2013033572A2 (en) Material sorting technology
DE112004000879T5 (de) Verfahren und Vorrichtung zur Bestimmung eines Teilchenparameters und der Prozessorleistung in einem Kohle- und Mineral-Verarbeitungssystem
AT15295U1 (de) Aussortieren von mineralienhaltigen Objekten oder Kunststoff-Objekten
DE4228388B4 (de) Vorrichtung zur Bestimmung von Partikelgrößen und/oder Partikelgrößenverteilungen
DE102014103168A1 (de) Verfahren zum Freimessen von Schüttgut
EP3318339B1 (de) Vorrichtung und verfahren zur sortierung von aluminiumschrott
EP1581802A1 (de) Verfahren und vorrichtung zur selektion von recyclingglas
DE19824039B4 (de) Verfahren und Vorrichtung zur Prüfung von Schüttmaterial, insbesondere von Bauschutt und/oder Bodenaushub, auf den Gehalt an Radionukliden
EP2711701A1 (de) Verfahren zum Durchleuchten von Produkten
DE102005010867A1 (de) Vorrichtung und Verfahren zur Materialanalyse von Förderströmen aus Partikeln
DE102005039642B3 (de) Kollimatorensystem für eine Röntgendiffraktometrie, Röntgenbeugungsscanner sowie Verfahren zur Durchführung einer Röntgenbeugungsanalyse
EP2217946B1 (de) Vorrichtung zur online-bestimmung des gehalts einer substanz und verfahren unter verwendung einer solchen vorrichtung
WO1997033160A1 (de) Verfahren und vorrichtung zur automatischen radioskopischen qualitätskontrolle von nahrungsmitteln
WO2023232191A1 (de) Verfahren zur orientierten dichteauswertung an einzelkörnern eines schüttgutstromes

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2531172

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2006/00342

Country of ref document: ZA

Ref document number: 200600342

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2004311489

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004802824

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004311489

Country of ref document: AU

Date of ref document: 20041125

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004311489

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006104365

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2004802824

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2004311489

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2004802824

Country of ref document: EP