WO2005059029A1 - Thermoplastische formmassen mit verbesserter chemikalienbeständigkeit - Google Patents

Thermoplastische formmassen mit verbesserter chemikalienbeständigkeit Download PDF

Info

Publication number
WO2005059029A1
WO2005059029A1 PCT/EP2004/014227 EP2004014227W WO2005059029A1 WO 2005059029 A1 WO2005059029 A1 WO 2005059029A1 EP 2004014227 W EP2004014227 W EP 2004014227W WO 2005059029 A1 WO2005059029 A1 WO 2005059029A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
obtainable
graft
monomer
components
Prior art date
Application number
PCT/EP2004/014227
Other languages
English (en)
French (fr)
Inventor
Martin Stork
Martin Weber
Axel Gottschalk
Sven Riechers
Norbert Güntherberg
Wolfgang Fischer
Ludger Leber
Peter Ittemann
Stephan JÜNGLING
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to EP04820435A priority Critical patent/EP1697458B1/de
Priority to DE502004003730T priority patent/DE502004003730D1/de
Priority to US10/596,344 priority patent/US7728073B2/en
Priority to JP2006544311A priority patent/JP4469859B2/ja
Priority to KR1020067011795A priority patent/KR101146840B1/ko
Publication of WO2005059029A1 publication Critical patent/WO2005059029A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/06Copolymers with vinyl aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to thermoplastic molding compositions containing a mixture of
  • (A2) 0 to 10% by weight, based on (A), of a C 8 -C 8 alkyl ester of acrylic acid, and
  • the present invention relates to a method for producing the thermoplastic molding compositions according to the invention, their use and the moldings obtainable therefrom.
  • molding compositions consist of a hard methyl methacrylate polymer, a hard vinyl aromatic vinyl cyanide polymer and a soft graft copolymer comprising a rubber-elastic graft core, a first graft shell made of a vinyl aromatic alkyl methacrylate polymer and a second graft shell an alkyl (meth) acrylic polymer.
  • These molding compounds are characterized by good impact strength, high flowability, high light transmission, low stray light and low edge yellow tinge. With regard to their chemical and physical resistance to the influence of chemicals or solvents, these molding compositions are still in need of improvement for some areas of application, for example for use as cosmetic packaging.
  • the present invention was therefore based on the object of providing thermoplastic molding compositions based on hard methyl methacrylate polymers, hard vinyl aromatic-vinyl cyanide polymers and soft graft copolymers which, with comparable mechanical, theological and optical properties, have improved chemical resistance, for example resistance to solvents or water absorption, exhibit.
  • thermoplastic molding compositions defined at the outset it being essential to the invention that the first graft shell (C2) can be obtained by polymerizing a monomer mixture consisting of
  • thermoplastic molding compositions according to the invention Furthermore, a process for their production, their use for the production of moldings and moldings containing the thermoplastic molding compositions according to the invention have been found.
  • thermoplastic molding compositions, processes, uses and moldings according to the invention are described below.
  • thermoplastic molding compositions according to the invention contain
  • (A) 30 to 69% by weight, preferably from 32.5 to 57.5% by weight, based in each case on the sum of components (A), (B) and (C), of a methyl methacrylate polymer by polymerizing a mixture consisting of (A1) 90 to 100% by weight, preferably 92 to 98% by weight, in each case based on (A), methyl methacrylate, and
  • (A2) 0 to 10% by weight, preferably 2 to 8% by weight, based in each case on (A), of a C 1 -C 4 -alkyl ester of acrylic acid
  • (B) 30 to 69% by weight, preferably from 32.5 to 57.5% by weight, based in each case on the sum of components (A), (B) and (C), of a copolymer, obtainable by polymerization a mixture consisting of (B1) 75 to 88 wt .-%, preferably from 79 to 85 wt .-%, each based on (B), a vinyl aromatic monomer and
  • (B2) 12 to 25% by weight, preferably from 15 to 21% by weight, based in each case on (B), of a vinyl cyanide and
  • (C) from 1 to 40% by weight, preferably from 10 to 35% by weight, based in each case on the sum of components (A), (B) and (C), of a graft copolymer, obtained on loan
  • (C21) 30 to 39% by weight, preferably from 30 to 35% by weight, particularly preferably from 31 to 35% by weight, in each case based on (C2), of a vinylaromatic monomer
  • (C22) 61 to 70% by weight preferably from 63 to 70% by weight, particularly preferably from 63 to 68% by weight, in each case based on (C2), a Ci-Cs-alkyl ester of methacrylic acid and
  • methyl methacrylate polymers (A) used in the thermoplastic molding compositions according to the invention are either homopolymers of methyl methacrylate (MMA) or copolymers of MMA with up to 10% by weight, based on (A), of one C ⁇ -C 8 alkyl ester of acrylic acid.
  • the Ci-Cs-alkyl ester of acrylic acid (component A2) can be methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate and 2-ethylhexyl acrylate and mixtures thereof, preferably methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate or mixtures thereof, particularly preferably methyl acrylate.
  • methyl methacrylate (MMA) polymers can be prepared by bulk, solution or bead polymerization by known methods (see, for example, Kunststoff-Handbuch, Volume IX, "Polymethacrylate", Vieweg / Esser, Carl-Hanser-Verlag 1975) and are in Available commercially. It is preferred to use methyl methacrylate polymers whose weight-average values M w of the molar masses are in the range from 60,000 to 300,000 g / mol (determined by light scattering in chloroform).
  • Component (B) is a copolymer of a vinyl aromatic monomer (B1) and vinyl cyanide (B2).
  • Vinyl aromatic monomers (component B1) which can be used are styrene, styrene monosubstituted to trisubstituted with d-Cs-alkyl radicals, such as p-methylstyrene or tert-butylstyrene, and also ⁇ -methylstyrene, preferably styrene.
  • Acrylonitrile and / or methacrylonitrile, preferably acrylonitrile, can be used as vinyl cyanide (component B2).
  • copolymers (B) can be prepared by known processes, such as by bulk, solution, suspension or emulsion polymerization, preferably by solution polymerization (see GB-A 14 72 195). Copolymers (B) with molar masses M w of 60,000 to 300,000 g / mol, determined by light scattering in dimethylformamide, are preferred.
  • a graft copolymer is used as component (C), consisting of a core (C1) and two graft shells (C2) and (C3) applied thereon.
  • the core (C1) represents the graft base and has a swelling index Ql of 15 to 50, in particular 20 to 40, determined by swelling measurement in toluene at room temperature.
  • butadiene and / or isoprene can be used as the 1,3-diene (component C11) of the core of the graft copolymer (component C1).
  • component C12 a vinyl aromatic monomer
  • styrene or, preferably at the core with one, preferably in the ⁇ -position, or also more C 1 -C 8 -alkyl group (s), preferably methyl, substituted styrene can be used.
  • the core of the graft copolymer preferably has a glass transition temperature of less than 0 ° C.
  • the average particle size of the core is in the range from 30 to 250 nm, particularly preferably in the range from 50 to 180 nm.
  • the core is usually produced by emulsion polymerization (see, for example, Encyclopedia of Polymer Science and Engineering, Vol. 1, p. 401 ff ).
  • the graft shell (C2) which contains the monomers (C21), (C22) and optionally (C23), is applied to the core (C1).
  • the vinyl aromatic monomer (component C21) can be styrene or preferably at the core with one, preferably in the ⁇ -position, or also more Use alkyl group (s), preferably methyl, substituted styrene.
  • methyl methacrylate ethyl methacrylate, n-, i-propyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate, pentyl methacrylate, hexyl methacrylate, heptyl methacrylate, is used as the C 1 -C 4 -alkyl ester of methacrylic acid (component C22) , Octyl methyl acrylate or 2-ethylhexyl methacrylate, methyl methacrylate being particularly preferred, and mixtures of these monomers.
  • MMA methyl methacrylate
  • ethyl methacrylate ethyl methacrylate
  • n- i-propyl methacrylate
  • n-butyl methacrylate isobutyl methacrylate
  • sec-butyl methacrylate ter
  • the monomers (C23) which can be used are customary crosslinking monomers, ie essentially di- or polyfunctional comonomers, in particular alkylene glycol di (meth) acrylates such as ethylene, propylene and butylene glycol di (meth) acrylate, allyl methacrylate, (meth) acrylates of Glycerin, trimethylolpropane, pentaerythritol or vinylbenzenes such as di- or trivinylbenzene.
  • alkylene glycol di (meth) acrylates such as ethylene, propylene and butylene glycol di (meth) acrylate, allyl methacrylate, (meth) acrylates of Glycerin, trimethylolpropane, pentaerythritol or vinylbenzenes such as di- or trivinylbenzene.
  • Another graft shell (C3) is in turn applied to the graft shell (C2), which has the monomers (C31) and (C32).
  • the monomers (C31) are C-
  • Alkyl esters of methacrylic acid are C 1 -C 8 -alkyl esters of acrylic acid.
  • methyl methacrylate (MMA), ethyl methacrylate, n-, i-propyl methacrylate, n- are used as Ci-Cs-alkyl esters of methacrylic acid (monomers C31)
  • the d-Cs-alkyl ester of acrylic acid (monomers C32) can be methyl acrylate (MA), ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate or ethyl acrylate, octyl acrylate or 2-ethyl acrylate methyl acrylate is particularly preferred, and use mixtures of these monomers with one another.
  • MA methyl acrylate
  • ethyl acrylate propyl acrylate
  • n-butyl acrylate isobutyl acrylate
  • sec-butyl acrylate sec-butyl acrylate
  • tert-butyl acrylate pentyl acrylate
  • hexyl acrylate hept
  • the two graft shells (C2) and (C3) are produced in the presence of the core (C1) by methods known from the literature, in particular by emulsion polymerization (Encyclopedia of Polymer Science and Engineering, Vol. 1, page 401 ff.). Due to the so-called seed procedure used, no new particles are formed in the production of the two graft shells. In addition, the seed procedure allows the number and type of particles in both grafting stages to be determined by the amount and type of emulsifier used. The emulsion polymerization is usually initiated by polymerization initiators.
  • Ionic and non-ionic emulsifiers can be used in emulsion polymerization.
  • Suitable emulsifiers are, for example, dioctyl sodium sulfosuccinate, sodium lauryl sulfate, sodium dodecylbenzenesulfonate, alkylphenoxypolyethylene sulfonates and salts of long-chain carboxylic and sulfonic acids.
  • nonionic emulsifiers examples include fatty alcohol polyglycol ethers, alkyl aryl polyglycol ethers, fatty acid monoethanolamides and ethoxylated fatty acid amides and amines.
  • the total amount of emulsifier is preferably 0.05 to 5% by weight.
  • ammonium and alkali peroxodisulfates such as potassium peroxodisulfate and initiator combination systems such as sodium persulfate, sodium hydrosulfite, potassium persulfate, sodium formaldehyde sulfoxylate and potassium peroxodisulfate, sodium dithionite-iron-II-sulfate can be used, with the polymerization and alkali sulfate activating in the case of the ammonium sulfate which activates the polymerization temperature in the 50 to 100 ° C and with the initiator combinations, which are effective as redox systems, can be below, for example in the range of 20 to 50 ° C.
  • the total amount of initiator is preferably between 0.02 and 1.0% by weight, based on the finished emulsion polymer.
  • Polymerization regulators can also be used both in the production of the basic stage, ie the core (C1), and in the production of the two graft stages, ie the two graft shells (C2) and (C3).
  • Alkyimer captanes such as n- or tert serve as polymerization regulators. Dodecyl.
  • the polymerization regulators are usually obtained in an amount of 0.01 to 1.0% by weight at the respective level.
  • the emulsion graft copolymer to be used according to the invention is prepared in such a way that an aqueous mixture consisting of monomers, crosslinking agent, emulsifier, initiator, regulator and a buffer system is placed in a reactor inertized with nitrogen, inerted in the cold with stirring and then in Bring to the polymerization temperature over 15 to 120 minutes. The mixture is then polymerized up to a conversion of at least 95%. Monomers, crosslinking agents, emulsifiers, initiators and regulators can also be supplied completely or partially as feed to the aqueous receiver.
  • stages (C2) and (C3) are produced by emulsion polymerization with addition of the monomers in the presence of stage (C1) which has already been formed.
  • the emulsion graft copolymer is isolated from the latex obtained in a known manner by precipitation, filtration and subsequent drying.
  • precipitation for example, aqueous solutions of inorganic salts such as sodium chloride, sodium sulfate, magnesium sulfate and calcium chloride, aqueous solutions of salts of formic acid such as magnesium formate, calcium formate and zinc formate, aqueous solutions of inorganic acids such as sulfuric and phosphoric acid as well as aqueous ammoniacal and amine solutions as well as other aqueous alkaline solutions, e.g. of sodium and potassium hydroxide can be used.
  • the precipitation can also be carried out by physical methods, for example freeze precipitation, shear precipitation, steam precipitation.
  • Drying can be carried out, for example, by freeze, spray, fluidized bed and circulating air drying.
  • the precipitated emulsion graft copolymer can also be processed without drying.
  • the graft copolymer (C) preferably has a swelling index Ql of 10 to 40, in particular 12 to 35.
  • the swelling index is determined by swelling measurement in toluene at room temperature.
  • Suitable additives (D) are all those substances which dissolve well in components (A), (B) and (C) or are readily miscible with them. Suitable additives include Dyes, stabilizers, lubricants and antistatic agents.
  • the molding compositions according to the invention are produced from components (A), (B), (C) and, if desired (D), by processes known to the person skilled in the art, for example by mixing the components in the melt with devices known to the person skilled in the art at temperatures in the range from 200 to 300 ° C, in particular at 200 to 280 ° C.
  • thermoplastic molding compositions according to the invention are also distinguished, inter alia, by: characterized in that the weight ratio of the first graft shell (C2) to the second graft shell (C3) is in the range from 2: 1 to 1: 2.
  • the thermoplastic molding compositions according to the invention are distinguished in that the refractive index (n D -C 2 ) of the first graft shell (C2) is greater than the refractive index (n D -C 3 ) of the second graft shell (C3).
  • the refractive index (n D -C 2 ) of the first graft shell (C2) is preferably at least 2%, in particular by at least 3%, greater than the refractive index (n D - C 3 ) of the second graft shell (C3).
  • thermoplastic molding compositions according to the invention are characterized in that the refractive index (n-C 2 C 3 ) of the overall graft shell is smaller than the refractive index (no-C of the core (C1).
  • the refractive index (n D -C 2 C 3 ) of the total graft shell by at least 0.1%, in particular by at least 1.0% less than the refractive index (n -C ⁇ ) of the core (C1).
  • thermoplastic molding compositions according to the invention are characterized in that the amount of the difference between the refractive index (n D -C) of the overall component (C) and the refractive index (n D -AB) of the overall matrix of components (A) and (B ) is less than or equal to 0.02, in particular less than or equal to 0.015.
  • the molding compositions according to the invention are further characterized in that the amount of the difference between the refractive index (n D -C 2 C 3 ) of the total graft shell of the graft copolymer C and the refractive index (n D -C ⁇ . ) Of the core (C1 ) is less than 0.06.
  • the molding compositions according to this embodiment are distinguished by a particularly low edge yellow tinge.
  • the refractive indices mentioned are to be determined in each case by the methods mentioned below (see examples).
  • thermoplastic molding compositions according to the invention can be produced from the thermoplastic molding compositions according to the invention mainly by injection molding or by blow molding.
  • the thermoplastic molding compositions can, however, also be pressed, calendered, extruded or vacuum-formed.
  • the thermoplastic molding compositions according to the invention are distinguished in particular by good mechanical, theological and optical properties and improved chemical resistance, for example resistance to solvents or water absorption. Examples
  • thermoplastic molding compositions were produced in each case and the following properties were determined:
  • the refractive indices (n D -C- ⁇ ), (n -C) and (n D -AB) were measured on films made from the respective polymer cores (C1), polymers (C) or polymer mixtures from components (A) and (B) were pre-pressed in an IWK press at 200 ° C and a pressure of 3 - 5 bar for 2 min and then pressed at 20O ° C and 200 bar for 3 min.
  • the measurements were carried out at 20 ° C with an Abbe refractometer using the method for measuring the refractive indices for solid bodies (see Ullmanns Encyklopadie der Technische Chemie, Volume 2/1, p. 486, editor E. Foerst; Urban & Schwarzenberg, Kunststoff-Berlin 1961).
  • the refractive index (n D -C 2 ) was calculated incrementally using the following formula:
  • C2 is the part by weight of the monomer component Mj C2 which makes up the graft shell (C2)
  • (nD-M 2 ) is the refractive index increment of the monomer component M
  • the refractive index (n D -C 3 ) was calculated incrementally using the following formula: n ⁇
  • x 3 is the part by weight of the monomer component Mj C3 that forms the graft shell (C3)
  • C3 ) is the refractive index increment of the monomer component Mj C3 which forms the graft shell (C3)
  • n is the number of mutually different monomer components which form the graft shell (C3).
  • y C2 and y C3 are the respective parts by weight of the first graft shell (C2) and the second graft shell (C3), which form the overall graft shell, and the refractive indices (n D -C 2 ) and (n D -C 3 ) as described above were determined.
  • the swelling index Q1 of the graft core polymer (C1) was measured on films which were obtained by drying the dispersion obtained in the production of the rubber cores (C1) described below at 50 ° C. and 700-800 mbar overnight.
  • the swelling index Q1 of the graft copolymer (C) was measured on films which were pre-pressed from the graft copolymers (C) in an IWK press at 200 ° C. and a pressure of 3-5 bar for 2 min and finally at 200 ° C. and 200 bar 3 min were pressed.
  • a piece of the respective films was mixed with toluene. After 24 hours, decanting was carried out and the swollen film was weighed. The swollen film was dried to constant weight in a vacuum at up to 120 ° C. and weighed again.
  • the swelling index is the quotient of the weight of the swollen film and the weight of the dried film.
  • the impact strength a n was determined according to ISO 179-2 / 1eU at 23 ° C.
  • the notched impact strength a k was determined in accordance with ISO 179-2 / 1 eA (F) at 23 ° C.
  • the puncture resistance DS was determined in accordance with ISO 6603-2 / 40/20 / C at 23 ° C. on boards with a thickness of 2 mm.
  • melt volume rate MVR 220/10 according to DIN EN ISO 1133 was determined as a measure of the flowability.
  • Heat resistance Vicat B50 [° C]: The heat resistance Vicat B50 was determined according to ISO 306: 1994.
  • the transmission was determined in accordance with DIN 53236 on plates with a thickness of 2 mm.
  • Haze As a measure of the haze, the haze value was determined in accordance with ASTM D 1003 on test specimens with a thickness of 2 mm.
  • Yellowness index Yl [dimensionless]: The yellowness index or yellowness index Yl was determined in accordance with ASTM D 1925-70 C / 10 °.
  • the mean particle size and the particle size distribution of the graft copolymer cores (C1) were determined from the integral mass distribution.
  • the mean particle sizes are the weight-average of the particle sizes, as determined by means of an analytical ultracentrifuge according to the method of W. Scholtan and H. Lange, Kolloid-Z, and Z.-Polymer 250 (1972), pages 782 to 796.
  • the ultracentrifuge measurement provides the integral mass distribution of the particle diameter of a sample. From this you can see how much
  • Weight percent of the particles have a diameter equal to or smaller than a certain size.
  • the mean particle diameter which is also referred to as the D 50 value of the integral mass distribution, is defined as the particle diameter at which 50% by weight of the particles have a smaller diameter than the diameter which corresponds to the D 50 value. Likewise, 50% by weight of the particles then have a larger diameter than the D 50 value.
  • the Dg 0 value is defined as the particle diameter at which 90% by weight of the particles have a smaller diameter than the diameter which corresponds to the D 90 value.
  • Test specimens were produced from the molding compositions and stored in water for 16 h at 20 ° C. or 6 h at 70 ° C. The visual appearance of the test specimens was then assessed visually and one of the categories "very good” (++), “good” (+), “sufficient” (o), “bad” (-) or “very bad” (- ) assigned.
  • Test specimens were produced from the molding compositions and stored in various media (ethanol, isopropanol, olive oil / oleic acid mixture or di-isododecyl phthalate).
  • the stress crack behavior (measured according to ISO 4600-1992, method B, ball indentation test) as well as strength, rigidity and elongation at break (measured according to tensile test ISO 527, elongation at break) were determined on the test specimens before and after storage.
  • the respective change in the measured properties caused by the storage was assessed and one of the categories "very good” ( ++ ). "Good” (+), “sufficient” (o), “bad” (-) or “very bad” (-) assigned.
  • a copolymer of 95.5% by weight of methyl methacrylate and 4.5% by weight of methyl acrylate with a viscosity number VZ of 70 ml / g was used as component A (determined as a 0.5% by weight solution in Dimethylformamide at 23 ° C according to DIN 53727).
  • a copolymer of 81% by weight of styrene and 19% by weight of acrylonitrile with a viscosity number VZ of 60 ml / g was used as component B (determined as a 0.5% by weight solution in dimethylformamide at 23 ° C. DIN 53727).
  • Components C were produced as follows:
  • grafted cores C1 were prepared by firstly adding a solution of 186 parts by weight of water, 0.36 part by weight of sodium bicarbonate, 0.30 part by weight of potassium peroxodisulfate and 0.55 part by weight of potassium stearate was inertized with nitrogen and heated to 70 ° C. A mixture of 1 part by weight of tert-dodecyl mercaptan and 100 parts by weight of a mixture of butadiene and styrene (the respective composition of the butadiene-styrene mixture can be found in Table 1) was then added with stirring over the course of 5 hours. Polymerization was carried out up to a conversion of at least 95%. The graft cores C1 thus obtained from 73% by weight of butadiene and 27% by weight of styrene had an average particle diameter D 50 of 130 nm and a swelling index Ql of 23.
  • the graft copolymers C were prepared from the reaction mixtures obtained in the first stage and containing the graft cores C1 by two-stage graft copolymerization in the manner described below.
  • the reaction mixture containing in each case the parts by weight of graft cores C1 given in Table 1 was introduced and inertized with nitrogen. Then 0.1 part by weight of potassium stearate and 0.04 part by weight of potassium peroxodisulfate in 10 parts by weight of water were added. This mixture was mixed with the parts by weight of a mixture of the monomers which form the first graft shell C2, which are shown in Table 1, at 70 ° C. in the course of 1.5 hours, the latter mixture in each case from the parts by weight specified in Table 1 S, MMA, DCPA, BDDA and BGDMA existed. After the end of the feed, the polymerization was continued for 15 minutes to build up the first graft shell C2.
  • the polymerization was then continued for 60 minutes to build the second graft shell C3.
  • a further 0.04 part by weight of potassium peroxodisulfate in 10 parts by weight of water was added and the polymerization was continued for 1.5 hours.
  • the graft copolymers C thus obtained were then isolated by precipitation with a 1% strength by weight magnesium sulfate solution and, after washing with water at 60 ° C., dried for 24 hours in vacuo.
  • Parts by weight of components A, B and C, from which the molding compositions consist each molding composition also contains 0.2 parts by weight of calcium stearate), the sum of the parts by weight of A, B, C and calcium stearate 100 added.
  • Parts by weight of components C1, C2 and C3 from which the graft copolymers C consist the sum of the parts by weight C1, C2 and C3 adding up to 100.
  • Components (A) and (B) formed the matrix of the molding compositions, and component (C) represented the rubber.
  • Table 2 below shows the respective proportions by weight (C2) :( C3), the refractive indices (n -C 2 ) of the first graft shell (C2) for the molding compositions 1 to 4 according to the invention and for the molding compositions V1 to V4 used for comparison. , the refractive indices (n D -C 3 ) of the second graft shell (C3) and the refractive indices (n D -C 2 C 3 ) of the overall graft shell as well as the refractive indices (n D -C-,) of the nuclei (C1) and the refractive indices ( n D -C) of the total components (C) listed.
  • the amounts of the respective differences from the refractive indices (n D -C) of the overall components (C) and the refractive indices (n D -AB) of the overall matrix of components (A) and (B) are for all molding compositions 1 to 4 and V1 to V4 less than 0.02.
  • Molding compositions marked with V are not according to the invention and are used for comparison.
  • Table 3 below shows the mechanical, theological and optical properties and the chemical resistance both for the molding compositions 1 to 4 according to the invention and for the molding compositions V1 to V4 used for comparison.
  • thermoplastic molding compositions according to the invention demonstrate the improved chemical resistance, for example solvent resistance or water absorption, of the thermoplastic molding compositions according to the invention compared to known molding compositions with comparable mechanical, theological and optical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Multicomponent Fibers (AREA)

Abstract

Die vorliegende Erfindung betrifft thermoplastische Formmassen, enthaltend eine Mischung aus (A) 30 bis 69 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Methylmethacrylat-Polymerisates, (B) 30 bis 69 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Copolymerisates, erhältlich durch Polymerisation eines vinylaromatischen Monomeren und eines Vinylcyanids, und (C) 1 bis 40 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Pfropfcopolymerisates, erhältlich aus (C1) 60 bis 90 Gew.-%, bezogen auf (C), eines Kerns, erhältlich durch Polymerisation eines 1,3-Diens und eines vinylaromatischen Monomeren, (C2) 5 bis 20 Gew.-%, bezogen auf (C), einer ersten Pfropfhülle, und (C3) 5 bis 20 Gew.-%, bezogen auf (C), einer zweiten Pfropfhülle aus einem Alkyl(meth)acrylat-Polymerisat, mit der Maßgabe, daß das Mengenverhältnis von (C2) zu (C3) im Bereich von 2:1 bis 1:2 liegt, wobei erfindungswesentlich ist, daß die erste Pfropfhülle (C2) erhältlich ist durch Polymerisation eines Monomerengemisches, bestehend aus (C21) 30 bis 39 Gew.-%, bezogen auf (C2), eines vinylaromatischen Monomeren (C22) 61 bis 70 Gew.-%, bezogen auf (C2), eines C1-C8-Alkylesters der Methacrylsäure und (C23) 0 bis 3 Gew.-%, bezogen auf (C2), eines vernetzenden Monomeren, sowie Verfahren zur Herstellung dieser Formmassen, deren Verwendung und die daraus erhältlichen Formkörper.

Description

Thermoplastische Formmassen mit verbesserter Chemikalienbeständigkeit
Beschreibung
Die vorliegende Erfindung betrifft thermoplastische Formmassen, enthaltend eine Mischung aus
(A) 30 bis 69 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Methylmethacrylat-Polymerisates, erhältlich durch Polymerisation einer Mischung, bestehend aus
(A1) 90 bis 100 Gew.-%, bezogen auf (A), Methylmethacrylat.und
(A2) 0 bis 10 Gew.-%, bezogen auf (A), eines Cι-C8-Alkylesters der Acrylsäure, und
(B) 30 bis 69 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Copolymensates, erhältlich durch Polymerisation einer Mischung, bestehend aus
(B1) 75 bis 88 Gew.-%, bezogen auf (B), eines vinylaromatischen Monomeren und
(B2) 12 bis 25 Gew.-%, bezogen auf (B), eines Vinylcyanids und
(C) 1 bis 40 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Pfropfcopolymensates, erhältlich aus
(C1) 60 bis 90 Gew.-%, bezogen auf (C), eines Kerns, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus
(C11) 65 bis 90 Gew.-%, bezogen auf (C1), eines 1,3-Diens und
(C12) 10 bis 35 Gew.-% bezogen auf (C1 ), eines vinylaromatischen Monomeren und
(C2) 5 bis 20 Gew.-%, bezogen auf (C), einer ersten Pfropfhülle, und
(C3) 5 bis 20 Gew.-%, bezogen auf (C), einer zweiten Pfropfhülle, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus (C31) 70 bis 98 Gew.-%, bezogen auf (C3), eines C^Cs- Alkylesters der Methacrylsäure und
(C32) 2 bis 30 Gew.-%, bezogen auf (C3), eines O,-C8- Alkylesters der Acrylsäure, und
(D) gegebenenfalls üblichen Zusatzstoffen in Mengen von bis zu 20 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), mit der Maßgabe, daß das Gewichtsverhältnis von (C2) zu (C3) im Bereich von 2:1 bis 1:2 liegt.
Weiterhin betrifft die vorliegende Erfindung ein Verfahren zur Herstellung der erfindungsgemäßen thermoplastischen Formmassen, deren Verwendung und die daraus erhältlichen Formkörper.
Aus WO 97/08241 sind Formmassen bekannt, die aus einem harten Methylmethacry- lat-Polymerisat, einem harten Vinylaromat-Vinylcyanid-Polymerisat und einem weichen Pfropfcopolymerisat umfassend einen kautschukelastischen Pfropfkern, eine erste Pfropfhülle aus einem Vinylaromat-Alkylmethacrylat-Polymerisat und eine zweite Pfropfhülle aus einem Alkyl(meth)acryIat-Polymerisat, aufgebaut sind. Diese Formmassen zeichnen sich durch gute Schlagzähigkeit, hohe Fließfähigkeit, hohe Licht- transmission, geringen Streulichtanteil und geringen Kantengelbstich aus. Bezüglich ihrer chemischen und physikalischen Beständigkeit gegenüber dem Einfluß von Chemikalien oder Lösungsmitteln sind diese Formmassen für manche Anwendungsgebiete, beispielsweise zur Verwendung als Kosmetikverpackungen, aber noch verbesserungswürdig.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, thermoplastische Formmassen auf Basis harter Methylmethacrylat-Polymerisate, harter Vinylaromat- Vinylcyanid-Polymerisate und weicher Pfropfcopolymerisate zur Verfügung zu stellen, die bei vergleichbaren mechanischen, Theologischen und optischen Eigenschaften eine verbesserte Chemikalienbeständigkeit, beispielsweise Lösungsmittelbeständigkeit oder Wasseraufnahme, aufweisen.
Demgemäß wurden die eingangs definierten thermoplastischen Formmassen gefunden, wobei erfindungswesentlich ist, daß die erste Pfropfhülle (C2) erhältlich ist durch Polymerisation eines Monomerengemisches, bestehend aus
(C21) 30 bis 39 Gew.-%, bezogen auf (C2), eines vinylaromatischen Monomeren (C22) 61 bis 70 Gew.-%, bezogen auf (C2), eines Cι-C8-Alkylesters der Methacrylsäure und
(C23) 0 bis 3 Ge .-%, bezogen auf (C2), eines vernetzenden Monomeren.
Des weiteren wurde ein Verfahren zu deren Herstellung, ihre Verwendung zur Herstellung von Formkörpern sowie Formkörper, enthaltend die erfindungsgemäßen thermoplastischen Formmassen, gefunden.
Die erfindungsgemäßen thermoplastischen Formmassen, Verfahren, Verwendungen und Formkörper werden im folgenden beschrieben.
Die erfindungsgemäßen thermoplastischen Formmassen enthalten
(A) 30 bis 69 Gew.-%, vorzugsweise von 32,5 bis 57,5 Gew.-%, jeweils bezogen auf die Summe der Komponenten (A), (B) und (C), eines Methylmethacrylat- Polymerisates, erhältlich durch Polymerisation einer Mischung, bestehend aus (A1) 90 bis 100 Gew.-%, vorzugsweise von 92 bis 98 Gew.-%, jeweils bezogen auf (A), Methylmethacrylat, und
(A2) 0 bis 10 Gew.-%, vorzugsweise von 2 bis 8 Gew.-%, jeweils bezogen auf (A), eines C^Cs-Alkylesters der Acrylsäure
(B) 30 bis 69 Gew.-%, vorzugsweise von 32,5 bis 57,5 Gew.-%, jeweils bezogen auf die Summe der Komponenten (A), (B) und (C), eines Copolymensates, erhältlich durch Polymerisation einer Mischung, bestehend aus (B1) 75 bis 88 Gew.-%, vorzugsweise von 79 bis 85 Gew.-%, jeweils bezogen auf (B), eines vinylaromatischen Monomeren und
(B2) 12 bis 25 Gew.-%, vorzugsweise von 15 bis 21 Gew.-%, jeweils bezogen auf (B), eines Vinylcyanids und
(C) 1 bis 40 Gew.-%, vorzugsweise von 10 bis 35 Gew.-%, jeweils bezogen auf die Summe der Komponenten (A), (B) und (C), eines Pfropfcopolymensates, erhält- lieh aus
(C1) 60 bis 90 Gew.-%, vorzugsweise von 70 bis 80 Gew.-%, jeweils bezogen auf (C), eines Kerns, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus (C11) 65 bis 90 Gew.-%, vorzugsweise von 70 bis 85 Gew.-%, jeweils bezogen auf (C1), eines 1 ,3-Diens und
(C12) 10 bis 35 Gew.-%, vorzugsweise von 15 bis 30 Gew.-%, jeweils bezogen auf (C1), eines vinylaromatischen Monomeren und
(C2) 5 bis 20 Gew.-%, vorzugsweise von 10 bis 15 Gew.-%, jeweils bezogen auf (C), einer ersten Pfropfhülle, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus
(C21) 30 bis 39 Gew.-%, vorzugsweise von 30 bis 35 Gew.-%, besonders bevorzugt von 31 bis 35 Gew.-%, jeweils bezogen auf (C2), eines vinylaromatischen Monomeren
(C22) 61 bis 70 Gew.-%, vorzugsweise von 63 bis 70 Gew.-%, besonders bevorzugt von 63 bis 68 Gew.-%, jeweils bezogen auf (C2), eines Ci-Cs-Alkylesters der Methacrylsäure und
(C23) 0 bis 3 Gew.-%, vorzugsweise von 0 bis 2 Gew.-%, besonders bevorzugt von 1 bis 2 Gew.-%, jeweils bezogen auf (C2), eines vernetzenden Monomeren und
(C3) 5 bis 20 Gew.-%, vorzugsweise von 10 bis 15 Gew.-%, jeweils bezogen auf (C), einer zweiten Pfropfhülle, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus
(C31) 70 bis 98 Gew.-%, vorzugsweise von 75 bis 92 Gew.-%, jeweils bezogen auf (C3), eines Cι-C8-Alkylesters der Methacrylsäure und (C32) 2 bis 30 Gew.-%, vorzugsweise von 8 bis 25 Gew.-%, jeweils bezogen auf (C3), eines Cι.-C8-Alkylesters der Acrylsäure,
und
(D) gegebenenfalls üblichen Zusatzstoffen in Mengen von bis 20 Gew.-%, vorzugsweise von 0 bis 10 Gew.-%, jeweils bezogen auf die Summe der Komponenten (A), (B) und (C).
Die in den erfindungsgemäßen thermoplastischen Formmassen verwendeten Methyl- methacrylat-Polymerisate (A) sind entweder Homopolymerisate aus Methylmethacrylat (MMA) oder Copolymerisate aus MMA mit bis zu 10 Gew.-%, bezogen auf (A), eines Cι-C8-Alkylesters der Acrylsäure.
Als Ci-Cs-Alkylester der Acrylsäure (Komponente A2) kann man Methylacrylat, Ethy- lacrylat, Propylacrylat, n-Butylacrylat, n-Pentylacrylat, n-Hexylacrylat, n-Heptylacrylat, n-Octylacrylat und 2-Ethylhexylacrylat sowie Mischungen davon einsetzen, vorzugsweise Methylacrylat, Ethylacrylat, n-Butylacrylat, 2-Ethylhexylacrylat oder Mischungen davon, besonders bevorzugt Methylacrylat.
Die Methylmethacrylat-(MMA)-Polymerisate können durch Substanz-, Lösung- oder Perlpolymerisation nach bekannten Methoden hergestellt werden (siehe beispielsweise Kunststoff-Handbuch, Band IX, "Polymethacrylate", Vieweg/Esser, Carl-Hanser- Verlag 1975) und sind im Handel erhältlich. Bevorzugt setzt man Methylmethacrylat- Polymerisate ein, deren Gewichtsmittel-Werte Mw der Molmassen im Bereich von 60.000 bis 300.000 g/mol liegen (bestimmt durch Lichtstreuung in Chloroform).
Die Komponente (B) ist ein Copolymerisat aus einem vinylaromatischen Monomeren (B1) und Vinylcyanid (B2).
Als vinylaromatische Monomere (Komponente B1) kann man Styrol, ein- bis dreifach mit d-Cs-Alkylresten substituiertes Styrol wie p-Methylstyrol oder tert.-Butylstyrol sowie α-Methylstyrol, bevorzugt Styrol, einsetzen.
Als Vinylcyanid (Komponente B2) kann man Acrylnitril und/oder Methacrylnitril, bevorzugt Acrylnitril, einsetzen.
Außerhalb des oben angegebenen Bereiches der Zusammensetzung der Komponente (B) erhält man üblicherweise bei Verarbeitungstemperaturen über
240°C trübe Formmassen, die Schlieren aufweisen.
Die Copolymerisate (B) können nach bekannten Verfahren hergestellt werden, wie durch Substanz-, Lösung-, Suspensions— oder Emulsions-Polymerisation, bevorzugt durch Lösungspolymerisation (siehe GB— A 14 72 195). Bevorzugt sind dabei Copolymerisate (B) mit Molmassen Mw von 60.000 bis 300.000 g/mol, bestimmt durch Lichtstreuung in Dimethylformamid.
Als Komponente (C) wird ein Pfropfcopolymerisat verwendet, aus einem Kern (C1) und zweier darauf aufgebrachter Pfropf hüllen (C2) und (C3).
Der Kern (C1) stellt die Pfropfgrundlage dar und weist einen Quellungsindex Ql von 15 bis 50, insbesondere von 20 bis 40 auf, bestimmt durch Quellungsmessung in Toluol bei Raumtemperatur.
Als 1 ,3-Dien (Komponente C11) des Kerns des Pfropfcopolymerisats (Komponente C1) kann man Butadien und/oder Isopren einsetzen. Als vinylaromatisches Monomer (Komponente C12) kann man Styrol oder vorzugsweise am Kern mit einer, vorzugsweise in α-Stellung, oder auch mehreren Cι-C8- Alkylgruppe(n), vorzugsweise Methyl, substituiertes Styrol einsetzen.
Bevorzugt weist der Kern des Pfropfcopolymehsats eine Glasübergangstemperatur von kleiner als 0°C auf. Die mittlere Teilchengröße des Kerns liegt im Bereich von 30 bis 250 nm, besonders bevorzugt im Bereich von 50 bis 180 nm. Üblicherweise stellt man den Kern durch Emulsionspolymerisation her (siehe beispielsweise Encyclopedia of Polymer Science and Engineering, Vol. 1 , S. 401 ff).
Auf den Kern (C1) wird die Pfropfhülle (C2) aufgebracht, welche die Monomere (C21), (C22) und gegebenenfalls (C23) enthält.
Als vinylaromatisches Monomer (Komponente C21) kann man Styrol oder vorzugswei- se am Kern mit einer, vorzugsweise in α-Stellung, oder auch mehreren
Figure imgf000008_0001
Alkylgruppe(n), vorzugsweise Methyl, substituiertes Styrol einsetzen.
Als C^Cs-Alkylester der Methacrylsäure (Komponente C22) verwendet man erfindungsgemäß Methylmethacrylat (MMA), Ethylmethacrylat, n-, i-Propylmethacrylat, n- Butylmethacrylat, Isobutylmethacrylat, sek.-Butylmethacrylat, tert.-Butylmethacrylat, Pentylmethacrylat, Hexylmethacrylat, Heptylmethacrylat, Octylmethylacrylat oder 2- Ethylhexylmethacrylat, wobei Methylmethacrylat besonders bevorzugt ist, sowie Mischungen dieser Monomere.
Als Monomere (C23) können übliche vernetzend wirkende Monomere eingesetzt werden, also im wesentlichen di -oder polyfunktionelle Comonomere, insbesondere Alky- lenglykoldi(meth)acrylate wie Ethylen-, Propylen- und Butylenglykoldi(meth)acrylat, Allylmethacrylat, (Meth)acrylate von Glycerin, Trimethylolpropan, Pentaerythrit oder Vinylbenzole wie Di -oder Trivinylbenzol. Bevorzugt wird Butylenglykoldimethacrylat, Butylenglykoldiacrylat und Dihydrodicyclopentadienylacrylat in Form eines Isomeren- gemischs, besonders bevorzugt Dihydrodicyclopentadienylacrylat in Form eines Isome- rengemischs, eingesetzt.
Auf die Pfropfhülle (C2) wiederum wird eine weitere Pfropfhülle (C3) aufgebracht, wel- ehe die Monomere (C31) und (C32) aufweist. Die Monomere (C31) sind C-|-C8-
Alkylester der Methacrylsäure, bei den Monomeren (C32) handelt es sich um C-ι-C8- Alkylester der Acrylsäure.
Als Ci-Cs-Alkylester der Methacrylsäure (Monomere C31) verwendet man erfindungs- gemäß Methylmethacrylat (MMA), Ethylmethacrylat, n-, i-Propylmethacrylat, n-
Butylmethacrylat, Isobutylmethacrylat, sek.-Butylmethacrylat, tert.-Butylmethacrylat, Pentylmethacrylat, Hexylmethacrylat, Heptylmethacrylat, Octylmethylacrylat oder 2- Ethylhexylmethacrylat, wobei Methylmethacrylat besonders bevorzugt ist, sowie Mischungen dieser Monomere. Als d-Cs-Alkylester der Acrylsäure (Monomere C32) kann man Methylacrylat (MA), Ethylacrylat, Propylacrylat, n-Butylacrylat, Isobutylacrylat, sek.-Butylacrylat, tert - Butylacrylat, Pentylacrylat, Hexylacrylat, Heptylacrylat, Octylacrylat oder 2- Ethylhexylacrylat, wobei Methylacrylat besonders bevorzugt ist, sowie Mischungen dieser Monomere untereinander einsetzen.
Die Herstellung der beiden Pfropfhüllen (C2) und (C3) erfolgt in Gegenwart des Kerns (C1) nach literaturbekannten Methoden, insbesondere durch Emulsionspolymerisation (Encyclopedia of Polymer Science and Engineering, Vol. 1 , Seite 401 ff.). Durch die dabei angewandte sogenannte Saatfahrweise werden bei der Herstellung der beiden Pfropfhüllen keine neuen Teilchen gebildet. Darüber hinaus ermöglicht es die Saatfahrweise die Zahl und die Art der Teilchen in beiden Pfropfstufen durch die Menge und die Art des eingesetzten Emulgators zu bestimmen. Die Emulsionspolymerisation wird üblicherweise durch Polymerisationsinitiatoren ausgelöst.
Bei der Emulsionspolymerisation können ionogene und nicht ionogene Emulgatoren verwendet werden.
Geeignete Emulgatoren sind beispielsweise Dioctylnatriumsulfosuccinat, Natriumlau- rylsulfat, Natriumdodecylbenzolsulfonat, Alkylphenoxypolyethylensulfonate und Salze von langkettigen Carbon- und Sulfonsäuren.
Als nichtionogene Emulgatoren sind beispielsweise Fettalkoholpolyglykolether, Alkyl- arylpolyglykolether, Fettsäuremonoethanolamide sowie ethoxylierte Fettsäureamide und -amine geeignet.
Bezogen auf das Gesamtgewicht des Emulsionspfropfcopolymerisates liegt die Ge- samtemulgatormenge vorzugsweise bei 0,05 bis 5 Gew.-%.
Als Polymerisationsinitiatoren können Ammonium- und Alkaliperoxodisulfate wie Kali- umperoxodisulfat sowie Initiatorkombinationssyste e wie Natrium persulfat, Natriumhydrosulfit, Kaliumpersulfat, Natriumformaldehydsulfoxylat und Kaliumperoxodisulfat, Natriumdithionit-Eisen-ll-sulfat verwendet werden, wobei die Polymerisationstemperatur im Fall der thermisch zu aktivierenden Ammonium- und Alkaliperoxodisulfate bei 50 bis 100°C und bei den Initiatorkombinationen, die als Redoxsysteme wirksam sind, darunter liegen kann, etwa im Bereich von 20 bis 5O°C.
Die gesamte Initiatormenge liegt vorzugsweise zwischen 0,02 und 1 ,0 Gew.-%, bezogen auf das fertige Emulsionspolymerisat.
Sowohl bei der Herstellung der Grundstufe, d.h. des Kerns (C1), als auch bei der Herstellung der beiden Pfropfstufen, d.h. der beiden Pfropfhüllen (C2) und (C3), können ferner Polymerisationsregler eingesetzt werden. Als Polymerisationsregler dienen u.a. Alkyimercaptane wie beispielsweise n- oder tert. -Dodecylmercaptan. Die Polymerisa- tionsregler werden üblicherweise in einer Menge von 0,01 bis 1,0 Gew.-%, bezogen auf die jeweilige Stufe, eingesetzt.
Im übrigen wird das erfindungsgemäß zu verwendende Emulsionspfropfcopoiymerisat so hergestellt, daß man eine wäßrige Mischung, bestehend aus Monomeren, Vernet- zer, Emulgator, Initiator, Regler und einem Puffersystem in einem mit Stickstoff inertisierten Reaktor vorlegt, in der Kälte unter Rühren inertisiert und dann im Laufe von 15 bis 120 Minuten auf die Polymerisationstemperatur bringt. Anschließend wird bis zu einem Umsatz von mindestens 95 % polymerisiert. Monomere, Vernetzer, E- mulgator, Initiator und Regler können auch komplett oder teilweise als Zulauf der wäß- rigen Vorlage zugeführt werden.
Gegebenenfalls nach einer Nachreaktionszeit von 15 bis 120 Minuten werden die Stufen (C2) und (C3) unter Zulauf der Monomeren in Gegenwart der bereits gebildeten Stufe (C1) durch Emulsionspolymerisation erzeugt.
Die Isolierung des Emulsionspfropfcopolymerisat.es aus dem erhaltenen Latex erfolgt auf bekannte Weise durch Ausfällung, Filtration und anschließender Trocknung. Für die Ausfällung können beispielsweise wäßrige Lösungen von anorganischen Salzen wie Natriumchlorid, Natriumsulfat, Magnesiumsulfat und Calciumchlorid, wäßrige Lö- sungen von Salzen der Ameisensäure wie Magnesiumformiat, Caiciumformiat und Zinkformiat, wäßrige Lösungen von anorganischen Säuren wie Schwefel- und Phosphorsäure sowie wäßrige ammoniakalische und aminische Lösungen sowie andere wäßrige alkalische Lösungen, z.B. von Natrium- und Kaliumhydroxid verwendet werden. Die Fällung kann aber auch durch physikalische Methoden, beispielsweise Ge- frierfällung, Scherfällung, Dampffällung erfolgen.
Die Trocknung kann beispielsweise durch Gefrier-, Sprüh-, Wirbelschicht- und Umluft- trocknung erfolgen.
Das ausgefällte Emulsionspfropfcopoiymerisat kann auch ohne Trocknung weiterverarbeitet werden.
Das Pfropfcopolymerisat (C) weist vorzugsweise einen Quellungsindex Ql von 10 bis 40, insbesondere von 12 bis 35 auf. Der Quellungsindex wird dabei durch Quellungs- messung in Toluol bei Raumtemperatur bestimmt.
Als übliche Zusatzstoffe (D) kommen alle solchen Substanzen in Betracht, die sich in den Komponenten (A), (B) und (C) gut lösen, beziehungsweise mit diesen gut mischbar sind. Geeignete Zusatzstoffe sind u.a. Farbstoffe, Stabilisatoren, Schmiermittel und Antistatika.
Die Herstellung der erfindungsgemäßen Formmassen aus den Komponenten (A), (B), (C) und gewünschtenfalls (D) erfolgt nach dem Fachmann bekannten Verfahren, beispielsweise durch Mischen der Komponenten in der Schmelze mit dem Fachmann be- kannten Vorrichtungen bei Temperaturen im Bereich von 200 bis 300°C, insbesondere bei 200 bis 280°C.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich ferner u.a. dadurch aus, daß das Gewichtsverhältnis der ersten Pfropfhülle (C2) zur zweiten Pfropf- hülle (C3) im Bereich von 2:1 bis 1:2 liegt.
Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich in einer bevorzugten Ausführungsform dadurch aus, daß der Brechungsindex (nD-C2) der ersten Pfropfhülle (C2) größer als der Brechungsindex (nD-C3) der zweiten Pfropfhülle (C3) ist. Vorzugsweise ist der Brechungsindex (nD-C2) der ersten Pfropfhülle (C2) wenigstens um 2 %, insbesondere um wenigstens 3 %, größer als der Brechungsindex (nD- C3) der zweiten Pfropfhülle (C3).
In einer weiteren bevorzugten Ausführungsform sind die erfindungsgemäßen thermo- plastischen Formmassen dadurch charakterisiert, daß der Brechungsindex (n -C2C3) der Gesamtpfropfhülle kleiner ist als der Brechungsindex (no-C des Kerns (C1). Vorzugsweise ist der Brechungsindex (nD-C2C3) der Gesamtpfropfhülle um wenigstens 0,1 %, insbesondere um wenigstens 1,0 % kleiner als der Brechungsindex (n -Cι) des Kerns (C1).
In einer weiteren bevorzugten Ausführungsform sind die erfindungsgemäßen thermoplastischen Formmassen dadurch charakterisiert, daß der Betrag der Differenz aus Brechungsindex (nD-C) der Gesamtkomponente (C) und dem Brechungsindex (nD-AB) der Gesamtmatrix der Komponenten (A) und (B) kleiner oder gleich 0,02, insbesondere kleiner oder gleich 0,015, ist.
In einer weiteren bevorzugten Ausführungsform sind die erfindungsgemäßen Formmassen darüber hinaus dadurch charakterisiert, daß der Betrag der Differenz zwischen dem Brechungsindex (nD-C2C3) der Gesamtpfropfhülle des Pfropfcopolymerisats C und dem Brechungsindex (nD-Cι.) des Kerns (C1) kleiner als 0,06 ist. Die Formmassen gemäß dieser Ausführungsform zeichnen sich durch einen besonders niedrigen Kantengelbstich aus.
Die genannten Brechungsindices sind jeweils nach den im folgenden noch genannten Methoden (siehe Beispiele) zu bestimmen.
Aus den erfindungsgemäßen thermoplastischen Formmassen können hauptsächlich durch Spritzgießen oder durch Formblasen Formteile hergestellt werden. Die thermoplastischen Formmassen können aber auch verpreßt, kalandriert, extrudiert oder vaku- umgeformt werden. Die erfindungsgemäßen thermoplastischen Formmassen zeichnen sich insbesondere durch gute mechanische, Theologische und optische Eigenschaften sowie eine verbesserte Chemikalienbeständigkeit, beispielsweise Lösungsmittelbeständigkeit oder Wasseraufnahme, aus. Beispiele
In den nachfolgenden erfindungsgemäßen Beispielen und den Vergleichsbeispielen wurden jeweils thermoplastische Formmassen hergestellt und folgende Eigenschaften ermittelt:
Brechungsindex nD [dimensionslos]:
Die Brechungsindices (nD-C-ι), (n -C) und (nD-AB) wurden an Folien gemessen, die aus den jeweiligen Polymerkernen (C1), Polymeren (C) oder Polymermischungen aus den Komponenten (A) und (B) in einer IWK-Presse bei 200°C und einem Druck von 3 - 5 bar 2 min vorgepresst und abschließend bei 20O°C und 200 bar 3 min nachgepresst wurden. Die Messungen wurden bei 20°C mit einem Abbe-Refraktometer nach der Methode zur Messung der Brechungsindizes bei festen Körpern durchgeführt (s. Ull- manns Encyklopädie der technischen Chemie, Band 2/1 , S. 486, Herausgeber E. Foerst; Urban & Schwarzenberg, München-Berlin 1961).
Der Brechungsindex (nD-C2) wurde inkrementell nach folgender Formel berechnet:
(nD-C2) = Σ [x,C2 * (nD-MiC2)] / Σ [Xi C2] i=1 i=1 wobei X|C2 die Gewichtsteile der die Pfropfhülle (C2) aufbauenden Monomerkomponen- te MjC2 sind, (nD-M 2) das Brechungsindexinkrement der die Pfropfhülle (C2) aufbauenden Monomerkomponente M|C2 ist, und n die Anzahl voneinander verschiedener, die Pfropfhülle (C2) aufbauender Monomerkomponenten ist.
Der Brechungsindex (nD-C3) wurde inkrementell nach folgender Formel berechnet: n π
(nD-C3) = Σ [XiC3 * (nD-M )] / Σ [Xi C3] i=1 i=1 wobei x 3 die Gewichtsteile der die Pfropfhülle (C3) aufbauenden Monomerkomponente MjC3 sind, (nD-M|C3) das Brechungsindexinkrement der die Pfropfhülle (C3) aufbauenden Monomerkomponente MjC3 ist, und n die Anzahl voneinander verschiedener, die Pfropfhülle (C3) aufbauender Monomerkomponenten ist.
Als Brechungsindexinkremente (nD-M 2) bzw. (nD-Mf3) der die Pfropfhüllen (C2) bzw. (C3) aufbauenden Monomerkomponenten MjC2 bzw. M wurden folgende Werte eingesetzt:
Styrol: 1 ,594 Methylmethacrylat: 1 ,495
Butylacrylat: 1 ,419
Dihydrodicyclopentadienylacrylat: 1 ,497
Butandioldiacrylat: 1 ,419
Butylenglykoldimethacrylat: 1 ,419 Der Brechungsindex (nD-C2C3) der Gesamtpfropfhülle wurde nach folgender Formel berechnet:
(nD-C2C3) = [yC2 * (nD-C2) + yC3 * (nD-C3)] / [yG2 + yG3]
wobei yC2 bzw. yC3 die jeweiligen Gewichtsteile der die Gesamtpropfhülle aufbauenden ersten Pfropfhülle (C2) bzw. zweiten Pfropf hülle (C3) sind, und die Brechungsindices (nD-C2) und (nD-C3) wie oben beschrieben bestimmt wurden.
Quellungsindex Ql [dimensionslos]:
Der Quellungsindex Ql des Pfropfkernpolymerisats (C1) wurde an Folien gemessen, die durch Trocknen der bei der im folgenden noch beschriebenen Herstellung der Kautschukkerne (C1) anfallenden Dispersion bei 50°C und 700-800 mbar über Nacht erhalten wurden. Der Quellungsindex Ql des Pfropfcopolymerisats (C) wurde an Folien gemessen, die aus den Pfropfcopolymerisaten (C) in einer IWK-Presse bei 200°C und einem Druck von 3 - 5 bar 2 min vorgepresst und abschließend bei 200°C und 200 bar 3 min nachgepresst wurden. Ein Stück der jeweiligen Folien wurde mit Toluol versetzt. Nach 24 Stunden wurde de- kantiert und die gequollene Folie gewogen. Die gequollene Folie wurde im Vakuum bei bis zu 120 °C bis zur Gewichtskonstanz getrocknet und wiederum gewogen. Der Quellungsindex ergibt sich als Quotient aus dem Gewicht der gequollenen Folie und dem Gewicht der getrockneten Folie.
Schlagzähigkeit an [kJ/m2]:
Die Schlagzähigkeit an wurde gemäß ISO 179-2/1eU bei 23°C bestimmt.
Kerbschlagzähigkeit ak [kJ/m2]:
Die Kerbschlagzähigkeit ak wurde gemäß ISO 179-2/1 eA(F) bei 23°C bestimmt.
Durchstoßfestigkeit DS [Nm]:
Die Durchstoßfestigkeit DS wurde gemäß ISO 6603-2/40/20/C bei 23°C an Platten mit einer Dicke von 2 mm bestimmt.
Fließfähigkeit MVR [ml/10 min]:
Als Maß für die Fließfähigkeit wurde die Melt-Volume-Rate MVR 220/10 gemäß DIN EN ISO 1133 bestimmt.
Wärmeformbeständigkeit Vicat B50 [°C]: Die Wärmeformbeständigkeit Vicat B50 wurde gemäß ISO 306: 1994 bestimmt.
Transmission [%]:
Die Transmission wurde gemäß DIN 53236 an Platten mit einer Dicke von 2 mm bestimmt.
Haze [%]: Als Maß für die Trübung wurde der Haze-Wert gemäß ASTM D 1003 an Probekörpern mit einer Dicke von 2 mm bestimmt.
Yellowness-Index Yl [dimensionslos]: Der Gelbindex (Gelbstich) oder Yellowness-index Yl wurde gemäß ASTM D 1925-70 C/10° bestimmt.
Teilchengröße Dso bzw. D90 [nm]:
Die mittlere Teilchengröße und die Teilchengrößenverteilung der Pfropfcopolymerisat- Kerne (C1) wurden aus der integralen Massenverteilung bestimmt. Bei den mittleren Teilchengrößen handelt es sich in allen Fällen um das Gewichtsmittel der Teilchengrößen, wie sie mittels einer analytischen Ultrazentrifuge entsprechend der Methode von W. Scholtan und H. Lange, Kolloid-Z, und Z.-Polymere 250 (1972), Seiten 782 bis 796, bestimmt wurden. Die Ultrazentrifugenmessung liefert die integrale Massenvertei- lung des Teilchendurchmessers einer Probe. Hieraus läßt sich entnehmen, wieviel
Gewichtsprozent der Teilchen einen Durchmesser gleich oder kleiner einer bestimmten Größe haben. Der mittlere Teilchendurchmesser, der auch als D50-Wert der integralen Massenverteilung bezeichnet wird, ist dabei als der Teϊlchendurchmesser definiert, bei dem 50 Gew.-% der Teilchen einen kleineren Durchmesser haben als der Durchmes- ser, der dem Dso-Wert entspricht. Ebenso haben dann 50 Gew.-% der Teilchen einen größeren Durchmesser als der D50-Wert. Der Dg0-Wert ist als der Teilchendurchmesser definiert, bei dem 90 Gew.-% der Teilchen einen kleineren Durchmesser haben als der Durchmesser, der dem D90-Wert entspricht.
Wasseraufnahme:
Aus den Formmassen wurden Probekörper hergestellt und 16 h bei 20°C, beziehungsweise 6 h bei 70 °C in Wasser gelagert. Das optische Erscheinungsbild der Probekörper wurde anschließend visuell beurteilt und einer der Kategorien „sehr gut" (++), „gut" (+), „ausreichend" (o), „schlecht" (-) oder „sehr schlecht" (--) zugeordnet.
Chemikalienbeständigkeit:
Aus den Formmassen wurden Probekörper hergestellt und in verschiedenen Medien (Ethanol, Isopropanol, Olivenöl-Ölsäure-Gemisch oder Di-iso-dodecylphthalat) gelagert. An den Probekörpern wurden jeweils vor und nach der Lagerung das Spannungs- rißverhalten (gemessen nach ISO 4600-1992, Verfahren B, Kugeleindruckprüfung) sowie Festigkeit, Steifigkeit und Bruchdehnung (gemessen nach Zugversuch ISO 527, Reißdehnung) bestimmt. Die durch die Lagerung verursachte jeweilige Veränderung der gemessenen Eigenschaften wurde beurteilt und einer der Kategorien „sehr gut" (++). „gut" (+), „ausreichend" (o), „schlecht" (-) oder „sehr schlecht" (-) zugeordnet.
Herstellung der Formmassen:
Als Komponente A wurde ein Copolymerisat aus 95,5 Gew.-% Methylmethacrylat und 4,5 Gew.-% Methylacrylat mit einer Viskositätszahl VZ von 70 ml/g eingesetzt (be- stimmt als 0,5 gew.-%-ige Lösung in Dimethylformamid bei 23°C nach DIN 53727). Als Komponente B wurde ein Copolymerisat aus 81 Gew.-% Styrol und 19 Gew.-% Acrylnitril mit einer Viskositätszahl VZ von 60 ml/g eingesetzt (bestimmt als 0,5 gew.- %-ige Lösung in Dimethylformamid bei 23°C nach DIN 53727).
Die Komponenten C wurden wie folgt hergestellt:
In einer ersten Stufe wurden Pfropfkerne C1 hergestellt, indem jeweils eine Lösung aus 186 Gew.-Teilen Wasser, 0,36 Gew.-Teilen Natriumbicarbonat, 0,30 Gew.-Teilen Kali- umperoxodisulfat und 0,55 Gew.-Teilen Kaliumstearat zunächst mit Stickstoff inertisiert und auf 70°C temperiert wurde. Anschließend wurden unter Rühren innerhalb von 5 h eine Mischung aus 1 Gew.-Teil tert.-Dodecylmercaptan und 100 Gew.-Teilen einer Mischung aus Butadien und Styrol (die jeweilige Zusammensetzung der Butadien- Styrol-Mischung ist Tabelle 1 zu entnehmen) zugegeben. Man polymerisierte bis zu einem Umsatz von mindestens 95 %. Die so aus 73 Gew.-% Butadien und 27 Gew.-% Styrol erhaltenen Pfropfkerne C1 wiesen einen mittleren Teilchendurchmesser D50 von 130 nm und einen Quellungsindex Ql von 23 auf.
Die so aus 70 Gew.-% Butadien und 30 Gew.-% Styrol erhaltenen Pfropfkerne C1 wiesen einen mittleren Teilchendurchmesser Dso von 140 nm und einen Quellungsindex Ql von 31 auf.
Für Formmasse V4 (s. Tabelle 1) wurde das beschriebene Vorgehen zur Herstellung des Pfropfkerns C1 gemäß der Lehre von WO 01/46317 so abgewandelt, daß Pfropfkerne mit einer bimodalen Teilchengrößenverteilung gebildet wurden; die Maxima der Teilchengrößenverteilung lagen bei 80 und 150 nm.
Aus den in der ersten Stufe erhaltenen Reaktionsmischungen enthaltend die Pfropfkerne C1 wurden jeweils durch zweistufige Pfropfcopolymerisation in der nachfolgend beschriebenen Weise die Pfropfcopolymerisate C hergestellt.
Dabei wurden folgende Abkürzungen verwendet.
Bu Butadien MA Methylacrylat
S Styrol BDDA Butandioldiacrylat
MMA Methylmethacrylat BA Butylacrylat
BGDMA Butylenglykoldimethacrylat DCPA Dihydrodicyclopentadienylacrylat
Die Reaktionsmischung enthaltend jeweils die in Tabelle 1 angegebenen Gew. -teile Pfropfkerne C1 wurde vorgelegt und mit Stickstoff inertisiert. Anschließend fügte man jeweils 0,1 Gew.-Teile Kaliumstearat und 0,O4 Gew.-Teile Kaliumperoxodisulfat in 10 Gew.-Teilen Wasser hinzu. Diese Mischung wurde jeweils bei 70°C innerhalb von 1 ,5 h mit den in Tabelle 1 wiedergegebenen Gew.-teilen einer Mischung der die erste Pfropfhülle C2 aufbauenden Monomere versetzt, wobei die letztgenannte Mischung jeweils aus den in Tabelle 1 genannten Gew.-teilen S, MMA, DCPA, BDDA und BGDMA bestand. Nach Zulaufende wurde die Polymerisation zum Aufbau der ersten Pfropfhülle C2 15 min fortgesetzt. Zu den so erhaltenen Reaktionsmischungen wurden jeweils innerhalb von 1 ,5 h die in Tabelle 1 wiedergegebenen Gew.-teile einer Mischung der die zweite Pfropf hülle C3 aufbauenden Monomere zugegeben, wobei die letztgenannte Mischung jeweils aus den in Tabelle 1 genannten Gew.-teilen MMA und BA bestand. Die Polymerisation wurde zum Aufbau der zweiten Pfropfhülle C3 anschließend 60 Minuten lang fortgesetzt. Anschließend fügte man jeweils weitere 0,04 Gew.-Teile Kaliumperoxodisulfat in 10 Gew.-Teilen Wasser hinzu und polymerisierte 1,5 h nach.
Die so erhaltenen Pfropfcopolymerisate C wurden danach durch Fällung mit einer 1 gew.-%igen Magnesiumsulfatlösung isoliert und nach dem Waschen mit Wasser bei 60°C im Vakuum 24 Stunden lang getrocknet.
Aus den in Tabelle 1 angegebenen Gew.-teilen der Komponenten A, B, C, und jeweils 0,2 Gew.-teilen Calciumstearat wurden in einer Schmelze bei Temperaturen von 250°C die in Tabelle 1 wiedergegeben erfindungsgemäßen Formmassen 1-4 und die zum Vergleich dienenden Formmassen V1-V4 hergestellt.
Tabelle 1:
Figure imgf000017_0001
Figure imgf000017_0002
Gew.-teile der Komponenten A, B und C, aus denen die Formmassen bestehen (jede Formmasse enthält außerdem 0,2 Gew.-teile Calciumstearat), wobei sich die Summe der Gew.-teile von A, B, C und Calciumstearat zu 100 addiert. Gew.-teile der Komponenten C1 , C2 und C3, aus denen die Pfropfcopolymerisate C bestehen, wobei sich die Summe der Gew.-teile C1, C2 und C3 zu 100 addiert. Gew.-teile und Art der Monomere, aus denen die jeweiligen Komponenten C1, C2 und C3 bestehen, wobei sich die jeweilige Summe der Monomeren zu 100 addiert (Bu = 1 ,3-Butadien, MA = Methylacrylat, S = Styrol, BDDA = Butandioldiacrylat, MMA = Methylmethacrylat, BA = Butylacrylat, BGDMA = Butylenglykoldimethacrylat, DCPA = Dihydrodicyclopentadienylacrylat) Pfropfcopolymerisat-Kem C1 mit bimodaler Teilchengrößenverteilung mit V gekennzeichnete Formmassen sind nicht erfindungsgemäß und dienen zum Vergleich.
Die Komponenten (A) und (B) bildeten die Matrix der Formmassen, die Komponente (C) stellte den Kautschuk dar.
In der nachfolgenden Tabelle 2 sind für die erfindungsgemäßen Formmassen 1 bis 4 und für die zum Vergleich dienenden Formmassen V1 bis V4 das jeweilige Verhältnis der Gewichtsteile (C2):(C3), die Brechungsindices (n -C2) der ersten Pfropfhülle (C2), die Brechungsindices (nD-C3) der zweiten Pfropfhülle (C3) und die Brechungsindices (nD-C2C3) der Gesamtpfropfhülle sowie die Brechungsindices (nD-C-,) der Kerne (C1) und die Brechungsindices (nD-C) der Gesamtkomponenten (C) aufgeführt. Die Beträge der jeweiligen Differenzen aus den Brechungsindices (nD-C) der Gesamtkomponenten (C) und den Brechungsindices (nD-AB) der Gesamtmatrix der Komponenten (A) und (B) sind für alle Formmassen 1 bis 4 und V1 bis V4 kleiner als 0,02.
Tabelle 2
Figure imgf000019_0001
mit V gekennzeichnete Formmassen sind nicht erfindungsgemäß und dienen zum Vergleich.
In der nachfolgenden Tabelle 3 sind sowohl für die erfindungsgemäßen Formmassen 1 bis 4 als auch für die zum Vergleich dienenden Formmassen V1 bis V4 die mechanischen, Theologischen und optischen Eigenschaften sowie die Chemikalienbeständigkeit wiedergegeben.
Tabelle 3:
Figure imgf000020_0001
++ sehr gut, + gut, o ausreichend, - schlecht, - sehr schlecht
Die Beispiele belegen die bei vergleichbaren mechanischen, Theologischen und optischen Eigenschaften verbesserte Chemikalienbeständigkeit, beispielsweise Lösungsmittelbeständigkeit oder Wasseraufnahme, der erfindungsgemäßen thermoplastischen Formmassen gegenüber bekannten Formmassen.

Claims

Patentansprüche
1. Thermoplastische Formmassen, enthaltend eine Mischung aus
(A) 30 bis 69 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Methylmethacrylat-Polymerisates, erhältlich durch Polymerisation einer Mischung, bestehend aus
(A1) 90 bis 100 Gew.-%, bezogen auf (A), Methylmethacrylat.und
(A2) 0 bis 10 Gew.-%, bezogen auf (A), eines Cι-C8-Alkylesters der Acrylsäure, und
(B) 30 bis 69 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Copolymerisates, erhältlich durch Polymerisation einer Mischung, bestehend aus
(B1) 75 bis 88 Gew.-%, bezogen auf (B), eines vinylaromatischen Monomeren und
(B2) 12 bis 25 Gew.-%, bezogen auf (B), eines Vinylcyanids und (C) 1 bis 40 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Pfropfcopolymensates, erhältlich aus
(C1) 60 bis 90 Gew.-%, bezogen auf (C), eines Kerns, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus
(C11) 65 bis 90 Gew.-%, bezogen auf (C1), eines 1 ,3-Diens und
(C12) 10 bis 35 Gew.-% bezogen auf (C1), eines vinylaromati- sehen Monomeren und
(C2) 5 bis 20 Gew.-%, bezogen auf (C), einer ersten Pfropf hülle, und
(C3) 5 bis 20 Gew.-%, bezogen auf (C), einer zweiten Pfropfhülle, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus (C31) 70 bis 98 Gew.-%, bezogen auf (C3), eines d-Cs- Alkylesters der Methacrylsäure und
(C32) 2 bis 30 Gew.-%, bezogen auf (C3), eines C-,-C8- Alkylesters der Acrylsäure, und
(D) gegebenenfalls üblichen Zusatzstoffen in Mengen von bis zu 20 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), mit der Maßgabe, daß das Gewichtsverhältnis von (C2) zu (C3) im Bereich von 2:1 bis 1 :2 liegt, dadurch gekennzeichnet, daß die erste Pfropfhülle (C2) erhältlich ist durch Polymerisation eines Monomerengemisches, bestehend aus
(C21) 30 bis 39 Gew.-%, bezogen auf (C2), eines vinylaromatischen Monomeren
(C22) 61 bis 70 Gew.-%, bezogen auf (C2), eines C-i-Cs-Alkylesters der Methacrylsäure und
(C23) 0 bis 3 Gew.-%, bezogen auf (C2), eines vernetzenden Monome- ren.
2. Thermoplastische Formmassen nach Anspruch 1 , dadurch gekennzeichnet, daß der Brechungsindex (nD-C2) der ersten Pfropfhülle (C2) größer als der Brechungsindex (nD-C3) der zweiten Pfropfhülle (C3) ist, und der Brechungsindex (nD-C2C3) der Gesamtpfropfhülle kleiner als der Brechungsindex (nD-C-ι) des Kerns (C1) ist, und der Betrag der Differenz aus Brechungsindex (nD-C) der Gesamtkomponente (C) und dem Brechungsindex (nD-AB) der Gesamtmatrix der Komponenten (A) und (B) kleiner oder gleich 0,02 ist, wobei die Brechungsindices jeweils nach den in der Beschreibung genannten Methoden bestimmt wer- den.
3. Thermoplastische Formmassen nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die erste Pfropfhülle (C2) erhältlich ist durch Polymerisation eines Monomerengemisches, bestehend aus
(C21) 30 bis 35 Gew.-%, bezogen auf (C2), eines vinylaromatischen Monomeren
(C22) 63 bis 70 Gew.-%, bezogen auf (C2), eines d-Cs-Alkylesters der Me- thacrylsäure und (C23) 0 bis 2 Gew.-%, bezogen auf (C2), eines vernetzenden Monomeren.
4. Thermoplastische Formmassen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die erste Pfropfhülle (C2) erhältlich ist durch Polymerisation eines Monomerengemisches, bestehend aus
(C21) 31 bis 35 Gew.-%, bezogen auf (C2), eines vinylaromatischen Monomeren (C22) 63 bis 68 Gew.-%, bezogen auf (C2), eines d-C8-Alkylesters der Methacrylsäure und
(C23) 1 bis 2 Gew.-%, bezogen auf (C2), eines vernetzenden Monomeren.
5. Thermoplastische Formmassen nach einem der Ansprüche 1 bis 4, worin der Betrag der Differenz zwischen dem Brechungsindex (nD-C2C3) der Gesamtpfropfhülle des Pfropfcopolymerisats C und dem Brechungsindex (nD-Cι) des Kerns (C1) kleiner als 0,06 ist, wobei die Brechungsindices jeweils nach den in der Beschreibung genannten Methoden bestimmt werden.
6. Thermoplastische Formmassen nach einem der Ansprüche 1 bis 5, wobei als vinylaromatisches Monomeres Styrol verwendet wird.
7. Thermoplastische Formmassen nach einem der Ansprüche 1 bis 6, wobei das Pfropfcopolymerisat (C) einen Quellungsindex Ql von 10 bis 40 aufweist, wobei der Quellungsindex Ql nach der in der Beschreibung genannten Methoden bestimmt wird.
8. Verfahren zur Herstellung der thermoplastischen Formmassen gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man
(A) 30 bis 69 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Methylmethacrylat-Polymerisates, erhältlich durch Polymerisation einer Mischung, bestehend aus
(A1) 90 bis 100 Gew.-%, bezogen auf (A), Methylmethacrylat, und
(A2) 0 bis 10 Gew.-%, bezogen auf (A), eines d-C8-Alkylesters der Acrylsäure, und
(B) 30 bis 69 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Copolymensates, erhältlich durch Polymerisation einer Mischung, bestehend aus (B1) 75 bis 88 Gew.-%, bezogen auf (B), eines vinylaromatischen Monomeren und
(B2) 12 bis 25 Gew.-%, bezogen auf (B), eines Vinylcyanids
und
(C) 1 bis 40 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), eines Pfropfcopolymensates, erhältlich aus
(C1) 60 bis 90 Gew.-%, bezogen auf (C), eines Kerns, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus
(C11) 65 bis 90 Gew.-%, bezogen auf (C1), eines 1 ,3-Diens und
(C12) 10 bis 35 Gew.-% bezogen auf (C1), eines vinylaromatischen Monomeren und
(C2) 5 bis 20 Gew.-%, bezogen auf (C), einer ersten Pfropfhülle, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus
(C21) 30 bis 39 Gew.-%, bezogen auf (C2), eines vinylaromatischen Monomeren
(C22) 61 bis 70 Gew.-%, bezogen auf (C2), eines d-C8- Alkylesters der Methacrylsäure und
(C23) 0 bis 3 Gew.-%, bezogen auf (C2), eines vernetzenden Monomeren. und
(C3) 5 bis 20 Gew.-%, bezogen auf (C), einer zweiten Pfropfhülle, erhältlich durch Polymerisation eines Monomerengemisches, bestehend aus
(C31) 70 bis 98 Gew.-%, bezogen auf (C3), eines d-C8- Alkylesters der Methacrylsäure und
(C32) 2 bis 30 Gew.-%, bezogen auf (C3), eines d-C8- Alkylesters der Acrylsäure, und
(D) gegebenenfalls üblichen Zusatzstoffen in Mengen von bis zu 20 Gew.-%, bezogen auf die Summe der Komponenten (A), (B) und (C), mit der Maßgabe, daß das Gewichtsverhältnis von (C2) zu (C3) im Bereich von 2:1 bis 1:2 liegt, durch Vermischen der Komponenten (A), (B), (C) und gegebenenfalls (D) in der Schmelze.
9. Verwendung der thermoplastischen Formmassen gemäß einem der Ansprüche 1 bis 7 zur Herstellung von Formkörpern.
10. Formkörper, enthaltend thermoplastische Formmassen gemäß einem der Ansprüche 1 bis 7.
PCT/EP2004/014227 2003-12-16 2004-12-14 Thermoplastische formmassen mit verbesserter chemikalienbeständigkeit WO2005059029A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04820435A EP1697458B1 (de) 2003-12-16 2004-12-14 Thermoplastische formmassen mit verbesserter chemikalienbeständigkeit
DE502004003730T DE502004003730D1 (de) 2003-12-16 2004-12-14 Thermoplastische formmassen mit verbesserter chemikalienbeständigkeit
US10/596,344 US7728073B2 (en) 2003-12-16 2004-12-14 Thermoplastic moulding compounds exhibiting improved chemical resistance
JP2006544311A JP4469859B2 (ja) 2003-12-16 2004-12-14 改善された耐薬品性を有する熱可塑性成形材料
KR1020067011795A KR101146840B1 (ko) 2003-12-16 2004-12-14 증진된 내화학성을 나타내는 열가소성 성형 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10359358.6 2003-12-16
DE10359358A DE10359358A1 (de) 2003-12-16 2003-12-16 Thermoplastische Formmassen mit verbesserter Chemiekalienbeständigkeit

Publications (1)

Publication Number Publication Date
WO2005059029A1 true WO2005059029A1 (de) 2005-06-30

Family

ID=34672850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/014227 WO2005059029A1 (de) 2003-12-16 2004-12-14 Thermoplastische formmassen mit verbesserter chemikalienbeständigkeit

Country Status (8)

Country Link
US (1) US7728073B2 (de)
EP (1) EP1697458B1 (de)
JP (1) JP4469859B2 (de)
KR (1) KR101146840B1 (de)
AT (1) ATE361340T1 (de)
DE (2) DE10359358A1 (de)
ES (1) ES2284084T3 (de)
WO (1) WO2005059029A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637561A3 (de) * 2004-09-15 2006-10-04 Rohm and Haas Company Glanzreduktionspolymerzusammensetzung
WO2007036495A1 (de) * 2005-09-30 2007-04-05 Basf Se Thermoplastische formmassen mit verbesserten optischen eigenschaften
WO2007129835A1 (en) * 2006-05-04 2007-11-15 Cheil Industries Inc. Resin composition having good scratch resistance
EP1985663A1 (de) 2007-04-24 2008-10-29 Basf Se Formkörper mit temperaturabhängiger Transparenz
US8501868B2 (en) 2010-03-26 2013-08-06 Styrolution GmbH Thermoplastic molding compositions with improved optical properties
US9096704B2 (en) 2006-12-28 2015-08-04 Cheil Industries Inc. Impact modifier, method for preparing the same and scratch resistant methacrylate resin composition using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144008A (ja) * 2007-12-12 2009-07-02 Asahi Kasei Chemicals Corp 耐傷性、および耐金型汚染性に優れる熱可塑性樹脂組成物
FR3056218B1 (fr) * 2016-09-20 2020-10-02 Arkema France Composition de polymere, son procede de preparation, son utilisation et objet comprenant celle-ci
CN110003607A (zh) * 2019-04-25 2019-07-12 苏州博驰新材料有限公司 一种化妆笔包装专用的高光泽高分子材料
CN110003608A (zh) * 2019-04-25 2019-07-12 苏州博驰新材料有限公司 一种化妆笔包装专用的高光泽自润滑高分子材料

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008241A1 (de) * 1995-08-31 1997-03-06 Basf Aktiengesellschaft Thermoplastische formmassen mit geringem streulichtanteil

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997008241A1 (de) * 1995-08-31 1997-03-06 Basf Aktiengesellschaft Thermoplastische formmassen mit geringem streulichtanteil

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637561A3 (de) * 2004-09-15 2006-10-04 Rohm and Haas Company Glanzreduktionspolymerzusammensetzung
US7557158B2 (en) 2004-09-15 2009-07-07 Rohm And Haas Company Gloss reducing polymer composition
EP2295495A1 (de) * 2004-09-15 2011-03-16 Rohm and Haas Company Glanzreduktionspolymerzusammensetzung
US7989082B2 (en) 2004-09-15 2011-08-02 Rohm And Haas Company Composite with gloss reducing polymer composition
WO2007036495A1 (de) * 2005-09-30 2007-04-05 Basf Se Thermoplastische formmassen mit verbesserten optischen eigenschaften
WO2007129835A1 (en) * 2006-05-04 2007-11-15 Cheil Industries Inc. Resin composition having good scratch resistance
JP2009535476A (ja) * 2006-05-04 2009-10-01 チェイル インダストリーズ インコーポレイテッド 耐スクラッチ性に優れた樹脂組成物
CN101360787B (zh) * 2006-05-04 2011-12-14 第一毛织株式会社 具有良好抗划伤性的树脂组合物
US8314182B2 (en) 2006-05-04 2012-11-20 Cheil Industries Inc. Resin composition having good scratch resistance
US9096704B2 (en) 2006-12-28 2015-08-04 Cheil Industries Inc. Impact modifier, method for preparing the same and scratch resistant methacrylate resin composition using the same
EP1985663A1 (de) 2007-04-24 2008-10-29 Basf Se Formkörper mit temperaturabhängiger Transparenz
US8501868B2 (en) 2010-03-26 2013-08-06 Styrolution GmbH Thermoplastic molding compositions with improved optical properties

Also Published As

Publication number Publication date
EP1697458A1 (de) 2006-09-06
ATE361340T1 (de) 2007-05-15
DE10359358A1 (de) 2005-07-14
JP4469859B2 (ja) 2010-06-02
JP2007514046A (ja) 2007-05-31
US7728073B2 (en) 2010-06-01
DE502004003730D1 (de) 2007-06-14
EP1697458B1 (de) 2007-05-02
US20070167573A1 (en) 2007-07-19
ES2284084T3 (es) 2007-11-01
KR20060109489A (ko) 2006-10-20
KR101146840B1 (ko) 2012-05-16

Similar Documents

Publication Publication Date Title
EP1713858B1 (de) Thermoplastische formmassen mit verbesserten mechanischen und optischen eigenschaften
EP0847421B1 (de) Thermoplastische formmassen mit geringem streulichtanteil
DE2037419B2 (de) Formmasse
DE102007059632A1 (de) Formkörper mit matter und strukturierter Oberflächenbeschaffenheit
EP0700966B1 (de) Transparente, schlagzähe Formmassen mit hoher Spannungsrissbeständigkeit und matter Oberfläche
EP1937772B1 (de) Thermoplastische formmassen mit verbesserten optischen eigenschaften
WO2005059029A1 (de) Thermoplastische formmassen mit verbesserter chemikalienbeständigkeit
EP2147049B1 (de) Thermoplastische formmassen mit verarbeitungsunabhängiger zähigkeit
EP0842222B1 (de) Transparent, spannungsrissbeständige formmassen mit einem verbesserten zähigkeits-steifigkeits-verhältnis
WO2001046317A1 (de) Transparente, schlagzähe thermoplastische formmassen
EP0507117B1 (de) ABS-Formmassen mit bimodaler Kautschukpartikelgrössenverteilung
DE19713895A1 (de) Transparente, schlagzähmodifizierte thermoplastische Formmassen
EP0258741A2 (de) Thermoplastische Formmasse auf Basis von ABS
WO2014023714A1 (de) Polymermischungen mit optimiertem zähigkeits-/steifigkeits-verhältnis und optischen eigenschaften
DE3622736A1 (de) Thermoplastische formmassen aus vinylchloridpolymerisaten und pfropfpolymerisaten mit verbesserten eigenschaften
EP2553018B1 (de) Thermoplastische formmassen mit verbesserten optischen eigenschaften
DE3322747A1 (de) Thermoplastische formmasse
DE3322748A1 (de) Thermoplastische formmasse
EP0335235B1 (de) Schlagfeste thermoplastische Formmasse und deren Verwendung
DE19532047A1 (de) Thermoplastische Formmassen mit geringem Streulichtanteil
EP1045871A1 (de) Mikrosuspensionspfropfpolymerisate und verfahren zu ihrer herstellung
EP1045864A1 (de) Säuregruppen enthaltendes mikrosuspensionspolymerisat
DE2061216A1 (de) Thermoplastische Harzmassen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004820435

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/005771

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2007167573

Country of ref document: US

Ref document number: 10596344

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067011795

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006544311

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004820435

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067011795

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004820435

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10596344

Country of ref document: US