WO2005062443A1 - Auf rotierenden elementen angeordneter energiewandler zur umwandlung von mechanischer in elektrische energie - Google Patents

Auf rotierenden elementen angeordneter energiewandler zur umwandlung von mechanischer in elektrische energie Download PDF

Info

Publication number
WO2005062443A1
WO2005062443A1 PCT/DE2004/002388 DE2004002388W WO2005062443A1 WO 2005062443 A1 WO2005062443 A1 WO 2005062443A1 DE 2004002388 W DE2004002388 W DE 2004002388W WO 2005062443 A1 WO2005062443 A1 WO 2005062443A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
energy
rotating element
energy converter
converter
Prior art date
Application number
PCT/DE2004/002388
Other languages
English (en)
French (fr)
Inventor
Frank Schmidt
Original Assignee
Enocean Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enocean Gmbh filed Critical Enocean Gmbh
Priority to EP04790048A priority Critical patent/EP1695430A1/de
Publication of WO2005062443A1 publication Critical patent/WO2005062443A1/de
Priority to US11/455,360 priority patent/US7667376B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/041Means for supplying power to the signal- transmitting means on the wheel
    • B60C23/0411Piezoelectric generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/041Means for supplying power to the signal- transmitting means on the wheel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1869Linear generators; sectional generators
    • H02K7/1876Linear generators; sectional generators with reciprocating, linearly oscillating or vibrating parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/18Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing electrical output from mechanical input, e.g. generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K35/00Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit
    • H02K35/02Generators with reciprocating, oscillating or vibrating coil system, magnet, armature or other part of the magnetic circuit with moving magnets and stationary coil systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/30Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
    • H10N30/304Beam type
    • H10N30/306Cantilevers

Definitions

  • Energy converter arranged on rotating elements for converting mechanical into electrical energy
  • the invention relates to an energy converter arranged on rotating elements for converting mechanical into electrical energy, with a converter element for converting mechanical energy into electrical energy, a first mass and a second mass, the second mass being connected to the rotating element.
  • the supply of electronic circuits such as small radio transmitters, small sensors connected to radio transmitters, so-called radio sensors, radio switches or the like, which are often fitted to monitor or measure a physical parameter on rotating elements, are generally used with battery-operated energy supplies.
  • a disadvantage of the battery-operated energy supplies is the limited service life of the battery energy store, which is then to be replaced by a new battery or a new energy store. This requires a high level of maintenance and possibly leads to unnoticed failures of the electronic circuit in connection with the sensor and the devices connected to it.
  • energy converters are known, such as, for example, electromagnetic magnetostrictive or piezoelectric converters which can also be implemented in a compact design and are sometimes suitable for converting kinetic energy into electrical energy, especially in a sufficient amount.
  • electromagnetic magnetostrictive or piezoelectric converters With rotating elements, if such a sensor or power supply for supplying such circuits is to be mounted, an additional problem arises. This results from strong centrifugal forces. These centrifugal forces mean that the electrodynamic magnetostrictive or piezoelectric transducer elements remain in a deflection which is excited by the centrifugal forces and can therefore no longer contribute to the energy supply in this form. Smallest manufacturing tolerances or assembly tolerances can exacerbate this problem.
  • Such an energy converter does not use the rotational energy itself to generate the energy, but rather superimposed movements or changes in the rotational speed.
  • the invention solves the problem by the measures proposed in claim 1. These are advantageously further developed by the measures proposed in the subclaims.
  • An energy converter arranged on a rotating element for converting mechanical to electrical energy, with a converter element and a first mass and a second mass is designed such that a relative movement between the two masses acts on the converter element.
  • One of the two masses for example the second mass, is connected to the rotating element, so that one of the rotation deviating, or a force changing the rotation acts on the mass 1. This results in a movement of the two masses towards each other caused by these forces. This happens because the first mass is free with respect to the rotating element or is not directly connected to the rotating element. The forces independent of the rotation, or other forces, thus act on the first mass and stimulate it to move. Since the second mass is connected to the rotating element, there is a relative movement of the two masses to one another, which acts on the transducer element and can be converted into electrical energy.
  • the freedom of movement is restricted between the first mass and the second mass such that the first mass can only be moved in one plane with respect to the second mass. This advantageously results in independence from the force acting on the mass 1 in the direction of the centrifugal rotational force.
  • the converter element is therefore independent of these forces. Forces that originate in a movement superimposed on the rotation or a change in the rotation then act on the first mass and stimulate it to move.
  • connection of the second mass to the rotating element is designed in such a way that the centrifugal force of rotation aligns the second mass exactly such that the plane in which the first mass is movable is perpendicular to the centrifugal force of rotation.
  • a possible assembly tolerance or manufacturing tolerance of the energy converter is thus advantageously eliminated.
  • the connection between the rotating element and the second mass is like this executed that this is rotatably mounted, for example by a spring element or an axis. This causes the second mass to align itself exactly under the influence of the centrifugal force, similar to a centrifugal pendulum.
  • the plane in which the first mass moves is also exactly aligned and perpendicular to the centrifugal rotational force.
  • the first mass If the first mass is observed during an imaginary period of time t, the first mass describes a circular path which has its center in the axis of rotation of the rotating element. Exactly on this circular path lies tangentially the plane in which the first mass moves. Due to the rotational centrifugal alignment of the second mass and the mechanical connection of the first mass with the second mass, which is designed so that it can only move in a plane that is perpendicular to the rotational centrifugal force, it is achieved that the first mass does not require any lifting work must perform in the force field of the rotational centrifugal force. This ensures even with small or large manufacturing and assembly tolerances that the first mass is not held by the centrifugal rotation in a deflection in which further forces or movements on the first mass for generating electrical energy would be relatively ineffective.
  • transducer element is independent of this principle described so far and could be a piezoelectric, a magnetically strict or an electromagnetic transducer element, although other transducer elements are basically suitable if they are able to convert mechanical energy into electrical energy.
  • transducer element through the above measures is protected from the extreme centrifugal forces.
  • Figure 1 is a schematic representation of a rotating element with an energy converter
  • Figure 2 is a perspective schematic representation of a rotating element with an energy converter
  • FIG. 3 shows a detailed representation of an embodiment of the energy converter on a rotating element
  • Figure 4 shows another embodiment of the energy converter on a rotating element
  • Figure 5 shows another embodiment of the energy converter on a rotating element.
  • Figure 1 shows a schematic representation of a rotating element 1 which rotates about an axis.
  • a second mass M2 which is connected to a converter element 2 is arranged on this rotating element 1.
  • a first mass Ml which is also connected to the Wandle element 2, is freely movable relative to the rotating element 1. Every movement of the rotating element 1, or every change in the rotation or every movement independent of the rotation acts on the mass M1 and leads to a relative movement of the first and the second masses M1, M2 to one another. This relative movement causes a force on the converter element 2 and leads to the generation of electrical energy thereon by separation of charges.
  • FIG. 2 shows a schematic representation in perspective, the rotating element 1 being shown only in sections.
  • the rotation of the rotating element 1 causes a rotational centrifugal force FR that is perpendicular to the axis of rotation of the rotating element 1.
  • the second mass M2 arranged and fastened on the rotating element 1 is fastened to it by a bearing 3 such that the mass M2 can be moved about this bearing 3.
  • the centrifugal force FR precisely aligns the second mass M2, so that the center of gravity of the second mass M2 is at an energetic minimum under the influence of the centrifugal force occurring during the rotation.
  • the first mass Ml is connected to the second mass M2 via the transducer element 2 such that the first mass Ml can only be moved in one plane El.
  • the plane El is oriented perpendicular to the centrifugal rotational force FR. This causes the mass Ml to move in a plane that is tangent to a circular path around the axis of rotation. With slight movements, this means that no lifting work of the mass M1 has to be carried out in the force field of the centrifugal rotational force.
  • FIG. 3 shows a partially schematic representation of an embodiment of an energy converter based on a rotating element 1 via a bearing or a bendable plate, for example a spring, 3 is attached to the rotating element 1.
  • the mass M2 is made larger than the mass Ml, which means that the deflection of the mass M2 excited and caused by the centrifugal force is not influenced by the mass Ml.
  • the converter element 2 is a piezo element that is connected to the mass M1.
  • the mass M1 oscillates in the directions indicated in the direction of the arrow.
  • the freedom of movement of the first mass Ml is restricted to the level El.
  • the plane El is formed by the suspension of the mass M2 via the spring 3 and is perpendicular to the rotational centrifugal force FR.
  • FIG. 4 shows an energy converter similar to the exemplary embodiment in FIG. 3, the suspension and fastening on the rotating element 1 being the same as the suspension described and shown in FIG.
  • the differences in FIG. 4 essentially relate to the shape of the transducer element 2, which is shown as an inductive or electromagnetic transducer element.
  • the first mass M1 oscillates in a coil, with the freedom of movement of the first mass M1 being limited to the plane El here too.
  • FIG. 5 shows, in a partially schematic representation, an exemplary embodiment of an energy converter which is fastened on the rotating element 1 on a rotating element 1 by means of a bearing or a bendable plate, for example a spring 3.
  • the mass M2 is made larger than the mass Ml, which has the effect that the deflection of the mass M2 which is excited and caused by the centrifugal force does not occur the mass Ml is influenced.
  • the converter element 2 is a piezo element that is connected to the mass M1.
  • the mass M1 oscillates in the directions indicated by arrows.
  • the mass M1 is connected to the mass 2 with an elastic element 4.
  • This elastic element 4 is designed so that the mass Ml is only movable in one plane. Furthermore, the transducer element 2 is firmly connected to the mass M1 at one end and is held at the opposite end by a bearing element 5. If the mass M1 moves in the plane E1, the transducer element 2 is deformed.
  • the bearing element is firmly connected to the mass M2 and is designed such that the transducer element 2. is not held in the direction of the centrifugal force FR. Although the movement in the direction of the centrifugal rotational force FR is small due to the properties of the elastic element 4 or is not present, any deformation caused thereby is additionally excluded.
  • the freedom of movement of the first mass M1 is restricted to the plane El by the elastic element 4.
  • the plane El is formed by the suspension of the mass M2 via the spring 3 and is perpendicular to the rotational centrifugal force FR.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

Die Erfindung betrifft auf rotierendem Elementen angeordneten Energiewandler zur Umwandlung von mechanischer in elektrische Energie, mit einem Wandlerelement (2) zur Umwandlung der mechanischen Energie in elektrische Energie und einer ersten Masse (M1) und einer zweiten Masse (M2), wobei die zweite Masse (M2) mit dem rotierenden Element verbunden ist. Dabei ist das Wandlerelement (2) zwischen der ersten Masse (M1) und der zweiten Masse (M2) so angeordnet, daß eine mechanische Relativbewegung der beiden Massen (M1, M2) auf das Wandlerelement (2) wirkt, so daß elektrische Energie erzeugt wird.

Description

Beschreibung
Auf rotierenden Elementen angeordneter Energiewandler zur Umwandlung von mechanischer in elektrische Energie
Die Erfindung betrifft einen auf rotierenden Elementen angeordneten Energiewandler zur Umwandlung von mechanischer in elektrische Energie, mit einem Wandlerelement zur Umwandlung der mechanischen Energie in elektrische Energie, einer ersten Masse und einer zweiten Masse, wobei die zweite Masse mit dem rotierenden Element verbunden ist.
Die Versorgung von elektronischen Schaltungen wie zum Beispiel kleinen Funksendern, kleinen Sensoren verbunden mit Funksendern, sogenannten Funksensoren, Funkschaltern oder ähnlichen, die oftmals zur Überwachung oder Messung eines physikalischen Parameters auf rotierenden Elementen angebracht sind, werden in der Regel batteriebetriebene Energieversorgungen verwendet. Nachteilig an den batteriebetriebenen Energieversorgungen ist die begrenzte Standzeit des Energiespeichers Batterie, der dann durch eine neue Batterie, beziehungsweise einen neuen Energiespeicher zu ersetzen ist. Das erfordert hohen Wartungsaufwand und führt gegebenenfalls zu unbemerkten Ausfällen der elektronischen Schaltung in Verbindung mit dem Sensor und den weiter damit verbundenen Einrichtungen.
Alternativ sind Energiewandler bekannt, wie zum Beispiel elektromagnetische magnetostriktive oder piezoelektrische Wandler die auch in kompakter Bauweise ausführbar sind, und sich mitunter eignen, Bewegungsenergie in elektrische Energie, vor allem in ausreichender Menge, umzusetzen. Bei rotierenden Elementen tritt, soll auf diesen ein solcher Sensor oder Energieversorgung für die Versorgung solcher Schaltungen montiert werden, ein zusätzliches Problem auf. Das ergibt sich durch starken Rotationsfliehkräfte. Diese Rotationsfliehkräfte führen dazu, daß die elektrodynamischen magnetostriktiven oder piezoelektrischen Wandlerelemente in einer durch die Rotationsfliehkräfte angeregten Auslenkung verharren und damit zur Energieversorgung in dieser Form nicht weiter beitragen können. Kleinste Fertigungstoleranzen oder Montagetoleranzen können diese Problematik noch verstärken.
Es ist die Aufgabe der Erfindung einen Energiewandler vorzusehen, der in der Lage ist, auf rotierenden Elementen montierte elektronische Schaltungen, auch beim Vorhandensein von Rotationsfliehkräften, mit Energie zu versorgen.
Ein solcher Energiewandler nutzt zur Erzeugung der Energie nicht die Rotationsenergie an sich, sondern ihr überlagerte Bewegungen, oder Änderungen der Rotationsgeschwindigkeit.
Die Erfindung löst die Aufgabe durch die im Patentanspruch 1 vorgeschlagenen Maßnahmen. Diese sind, durch die in den Unteransprüchen vorgeschlagenen Maßnahmen, vorteilhaft weitergebildet .
Ein auf ein rotierendem Element angeordneter Energiewandler zur Umwandlung von mechanischer in elektrische Energie, mit einem Wandlerelement und einer ersten Masse und einer zweiten Masse ist so ausgestaltet, daß eine relative Bewegung, zwischen den beiden Massen auf das Wandlerelement wirkt . Eine der beiden Massen, zum Beispiel die zweite Masse ist mit dem rotierenden Element verbunden, so daß eine von der Rotation abweichende, oder eine die Rotation ändernde Kraft auf die Masse 1 wirkt. Daraus ergibt sich eine, durch diese Kräfte verursachte, Bewegung der beiden Massen zueinander. Dies geschieht, da die erste Masse gegenüber dem rotierendem Element frei, beziehungsweise mit dem rotierenden Element nicht direkt verbunden ist. Die von der Rotation unabhängigen, oder anderen Kräfte, wirken also auf die erste Masse und regen diese zu einer Bewegung an. Da die zweite Masse mit dem rotierendem Element verbunden ist, entsteht eine Relativbewegung der beiden Massen zueinander, die auf das Wandlerelement wirkt und in elektrische Energie wandelbar ist .
In einer vorteilhaften Ausführungsform ist zwischen der ersten Masse und der zweiten Masse die Bewegungsfreiheit so eingeschränkt, daß die erste Masse gegenüber der zweiten Masse nur in einer Ebene bewegbar ist . Damit ergibt sich in vorteilhafter Weise eine Unabhängigkeit von der in Richtung der Rotationsfliehkraft auf die Masse 1 wirkende Kraft. Das Wandlerelement ist damit unabhängig von diesen Kräften. Alleine Kräfte, die ihren Ursprung in einer der Rotation überlagerten Bewegung oder einer Änderung der Rotation finden, wirken dann auf die erste Masse und regen diese zur Bewegung an.
In einer weiteren vorteilhaften Ausführungsform ist die Verbindung der zweiten Masse mit den rotierenden Element so ausgelegt, daß die Rotationsfliehkraft die zweite Masse exakt so ausrichtet, daß die Ebene, in der die erste Masse bewegbar ist senkrecht zu der Rotationsfliehkraft ist. Eine eventuelle Montagetoleranz oder Fertigungstoleranz des Energiewandlers wird somit vorteilhaft eliminiert. Die Verbindung zwischen dem rotierendem Element und der zweiten Masse ist so ausgeführt, daß diese, zum Beispiel durch ein Federelement oder eine Achse, drehbar gelagert ist. Das bewirkt, daß sich die zweite Masse unter Einfluß der Rotationsfliehkraft exakt ausrichtet, ähnlich einem Fliehkraftpendel. Die Ebene, in der sich die erste Masse bewegt ist somit ebenfalls exakt ausgerichtet und senkrecht zur Rotationsfliehkraft.
Beobachtet man die erste Masse während eines gedachten Zeitraums t, so beschreibt die erste Masse eine Kreisbahn, die ihr Zentrum in der Rotationsachse des rotierenden Elementes hat. Exakt auf dieser Kreisbahn liegt tangential die Ebene, in der sich die erste Masse bewegt. Durch die rotationsfliehkraftbedingte Ausrichtung der zweiten Masse und der mechanischen Verbindung der ersten Masse mit der zweiten Masse, die so gestaltet ist, daß diese sich nur in einer Ebene bewegen kann, die senkrecht zu der Rotationsfliehkraft ist, wird erreicht, daß die erste Masse keine Hubarbeit im Kraftfeld der Rotationsfliehkraft verrichten muß. Damit ist selbst bei geringen oder größeren Fertigungs- und Montagetoleranzen sichergestellt, daß die erste Masse durch die Rotationsfliehkraft nicht in einer Auslenkung festgehalten wird, in der weitere Kräfte oder Bewegungen auf die erste Masse zur Erzeugung von elektrischer Energie relativ wirkungslos sein würden.
Die Art und Weise des Wandlerelements ist von diesem bisher beschriebenen Prinzip unabhängig und könnte ein piezoelektrisches, ein magnetisch striktives oder ein elektromagnetisches Wandlerelement sein, wobei auch andere Wandlerelemente grundsätzlich sich dafür eignen, wenn sie in der Lage sind mechanische Energie in elektrische Energie umzusetzen. Insbesondere, da das Wandlerelement durch die oben genannten Maßnahmen von den extremen Rotationsfliehkräften geschützt ist.
Im folgenden ist die Erfindung anhand von Ausführungsbeispielen und Figuren näher erläutert.
Es zeigen:
Figur 1 eine schematische Darstellung eines rotierenden Elementes mit einem Energiewandler
Figur 2 eine perspektivische schematische Darstellung eines rotierenden Elementes mit Energiewandler
Figur 3 eine detaillierter Darstellung eines Ausführungsbeispieles des Energiewandlers auf einem rotierenden Element
Figur 4 eine andere Ausführungsform des Energiewandlers auf einem rotierenden Element
Figur 5 eine weitere Ausführungsform des Energiewandlers auf einem rotierenden Element .
Figur 1 zeigt eine schematische Darstellung eines rotierendes Elementes 1 das sich um eine Achse dreht . Auf diesem rotierenden Element 1 ist eine zweite Masse M2 angeordnet, die mit einem Wandlerelement 2 verbunden ist. Eine erste Masse Ml die ebenfalls mit dem Wandle element 2 verbunden ist, ist gegenüber dem rotierenden Element 1 frei beweglich. Jede Bewegung des rotierenden Elementes 1, beziehungsweise jede Änderung der Rotation beziehungsweise jede von der Rotation unabhängige Bewegung wirkt auf die Masse Ml und führt zu einer Relativbewegung der ersten und der zweiten Masse Ml, M2 zueinander. Diese Relativbewegung bewirkt eine Kraft auf das Wandlerelement 2 und führt an diesem zur Erzeugung von elektrischer Energie durch Trennung von Ladungen.
Figur 2 zeigt eine schematische Darstellung in perspektivischer Weise, wobei das rotierende Element 1 nur ausschnittsweise dargestellt ist. Das rotierende Element 1 bewirkt durch seine Rotation eine Rotationsfliehkraft FR die senkrecht zu der Rotationsachse des rotierenden Elements 1 ist. Die auf dem rotierenden Element 1 angeordnete und befestigte zweite Masse M2 ist auf dieser durch ein Lager 3 so befestigt, daß die Masse M2 um dieses Lager 3 bewegbar ist. Bei Rotieren des rotierenden Elementes bewirkt die Rotationsfliehkraft FR ein exaktes Ausrichten der zweiten Masse M2, so daß der Schwerpunkt der zweiten Masse M2 sich auf einen energetischen Minimum unter dem Einfluß der bei der Rotation auftretenden Fliehkraft befindet. Weiterhin ist die erste Masse Ml mit der zweiten Masse M2 über das Wandlerelement 2 so verbunden, daß die erste Masse Ml ausschließlich in einer Ebene El beweglich ist. Durch die Ausrichtung der zweiten Masse M2 und die Verbindung der ersten Masse Ml mit der zweiten Masse M2 , in der oben genannten Weise, richtet sich die Ebene El senkrecht zu der Rotationsfliehkraft FR aus. Dies bewirkt, daß die Masse Ml sich in einer Ebene bewegt, die tangential zu einer Kreisbahn um die Rotationsachse liegt. Dies führt bei geringen Bewegungen dazu, daß keine Hubarbeit der Masse Ml im Kraftfeld der Rotationsfliehkraft geleistet werden muß.
Figur 3 zeigt in einer teilschematischen Darstellung ein Ausführungsbeispiel eines Energiewandlers, der auf einem rotierendem Element 1 über ein Lager oder ein biegbares Blech, zum Beispiel eine Feder, 3 auf dem rotierenden Element 1 befestigt ist. Die Masse M2 ist dabei größer ausgeführt, als die Masse Ml, was bewirkt, daß die durch die Fliehkraft angeregte und bewirkte Auslenkung der Masse M2 nicht durch die Masse Ml beeinflusst wird. Das Wandlerelement 2 ist in diesem Ausführungsbeispiel ein Piezoelement , das mit der Masse Ml verbunden ist. Die Masse Ml schwingt in diesem Ausführungsbeispiel in den in Pfeilrichtung angedeuteten Richtungen. Die Bewegungsfreiheit der ersten Masse Ml ist dabei eingeschränkt auf die Ebene El. Die Ebene El ist gebildet durch die Aufhängung der Masse M2 über die Feder 3 und ist senkrecht zu der Rotationsfliehkraft FR.
Figur 4 zeigt ein dem Ausführungsbeispiel in Figur 3 ähnlichem Energiewandler, wobei die Aufhängung und Befestigung auf dem rotierenden Element 1 der in der Figur 3 beschriebenen und dargestellten Aufhängung gleicht. Die Unterschiede in der Figur 4 beziehen sich im wesentlichen auf die Form des Wandlerelementes 2, das als induktives beziehungsweise elektromagnetisches Wandlerelement dargestellt ist. Die erste Masse Ml schwingt in diesem Ausführungsbeispiel in einer Spule, wobei auch hier die Bewegungsfreiheit der ersten Masse Ml auf die Ebene El begrenzt ist.
Figur 5 zeigt in einer teilschematischen Darstellung ein Ausführungsbeispiel eines Energiewandlers, der auf einem rotierendem Element 1 über ein Lager oder ein biegbares Blech, zum Beispiel eine Feder, 3 auf dem rotierenden Element 1 befestigt ist. Die Masse M2 ist dabei größer ausgeführt, als die Masse Ml, was bewirkt, daß die durch die Fliehkraft angeregte und bewirkte Auslenkung der Masse M2 nicht durch die Masse Ml beeinflusst wird. Das Wandlerelement 2 ist in diesem Ausführungsbeispiel ein Piezoelement, das mit der Masse Ml verbunden ist. Die Masse Ml schwingt in diesem Ausführungsbeispiel in den mit Pfeilen angedeuteten Richtungen. Als Erweiterung gegenüber der in Figur 3 dargestellten Ausführungsform ist die Masse Ml mit einem elastischem Element 4 mit der Masse 2 verbunden. Dieses elastische Element 4 ist so gestaltet, das die Masse Ml nur in einer Ebene beweglich ist. Weiterhin ist das Wandlerelement 2 an einem Ende mit der Masse Ml fest verbunden, und am gegenüberliegenden Ende über ein Lagerelement 5 gehalten. Erfolgt eine Bewegung der Masse Ml in der Ebene El, so erfolgt eine Verformung des Wandlerelements 2. Das Lagerelement ist mit der Masse M2 fest verbunden und so ausgebildet, dass das Wandlerelement 2.in Richtung der Rotationsfliehkraft FR nicht gehalten wird. Obwohl die Bewegung in Richtung der Rotationsfliehkraft FR aufgrund der Eigenschaften des elastischen Elements 4 gering sind, oder nicht vorhanden sind, ist damit ist eine dadurch bedingte Verformung zusätzlich ausgeschlossen. Die Bewegungsfreiheit der ersten Masse Ml ist durch das elastische Element 4 eingeschränkt auf die Ebene El. Die Ebene El ist gebildet durch die Aufhängung der Masse M2 über die Feder 3 und ist senkrecht zu der Rotationsfliehkraft FR.

Claims

Patentansprüche
1. Auf rotierendem Element (1) angeordneter Energiewandler zur Umwandlung von mechanischer in elektrische Energie, mit
- einem Wandlerelement (2) zur Umwandlung der mechanischen Energie in elektrische Energie,
- einer ersten Masse (Ml) ,
- einer zweiten Masse (M2) , wobei die zweite Masse (M2) mit dem rotierenden Element (1) verbunden ist, dadurch gekennzeichnet, dass das Wandlerelement (2) zwischen der ersten Masse (Ml) und der zweiten Masse (M2) so angeordnet ist, daß eine mechanische Relativbewegung der beiden Massen (Ml, M2) auf das Wandlerelement (2) wirkt, so dass elektrische Energie erzeugt wird.
2. Energiewandler nach Patentanspruch 1, dadurch gekennzeichnet dass, eine mechanisch bewegliche Verbindung zwischen der ersten Masse (Ml) und der zweiten Masse (M2) durch das Wandlerelement so ausgestaltet ist, daß die erste Masse (Ml) nur einer ersten Ebene (El) bewegbar ist.
3. Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass die zweite Masse (M2) mit dem rotierenden Element (El) so beweglich verbunden ist, daß die Ebene (El) senkrecht zu einer Rotationsfliehkraft (FR) gerichtet ist.
4. Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass das Wandlerelement (2) ein piezoelektrisches-, oder ein magnetostriktives- , oder ein elektromagnetisches Wandlerelement ist.
5. Energiewandler nach einem der vorhergehenden Patentansprüche, dadurch gekennzeichnet, dass die Anordnung des Wandlerelements (2) zu der ersten Masse (Ml) flexibel, federnd oder fest ausgestaltet ist.
6. Energiewandler nach Patentanspruch 2 bis 5, dadurch gekennzeichnet, dass die erste Masse (Ml) flexibel, federn oder fest mit dem Wandlerelement verbunden ist.
7. Energiewandler nach einem der vorhergehenden Patentansprüche 3 bis 6, dadurch gekennzeichnet, dass die zweite Masse (M2) durch ein mechanisches Lager (3) und/oder eine Feder (3) und eine Drehachse (3) mit dem rotierenden Element (1) verbunden ist.
PCT/DE2004/002388 2003-12-19 2004-10-27 Auf rotierenden elementen angeordneter energiewandler zur umwandlung von mechanischer in elektrische energie WO2005062443A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04790048A EP1695430A1 (de) 2003-12-19 2004-10-27 Auf rotierenden elementen angeordneter energiewandler zur umwandlung von mechanischer in elektrische energie
US11/455,360 US7667376B2 (en) 2003-12-19 2006-06-19 Energy converter arranged on rotating elements and used to convert mechanical energy into electric energy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10359990A DE10359990B4 (de) 2003-12-19 2003-12-19 Auf rotierenden Elementen angeordneter Energiewandler zur Umwandlung von mechanischer in elektrischer Energie
DE10359990.8 2003-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/455,360 Continuation US7667376B2 (en) 2003-12-19 2006-06-19 Energy converter arranged on rotating elements and used to convert mechanical energy into electric energy

Publications (1)

Publication Number Publication Date
WO2005062443A1 true WO2005062443A1 (de) 2005-07-07

Family

ID=34706370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/002388 WO2005062443A1 (de) 2003-12-19 2004-10-27 Auf rotierenden elementen angeordneter energiewandler zur umwandlung von mechanischer in elektrische energie

Country Status (4)

Country Link
US (1) US7667376B2 (de)
EP (1) EP1695430A1 (de)
DE (1) DE10359990B4 (de)
WO (1) WO2005062443A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022931A1 (en) * 2006-08-25 2008-02-28 Enocean Gmbh Electromechanical rotation converter and a method for generating electrical energy using an electromechanical rotation converter
US7449614B2 (en) 2006-08-29 2008-11-11 Kimberly-Clark Worldwide, Inc. Absorbent articles including a monitoring system powered by ambient energy
US8174167B2 (en) * 2007-02-15 2012-05-08 Luca Gammaitoni Bistable piezoelectric generator
WO2012067707A1 (en) * 2010-11-17 2012-05-24 Massachusetts Institute Of Technology Passive, self-tuning energy harvester for extracting energy from rotational motion
CN103026446A (zh) * 2010-04-27 2013-04-03 奥斯拉电力有限公司 用于从机械能收集电力的装置
DE102013211522A1 (de) 2013-06-19 2014-12-24 Robert Bosch Gmbh Sensor zur Erfassung einer physikalischen Eigenschaft in einem Antriebsstrang eines Kraftfahrzeugs
EP4075647A1 (de) 2021-04-15 2022-10-19 Commissariat à l'énergie atomique et aux énergies alternatives Elektromagnetische vorrichtung zur umwandlung von mechanischer energie in elektrische energie

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10359990B4 (de) * 2003-12-19 2006-11-16 Enocean Gmbh Auf rotierenden Elementen angeordneter Energiewandler zur Umwandlung von mechanischer in elektrischer Energie
DE102005051999C5 (de) * 2005-10-31 2016-11-17 Samson Ag Vorrichtung zum Überwachen des Einnehmens einer vorbestimmten Betriebsstellung, wie einer Betriebsnotstellung, durch ein bewegliches Stellglied und Anordnung mit einem Stellantrieb
DE102007007016B4 (de) * 2006-02-08 2016-01-14 Continental Teves Ag & Co. Ohg Reifenmodul
DE102007010780B4 (de) * 2006-03-02 2016-01-28 Continental Teves Ag & Co. Ohg Reifenmodul mit piezoelektrischem Wandler
DE102007010782B4 (de) * 2006-03-02 2016-02-04 Continental Teves Ag & Co. Ohg Reifenmodul mit piezoelektrischem Wandler
WO2009063609A1 (ja) * 2007-11-13 2009-05-22 Kohei Hayamizu 発電ユニット及び発光具
WO2010148312A2 (en) * 2009-06-19 2010-12-23 The Regents Of The University Of Michigan Increased frequency power generation using low-frequency ambient vibrations
KR20110026644A (ko) * 2009-09-08 2011-03-16 한국전자통신연구원 압전 에너지 하베스트 소자 및 그 제조 방법
US8212436B2 (en) * 2010-02-01 2012-07-03 Oscilla Power, Inc. Apparatus for harvesting electrical power from mechanical energy
US7936109B1 (en) 2010-03-31 2011-05-03 Hong Kong Applied Science And Technology Research Institute Co. Ltd. Non-resonant energy harvesting devices and methods
TWI584975B (zh) * 2013-10-31 2017-06-01 國立臺灣師範大學 Transportation
US9680324B2 (en) 2015-03-06 2017-06-13 Ruskin Company Energy harvesting damper control and method of operation
US10317099B2 (en) 2015-04-16 2019-06-11 Air Distribution Technologies Ip, Llc Variable air volume diffuser and method of operation
US10132553B2 (en) 2016-07-05 2018-11-20 Johnson Controls Technology Company Drain pan removable without the use of tools
US10704800B2 (en) 2016-09-28 2020-07-07 Air Distribution Technologies Ip, Llc Tethered control for direct drive motor integrated into damper blade

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510484A (en) * 1983-03-28 1985-04-09 Imperial Clevite Inc. Piezoelectric reed power supply for use in abnormal tire condition warning systems
US6237403B1 (en) * 1997-07-03 2001-05-29 Continental Aktiengesellschaft Method for determining the rotational speed of a motor vehicle wheel rotating around a rotating axis
WO2004051823A1 (de) * 2002-11-28 2004-06-17 Conti Temic Microelectronic Gmbh Mobile stromversorgungseinheit mit einem autarkiekondensator

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU536679B2 (en) 1979-11-27 1984-05-17 Imperial Clevite Inc. Vibrating transducer power supply in abnormal tire condition warning systems
US4504761A (en) * 1981-12-28 1985-03-12 Triplett Charles G Vehicular mounted piezoelectric generator
DE19627998A1 (de) * 1996-02-12 1997-08-14 Pohl & Mueller Gmbh Sicherheitseinrichtung
ES2167067T3 (es) * 1997-02-12 2002-05-01 Siemens Ag Disposicion y procedimiento para la generacion de señales de alta frecuencia codificadas.
AU9059698A (en) * 1998-03-25 1999-10-18 Detra S.A. Converter of mechanical energy into electric energy and apparatus equipped with same
DE19929341A1 (de) * 1999-06-26 2000-12-28 Abb Research Ltd Anordnung zur drahtlosen Versorgung einer Vielzahl Sensoren und/oder Aktoren mit elektrischer Energie, Sensor oder Aktor hierzu sowie System für eine eine Vielzahl von Sensoren und/oder Aktoren aufweisende Maschine
DE19953489C1 (de) * 1999-11-06 2001-05-10 Continental Ag Verfahren zur Erzeugung von elektrischer Energie durch die Abrollbewegung eines Kraftfahrzeugrades
US6411016B1 (en) * 1999-11-12 2002-06-25 Usc Co., Limited Piezoelectric generating apparatus
DE10025561A1 (de) * 2000-05-24 2001-12-06 Siemens Ag Energieautarker Hochfrequenzsender
US20030058118A1 (en) * 2001-05-15 2003-03-27 Wilson Kitchener C. Vehicle and vehicle tire monitoring system, apparatus and method
DE10125059C5 (de) * 2001-05-22 2016-07-21 Enocean Gmbh Induktiver Spannungsgenerator
JP2003209980A (ja) * 2001-11-12 2003-07-25 Jigyo Sozo Kenkyusho:Kk 振動型発電装置
US7081693B2 (en) * 2002-03-07 2006-07-25 Microstrain, Inc. Energy harvesting for wireless sensor operation and data transmission
US7429801B2 (en) * 2002-05-10 2008-09-30 Michelin Richerche Et Technique S.A. System and method for generating electric power from a rotating tire's mechanical energy
DE10259056A1 (de) * 2002-12-17 2004-09-02 Enocean Gmbh Verfahren der Energieerzeugung für rotierende Teile und damit betriebener Funksensor
DE10359990B4 (de) * 2003-12-19 2006-11-16 Enocean Gmbh Auf rotierenden Elementen angeordneter Energiewandler zur Umwandlung von mechanischer in elektrischer Energie
US7078850B2 (en) * 2004-07-20 2006-07-18 Usc Corporation Piezoelectric power generation device and piezoelectric ceramics member used therefor
EP1803168A4 (de) * 2004-10-21 2009-05-20 Michelin Soc Tech Miniaturisierte, auf piezoelektrik basierende vibrationsenergie-sammelvorrichtung
US7132757B2 (en) * 2005-02-17 2006-11-07 General Electric Company Power control system and method
GB0525989D0 (en) * 2005-12-21 2006-02-01 Qinetiq Ltd Generation of electrical power from fluid flows
US20080129153A1 (en) * 2006-06-30 2008-06-05 Roundy Shadrach J Inertial energy scavenger
US7414351B2 (en) * 2006-10-02 2008-08-19 Robert Bosch Gmbh Energy harvesting device manufactured by print forming processes
KR100817319B1 (ko) * 2006-11-01 2008-03-27 한국과학기술연구원 이동형 기기의 전력 발생장치 및 이를 구비한자가발전시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510484A (en) * 1983-03-28 1985-04-09 Imperial Clevite Inc. Piezoelectric reed power supply for use in abnormal tire condition warning systems
US6237403B1 (en) * 1997-07-03 2001-05-29 Continental Aktiengesellschaft Method for determining the rotational speed of a motor vehicle wheel rotating around a rotating axis
WO2004051823A1 (de) * 2002-11-28 2004-06-17 Conti Temic Microelectronic Gmbh Mobile stromversorgungseinheit mit einem autarkiekondensator

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008022931A1 (en) * 2006-08-25 2008-02-28 Enocean Gmbh Electromechanical rotation converter and a method for generating electrical energy using an electromechanical rotation converter
JP2009545943A (ja) * 2006-08-25 2009-12-24 エンオーシャン ゲーエムベーハー 電気機械回転変換機及び電気機械回転変換機を用いた電気エネルギーの生成方法
US7830072B2 (en) 2006-08-25 2010-11-09 Enocean Gmbh Electromechanical rotation converter and a method for generating electrical energy using an electromechanical rotation converter
KR101061692B1 (ko) 2006-08-25 2011-09-01 인오션 게엠베하 전기기계식 회전 전환 장치를 사용하여 전기 에너지를 발생시키는 전기기계식 회전 전환 장치 및 방법
CN101507008B (zh) * 2006-08-25 2012-08-29 依诺森股份有限公司 机电旋转转换器及利用机电旋转转换器来生成电能的方法
US7449614B2 (en) 2006-08-29 2008-11-11 Kimberly-Clark Worldwide, Inc. Absorbent articles including a monitoring system powered by ambient energy
US8174167B2 (en) * 2007-02-15 2012-05-08 Luca Gammaitoni Bistable piezoelectric generator
CN103026446A (zh) * 2010-04-27 2013-04-03 奥斯拉电力有限公司 用于从机械能收集电力的装置
WO2012067707A1 (en) * 2010-11-17 2012-05-24 Massachusetts Institute Of Technology Passive, self-tuning energy harvester for extracting energy from rotational motion
DE102013211522A1 (de) 2013-06-19 2014-12-24 Robert Bosch Gmbh Sensor zur Erfassung einer physikalischen Eigenschaft in einem Antriebsstrang eines Kraftfahrzeugs
EP4075647A1 (de) 2021-04-15 2022-10-19 Commissariat à l'énergie atomique et aux énergies alternatives Elektromagnetische vorrichtung zur umwandlung von mechanischer energie in elektrische energie
FR3122049A1 (fr) 2021-04-15 2022-10-21 Commissariat à l'Energie Atomique et aux Energies Alternatives Dispositif électromagnétique de conversion d'une énergie mécanique en une énergie électrique

Also Published As

Publication number Publication date
DE10359990B4 (de) 2006-11-16
US7667376B2 (en) 2010-02-23
US20080258581A1 (en) 2008-10-23
DE10359990A1 (de) 2005-08-04
EP1695430A1 (de) 2006-08-30

Similar Documents

Publication Publication Date Title
WO2005062443A1 (de) Auf rotierenden elementen angeordneter energiewandler zur umwandlung von mechanischer in elektrische energie
EP0306530A1 (de) Piezoelektrischer motor
DE102009001424A1 (de) Vorrichtung zur Energieerzeugung in einem rotierenden System
EP3204252A1 (de) Fahrpedal mit haptischer signalgebung
DE102006013237A1 (de) Mechanisch-Elektrischer Generator
DE102013008550A1 (de) Elektromechanische Verriegelungseinheit für den Fahrzeugbereich
EP0389503B1 (de) Elektromechanische vorrichtung zum arretieren einer welle in wenigstens einer stellung
DE19929341A1 (de) Anordnung zur drahtlosen Versorgung einer Vielzahl Sensoren und/oder Aktoren mit elektrischer Energie, Sensor oder Aktor hierzu sowie System für eine eine Vielzahl von Sensoren und/oder Aktoren aufweisende Maschine
EP0920605A1 (de) Magnetischer positionssensor
DE102014110753A1 (de) Kraftgenerator mit durch elektronisches Bauelement gebildeter Inertialmasse sowie Ansteuerschaltung hierfür
DE102017209161B4 (de) Signalvorrichtung für eine wandhalterung und ein mit der wandhalterung koppelbares handgeführtes haushaltsgerät
EP1761994A1 (de) Elektrische maschine und verfahren zur einstellung eines axialabstands der elektrischen maschine
DE102008029534B4 (de) Reifenmodul mit piezoelektrischem Wandler
DE102006024006A1 (de) Vorrichtung zur Umwandlung von mechanischer Energie in elektrische Energie
EP3270494A1 (de) Vorrichtung zur umwandlung von bewegungsenergie in elektrische energie und elektrofahrzeug
DE102014007844A1 (de) Rotationsdämpfer
WO2011026514A1 (de) Einrichtung zur erzeugung elektrischer energie aus mechanischen schwingungen und zugehöriges verfahren
DE19811025B4 (de) Mechanischer Oszillator und Verfahren zum Erzeugen einer mechanischen Schwingung
DE102006019696B3 (de) Elektromechanischer Pulsgeber
WO2013117297A1 (de) Einrichtung zum überwachen eines flüssigkeitsniveaus
DE102005007259B4 (de) Positionsmessvorrichtung
DE102006040725A1 (de) Vorrichtung zur Energieumwandlung, insbesondere kapazitiver Mikro-Power-Wandler
EP2489892A2 (de) Flexible Kupplung mit integrierter Messeinrichtung
DE102021209101A1 (de) Baugruppe, Antriebseinrichtung
DE19960949B4 (de) Mikromotor zur Erzeugung einer schrittweisen Bewegung von Mikrobauteilen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004790048

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004790048

Country of ref document: EP