WO2005062071A1 - Einparkhilfe mit zwei oder mehr sensoren mit gleichzeitiger direkt- und kreuzechomessung - Google Patents

Einparkhilfe mit zwei oder mehr sensoren mit gleichzeitiger direkt- und kreuzechomessung Download PDF

Info

Publication number
WO2005062071A1
WO2005062071A1 PCT/EP2004/052848 EP2004052848W WO2005062071A1 WO 2005062071 A1 WO2005062071 A1 WO 2005062071A1 EP 2004052848 W EP2004052848 W EP 2004052848W WO 2005062071 A1 WO2005062071 A1 WO 2005062071A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
sensors
sensor
signals
cross
Prior art date
Application number
PCT/EP2004/052848
Other languages
English (en)
French (fr)
Inventor
Thomas Brosche
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/583,290 priority Critical patent/US20070241955A1/en
Priority to JP2006544403A priority patent/JP2007514945A/ja
Priority to EP04798175A priority patent/EP1697762A1/de
Publication of WO2005062071A1 publication Critical patent/WO2005062071A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/325Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of coded signals, e.g. P.S.K. signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • G01S15/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector wherein transceivers are operated, either sequentially or simultaneously, both in bi-static and in mono-static mode, e.g. cross-echo mode
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/876Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • G01S2013/466Indirect determination of position data by Trilateration, i.e. two antennas or two sensors determine separately the distance to a target, whereby with the knowledge of the baseline length, i.e. the distance between the antennas or sensors, the position data of the target is determined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9323Alternative operation using light waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9324Alternative operation using ultrasonic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals

Definitions

  • the invention relates to a system with two or more corresponding sensors, each sensor having a transmitter and at least one receiver for signals, and one sensor being able to receive a cross echo signal from another sensor.
  • Radar sensors are u. a. used in Kraftfalirzeugtechnik to the distance of a Kraftfalxrzeugs to a fixed or movable obstacle such as a pedestrian z. B. when parking and the driver of the motor vehicle via appropriate display means u. a. display the distance to the obstacle optically or acoustically.
  • radar sensors are arranged on the front and / or on the rear and on the side, for monitoring a lateral area of the motor vehicle, as part of a radar system known to the person skilled in the art.
  • the radar system can be part of a driver assistance system which is also known.
  • a radar sensor with pulse modulation has a pulse generator, a transmitter with a transmitting antenna, a receiver with a receiving antenna and one Evaluation electronics.
  • the radar pulses emitted by the transmitting antenna are reflected on a target object and return to the receiver via the receiving antenna. There they are mixed with a reference signal from the pulse generator, filtered with a low-pass filter and evaluated by an electronic evaluation unit after an A / D conversion.
  • the distance to a target object and its relative speed to the radar sensor and thus to the motor vehicle can thus be determined.
  • pulse modulation other modulation methods are also possible, for example: FMCW, PSK, ASK, FSK, modulation with pseudo-noise (PN) codes and other methods or combinations of the methods.
  • PN pseudo-noise
  • the radar signal emitted by a radar sensor can be reflected at the target and can be received by the antenna of another radar sensor as a cross echo. This can lead to interference or interference with the intrinsic echo of the radar signal emitted by this radar sensor.
  • a disadvantage here is that a considerable amount of circuitry and control is always required to decouple the different radar sensors from one another and the self-echo and cross-echo signals received separate from each other.
  • the performance of a radar sensor can also be reduced by modulating the radar pulses.
  • the radar sensors which are respectively switched off on the transmitter side cannot receive their own echoes in the switched-off state.
  • the invention has for its object to provide a system with two or more sensors, in which the sensors can also receive and evaluate the reflected signals of the other sensors without mutual interference and in which
  • the main idea of the invention is that the transmit and receive operation at
  • each of the sensors of a system or the respectively associated receiver receives or evaluates intrinsic or cross echo signals only for specific intervals, the time delay of the received signal with respect to its own transmitted signal.
  • the different time intervals should not overlap each other. This is achieved by choosing the phase position of the repetition frequency f w of the transmission signal suitable for each sensor, ie differently.
  • the time intervals mentioned relate to twice the transit time of the signal moving at a speed, in particular at the speed of light c.
  • the system according to the invention is a radar system with two or more corresponding radar sensors, an optical system with two or more corresponding optical sensors or an ultrasound system with two or more corresponding ultrasound sensors can.
  • the system is a radar system with two or more corresponding radar sensors, each radar sensor having a transmitter and at least one receiver for a modulated one Radar signal and a radar sensor can receive a cross echo signal from another radar sensor, the radar sensors according to the invention are separated from each other in the receive mode by the time delay of the transmit and receive signals.
  • the solution according to the invention consists in the fact that the transmission and reception operation is coordinated and timed with one another when using a plurality of corresponding radar sensors in such a way that each of the radar sensors of a radar system or the respectively assigned receiver only compares the time delay of the received signal for specific intervals receives or evaluates its own transmission signal, own or cross-sectional signals.
  • the different time intervals should not overlap each other. This is achieved by choosing the phase position of the repetition frequency f w of the transmission signal suitable for each radar sensor, ie differently.
  • the specified time intervals relate to twice the transit time of the radar signal moving at the speed of light c.
  • All corresponding radar sensors continuously transmit radar signals (eg pulses, PN code frames) with the repetition frequency f w and are not, as in, for example, in
  • EP 0 864 880 provided, cyclically switched off. A separation of the different received radar echoes, i.e. An analysis of the cross echo signals and the self-echo is then possible with the usual signal evaluation methods or coding methods for the radar pulses.
  • the invention is also applicable to radar systems which, for example, use carrier signals modulated with PN codes (for example by means of PSK, ASK or FSK modulation) instead of pulse modulation.
  • PN codes for example by means of PSK, ASK or FSK modulation
  • a decoupling between the signals can be achieved in accordance with the core ideas of the invention, regardless of the codes selected in each case.
  • the corresponding radar sensors simultaneously transmit repetitive code frames with the repetition frequency f w , which are shifted or delayed from one another in a suitable manner. It is not necessary to use different codes for the radar sensors mentioned.
  • the advantage of the invention is that there is a separation and decoupling between the signals of the different radar sensors.
  • an evaluation of the cross echo signals transmitted by other radar sensors is possible.
  • the determination of the outer forni of the target object which has reflected the radar signals e.g. B. a concave or convex shape or its extension.
  • a more precise trilateration or location determination of the target objects is also possible and the occurrence of apparent targets can be significantly reduced by incorrect assignments of individual reflections.
  • the repetition frequency /, z. ß. also the repetition frequency of a PN code frame of a PN radar, as characterized in claim 3.
  • Range R max of each radar sensor can be set such that this target distance R max , at which the radar signals reflected by targets are still registered in the receiver, corresponds at most to the distance R e i nd at which the received radar signals can still be clearly assigned. It is therefore avoided that a target becomes appropriate at a distance that no longer allows a clear measurement result.
  • the distance range which is monitored by a radar sensor, usually begins at a minimum distance r a from the radar sensor if the immediate near range cannot be detected by the radar sensor.
  • an area of the radar sensor [r a ; rj within the interval [0; R max ] as specified in claim 4.
  • the respective signal transit times of the radar pulses from the transmitter to a target object in the detection range and back to the receiver are therefore in the time interval [2r a / c; 2r b / c] or [4; ⁇ j, which in turn is within the time interval [0; l / f w ].
  • the delays of the periodic transmission signals t S ( - of the individual radar sensors within the above-mentioned interval [0; l / f w ]) must be selected in this way that the delay times of the received signals in the individual radar sensors, which each monitor a certain spatial distance, do not overlap in order to decouple them from one another
  • a low repetition frequency _ of the transmitted code frame can be selected, in particular in the case of PN-coded radar signals. For example, for a 10-bit PN code and with a bit clock frequency or chip clock frequency of 250 MHz, this results in a repetition frequency of the code frame of TA 244 kHz, so that within the temporal interval of a code frame period of [0s; 4 ⁇ s] a clear distance measurement is possible with the radar sensor. This corresponds to the highest possible clear distance R ad of 614 meters.
  • a time delay of the transmission signal (radar pulse or PN-coded carrier) of each individual radar sensor is determined by t si to ensure that cross echo signals from the other corresponding radar sensors are only used for defined ones , disjoint intervals of the time delay t si and the corresponding apparent distance intervals are visible in the receiver of the respective radar sensor.
  • the self-echo signals of the corresponding sensor are evaluated unchanged.
  • the detection and evaluation of the self-echo signal and the nA further cross-echo signals can take place sequentially or in parallel in several receiver units of a radar sensor, as stated in claim 7. No further recipients are required for sequential recording. It is possible that both methods are combined.
  • the corresponding configurations of the electronic evaluation units are possible for the person skilled in the art.
  • FIG. 1 is a block diagram of a pulse radar
  • FIG. 2 shows a section of the division of the intervals for the time delay when several radar sensors are operated
  • FIG. 3 shows a block diagram of a pulse radar with several receivers.
  • a radar sensor 10 of a pulse radar system known per se can be seen from the schematic illustration in FIG.
  • the radar sensor 10 essentially consists of a pulse generator 11, which causes a transmitter 12 to emit a radar pulse 19 via a transmission antenna 13.
  • the radar pulse 19 is on a target object 18, for. B. another motor vehicle, a fixed obstacle or a pedestrian, reflects 20 and from a receiving antenna 14 to a receiver 15 of the
  • the received signal 20 is mixed with a reference signal of the pulse generator 11 and forwarded to an evaluation unit 17 via a low-pass filter and A / D converter 16.
  • the reference signal can be offset in time from the transmission signal.
  • the received signal 20 with respect to the distance and the relative speed of the
  • Target object 18 to radar sensor 10 or to a motor vehicle equipped with it is analyzed.
  • a first interval [t a ; The first of the four radar sensors 10 receives its own echo and the n- further radar sensors each receive the cross echo transmitted by the first radar sensor.
  • the first radar sensor 10 receives, for example, the cross echo signal of the third radar sensor, etc. The one between them
  • Periods of reception intervals are necessary to ensure the uniqueness when measuring the self-echo and the cross echo, taking into account the radar equation. After the total period Vf, one period has ended and the process is repeated.
  • the continuously transmitting radar sensors 10 are thus decoupled or separated from one another in the transmit and receive mode by the time delay, such that the self-echo signals and the cross-echo signals of the other three radar sensors 10 can be detected and processed by a radar sensor 10 without undesired interference or interference occurring.
  • the radar sensor 10 shown in FIG. 3 has three receivers 15 and accordingly three low-pass filters and A / D converters 16 in order to generate both a self-echo signal and two further cross-echo signals from two further radar sensors 10, all from the antenna 14 are received, received and processed and each to a common

Abstract

Um ein System mit zwei oder mehr Sensoren, wobei jeder Sensor einen Sender und einen Empfänger für Signale aufweist und ein Sensor ein Kreuzechosignal eines anderen Sensors empfangen kann, zu schaffen, bei dem die Sensoren auch die reflektierten Signale der jeweils anderen Sensoren ohne gegenseitige Störungen empfangen und auswerten können und bei dem die Sensoren voneinander entkoppelt sind, wird vorgeschlagen, dass die Sensoren im Empfangsbetrieb durch die zeitliche Verzögerung der Sende- und Empfangssignale zeitlich voneinander getrennt sind.

Description

EINPARKHILFE MIT ZWEI ODER MEHR SENSOREN MIT GLEICHZEITIGER DIREKT- UND KREUZECHOMESSUNG
Technisches Gebiet
Die Erfindung betrifft ein System mit zwei oder mehr korrespondierenden Sensoren, wobei jeder Sensor einen Sender und mindestens einen Empfanger für Signale aufweist und ein Sensor ein Kreuzechosignal eines anderen Sensors empfangen kann.
Stand der Technik
Radarsensoren werden u. a. in der Kraftfalirzeugtechnik verwendet, um den Abstand eines Kraftfalxrzeugs zu einem feststehenden oder beweglichen Hindernis wie einem Fußgänger z. B. beim Einparken zu überwachen und dem Fahrer des Kraftfahrzeugs über ein entsprechendes Anzeigemittel u. a. optisch oder akustisch den Abstand zu dem Hindernis anzuzeigen. Ebenso werden bei schneller Fahrt z. B. auf einer Autobahn bzw. bei langsamer Fahrt im Kolonnenverkehr die Abstände zu vorausfahrenden oder nachfolgenden Verkelirsteilnehmera überwacht. Hierfür sind an der Front und/oder am Heck sowie an der Seite, zur Überwachung eines seitlichen Bereichs des Kraftfahrzeugs, jeweils Radarsensoren als Bestandteil eines dem Fachmann bekannten Radarsystems angeordnet. Das Radarsystem kann Bestandteil eines ebenfalls bekannten Fahrassistenzsystems sein.
Ein Radarsensor mit Pulsmodulation weist in bekannter Weise einen Pulserzeuger, einen Sender mit Sendeantenne, einen Empfänger mit Empfangsantenne sowie eine Auswerteelektronik auf. Die von der Sendeantenne abgegebenen Radarimpulse werden an einem Zielobjekt reflektiert und gelangen über die Empfangsantenne zurück zum Empfänger. Dort werden sie mit einem Referenzsignal vom Pulserzeuger gemischt, mit einem Tiefpass gefiltert und nach einer A/D-Wandlung von einer elektronischen Auswerteeinheit ausgewertet. Somit kann der Abstand zu einem Zielobjekt sowie dessen Relativgeschwindigkeit zum Radarsensor und damit zu dem Kraftfahrzeug bestimmt werden. Anstelle der Pulsmodulation sind auch andere Modulationsverfahren z.B.: FMCW, PSK, ASK, FSK, Modulation mit pseudo-noise(PN) -Kodes und weitere Verfahren bzw. Kombinationen der Verfahren möglich.
Sind an einem Kraftfahrzeug mehrere Radarsensoren vorgesehen, dann kann das von einem Radarsensor abgegebene Radarsignal am Ziel reflektiert und von der Antenne eines anderen Radarsensors als Kreuzecho empfangen werden. Dabei kann es zu Störungen oder Überlagerungen mit dem Eigenecho des von diesem Radarsensor abgegebenen Radarsignals kommen. Um eine Trennung der Signale verschiedener
Sensoren zu ermöglichen ist es u.a. aus der DE 197 03 237 Cl bekannt, die Radarsignale im Mikrowellenbereich jeweils zu modulieren, um derart die Signale der Eigen- bzw. Kreuzechos verschiedener Radarsensoren anhand ihrer Modulationen zuordnen zu können. Des Weiteren sind aus der JP 07012928 A bzw. aus R. C. Dixon: "Spread Spectrum Systems", 2. Auflage, Verlag Wiley & Sons, New York, 1984 sogenannte p_seudo-noise-(PN)-Kodierungen zur Störsignalunterdrückung und Kanaltrennung bekannt. Dabei wird durch die Verwendung verschiedener Kodes für mehrere Radarsensoren eine Auswertung der vom Empfanger eines Radarsensors empfangenen Kreuzechosignale jeweils anderer Radarsensoren möglich. Zur Entkopplung mehrerer Radarsensoren können auch zueinander orthogonale Kodes für die Radarsignale verwendet werden. Aus der EP 0 864 880 ist es bekannt, mehrere Radarsensoren alternierend zu betreiben, um sie derart zu entkoppeln. Dabei werden sowohl die Eigenechosignale, d. h. die vom eigenen Sender des jeweiligen Radarsensors abgegebenen Signale, als auch Kreuzechosignale anderer Radarsensoren ausgewertet. Die DE 197 11 467 C2 offenbart ein vergleichbares Verfahren für Ultraschallsensoren.
Als nachteilig hierbei ist anzusehen, dass stets ein erheblicher Schaltungs- und steuerungstechnischer Aufwand notwendig ist, um die verschiedenen Radarsensoren voneinander zu entkoppein und die empfangenen Eigenecho- und Kreuzechosignale voneinander zu trennen. Durch die Modulation der Radarimpulse kann zudem die Leistungsfähigkeit eines Radarsensors reduziert werden. Im alternierenden Betrieb z.B. entsprechend EP 0 864 880 können die jeweils senderseitig abgeschalteten Radarsensoren im abgeschalteten Zustand keine Eigenechos empfangen.
Darstellung der Erfindung, Aufgabe, Lösung, Vorteile
Der Erfindung liegt die Aufgabe zugrunde, ein System mit zwei oder mehr Sensoren zu schaffen, bei dem die Sensoren auch die reflektierten Signale der jeweils anderen Sensoren ohne gegenseitige Störungen empfangen und auswerten können und bei dem die
Sensoren voneinander entkoppelt sind.
Diese Aufgabe wird durch die im Anspruch 1 angegebenen Merkmale gelöst.
Der Kerngedanke der Erfindung besteht darin, dass der Sende- und Empfangsbetrieb bei
Einsatz von mehreren korrespondierenden Sensoren derart zeitlich aufeinander abgestimmt und getaktet ist, dass jeder der Sensoren eines Systems bzw. der jeweils zugeordneten Empfänger nur für bestimmte Intervalle, der zeitlichen Verzögerung des Empfangssignals gegenüber dem eigenen Sendesignal, Eigen- bzw. Kreuzechosignale empfangt bzw. auswertet. Die verschiedenen zeitlichen Intervalle sollten sich dabei nicht gegenseitig überschneiden. Das wird erreicht, indem man die Phasenlage der Wiederholfrequenz fw des Sendesignals geeignet für jeden Sensor, d.h. verschieden wählt. Die genannten zeitlichen Intervalle beziehen sich auf die doppelte Laufzeit des sich mit einer Geschwindigkeit, insbesondere mit Lichtgeschwindigkeit c bewegenden Signals.
Es hat sich überraschenderweise gezeigt, dass sich die Erfindung in unterschiedlicher Weise einsetzen lässt, so dass das System erfindungsgemäß ein Radarsystem mit zwei oder mehr korrespondierenden Radarsensoren, ein optisches System mit zwei oder mehr korrespondierenden optischen Sensoren oder ein Ultraschallsystem mit zwei oder mehr korrespondierenden Ultraschallsensoren sein kann.
Gemäß einer bevorzugten Ausfülirungsform ist vorgesehen, dass das System ein Radarsystem mit zwei oder mehr korrespondierenden Radarsensoren, wobei jeder Radarsensor einen Sender und mindestens einen Empfänger für ein moduliertes Radarsignal aufweist und ein Radarsensor ein Kreuzechosignal eines anderen Radarsensors empfangen kann, die Radarsensoren erfindungsgemäß im Empfangsbetrieb durch die zeitliche Verzögerung der Sende- und Empfangssignale voneinander getrennt sind.
Die erfinderische Lösung besteht hierbei darin, dass der Sende- und Empfangsbetrieb bei Einsatz von mehreren korrespondierenden Radarsensoren derart zeitlich aufeinander abgestimmt und getaktet ist, dass jeder der Radarsensoren eines Radarsystems bzw. der jeweils zugeordneten Empfanger nur für bestimmte Intervalle, der zeitlichen Verzögerung des Empfangssignals gegenüber dem eigenen Sendesignal, Eigen- bzw. Kreuzectiosignale empfangt bzw. auswertet. Die verschiedenen zeitlichen Intervalle sollten sich dabei nicht gegenseitig überschneiden. Das wird erreicht, indem man die Phasenlage der Wiederholfrequenz fw des Sendesignals geeignet für jeden Radarsensor, d.h. verschieden wählt. Die genannten zeitlichen Intervalle beziehen sich auf die doppelte Laufzeit des sich mit Lichtgeschwindigkeit c bewegenden Radarsignals.
Somit ist sichergestellt, dass in einem bestimmten Intervall für die Verzögerurig immer nur einer der Radarsensoren die reflektierten Radarsignale des eigenen Senders empfangt. Alle korrespondierenden Radarsensoren senden dabei kontinuierlich Radarsignale (z.B. Pulse, PN-Koderahmen) mit der Wiederholfrequenz fw aus und werden nicht, wie z.B. in
EP 0 864 880 vorgesehen, zyklisch abgeschaltet. Eine Auftrennung der verschiedenen empfangenen Radarechos, d.h. eine Analyse der Kreuzechosignale und des Eigenechos ist dann mit den üblichen Signalauswertemethoden bzw. Kodierungsmethoden für die Radarimpulse möglich.
Die Erfindung ist zudem auf Radarsysteme anwendbar, die z.B. mit PN-Kodes modulierte (z.B. mittels PSK-, ASK- oder FSK-Modulation) Trägersignale anstelle der Pulsmodulation einsetzen. In diesem Fall kann unabhängig von den jeweils gewählten Kodes eine Entlcopplung zwischen den Signalen entsprechend den Kemgedanlcen der Erfindung erreicht werden. Hierbei senden die korrespondierenden Radarsensoren gleichzeitig sich mit der Wiederholfrequenz fw zyklisch wiederholende Koderahmen, die zeitlich in geeigneter Weise zueinander verschoben bzw. verzögert sind. Eine Verwendung unterschiedlicher Kodes für die genannten Radarsensoren ist nicht notwendig. Der Vorteil der Erfindung besteht darin, dass eine Trennung und Entkopplung zwischen den Signalen der verschiedenen Radarsensoren erfolgt. Zudem ist eine Auswertung der jeweils von anderen Radarsensoren gesendeten Kreuzechosignale möglich. Dies erlaubt z.B. die Bestimmung der äußeren Forni des Zielobjekts, das die Radarsignale reflektiert hat, z. B. eine konkave oder konvexe Form bzw. dessen Ausdehnung. Auch ist eine genauere Trilateration oder Ortsbestimmung der Zielobjekte möglich und das Auftreten von Scheinzielen durch fehlerhafte Zuordnungen von Einzelreflexen kami deutlich reduziert werden.
Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Bei einem Pulsradar, wie es im Anspruch 2 gekennzeichnet ist, mit einer Pulswiederholfrequenz fw gilt für die größtmögliche eindeutig messbare Zielentfernung ohne eine Überlagerung des empfangenen Signals durch einen darauffolgenden Puls: Reind = c 1 (2fy/), mit c = Lichtgeschwindigkeit im Medium.
Dabei kann die Wiederholfrequenz /, z. ß. auch die Wiederholfrequenz eines PN- Koderahmens eines PN-Radars sein, wie es im Anspruch 3 gekennzeichnet ist.
Mit Hilfe der u.a. aus A. Ludloff: "Praxiswissen Radar und Radarsignalverarbeitung", 2. Auflage, Verlag Vieweg, Wiesbaden, 1998 bekannten Radargleichung kann die maximale
Reichweite Rmax jedes Radarsensors derart eingestellt werden, dass diese Zielentfernung Rmax, bei der die von Zielen reflektierten Radarsignale noch im Empfänger registriert werden, höchstens der Entfernung Reind entspricht, bei der die empfangenen Radarsignale noch eindeutig zuordenbar sind. Somit wird vennieden, dass ein Ziel in einer Entfernung angemessen wird, die kein eindeutiges Messergebnis mehr zulässt.
Üblicherweise beginnt der Entfernungsbereich, der von einem Radarsensor überwacht wird, bei einem Mindestabstand ra vom Radarsensor, wenn der unmittelbare Nahbereich nicht vom Radarsensor erfassbar ist. Somit liegt ein tatsächlich zu überwachender Bereich des Radarsensors [ra; rj innerhalb des Intervalls [0; Rmax] wie im Anspruch 4 angegeben. Die jeweiligen Signallaufzeiten der Radarimpulse vom Sender zu einem Zielobjekt im Erfassungsbereich und zurück zum Empfänger liegen daher in dem zeitlichen Intervall [2ra/c; 2rb/c] bzw. [4; ήj, das wiederum in dem für eindeutige Messungen möglichen Zeitintervall [0; l/fw] liegt. Dabei können sich die zeitlichen Intervalle für den -ten von n Radarsensoren jeweils voneinander unterscheiden, falls unterschiedliche Entfernungsbereiche überwacht werden sollen.
Sollen in dem Radarsystem entsprechend dem Anspruch 5 n kooperierende und gleichzeitig aktive Radarsensoren verwendet und jeweils voneinander entkoppelt werden, dann müssen die Verzögerungen der periodischen Sendesignale tS(- der einzelnen Radarsensoren innerhalb des vorstehend genannten Intervalls [0; l/fw] derart gewählt werden, dass sich die Verzögerungszeiten der Empfangssignale in den einzelnen Radarsensoren, die jeweils einen bestimmten räumlichen Abstand überwachen, nicht überschneiden, um diese voneinander zu entkoppeln. Dies wird dadurch erreicht, dass die
Verzögerungen ϊsi innerhalb einer Periode der Wiederholfrequenz der periodischen Sendesignale fw der n Radarsensoren unterschiedlich z.B. entsprechend der Beziehung: tSi = (i-1) * c I (2Rmax) mit i = 1, 2, ..., n gewählt werden, wobei jeweils der z'-te Radarsensor innerhalb eines Intervalls: [ta,-; tbj = [tSi + ta; ts; + tb] seine Eigenechos empfangt bzw. dessen Kreuzechosignale von den jeweils anderen Radarsensoren empfangen werden können.
Insbesondere bei PN-kodierten Radarsignalen kann eine geringe Wiederholfrequenz _ des gesendeten Koderahmens gewählt werden. Z.B. für einen 10-Bit PN-Kode und mit einer Bit-Taktfrequenz bzw. Chip-Taktfrequenz von 250 MHz ergibt dies eine Wiederholfrequenz des Koderahmens von TA 244 kHz, so dass innerhalb des zeitliclαen Intervalls einer Kode-Rahmenperiode von [0s; 4μs] eine eindeutige Entfernungsmessung mit dem Radarsensor möglich ist. Dies entspricht einer höchstmöglichen eindeutigen Entfernung Reind von 614 Metern.
Wird dementsprechend die maximale Reichweite aller korrespondierenden Radarsensoren auf Rmaχ = 200m eingestellt, so können in diesem Beispiel bis zu drei Radarsensoren entkoppelt voneinander betrieben werden, da die Eigenechos im Intervall [0 m; Rmax] sichtbar sind, die Kreuzechosignale der jeweils anderen Radarsensoren jedoch bei zu den
Kodeverzögerungen der Sendesignale korrespondierenden Entfernungen bei > Rmax erscheinen. Dabei kann die zeitliche Synchronisation der Kodeverschiebung zwisclxen den Radarsensoren sicherstellen, dass die jeweiligen Verzögerungsintervalle sich nicht überschneiden. Dies erfordert daher keine übermäßige Genauigkeit. Um allerdings mit einem Sensor jeweils die Kreuzechosignale der anderen n-1 Sensoren (i = 2... ) zu erfassen, ist es erforderlich, dass die einzelnen Radarsensoren bzw. deren Sender genau miteinander synchronisiert sind und dass die jeweils von den Sensoren erfassten Entfernungsbereiche in den entsprechend exakt verschobenen
Entfernungsintervallen liegen wie im Anspruch 6 gekennzeichnet: [c / (2ts2...„) + ra; e / (2tώ...,,) + >%] Dabei wird eine zeitliche Verzögerung des Sendesignals (Radarpuls oder PN-kodierter Träger) jedes einzelnen Radarsensors von tsi festgelegt, um sicherzustellen, dass Kreuzechosignale der anderen korrespondierenden Radarsensoren nur für definierte, disjunkte Intervalle der zeitlichen Verzögerung tsi und der damit korrespondierenden scheinbaren Entfernungsintervalle im Empfänger des jeweiligen Radarsensors sichtbar sind. Die Auswertung der Eigenechosignale des entsprechenden Sensors erfolgt dabei unverändert.
Die Erfassung und Auswertung des Eigenechosignals und der nA weiteren Kreuzechosignale kann dabei zeitlich sequentiell oder parallel in mehreren Empfängereinheiten eines Radarsensors erfolgen, wie im Anspruch 7 angegeben. Für die sequentielle Erfassung sind keine weiteren Empfänger notwendig. Es ist möglich, dass beide Methoden kombiniert werden. Die entsprechenden Ausgestaltungen der elektronischen Auswerteeinheiten sind dem Fachmann möglich.
Es versteht sich, dass die vorstehend beschriebene Entkopplung mehrerer Radarsensoren auch für akustische Sensoren wie Ultraschallsensoren oder für optische Sensoren wie z.B. Lidarsensoren für die verschiedensten Einsatzzwecke anwendbar ist.
Kurzbeschreibung der Zeichnungen
Ausführungsbeispiele der Erfindung werden nachstehend anhand der Zeichnungen näher erläutert. Es zeigen:
Fig. 1 ein Blockschaltbild eines Pulsradars, Fig. 2 einen Ausschnitt der beispielhaft dargestellten Aufteilung der Intervalle für die zeitliche Verzögerung beim Betrieb von mehreren Radarsensoren und Fig. 3 ein Blockschaltbild eines Pulsradars mit mehreren Empfängern.
Bester Weg zur Ausführung der Erfindung
Aus der schematischen Darstellung in Figur 1 ist ein Radarsensor 10 eines an sich bekannten Pulsradarsystems ersichtlich. Der Radarsensor 10 besteht im Wesentlichen aus einem Pulserzeuger 11, der einen Sender 12 dazu veranlasst, einen Radarimpuls 19 über eine Sendeantenne 13 abzugeben. Der Radarimpuls 19 wird an einem Zielobjekt 18, z. B. einem anderen Kraftfahrzeug, einem feststehenden Hindernis oder einem Fußgänger, reflektiert 20 und von einer Empfangsantenne 14 an einen Empfänger 15 des
Radarsensors 10 übermittelt. Dort wird das empfangene Signal 20 mit einem Referenzsignal des Pulserzeugers 11 gemischt und über einen Tiefpassfilter und A/D- Wandler 16 an eine Auswerteeinheit 17 weitergeleitet. Das Referenzsignal kann dabei gegenüber dem Sendesignal zeitlich versetzt sein. In der Auswerteeinheit 17 wird das empfangene Signal 20 bzgl. dem Abstand und der Relativgeschwindigkeit des
Zielobjekts 18 zum Radarsensor 10 bzw. zu einem damit ausgestatteten Kraftfahrzeug analysiert.
Aus der Darstellung in Figur 2 ist der bezüglich der Verzögerungszeiten der Radarsignale voneinander getrennte Betrieb von beispielsweise n=4 Radarsensoren 10 ersichtlich, wobei durch den Pfeil der zeitliche Verlauf begiimend bei t = 0 s angedeutet ist. In einem ersten Intervall [ta; tj empfangt der erste der vier Radarsensoren 10 sein Eigenecho und die n-\ weiteren Radarsensoren jeweils das vom ersten Radarsensor gesendete Kreuzecho. Im Intervall [ts3 + ta; ts3 + tb] empfängt der erste Radarsensor 10 beispielsweise das Kreuzechosignal des 3. Radarsensors, etc. Die jeweils zwischen diesen
Empfangsintervallen liegenden Zeiträume sind zur Sicherstellung der Eindeutigkeit bei der Messungen des Eigenechos und der Kreuzechos unter Beachtung der Radargleichung notwendig. Nach dem Gesamtzeitraum Vf ist eine Periode beendet und der Vorgang wiederholt sich. Somit sind die kontinuierlich sendenden Radarsensoren 10 entkoppelt bzw. derart voneinander im Sende- und Empfangsbetrieb durch die zeitliche Verzögerung voneinander getrennt, dass von einem Radarsensor 10 die Eigenechosignale und die Kreuzechosignale der anderen drei Radarsensoren 10 erfasst und verarbeitet werden können, ohne dass es zu ungewollten Störungen oder Überlagerungen kommt.
Gemäß einer in Figur 3 beispielhaft dargestellten Ausfühmngsform des Radarsensors 10 verfügt dieser über drei Empfanger 15 und dementsprechend über drei Tiefpassfilter und A/D-Wandler 16, um sowohl ein Eigenechosignal als auch zwei weitere Kreuzechosignale von zwei weiteren Radarsensoren 10, die alle von der Antenne 14 empfangen werden, zu empfangen und zu verarbeiten und jeweils an eine gemeinsame
Auswerteeinheit 17 weiterzuleiten.

Claims

Patentansprüche
1. System mit zwei oder mehr Sensoren, wobei jeder Sensor einen Sender und einen Empfänger für Signale aufweist und ein Sensor ein Kreuzechosignal eines anderen Sensors empfangen kann, dadurch gekennzeichnet, dass die Sensoren im
Empfangsbetrieb durch die zeitliche Verzögemng der Sende- und Empfangssignale zeitlich voneinander getrennt sind.
2. System nach Anspruch 1, dadurch gekennzeichnet, dass das System ein Radarsystem mit zwei oder mehr korrespondierenden Radarsensoren (10), ein optisches
System mit zwei oder mehr korrespondierenden optischen Sensoren oder ein Ultraschallsystem mit zwei oder mehr korrespondierenden Ultraschallsensoren ist.
3. Radarsystem nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Radarsensoren (10) jeweils gepulst sind, insbesondere mit einer geringen
Wiederholfrequenz f .
4. Radarsystem nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass für die Sendesignale der Radarsensoren (10) ein mittels ASK, PSK, BPSK, FSK oder einer Kombination dieser Modulationsarten mit einem PN-Kode moduliertes Trägersignal verwendet wird.
5. Radarsystem nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass die Radarsensoren (10) jeweils einen zu überwachenden Entfernungsbereich [ra; rb] aus dem Intervall [0 m; Rmax] mit: 0 m < ra < rb < Rmax überwachen.
6. Radarsystem nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass n Radarsensoren (10) gleichzeitig, ohne Unterbrechung ein entsprechend moduliertes Sendesignal (Puls, PN-BPSK) senden.
7. Radarsystem entsprechend einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass vom ersten Radarsensor die Kreuzechos der n-l weiteren korrespondierenden Radarsensoren (10) in den Entfernungsbereichen [c I (2ts2...„) + ra; c / (2ts2...„) + rb] empfangen werden.
8. Radarsystem entsprechend einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass eine Auswertung eines Eigenechosignals und von (n-l) Kreuzechosignalen in einem Radarsensor (10) parallel und/oder sequentiell erfolgt, insbesondere bei paralleler Auswertung mehrere Empfänger (15) vorgesehen sind.
PCT/EP2004/052848 2003-12-19 2004-11-08 Einparkhilfe mit zwei oder mehr sensoren mit gleichzeitiger direkt- und kreuzechomessung WO2005062071A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/583,290 US20070241955A1 (en) 2003-12-19 2004-11-08 System Having Two or More Sensors
JP2006544403A JP2007514945A (ja) 2003-12-19 2004-11-08 2つ以上のセンサを有する装置
EP04798175A EP1697762A1 (de) 2003-12-19 2004-11-08 Einparkhilfe mit zwei oder mehr sensoren mit gleichzeitiger direkt- und kreuzechomessung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10360889A DE10360889A1 (de) 2003-12-19 2003-12-19 System mit zwei oder mehr Sensoren
DE10360889.3 2003-12-19

Publications (1)

Publication Number Publication Date
WO2005062071A1 true WO2005062071A1 (de) 2005-07-07

Family

ID=34673056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052848 WO2005062071A1 (de) 2003-12-19 2004-11-08 Einparkhilfe mit zwei oder mehr sensoren mit gleichzeitiger direkt- und kreuzechomessung

Country Status (6)

Country Link
US (1) US20070241955A1 (de)
EP (1) EP1697762A1 (de)
JP (1) JP2007514945A (de)
CN (1) CN1894596A (de)
DE (1) DE10360889A1 (de)
WO (1) WO2005062071A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008006656A1 (de) * 2006-07-13 2008-01-17 Robert Bosch Gmbh Winkelauflösender radarsensor
US9857458B2 (en) 2012-12-18 2018-01-02 Philips Lighting Holding B.V. Controlling transmission of pulses from a sensor

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46672E1 (en) 2006-07-13 2018-01-16 Velodyne Lidar, Inc. High definition LiDAR system
CN101547800B (zh) * 2006-12-04 2013-02-27 米其林研究和技术股份有限公司 用于多个远程测量系统的后门数据同步
US8416641B2 (en) 2010-04-28 2013-04-09 Semiconductor Components Industries, Llc Acoustic distance measurement system having cross talk immunity
DE102010044031A1 (de) * 2010-11-17 2012-05-24 Robert Bosch Gmbh Ultraschallbasierte Richtungsbestimmung von Objekten in einer Fahrzeugumgebung
CN103869279B (zh) * 2014-02-27 2017-01-25 杭州电子科技大学 一种多传感器平台的多目标定位跟踪方法
JP6413620B2 (ja) * 2014-10-22 2018-10-31 株式会社Soken 物体検出装置
DE102015200200B4 (de) * 2015-01-09 2022-09-01 Robert Bosch Gmbh Ultraschallmesssystem, Fortbewegungsmittel und Verfahren zum Betrieb einer Ultraschallsendeempfangseinrichtung
KR102364593B1 (ko) 2015-01-30 2022-02-18 현대모비스 주식회사 차량용 레이더 시스템
US10627490B2 (en) 2016-01-31 2020-04-21 Velodyne Lidar, Inc. Multiple pulse, LIDAR based 3-D imaging
WO2017149526A2 (en) 2016-03-04 2017-09-08 May Patents Ltd. A method and apparatus for cooperative usage of multiple distance meters
CN109154661A (zh) 2016-03-19 2019-01-04 威力登激光雷达有限公司 用于基于lidar的3-d成像的集成照射和检测
EP3232224B1 (de) * 2016-04-12 2018-06-13 Sick Ag Entfernungsmessender optoelektronischer sensor und verfahren zur erfassung und abstandsbestimmung von objekten
WO2017210418A1 (en) 2016-06-01 2017-12-07 Velodyne Lidar, Inc. Multiple pixel scanning lidar
CN108629857B (zh) * 2017-03-24 2021-04-27 杭州海康威视数字技术股份有限公司 一种控制闸杆的方法和系统
EP3593166B1 (de) 2017-03-31 2024-04-17 Velodyne Lidar USA, Inc. Integrierte lidar-beleuchtungsleistungssteuerung
CN107015241B (zh) * 2017-04-14 2020-07-17 北京佳讯飞鸿电气股份有限公司 一种多雷达探测方法及装置
WO2018208843A1 (en) 2017-05-08 2018-11-15 Velodyne Lidar, Inc. Lidar data acquisition and control
US10605892B2 (en) * 2017-11-08 2020-03-31 GM Global Technology Operations LLC System and method for pseudo randomized chirp scheduling for interference avoidance
US11294041B2 (en) 2017-12-08 2022-04-05 Velodyne Lidar Usa, Inc. Systems and methods for improving detection of a return signal in a light ranging and detection system
CN108124466B (zh) * 2017-12-11 2021-12-17 达闼机器人有限公司 激光探测方法及系统
DE102018201302A1 (de) * 2018-01-29 2019-08-01 Robert Bosch Gmbh Verfahren zum Betreiben eines Radarsensorsystems in einem Kraftfahrzeug
US11035943B2 (en) * 2018-07-19 2021-06-15 Aptiv Technologies Limited Radar based tracking of slow moving objects
US10712434B2 (en) 2018-09-18 2020-07-14 Velodyne Lidar, Inc. Multi-channel LIDAR illumination driver
US11082010B2 (en) 2018-11-06 2021-08-03 Velodyne Lidar Usa, Inc. Systems and methods for TIA base current detection and compensation
US11885958B2 (en) 2019-01-07 2024-01-30 Velodyne Lidar Usa, Inc. Systems and methods for a dual axis resonant scanning mirror
CN112014800B (zh) * 2019-05-31 2022-12-02 华为技术有限公司 一种雷达信号发送方法及设备
GB2584651A (en) * 2019-06-07 2020-12-16 Eaton Intelligent Power Ltd Identifying a power supply source
US10613203B1 (en) 2019-07-01 2020-04-07 Velodyne Lidar, Inc. Interference mitigation for light detection and ranging
DE102020215563A1 (de) 2020-12-09 2022-06-09 Zf Friedrichshafen Ag Radarsystem für ein Fahrzeug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4023538A1 (de) * 1990-07-25 1992-01-30 Bosch Gmbh Robert Kollisionswarneinrichtung
DE19744185A1 (de) * 1997-10-07 1999-04-08 Bosch Gmbh Robert Einrichtung zur Abstandsmessung mittels Ultraschall
DE19802724A1 (de) * 1998-01-24 1999-07-29 Bosch Gmbh Robert Überwachungseinrichtung für Signal-Echo-Sensoren
EP1013518A2 (de) * 1998-12-22 2000-06-28 Mannesmann VDO Aktiengesellschaft Anordnung zur Überwachung des Innenraumes eines Kraftfahrzeuges
DE19856974C1 (de) * 1998-12-10 2000-09-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erfassung eines Hindernisses
DE10049906A1 (de) * 2000-10-10 2002-04-11 Bosch Gmbh Robert Sensoranordnung mit einem Puls-Echo-Radar
DE10138001A1 (de) * 2001-08-02 2003-02-20 Bosch Gmbh Robert Echosignalüberwachungsvorrichtung und -verfahren
WO2003081278A1 (de) * 2002-03-27 2003-10-02 Robert Bosch Gmbh Einrichtung für insbesondere bistatische radaranwendungen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4333112A1 (de) * 1993-09-29 1995-03-30 Bosch Gmbh Robert Verfahren und Vorrichtung zum Ausparken eines Fahrzeugs
DE10145292A1 (de) * 2001-09-14 2003-04-03 Wabco Gmbh & Co Ohg Verfahren zur Abstandsmessung mittels Ultraschall
US6664918B2 (en) * 2002-01-09 2003-12-16 Mia-Com, Inc. Method and apparatus for identifying complex objects based on range readings from multiple sensors

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4023538A1 (de) * 1990-07-25 1992-01-30 Bosch Gmbh Robert Kollisionswarneinrichtung
DE19744185A1 (de) * 1997-10-07 1999-04-08 Bosch Gmbh Robert Einrichtung zur Abstandsmessung mittels Ultraschall
DE19802724A1 (de) * 1998-01-24 1999-07-29 Bosch Gmbh Robert Überwachungseinrichtung für Signal-Echo-Sensoren
DE19856974C1 (de) * 1998-12-10 2000-09-07 Bosch Gmbh Robert Verfahren und Vorrichtung zur Erfassung eines Hindernisses
EP1013518A2 (de) * 1998-12-22 2000-06-28 Mannesmann VDO Aktiengesellschaft Anordnung zur Überwachung des Innenraumes eines Kraftfahrzeuges
DE10049906A1 (de) * 2000-10-10 2002-04-11 Bosch Gmbh Robert Sensoranordnung mit einem Puls-Echo-Radar
DE10138001A1 (de) * 2001-08-02 2003-02-20 Bosch Gmbh Robert Echosignalüberwachungsvorrichtung und -verfahren
WO2003081278A1 (de) * 2002-03-27 2003-10-02 Robert Bosch Gmbh Einrichtung für insbesondere bistatische radaranwendungen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008006656A1 (de) * 2006-07-13 2008-01-17 Robert Bosch Gmbh Winkelauflösender radarsensor
US9557412B2 (en) 2006-07-13 2017-01-31 Robert Bosch Gmbh Angular resolution radar sensor
US9857458B2 (en) 2012-12-18 2018-01-02 Philips Lighting Holding B.V. Controlling transmission of pulses from a sensor

Also Published As

Publication number Publication date
CN1894596A (zh) 2007-01-10
EP1697762A1 (de) 2006-09-06
US20070241955A1 (en) 2007-10-18
JP2007514945A (ja) 2007-06-07
DE10360889A1 (de) 2005-07-14

Similar Documents

Publication Publication Date Title
WO2005062071A1 (de) Einparkhilfe mit zwei oder mehr sensoren mit gleichzeitiger direkt- und kreuzechomessung
EP2457110B1 (de) Ultraschall- messvorrichtung und verfahren zum auswerten eines ultraschallsignals
DE19754720C2 (de) Verfahren zum Betrieb eines Radarsystems
DE102007013266B4 (de) Radarvorrichtung
DE10106142A1 (de) Verfahren zum Betrieb eines Ultraschall-Multisensor-Arrays
EP1058126A2 (de) Abstandserfassungsvorrichtung
DE10059673A1 (de) Impuls-Radarverfahren sowie Impuls-Radarsensor und System
DE19829762A1 (de) Verfahren zum Betrieb eines Radarsystems
EP2755045A1 (de) Verfahren zur zyklischen Messung von Abständen und Geschwindigkeiten von Objekten mit einem FMCW-Radarsensor
EP1352263A2 (de) Radareinrichtung und verfahren zum unterdrücken von störungen einer radareinrichtung
EP1318606B1 (de) Fotoelektrischer Näherungsschalter
EP2557434B1 (de) Verfahren zum Bestimmen der Herkunft eines von einem Ultraschallsensor eines Kraftfahrzeugs empfangenen Empfangssignals, Fahrerassistenzeinrichtung und Kraftfahrzeug
EP0519361B1 (de) Dauerstrich-Radargerät, zusätzlich als Sender für die Informationsübertragung verwendbar
DE19963005A1 (de) Verfahren und Vorrichtung zur Erfassung und Auswertung von Objekten im Umgebungsbereich eines Fahrzeuges
EP1831720A1 (de) Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen
DE102017104145B4 (de) Verfahren zum Betreiben einer Ultraschallsensorvorrichtung für ein Kraftfahrzeug mit unterschiedlicher Anregung einer Membran, Ultraschallsensorvorrichtung, Fahrerassistenzsystem sowie Kraftfahrzeug
EP2767850B1 (de) Bestimmung einer Position eines Objekts in einer Umgebung eines Fahrzeugs
DE19750742A1 (de) Verfahren zur Detektion eines Zieles mittels einer HPRF-Radaranlage
DE10225614A1 (de) Schaltungsanordnung zum Betrieb eines Ultraschall-Abstandssensors
DE102009047931A1 (de) Verfahren und Vorrichtung zur Bestimmung von Abstand und Relativgeschwindigkeit wenigstens eines entfernten Objektes
EP3444633A1 (de) Verfahren zum betreiben einer ultraschallsensorvorrichtung für ein kraftfahrzeug mit anpassung eines zeitlichen verlaufs einer amplitude bei frequenzmodulierten anregungssignalen
EP3555662A1 (de) Verfahren zum betrieb eines ultraschallsensors
EP2312333B1 (de) Verfahren und Vorrichtungen zur Ortsbestimmung eines Objekts durch Reflektionserfassung von Wellenpulsen
DE19622879A1 (de) Einrichtung zum Erkennen von Hindernissen für ein Fahrzeug
EP1516200B1 (de) Verfahren und vorrichtung zum erzeugen von hf-signalen zum bestimmen eines abstandes und/oder einer geschwindigkeit eines objektes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480037941.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004798175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006544403

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2004798175

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10583290

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10583290

Country of ref document: US

WWR Wipo information: refused in national office

Ref document number: 2004798175

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2004798175

Country of ref document: EP