WO2005063542A1 - Hydrauliksystem - Google Patents

Hydrauliksystem Download PDF

Info

Publication number
WO2005063542A1
WO2005063542A1 PCT/EP2003/013929 EP0313929W WO2005063542A1 WO 2005063542 A1 WO2005063542 A1 WO 2005063542A1 EP 0313929 W EP0313929 W EP 0313929W WO 2005063542 A1 WO2005063542 A1 WO 2005063542A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
cylinder
piston
hydraulic circuit
steep
Prior art date
Application number
PCT/EP2003/013929
Other languages
English (en)
French (fr)
Inventor
Artur Grunwald
Theodor Gassmann
Horst GÖRLICH
Jean-Jacques Carré
Original Assignee
Gkn Driveline International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gkn Driveline International Gmbh filed Critical Gkn Driveline International Gmbh
Priority to AU2003289988A priority Critical patent/AU2003289988A1/en
Priority to DE50313084T priority patent/DE50313084D1/de
Priority to AT03782339T priority patent/ATE480434T1/de
Priority to EP03782339A priority patent/EP1694546B1/de
Priority to PCT/EP2003/013929 priority patent/WO2005063542A1/de
Publication of WO2005063542A1 publication Critical patent/WO2005063542A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/12Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid
    • B60T13/16Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being liquid using pumps directly, i.e. without interposition of accumulators or reservoirs
    • B60T13/161Systems with master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/321Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration deceleration
    • B60T8/328Systems sharing components with other fluid systems onboard the vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D25/082Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member the line of action of the fluid-actuated members co-inciding with the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0203Control by fluid pressure with an accumulator; Details thereof

Definitions

  • the invention relates to a hydraulic system in a motor vehicle, which comprises a primary hydraulic circuit with a pump which generates a regulated admission pressure, at least one primary actuating or servo cylinder being connected to the hydraulic circuit and acting on power-operated assemblies.
  • Hydraulic circuits with pumps driven by an electric motor or by the internal combustion engine are available, for example, for the brake system assemblies, hydraulically operated manual transmissions or hydraulic power steering in the motor vehicle.
  • the hydraulic circuits usually include pressure accumulator elements so that a high admission pressure is always available regardless of the pump drive.
  • the object of the invention is to provide simplified and inexpensive hydraulic systems in motor vehicles.
  • the solution for this is a hydraulic system in a motor vehicle, comprising a primary hydraulic circuit with a pump for generating a regulated admission pressure, to which at least one primary actuating or servo cylinder is connected, which acts on power-operated assemblies, and a secondary hydraulic circuit, which is connected to the primary hydraulic circuit and comprises pressure control valves, a pressure sensor and at least one secondary steep cylinder, which acts on a friction clutch in the drive train of the motor vehicle.
  • the existing hydraulic circuit of an electro-hydraulic brake system (EHB) or a traction control (TC) acting via a brake intervention is used in order to likewise effect the hydraulic force adjustment of a friction clutch in the vehicle drive train with little additional construction effort.
  • the existing primary hydraulic circuit essentially comprises an electric motor, a pump and a pressure accumulator as well as corresponding control valves on the actuating or servo cylinders.
  • the secondary hydraulic circuit which comprises two control valves and a pressure sensor.
  • a pressure sensor is preferably arranged on the hydraulic steep cylinder.
  • the primary hydraulic circuit and the secondary hydraulic circuit are openly connected and have a uniform medium. Since the hydraulic fluid in the existing primary hydraulic circuit and therefore also in the secondary hydraulic circuit is usually brake fluid, while the friction clutch works with automatic transmission fluid (ATF, Automatic Transmission Fluid), various suggestions are made in order to achieve a mutual sealing of the different fluid systems, which are explained in more detail below.
  • ATF Automatic Transmission Fluid
  • a first possibility is that the piston of the secondary actuating cylinder seals the hydraulic fluid in the secondary hydraulic circuit against the oil filling of the multi-plate clutch. According to this, this means that the seal in the steep cylinder itself takes place, with the piston forming the system boundary.
  • a transfer cylinder is provided between the secondary hydraulic circuit and the secondary steep cylinder and that a piston in the transfer cylinder seals the hydraulic fluid in the hydraulic circuit against a transfer medium acting on the piston of the secondary actuating cylinder, in particular oil, which acts on the piston of the acts secondary actuator. If necessary, a third neutral medium can be used between the secondary hydraulic circuit and the oil filling of the multi-plate clutch. As a rule, however, the piston in the transfer cylinder is the system boundary between the two liquids.
  • the piston of the actuating cylinder designed as an annular piston carries two groups of seals, one of which is adapted to hydraulic fluid and the other to the oil filling of the multi-plate clutch.
  • the cylindrical piston of the transfer cylinder only two sealing rings are required.
  • An annular space with a neutral sealing medium can also be provided between the seals.
  • the adjustment mentioned can concern materials and tolerances.
  • the piston of the transfer cylinder can be designed as a stepped piston for pressure transmission.
  • an elastic membrane is arranged in the secondary steep cylinder, which seals the hydraulic fluid in the secondary hydraulic circuit against a transmission medium, in particular oil, acting on the piston of the secondary actuating cylinder.
  • a transfer cylinder is provided between the hydraulic circuit and the secondary steep cylinder and that an elastic membrane is arranged in the transfer cylinder, which seals the hydraulic fluid in the secondary hydraulic circuit against a transfer medium, in particular oil, acting on the piston in the secondary steep cylinder.
  • the membranes mentioned are constructed from two different layers, each of which is adapted in its specification to the liquid present. This relates to line of material selection.
  • oil-filled multi-plate clutches with a hydraulic steep cylinder are also proposed for use in hydraulic systems according to the invention.
  • these are characterized in that the piston in the steep cylinder carries two groups of sealing rings with different specifications, of which the coupling-side sealing rings are adapted to oil and the hydraulic-side sealing rings to hydraulic fluid;
  • a transfer cylinder is hydraulically connected to the steep cylinder and in that the piston in the transfer cylinder carries two sealing rings with different specifications, of which the adjusting cylinder-side sealing ring is adapted to a transmission medium, in particular oil, and the hydraulic circuit-side sealing ring to hydraulic fluid ;
  • an elastic membrane is arranged in the steep cylinder, which seals the hydraulic fluid in the secondary hydraulic circuit against a transmission medium, in particular oil, acting on the piston in the steep cylinder; and according to a fourth embodiment, that a transfer cylinder is hydraulically connected to the steep cylinder and that an elastic membrane is arranged in
  • the shape and material of the sealing means are adapted to the media with which they are in contact.
  • FIG. 1 shows a hydraulic system according to the invention, in which primary steep cylinders are formed by brake cylinders and a secondary steep cylinder is integrated in a multi-plate clutch for the drive train of a motor vehicle, in a first embodiment
  • FIG. 2 shows a hydraulic system according to the invention, in which primary steep cylinders are formed by brake cylinders and a secondary steep cylinder is integrated in a multi-plate clutch for the drive train of a motor vehicle, in a second embodiment
  • Figure 3 shows a multi-plate clutch with a secondary steep cylinder for a hydraulic system according to Figures 1 and 2 in a first embodiment
  • Figure 4 shows a multi-plate clutch with a secondary steep cylinder for a hydraulic system according to Figures 1 and 2 in a second embodiment
  • Figure 5 shows a multi-plate clutch with a secondary steep cylinder for a hydraulic system according to Figures 1 and 2 in a third embodiment
  • Figure 6 shows a multi-plate clutch with a secondary steep cylinder for a hydraulic system according to Figures 1 and 2 in a fourth embodiment
  • FIG. 7 shows a multi-plate clutch with a secondary steep cylinder for a hydraulic system according to FIGS. 1 and 2 in a fifth embodiment
  • FIG. 8 shows a multi-plate clutch with a secondary steep cylinder for a hydraulic system according to FIGS. 1 and 2 in a sixth embodiment.
  • FIG. 1 shows a hydraulic system according to the invention, the basic scheme of which is known from US Pat. No. 6,158,825.
  • FIG. 2 shows a hydraulic system according to the invention, the basic scheme of which is known from DE 698 05 851 T2.
  • Figures 1 and 2 are first described together below.
  • the hydraulic system is operated with external energy in normal operation, while it is operated in emergency operation with brake pedal force generated by the driver. All valve positions shown correspond to the last-mentioned operating mode, while for the normal operating mode the other position of the control valves is assumed, all of which are designed as 2/2-way valves.
  • a pump 11 is driven by an electric motor 12, with a pressure accumulator 14 and a pressure sensor 15 being arranged downstream of the pump 12.
  • the pressure in the pressure accumulator 14 acts on control valves 17R, 17L in advance to the brake cylinders 21 L, 21 R of a left front wheel brake VL and a right front wheel brake VR and control valves 19L, 19R in advance to the brake cylinders 23L, 23R of a left rear wheel brake HL and a right rear wheel brake MR.
  • a pressure sensor 25L, 25R, 27L, 27R is arranged on each of the brake cylinders 21L, 21R, 23L, 23R.
  • the returns are connected to a reservoir 33.
  • the pump 11 feeds from the reservoir 33, as does a master brake cylinder 34, which can be actuated by a brake pedal 35 and to which a displacement sensor 36 is attached.
  • the master brake cylinder 34 is separated from the aforementioned control valves by a safety valve 37 (FIG. 1) or by two safety valves 37L, 37R (FIG. 2).
  • the master brake cylinder 34 works exclusively against a pedal pressure simulator 38 on which a pressure sensor 39 is arranged.
  • the control valves are opened and closed by computer control, in particular frequency-modulated, the working pressure coming from the pressure accumulator 14 and the pump 11 being driven as required.
  • a secondary hydraulic circuit with a steep cylinder 41 for a multi-plate clutch 71 in the drive train of the vehicle is connected via connecting lines drawn in dashed lines
  • a control valve 44 and in the return 47 of the secondary hydraulic circuit a control valve 46 is arranged. These valves are also opened and closed by computer control for actuating the secondary actuating cylinder 41, in particular frequency-modulated.
  • a pressure sensor 48 can be provided in the feed to the steep cylinder 41. Alternatively, a pressure sensor 49 can be arranged directly on the steep cylinder 41. In the event of a system fault, the valves, in particular the safety valves 37, fall into the position shown in the figure. As a result, according to FIG.
  • the master brake cylinder acts directly on the brake cylinders 21 L, 21 R of the front wheel brakes VL, VR via the open control valves 29L, 29R when the control valves 17L, 17R are closed.
  • the action of the check valve 16 prevents the rear wheel brakes HL, HR from being acted upon.
  • actuation of the secondary actuating cylinder 41 is not desired and is also prevented. In this way, the effect of the front wheel brakes with pedal force is maintained in emergency operation.
  • FIG. 1 the master brake cylinder acts directly on the brake cylinders 21 L, 21 R of the front wheel brakes VL, VR via the open control valves 29L, 29R when the control valves 17L, 17R are closed.
  • the action of the check valve 16 prevents the rear wheel brakes HL, HR from being acted upon.
  • actuation of the secondary actuating cylinder 41 is not desired and is also prevented. In this way, the effect of the front wheel brakes with pedal force is maintained in emergency operation.
  • FIG. 1 the master
  • the master brake cylinder 34 is connected to the primary actuating cylinders 21 L, 21 R of the front wheels VL, VR via the safety valves 37L, 37R, with all control valves 17L, 17R, 19L, 19R lying in the feed line are closed and all the valves 29L, 29R, 31L, 31R in the return line are open.
  • Check valves 16L, 16R which are usually in the forward flow, simultaneously prevent pressure supply to the steep cylinders 23L, 23R of the rear wheel brakes HL, HR and pressure supply to the secondary actuating cylinder 41 of the multi-plate clutch 71.
  • a multi-plate clutch 71 with a secondary steep cylinder 41 according to the previous FIGS. 1 and 2 is shown as an enlarged detail.
  • An input shaft 73 with a flange 74 is rotatably mounted in a housing 72, the input shaft carrying the clutch hub 77 of the multi-plate clutch 71.
  • the multi-plate clutch 71 further comprises a clutch basket 78 which can be connected to a hollow shaft 80 into which an output shaft can be inserted.
  • the clutch plates connected alternately as inner plates 75 to the clutch hub 77 and as outer plates 76 to the clutch basket 78 are supported on a flange part 79 of the clutch hub 77 and are axially acted upon by a pressure plate 81 which is displaceable in the clutch basket 78.
  • Pressure plate 81 and clutch hub 77 are axially supported against one another via a plate spring 82.
  • the annular piston 43 of the secondary actuating cylinder 41 acts on the pressure plate 81 via an axial bearing 83 when hydraulic medium is pressurized.
  • the interior 84 of the multi-plate clutch 71 is filled with automatic transmission fluid (ATF), which is referred to as oil filling in the following.
  • ATF automatic transmission fluid
  • hydraulic fluid is supplied directly to the annular cylinder space 42 of the actuating cylinder 41 via a supply line 55 and a housing bore 53.
  • the annular piston 43 is sealed against the oil-filled interior 84 of the multi-plate clutch 71 by two sets of inner ring seals 56, 57 and two sets of outer ring seals 58, 59.
  • a pressure sensor 49 is connected to the ring cylinder 42 via a housing bore 54.
  • the annular piston 43 is displaced in the direction of the pressure plate 81, so that the multi-plate clutch 71 is closed.
  • the plate spring 82 presses the pressure plate 81 back against the annular piston 43, so that the multi-plate clutch 71 is relieved.
  • FIG. 4 in deviation from FIG. 3, only one inner ring seal 56 and one outer ring seal 58 are provided on the annular piston 43 of the actuating cylinder.
  • a pressure transmitter 61 is inserted, which forms a cylinder chamber 62 in which a separating piston 63 is arranged to be axially displaceable.
  • a sealing medium 69 can be inserted between the seals 64, 65.
  • the transfer cylinder 61 transfers the pressure in the line 55 essentially unchanged via the housing bore 53 to the cylinder space 42 of the actuating cylinder 41. The mode of operation is otherwise described as for FIG. 3.
  • a transfer cylinder 61 is connected to the feed line 55 and is spatially separated from the housing.
  • the transfer cylinder 61 is connected to the housing bore 53 via an intermediate line 66. Otherwise, the structure and function are the same as in FIG. 3, so that reference is made to the previous descriptions in this respect.
  • a transfer cylinder 61 ' in deviation from FIG. 5, a transfer cylinder 61 'is connected to the feed line 55 and is designed as a stepped cylinder.
  • FIG. 7 shows an embodiment which largely corresponds to that shown in FIG. 3.
  • a feed line 55 is connected to the cylinder space 42 of the actuating cylinder 41 via a housing bore 53.
  • the annular piston 43 has only an inner ring seal 56 and an outer ring seal 58.
  • an annular membrane 67 is inserted sealingly within the cylinder chamber 42 and completely separates the hydraulic fluid to the right of the annular membrane from a transmission medium to the left of the annular membrane, which acts on the annular piston 43.
  • This transmission medium preferably corresponds to the oil in the interior 84 of the multi-plate clutch 71.
  • a pressure transmitter 61 ' is connected to the housing 72, which is connected to the cylinder chamber 42 of the actuating cylinder 41 via a housing bore 53.
  • an elastic membrane 69 is inserted sealingly into the cylinder chamber 62 'of the pressure transmitter 61', which hermetically separates the hydraulic fluid on the right of the membrane from a transmission medium on the left of the membrane, which acts on the annular piston 43 of the actuating cylinder 41.
  • this transfer medium preferably coincides with the oil in the interior 84 of the multi-plate clutch 71.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Transportation (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Fluid Gearings (AREA)

Abstract

Hydrauliksystem in einem Kraftfahrzeug, umfassend einen primären Hydraulikkreis mit einer Pumpe (11) zur Erzeugung eines geregelten Vordruckes, an den zumindest ein primärer Stell- oder Servozylinder (21, 23) angeschlossen ist, der auf kraftbetätigte Baugruppen einwirkt, mit einem sekundären Hydraulikkreis (45, 47), der an den primären Hydraulikkreis angeschlossen ist und Druckregelventile (44, 46), einen Drucksensor (48, 49) und zumindest einen sekundären Steilzylinder (41) umfasst, der auf eine Reibungskupplung (71) im Antriebsstrang des Kraftfahrzeuges einwirkt.

Description

GKN Driveline International GmbH 05. Dezember 2003
Hauptstraße 150 Ne/bec (20030423) 53797 Lohmar Q03042WO00
Hydrauliksystem
Beschreibung
Die Erfindung betrifft ein Hydrauliksystem in einem Kraftfahrzeug, das einen primären Hydraulikkreis mit einer Pumpe umfaßt, die einen geregelten Vordruck erzeugt, wobei an den Hydraulikkreis zumindest ein primärer Stell- oder Servozylinder angeschlossen ist, der auf kraftbetätigte Baugruppen einwirkt. Hydraulikkreise mit von einem Elektromotor oder von der Brennkraftmaschine angetriebenen Pumpen stehen beispielsweise für die Baugruppen Bremsanlage, hydraulisch betätigte Schaltgetriebe oder hydraulische Servolenkung im Kraftfahrzeug zur Verfügung. Die Hydraulikkreise schließen hierbei in der Regel Druckspeicherelemente ein, damit ein hoher Vordruck unabhängig vom Pumpenantrieb ständig zur Verfügung steht.
Weitere Baugruppen, die einen Hydraulikkreis zur kraftbetätigten Verstellung benötigen, stellen die Sperrkuppungen in Differentialgetrieben oder die Zuschaltkupplung für eine bedarfsweise antreibbare Antriebsachse dar. Der hierfür erforderliche Hydraulikkreis mit von einem Elektromotor angetriebener Pumpe stellt einen wesentli- chen Kostenfaktor in diesen Baugruppen dar. Im übrigen erhöhen die zusätzlichen Hilfsaggregate Elektromotor und Pumpe das Fahrzeuggewicht und den Energieverbrauch.
Hiervon ausgehend liegt der Erfindung die Aufgabe zugrunde, vereinfachte und ver- billigt aufgebaute Hydrauliksysteme in Kraftfahrzeugen zur Verfügung zu stellen. Die Lösung hierfür besteht in einem Hydrauliksystem in einem Kraftfahrzeug, umfassend einen primären Hydraulikkreis mit einer Pumpe zur Erzeugung eines geregelten Vordruckes, an den zumindest ein primärer Stell- oder Servozylinder angeschlossen ist, der auf kraftbetätigte Baugruppen einwirkt, sowie einen sekundären Hydraulikkreis, der an den primären Hydraulikkreis angeschlossen ist und Druckregelventile, einen Drucksensor sowie zumindest einen sekundären Steilzylinder umfaßt, der auf eine Reibungskupplung im Antriebsstrang des Kraftfahrzeuges einwirkt.
Aus diese Weise wird beispielsweise der vorhandene Hydraulikkreis einer elektrohy- draulischen Bremsanlage (EHB) bzw. einer über einen Bremseneingriff wirkenden Traktionskontrolle (TC) herangezogen, um die hydraulische Kraftverstellung einer Reibungskupplung im Fahrzeugantriebsstrang bei geringem zusätzlichen Bauaufwand ebenfalls zu bewirken. Der vorhandene primäre Hydraulikkreis umfaßt im we- sentlichen einen Elektromotor, eine Pumpe und einen Druckspeicher sowie entsprechende Steuerventile an den Stell- oder Servozylindem. Für die erfindungsgernäße Druckversorgung und Ansteuerung der Reibungskupplung sind im wesentlichen nur zusätzliche Anschlüsse im Vorlauf und im Rücklauf des primären Hydraulikkreises für den sekundären Hydraulikkreis erforderlich, der zwei Steuerventile und einen Druck- sensor umfaßt. Der Kolben des Stellzylinders für die Reibungskupplung wird mit hydraulischem Druck des Hydraulikmediums im sekundären Hydraulikkreis unmittelbar oder mittelbar beaufschlagt und drückt das Lamellenpaket der Reibungskupplung zusammen, wodurch die entsprechende Funktion bewirkt wird, z. B. das Sperren des Differentialgetriebes oder das Ankuppeln der bedarfsweise anzutreibenden Achse. Zur Darstellung eines geschlossenen Regelkreises wird vorzugsweise ein Drucksensor am hydraulischen Steilzylinder angeordnet.
Der primäre Hydraulikkreis und der sekundäre Hydraulikkreis sind offen verbunden und haben ein einheitliches Medium. Da die Druckflüssigkeit im vorhandenen primä- ren Hydraulikkreis und damit auch im sekundären Hydraulikkreis in der Regel Bremsflüssigkeit ist, während die Reibungskupplung mit Automatikgetriebeflüssigkeit (ATF, Automatic Transmission Fluid) arbeitet, werden verschiedene Vorschläge gemacht, um eine gegenseitige Abdichtung der verschiedenen Flüssigkeitssysteme zu erreichen, die nachstehend näher erläutert werden.
Eine erste Möglichkeit besteht darin, daß der Kolben des sekundären Stellzylinders das Hydraulikfluid im sekundären Hydraulikkreis gegen die Ölfüllung der Lamellenkupplung abdichtet. Das heißt hiernach, daß die Abdichtung im Steilzylinder selber erfolgt, wobei der Kolben die Systemgrenze bildet. Eine andere Möglichkeit besteht darin, daß ein Übertragerzylinder zwischen dem sekundären Hydraulikkreis und dem sekundären Steilzylinder vorgesehen ist und daß ein Kolben im Übertragerzylinder das Hydraulikfluid im Hydraulikkreis gegen ein auf den Kolben des sekundären Stellzylinders einwirkendes Übertragermedium, insbesondere Öl, abdichtet, das auf den Kolben des sekundären Stellzylinders einwirkt. Hierbei kann gegebenenfalls zwischen dem sekundären Hydraulikkreis und der Ölfüllung der Lamellenkupplung noch ein drittes neutrales Medium eingesetzt werden. In der Regel ist jedoch der Kolben im Übertragerzylinder die Systemgrenze zwischen den beiden Flüssigkeiten.
Vorzugsweise gilt, daß der als Ringkolben ausgebildete Kolben des Stellzylinders zwei Gruppen von Dichtungen trägt, von denen die eine an Hydraulikfluid und die andere an die Ölfüllung der Lamellenkupplung angepaßt ist. Im Falle des zylindrischen Kolbens des Übertragerzylinders sind entsprechend nur zwei Dichtringe erfor- derlich. Zwischen den Dichtungen kann jeweils noch ein Ringraum mit einem neutralen Dichtungsmedium vorgesehen sein. Die genannte Anpassung kann Werkstoffe und Toleranzen betreffen. Der Kolben des Übertragerzylinders kann zur Druckübersetzung als Stufenkolben ausgebildet sein.
Eine andere Lösung besteht darin, daß im sekundären Steilzylinder eine elastische Membran angeordnet ist, die das Hydraulikfluid im sekundären Hydraulikkreis gegen ein auf den Kolben des sekundären Stellzylinders einwirkendes Übertragermedium, insbesondere Öl, abdichtet. Alternativ hierzu ist es möglich, daß ein Übertragerzylinder zwischen dem Hydraulikkreis und dem sekundären Steilzylinder vorgesehen ist und daß im Übertragerzylinder eine elastische Membran angeordnet ist, die das Hydraulikfluid im sekundären Hydraulikkreis gegen ein auf den Kolben im sekundären Steilzylinder einwirkendes Übertragermedium, insbesondere Öl, abdichtet.
Hiermit werden an der Systemgrenze zwischen den beiden Flüssigkeitssystemen gleitende Dichtungen vermieden, so daß keine Leckverluste und keine Kupplungsöl- verdünnung auftreten kann. In bevorzugter Ausgestaltung sind hierbei die genannten Membranen aus zwei verschiedenen Lagen aufgebaut, von denen jede in ihrer Spezifikation an die anstehende Flüssigkeit angepaßt ist. Dies bezieht sich hierbei in er- ster Linie auf die Werkstoffauswahl.
Nach der Erfindung werden weiterhin ölgefüllte Lamellenkupplungen mit einem hydraulischen Steilzylinder zur Verwendung in erfindungsgemäßen Hydrauliksystemen vorgeschlagen. Diese zeichnen sich gemäß einer ersten Ausführungsform dadurch aus, daß der Kolben im Steilzylinder zwei Gruppen von Dichtringen mit unterschiedlicher Spezifikation trägt, von denen die kupplungsseitigen Dichtringe an Öl und die hydraulikseitigen Dichtringen an Hydraulikflüssigkeit angepaßt sind; nach einer zweiten Ausführungsform dadurch, daß mit dem Steilzylinder ein Übertra- gerzylinder hydraulisch verbunden ist und daß der Kolben im Übertragerzylinder zwei Dichtringe mit unterschiedlicher Spezifikation trägt, von denen der stellzylinderseitige Dichtring an ein Übertragermedium, insbesondere Öl, und der hydraulikkreisseitige Dichtring an Hydraulikflüssigkeit anpaßt ist; nach einer dritten Ausführungsform dadurch, daß im Steilzylinder eine elastische Membran angeordnet ist, die das Hydraulikfluid im sekundären Hydraulikkreis gegen ein auf den Kolben im Steilzylinder einwirkendes Übertragermedium, insbesondere Öl abdichtet; und nach einer vierten Ausführungsform, daß ein Übertragerzylinder mit dem Steilzylinder hydraulisch verbunden ist und daß im Übertragerzylinder eine elastische Membran angeordnet ist, die das Hydraulikfluid im sekundären Hydraulikkreis gegen ein auf den Kolben im Steilzylinder einwirkendes Übertragermediun, insbesondere Öl abdichtet.
Auch hier sind die Dichtungsmittel in Formgebung und Material an die Medien ange- paßt, mit denen sie in Kontakt stehen.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden nachstehend anhand der Figuren beschrieben.
Figur 1 zeigt ein erfindungsgemäßes Hydrauliksystem, bei dem primäre Steilzylinder von Bremszylindern gebildet werden und ein sekundärer Steilzylinder in eine Lamellenkupplung für den Antriebsstrang eines Kraftfahrzeugs integriert ist, in einer ersten Ausführung; Figur 2 zeigt ein erfindungsgemäßes Hydrauliksystem, bei dem primäre Steilzylinder von Bremszylindern gebildet werden und ein sekundärer Steilzylinder in eine Lamellenkupplung für den Antriebsstrang eines Kraftfahrzeugs integriert ist, in einer zweiten Ausführung;
Figur 3 zeigt eine Lamellenkupplung mit einem sekundären Steilzylinder für ein Hydrauliksystem nach den Figuren 1 und 2 in einer ersten Ausführung;
Figur 4 zeigt eine Lamellenkupplung mit einem sekundären Steilzylinder für ein Hydrauliksystem nach den Figuren 1 und 2 in einer zweiten Ausführung;
Figur 5 zeigt eine Lamellenkupplung mit einem sekundären Steilzylinder für ein Hydrauliksystem nach den Figuren 1 und 2 in einer dritten Ausführung;
Figur 6 zeigt eine Lamellenkupplung mit einem sekundären Steilzylinder für ein Hydrauliksystem nach den Figuren 1 und 2 in einer vierten Ausführung;
Figur 7 zeigt eine Lamellenkupplung mit einem sekundären Steilzylinder für ein Hy- drauliksystem nach den Figuren 1 und 2 in einer fünften Ausführung;
Figur 8 zeigt eine Lamellenkupplung mit einem sekundären Steilzylinder für ein Hydrauliksystem nach den Figuren 1 und 2 in einer sechsten Ausführung.
In Figur 1 ist ein erfindungsgemäßes Hydrauliksystem gezeigt, dessen Grundschema aus der U.S. 6,158,825 bekannt ist. In Figur 2 ist ein erfindungsgemäßes Hydrauliksystem gezeigt, dessen Grundschema aus der DE 698 05 851 T2 bekannt ist. Die Figuren 1 und 2 werden nachfolgend zunächst gemeinsam beschrieben. Das Hydrauliksystem wird im normalen Betrieb mit Fremdenergie betrieben, während es im Notbetrieb mit vom Fahrer erzeugter Bremspedalkraft betrieben wird. Alle gezeigten Ventilstellungen entsprechen der letztgenannten Betriebsart, während für die normale Betriebsart jeweils die andere Stellung der Steuerventile anzunehmen ist, die sämtlich als 2/2-Wegeventile ausgebildet sind. Eine Pumpe 11 wird von einem Elektromotor 12 angetrieben, wobei der Pumpe 12 ein Druckspeicher 14 und ein Drucksensor 15 nachgeordnet ist. Der Druck im Druckspeicher 14 beaufschlagt Steuerventile 17R, 17L im Vorlauf zu den Bremszylindern 21 L, 21 R einer linken Vorderradbremse VL und einer rechten Vorderradbremse VR sowie Steuerventile 19L, 19R im Vorlauf zu den Bremszylindern 23L, 23R einer linken Hinterradbremse HL und einer rechten Hinterradbremse HR. An jedem der Bremszylinder 21 L, 21 R, 23L, 23R ist ein Drucksensor 25L, 25R, 27L, 27R angeordnet. Im Rücklauf von den Bremszylindem der Vorderradbremsen befinden sich weite- re Steuerventile 29L, 29R; im Rücklauf von den Bremszylindern der Hinterradbremsen befinden sich weitere Steuerventile 31 L, 31 R. Hierbei sind die Rückläufe mit einem Reservoir 33 verbunden. Aus dem Reservoir 33 speist sich die Pumpe 11 ebenso wie ein Hauptbremszylinder 34, der von einem Bremspedal 35 betätigt werden kann und an dem ein Wegaufnehmer 36 angebracht ist. Im Normalbetrieb ist der Hauptbremszylinder 34 durch ein Sicherheitsventil 37 (Figur 1) bzw. durch zwei Sicherheitsventile 37L, 37R (Figur 2) von den zuvor genannten Steuerventilen getrennt. Dabei arbeitet der Hauptbremszylinder 34 ausschließlich gegen einen Pedaldrucksimulator 38, an dem ein Drucksensor 39 angeordnet ist. Je nach Pedalstellung gemäß Wegaufnehmer 36 bzw. Pedaldruck gemäß Drucksensor 39 oder Lastsensor 40 werden die Steuerventile rechnergesteuert geöffnet und geschlossen, insbesondere frequenzmoduliert, wobei der Arbeitsdruck vom Druckspeicher 14 stammt und die Pumpe 11 bedarfsweise angetrieben wird. An den primären Hydraulikkreis mit dem Druckspeicher 14 und dem Reservoir 33 ist über gestrichelt gezeichnete Verbindungsleitungen ein sekundärer Hydraulikkreis mit einem Steilzylinder 41 für eine Lamellenkupplung 71 im Antriebsstrang des Fahrzeuges angeschlossen, wobei im
Vorlauf 45 des sekundären Hydraulikkreises ein Steuerventil 44 und im Rücklauf 47 des sekundären Hydraulikkreises ein Steuerventil 46 angeordnet ist. Auch diese Ventile werden rechnergesteuert zur Betätigung des sekundären Stellzylinders 41 geöffnet und geschlossen, insbesondere frequenzmoduliert. Ein Drucksensor 48 kann in der Zuführung zum Steilzylinder 41 vorgesehen sein. Alternativ kann ein Drucksensor 49 unmittelbar am Steilzylinder 41 angeordnet sein. Bei einem Systemfehler fallen die Ventile, insbesondere die Sicherheitsventile 37, in die in der Figur dargestellte Position. Hierdurch wirkt nach Figur 1 der Hauptbremszylinder direkt über die stromlos geöffneten Steuerventile 29L, 29R bei stromlos geschlossenen Steuerventilen 17L, 17R auf die Bremszylinder 21 L, 21 R der Vorderradbremsen VL, VR. Durch die Wirkung des Rückschlagventils 16 wird eine Beaufschlagung der Hinterradbremsen HL, HR ausgeschlossen. In gleicher Weise ist eine Betätigung des sekundären Stellzylinders 41 nicht erwünscht und wird ebenfalls verhindert. Hiermit wird im Notbetrieb die Wirkung der Vorderradbremsen mit Pedalkraft erhalten. In Figur 2 wird auf ähnliche Weise bei einem Systemausfall im Notbetrieb der Hauptbremszylinder 34 über die Sicherheitsventile 37L, 37R mit den primären Stellzylindern 21 L, 21 R der Vorderräder VL, VR verbunden, wobei sämtliche im Vorlauf liegenden Steuerventile 17L, 17R, 19L, 19R geschlossen sind und sämtliche im Rücklauf liegenden Ventile 29L, 29R, 31 L, 31 R geöffnet sind. Üblicherweise im Vorlauf liegende Rückschlagventile 16L, 16R verhindern gleichzeitig eine Druckversorgung der Steilzylinder 23L, 23R der Hinterradbremsen HL, HR und eine Druckversorgung des sekundären Stellzylinders 41 der Lamellenkupplung 71.
Die Figuren 3 bis 7 werden zunächst gemeinsam beschrieben. Es ist jeweils eine Lamellenkupplung 71 mit einem sekundären Steilzylinder 41 gemäß den vorausge- henden Figuren 1 und 2 als vergrößerte Einzelheit dargestellt. In einem Gehäuse 72 ist eine Eingangswelle 73 mit einem Flansch 74 drehbar gelagert, wobei die Eingangswelle die Kupplungsnabe 77 der Lamellenkupplung 71 trägt. Die Lamellenkupplung 71 umfaßt weiterhin einen Kupplungskorb 78, der mit einer Hohlwelle 80 verbunden werden kann, in die eine Ausgangswelle eingesteckt werden kann. Die abwechselnd als Innenlamellen 75 mit der Kupplungsnabe 77 und als Außenlamellen 76 mit dem Kupplungskorb 78 verbundenen Kupplungslamellen stützen sich an einem Flanschteil 79 der Kupplungsnabe 77 ab und werden von einer im Kupplungskorb 78 verschiebbaren Druckplatte 81 axial beaufschlagt. Druckplatte 81 und Kupplungsnabe 77 sind über eine Tellerfeder 82 axial gegeneinander abgestützt. Der Ringkolben 43 des sekundären Stellzylinders 41 wirkt über ein Axiallager 83 auf die Druckplatte 81 bei Druckbeaufschlagung mit Hydraulikmedium ein. Der Innenraum 84 der Lamellenkupplung 71 ist mit Automatikgetriebeflüssigkeit (ATF) gefüllt, das im weiteren als Ölfüllung bezeichnet wird. In Figur 3 wird über eine Zuführleitung 55 und eine Gehäusebohrung 53 dem ringförmigen Zylinderraum 42 des Stellzylinders 41 unmittelbar Hydraulikfluid zugeführt. Der Ringkolben 43 ist über zwei Sätze von inneren Ringdichtungen 56, 57 und zwei Sätze von äußeren Ringdichtungen 58, 59 gegenüber dem ölgefüllten Innenraum 84 der Lamellenkupplung 71 abgedichtet. Am Ringzylinder 42 ist ein Drucksensor 49 über eine Gehäusebohrung 54 angeschlossen. Bei einer Druckaufgabe bei geöffnetem Steuerventil 44 und geschlossenem Steuerventil 46 wird der Ringkolben 43 in Richtung der Druckplatte 81 verschoben, so daß die Lamellenkupplung 71 geschlos- sen wird. Bei einer Druckentlastung bei geschlossenem Steuerventil 44 und geöffnetem Steuerventil 46 drückt die Tellerfeder 82 die Druckplatte 81 zurück gegen den Ringkolben 43, so daß die Lamellenkupplung 71 entlastet wird.
In Figur 4 ist abweichend von Figur 3 am Ringkolben 43 des Stellzylinders jeweils nur eine innere Ringdichtung 56 und eine äußere Ringdichtung 58 vorgesehen. Zwischen die Zuführleitung 55 und die Gehäusebohrung 53 ist ein Druckübertrager 61 eingesetzt, der eine Zylinderkammer 62 bildet, in der ein Trennkolben 63 axial verschiebbar angeordnet ist. Auf diesem Trennkolben 63 sitzen zwei Ringdichtungen 64, 65, von denen die erste an das Hydraulikfluid rechts vom Trennkolben 63 ange- paßt ist und die andere an ein links vom Trennkolben befindliches Übertragermedium, das vorzugsweise mit dem Öl im Innenraum 84 der Lamellenkupplung 71 übereinstimmt. Zwischen den Dichtungen 64, 65 kann ein Dichtmedium 69 eingesetzt sein. Der Übertragerzylinder 61 überträgt den Druck in der Leitung 55 im wesentlichen unverändert über die Gehäusebohrung 53 auf den Zylinderraum 42 des Stellzy- linders 41. Die Funktionsweise ist im übrigen wie zu Figur 3 beschrieben.
In Figur 5 ist abweichend von Figur 4 ein Übertragerzylinder 61 an die Zuführleitung 55 angeschlossen und räumlich vom Gehäuse getrennt. Der Übertragerzylinder 61 ist über eine Zwischenleitung 66 mit der Gehäusebohrung 53 verbunden. Im übrigen sind Aufbau und Funktion die gleichen wie in Figur 3, so daß insoweit auf die vorangehenden Beschreibungen Bezug genommen wird. In Figur 6 ist abweichend von Figur 5 ein Übertragerzylinder 61' an die Zuführleitung 55 angeschlossen, der als Stufenzylinder ausgeführt ist. Hierbei gleitet ein Stufenkolben 63' in zwei Kammerabschnitten 61', 62", die voneinander unterschiedliche Wirkdurchmesser di, d2 haben und damit im Übertragerzylinder eine Druckverstär- kung bewirken. Im übrigen sind Aufbau und Funktion die gleichen wie in Figur 3, so daß insoweit auf die vorangehenden Beschreibungen Bezug genommen wird.
In Figur 7 ist eine Ausführung gezeigt, die weitgehend mit der in Figur 3 gezeigten übereinstimmt. Eine Zuführleitung 55 ist über eine Gehäusebohrung 53 mit dem Zy- linderraum 42 des Stellzylinders 41 verbunden. Abweichend von Figur 3 weist der Ringkolben 43 hier nur eine innere Ringdichtung 56 und eine äußere Ringdichtung 58 auf. Innerhalb der Zylinderkammer 42 ist jedoch eine Ringmembran 67 abdichtend eingesetzt, die das Hydraulikfluid rechts von der Ringmembran vollständig von einem Übertragermedium links von der Ringmembran trennt, das auf den Ringkolben 43 einwirkt. Dieses Übertragermedium ist vorzugsweise übereinstimmend mit dem Öl im Innenraum 84 der Lamellenkupplung 71.
In Figur 8 ist bei weitgehender Übereinstimmung mit der Ausführung nach Figur 4 ein Druckübertrager 61' an das Gehäuse 72 angeschlossen, der über eine Gehäuseboh- rung 53 mit der Zylinderkammer 42 des Stellzylinders 41 verbunden ist. Abweichend von Figur 4 ist in die Zylinderkammer 62' des Druckübertragers 61 ' eine elastische Membran 69 abdichtend eingesetzt, die das rechts von der Membran befindliche Hydraulikfluid von einem links von der Membran befindlichen Übertragermedium hermetisch trennt, das auf den Ringkolben 43 des Stellzyinders 41 einwirkt. Dieses Über- tragermedium ist auch hier bevorzugt übereinstimmend mit dem Öl im Innenraum 84 der Lamellenkupplung 71. Auch durch diese Art des Übertragers wird der Druck in der Zuführleitung 55 im wesentlichen verlustfrei über die Gehäusebohrung 53 auf die Zylinderkammer 42 des sekundären Stellzylinders 41 übertragen. Die Wirkung ist in allen Ausführungen jeweils in Abhängigkeit von der Ansteuerung der Steuerventile die gleiche wie zu Figur 3 beschrieben. Hydrauliksystem
Bezugszeichenliste
11 Pumpe
12 Elektromotor
13 -
14 Druckspeicher
15 Drucksensor
16 Rückschlagventil
17, 19 Steuerventile
21 , 23 Bremszylinder
25, 27 Drucksensoren
29, 31 Steuerventile
33 Reservoir
34 Hauptbremszylinder
35 Bremspedal
36 Wegaufnehmer
37 Sicherheitsventil
38 Pedaldrucksimulator
39 Drucksensor
40 Lastsensor
41 Steilzylinder
42 Zylinderkammer
43 Ringkolben
44 Steuerventil Vorlauf
Steuerventil
Rücklauf
Drucksensor
Drucksensor
Dichtung
Dichtung
Bohrung
Bohrung
Zuführleitung
Ringdichtung
Ringdichtung
Ringdichtung
Ringdichtung
Druckübertrager
Zylinderkammer
Kolben
Ringdichtung
Ringdichtung
Zwischenleitung
Ringmembran
Membran
Dichtung
Lamellenkupplung
Gehäuse
Eingangswelle 74 Flansch
75 Innenlamellen
76 Außenlamellen
77 Kupplungsnabe
78 Kupplungskorb
79 Flansch
80 Hohlwelle
81 Druckplatte
82 Tellerfeder
83 Axiallager
84 Innenraum

Claims

HydrauliksystemPatentansprüche
1. Hydrauliksystem in einem Kraftfahrzeug, umfassend einen primären Hydraulikkreis mit einer Pumpe (11) zur Erzeugung eines geregelten Vordruckes, an den zumindest ein primärer Stell- oder Servozylinder (21 , 23) angeschlossen ist, der auf kraftbetätigte Baugruppen einwirkt, gekennzeichnet durch einen sekundären Hydraulikkreis (45, 47), der an den primären Hydraulikkreis angeschlossen ist und Druckregelventile (44, 46), einen Drucksensor (48, 49) und zumindest einen sekundären Steilzylinder (41) umfaßt, der auf eine Reibungskupplung (71) im Antriebsstrang des Kraftfahrzeuges einwirkt.
2. Hydrauliksystem nach Anspruch 1 , dadurch gekennzeichnet, daß der primäre Hydraulikkreis als kraftbetätigte Baugruppen Fahrzeugbremsen umfaßt.
3. Hydrauliksystem nach Anspruch 1 , dadurch gekennzeichnet, daß der primäre Hydraulikkreis als kraftbetätigte Baugruppen die Schaltwellen eines Fahrzeugschaltgetriebes umfaßt.
4. Hydrauliksystem nach Anspruch 1 , dadurch gekennzeichnet, daß der primäre Hydraulikkreis als kraftbetätigte Baugruppen Stellglieder einer aktiven Fahrwerkssteuerung umfaßt.
5. Hydrauliksystem nach Anspruch 1 , dadurch gekennzeichnet, daß der primäre Hydraulikkreis als kraftbetätigte Baugruppen Servoglieder eines Fahrzeuglenkgetriebes umfaßt.
6. Hydrauliksystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Reibungskupplung (71) die Sperrkupplung eines Differentialgetriebes ist.
7. Hydrauliksystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Reibungskupplung (71) eine Zuschaltkupplung (hang-on Kupplung) für eine bedarfsweise antreibbare Antriebsachse ist.
8. Hydrauliksystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Reibungskupplung (71) eine ölgefüllte Lamellenkupplung ist.
9. Hydrauliksystem nach Anspruch 8, dadurch gekennzeichnet, daß der Kolben (43) des sekundären Stellzylinders (41) das Hydraulikmedium im sekundären Hydraulikkreis gegen die Ölfüllung der Lamellenkupplung (71) abdichtet.
10. Hydrauliksystem nach Anspruch 8, dadurch gekennzeichnet, daß ein. Übertragerzylinder (61) zwischen dem sekundären Hydraulikkreis und dem sekundären Steilzylinder (41) vorgesehen ist und daß ein Kolben (63) im Übertragerzylinder (61) das Hydraulikmedium im Hydraulikkreis gegen ein auf den Kolben des sekundären Stellzylinders (41) einwirkendes Übertragermedium, insbesondere Öl, abdichtet.
11. Hydrauliksystem nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, daß der abdichtende Kolben (43, 63) zwei Gruppen von Dichtringen (56, 57, 58, 59) bzw. zwei Dichtringe (64, 65) unterschiedlicher Spezifikation trägt, die jeweils an das anstehende Medium angepaßt sind.
12. Hydrauliksystem nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, daß der abdichtende Kolben ein Stufenkolben (63') ist.
13. Hydrauliksystem nach Anspruch 8, dadurch gekennzeichnet, daß im sekundären Steilzylinder (41) eine elastische Membran (67) angeordnet ist, die das Hydraulikmedium im Hydraulikkreis gegen ein auf den Kolben (43) des sekundären Stellzylinders (41) einwirkendes Übertragermedium, insbesondere Öl, abdichtet. (Slide 13/14)
14. Hydraulikmedium nach Anspruch 8, dadurch gekennzeichnet, daß ein Übertragerelement (61') zwischen dem Hydraulikkreis und dem sekundären Steilzylinder (41) vorgesehen ist und daß im Übertragerelement (61') eine elastische Membran (69) angeordnet ist, die das Hydraulikmedium im sekundären Hydraulikkreis gegen ein auf den Kolben (43) im sekundären Steilzylinder (41) einwirkendes Übertragermedium, insbesondere Öl, abdichtet.
15. Hydrauliksystem nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, daß die elastische Membran (67, 69) aus zwei Lagen mit unterschiedlicher Spezifikation besteht, die jeweils an das anstehende Medium angepaßt sind.
16. Ölgefüllte Lamellenkupplung (71) mit einem hydraulischen Steilzylinder (41) zur Verwendung in einem Hydrauliksystem nach Anspruch 9, dadurch gekennzeichnet, daß der Kolben (43) im Steilzylinder (41) zwei Gruppen von Dichtringen (56, 57, 58, 59) mit unterschiedlicher Spezifikation trägt, von denen die kupplungsseitigen Dichtringe an Öl und die hydraulikkreisseitigen Dichtringen an Hydraulikflüssigkeit angepaßt sind.
17. Ölgefüllte Lamellenkupplung (71) mit einem hydraulischen Steilzylinder (41) zur Verwendung in einem Hydrauliksystem nach Anspruch 10, dadurch gekennzeichnet, daß mit dem Steilzylinder (41) ein Übertragerzylinder (61) hydraulisch verbunden ist und daß der Kolben (63) im Übertragerzylinder (61) zwei Dichtringe (64, 65) mit unterschiedlicher Spezifikation trägt, von denen der stellzylinderseitige Dichtring (65) an ein Übertragermedium, insbesondere Öl, und der hydraulik- kreisseitige Dichtring (64) an Hydraulikflüssigkeit anpaßt ist.
18. OIfgefüllte Lamellenkupplung (71) mit einem hydraulischen Steilzylinder (41) zur Verwendung in einem Hydrauliksystem nach Anspruch 13, dadurch gekennzeichnet, daß im Steilzylinder (41) eine elastische Membran (67) angeordnet ist, die das Hydraulikmedium im sekundären Hydraulikkreis gegen ein auf den Kolben (43) im Steilzylinder (41) einwirkendes Übertragermedium, insbesondere Öl abdichtet.
19. Ölgefüllte Lamellenkupplung (71) mit einem hydraulischen Steilzylinder (41) zur Verwendung in einem Hydrauliksystem nach Anspruch 14, dadurch gekennzeichnet, daß ein Übertragerzylinder (61') mit dem Steilzylinder (41) hydraulisch verbunden ist und daß im Übertragerzylinder (61') eine elastische Membran (69) angeordnet ist, die das Hydraulikmedium im sekundären Hydraulikkreis gegen ein auf den Kolben (43) im Steilzylinder (41) einwirkendes Übertragermediun, insbesondere Öl abdichtet.
20. Ölgefüllte Lamellenkupplung nach einem der Ansprüche 18 oder 19, dadurch gekennzeichnet, daß die elastische Membran (67, 69) aus zwei Lagen mit unterschiedlicher Spezifikation zusammengesetzt ist, die jeweils an das anstehende Medium angepaßt sind.
PCT/EP2003/013929 2003-12-09 2003-12-09 Hydrauliksystem WO2005063542A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2003289988A AU2003289988A1 (en) 2003-12-09 2003-12-09 Hydraulic system
DE50313084T DE50313084D1 (de) 2003-12-09 2003-12-09 Hydrauliksystem
AT03782339T ATE480434T1 (de) 2003-12-09 2003-12-09 Hydrauliksystem
EP03782339A EP1694546B1 (de) 2003-12-09 2003-12-09 Hydrauliksystem
PCT/EP2003/013929 WO2005063542A1 (de) 2003-12-09 2003-12-09 Hydrauliksystem

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2003/013929 WO2005063542A1 (de) 2003-12-09 2003-12-09 Hydrauliksystem

Publications (1)

Publication Number Publication Date
WO2005063542A1 true WO2005063542A1 (de) 2005-07-14

Family

ID=34717103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/013929 WO2005063542A1 (de) 2003-12-09 2003-12-09 Hydrauliksystem

Country Status (5)

Country Link
EP (1) EP1694546B1 (de)
AT (1) ATE480434T1 (de)
AU (1) AU2003289988A1 (de)
DE (1) DE50313084D1 (de)
WO (1) WO2005063542A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007063360A1 (de) 2007-12-28 2009-07-02 Gkn Driveline International Gmbh Hydraulikanordnung für eine kraftbetätigte Stelleinheit
DE102011050793A1 (de) 2011-06-01 2012-12-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Getriebe mit steuerbarer Differentialsperre
EP2151361A3 (de) * 2008-07-29 2013-07-10 Magna Powertrain USA, Inc. Integriertes hydraulisches Steuerungssystem für Allradfahrzeug
WO2014194907A3 (de) * 2013-06-04 2015-09-11 Schaeffler Technologies AG & Co. KG Kupplungsanlage und -steuerung
EP2495469A4 (de) * 2009-10-30 2016-04-20 Toyota Motor Co Ltd Hydrauliksteuerung für die reibungskupplung eines fahrzeuges
US10119578B2 (en) 2014-01-31 2018-11-06 American Axle & Manufacturing, Inc. Vehicle driveline having torque transfer device that is operated on fluid pressure
DE112013005392B4 (de) * 2012-11-12 2020-01-02 Schaeffler Technologies AG & Co. KG Druckübersetzer für eine hydraulische Strecke zwischen einem Geberzylinder und einem Nehmerzylinder, insbesondere in Form eines deckelfesten Ausrückers
CN110949363A (zh) * 2019-12-24 2020-04-03 刘剑 叉车的离合控制装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015204673B3 (de) * 2015-03-16 2016-07-21 Schaeffler Technologies AG & Co. KG Hydraulikanordnung für eine hydraulisch betätigte Reibkupplung und Verfahren zum Betätigen einer hydraulisch betätigten Reibkupplung
CN112879464B (zh) * 2019-11-29 2022-09-27 上海汽车集团股份有限公司 混动液压控制系统及控制方法
CN114017450B (zh) * 2021-10-29 2023-09-12 中国第一汽车股份有限公司 一种自动变速器液压控制装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917013A (en) * 1974-10-21 1975-11-04 Fiat Allis Construct Machine Single pedal braking system for crawler tractor
DE3430982A1 (de) * 1984-08-23 1986-03-06 Alfred Teves Gmbh, 6000 Frankfurt Anordnung zur regelung des antriebsschlupfes
EP0462080A1 (de) * 1990-06-15 1991-12-18 GRAZIANO TRASMISSIONI S.p.A. Langsamfahrt-Ventil für Leistungsschaltgetriebe, insbesondere für Gabelstapler
WO1993016903A1 (en) * 1992-02-20 1993-09-02 Automotive Products Plc A hydraulic valve for a vehicle braking system
GB2273541A (en) * 1992-12-17 1994-06-22 Fichtel & Sachs Ag A hydraulic friction clutch actuator having a brake fluid and mineral oil resistant seal
DE19816069A1 (de) * 1998-04-09 1999-10-14 Hydraulik Ring Gmbh Druckölversorgungseinheit für den Kraftfahrzeugbereich, vorzugsweise für automatisierte Handschaltgetriebe von Kraftfahrzeugen
US6641503B1 (en) * 1999-04-14 2003-11-04 Digitek S.P.A. Automatic servo-mechanism for sequential gearbox and clutch

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3917013A (en) * 1974-10-21 1975-11-04 Fiat Allis Construct Machine Single pedal braking system for crawler tractor
DE3430982A1 (de) * 1984-08-23 1986-03-06 Alfred Teves Gmbh, 6000 Frankfurt Anordnung zur regelung des antriebsschlupfes
EP0462080A1 (de) * 1990-06-15 1991-12-18 GRAZIANO TRASMISSIONI S.p.A. Langsamfahrt-Ventil für Leistungsschaltgetriebe, insbesondere für Gabelstapler
WO1993016903A1 (en) * 1992-02-20 1993-09-02 Automotive Products Plc A hydraulic valve for a vehicle braking system
GB2273541A (en) * 1992-12-17 1994-06-22 Fichtel & Sachs Ag A hydraulic friction clutch actuator having a brake fluid and mineral oil resistant seal
DE19816069A1 (de) * 1998-04-09 1999-10-14 Hydraulik Ring Gmbh Druckölversorgungseinheit für den Kraftfahrzeugbereich, vorzugsweise für automatisierte Handschaltgetriebe von Kraftfahrzeugen
US6641503B1 (en) * 1999-04-14 2003-11-04 Digitek S.P.A. Automatic servo-mechanism for sequential gearbox and clutch

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009083095A1 (de) * 2007-12-28 2009-07-09 Gkn Driveline International Gmbh Hydraulikanordnung für eine kraftbetätigte stelleinheit
DE102007063360B4 (de) * 2007-12-28 2009-12-17 Gkn Driveline International Gmbh Hydraulikanordnung für eine kraftbetätigte Stelleinheit
US8596439B2 (en) 2007-12-28 2013-12-03 Gkn Driveline International Gmbh Hydraulic assembly for a force-operated setting unit
DE102007063360A1 (de) 2007-12-28 2009-07-02 Gkn Driveline International Gmbh Hydraulikanordnung für eine kraftbetätigte Stelleinheit
EP2151361A3 (de) * 2008-07-29 2013-07-10 Magna Powertrain USA, Inc. Integriertes hydraulisches Steuerungssystem für Allradfahrzeug
EP2495469A4 (de) * 2009-10-30 2016-04-20 Toyota Motor Co Ltd Hydrauliksteuerung für die reibungskupplung eines fahrzeuges
DE102011050793A1 (de) 2011-06-01 2012-12-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Getriebe mit steuerbarer Differentialsperre
DE102011050793B4 (de) 2011-06-01 2018-07-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Getriebe mit steuerbarer Differentialsperre
DE112013005392B4 (de) * 2012-11-12 2020-01-02 Schaeffler Technologies AG & Co. KG Druckübersetzer für eine hydraulische Strecke zwischen einem Geberzylinder und einem Nehmerzylinder, insbesondere in Form eines deckelfesten Ausrückers
WO2014194907A3 (de) * 2013-06-04 2015-09-11 Schaeffler Technologies AG & Co. KG Kupplungsanlage und -steuerung
DE112014002667B4 (de) * 2013-06-04 2020-06-25 Schaeffler Technologies AG & Co. KG Kupplungsanlage und -steuerung
US10119578B2 (en) 2014-01-31 2018-11-06 American Axle & Manufacturing, Inc. Vehicle driveline having torque transfer device that is operated on fluid pressure
CN110949363A (zh) * 2019-12-24 2020-04-03 刘剑 叉车的离合控制装置

Also Published As

Publication number Publication date
EP1694546A1 (de) 2006-08-30
DE50313084D1 (de) 2010-10-21
ATE480434T1 (de) 2010-09-15
AU2003289988A1 (en) 2005-07-21
EP1694546B1 (de) 2010-09-08

Similar Documents

Publication Publication Date Title
EP3898359B1 (de) Fahrzeugachse mit elektrischen antriebsmotoren und elektrohydraulischer bremse und weiterer module wie getriebe, torque vektoring und parkbremse
DE102004033439C5 (de) Antriebsstrang für ein Kraftfahrzeug
EP3145771B1 (de) Betätigungssystem für eine fahrzeugbremse und verfahren zum betrieb des betätigungssystems
EP3084273B1 (de) Fluidanordnung
DE102008063905B4 (de) Antriebsanordnung mit hydraulischer Aktuierung
DE102006061516B4 (de) Hydraulikanordnung zur Ansteuerung zweier Aktuatoren
DE102015214998A1 (de) Betätigungsanordnung
DE102011080312A1 (de) Bremsanlage für Kraftfahrzeuge
DE112010000851T5 (de) Hydraulisches Bremssystem mit gesteuerter Verstärkung
DE102005017958A1 (de) Bremsanlage für Kraftfahrzeuge
DE102007063360A1 (de) Hydraulikanordnung für eine kraftbetätigte Stelleinheit
EP3046815A2 (de) Elektrisch angetriebene druckregel- und volumenfördereinheit
WO2003008824A1 (de) Ausrücksystem zur betätigung einer kupplung eines fahrzeuges
DE102005023675A1 (de) Drehmomentübertragende Differentialanordnung mit Drehmomentabkopplung
EP1694546B1 (de) Hydrauliksystem
EP1772645A2 (de) Kupplungsvorrichtung eines Kraftfahrzeugs
DE10220355A1 (de) Konus-Reibungskupplung
EP0775618B1 (de) Hydraulische Fahrzeugbremsanlage mit Radschlupfregeleinrichtung
WO2017133901A1 (de) Simulatoreinrichtung für eine bremsanlage und bremsanlage
DE102015211305B3 (de) Druckabhängig einlegbare Parksperre für hydraulisches Schaltgetriebe
WO2021223978A1 (de) Hydraulikkreis für ein doppelkupplungsgetriebe sowie ein verfahren zum betreiben des hydraulikkreises
DE102011119573A1 (de) Kupplungsanordnung für einen Fahrzeugantriebsstrang
EP1224405B1 (de) Drehzahldifferenzabhängige hydraulische kupplung mit steuerventilen
DE3410033A1 (de) Vorrichtung zur hydraulischen unterstuetzung der lenkkraft
DE102007031751A1 (de) Hydraulisches Betätigungssystem für eine Fahrzeugkupplung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AT AU BR CN ES GB IN JP KR MX PL SE US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003782339

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003782339

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP