WO2005056824A1 - 硫酸抱合型胆汁酸の検出方法、それに用いられる試験紙およびバイオセンサ - Google Patents

硫酸抱合型胆汁酸の検出方法、それに用いられる試験紙およびバイオセンサ Download PDF

Info

Publication number
WO2005056824A1
WO2005056824A1 PCT/JP2004/018193 JP2004018193W WO2005056824A1 WO 2005056824 A1 WO2005056824 A1 WO 2005056824A1 JP 2004018193 W JP2004018193 W JP 2004018193W WO 2005056824 A1 WO2005056824 A1 WO 2005056824A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfate
bile acid
conjugated bile
reagent
nad
Prior art date
Application number
PCT/JP2004/018193
Other languages
English (en)
French (fr)
Inventor
Masao Gotoh
Satoshi Koide
Hideaki Nakamura
Fumiyo Kurusu
Isao Karube
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2005516117A priority Critical patent/JPWO2005056824A1/ja
Publication of WO2005056824A1 publication Critical patent/WO2005056824A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/34Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase
    • C12Q1/44Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving hydrolase involving esterase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • G01N33/525Multi-layer analytical elements
    • G01N33/526Multi-layer analytical elements the element being adapted for a specific analyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/916Hydrolases (3) acting on ester bonds (3.1), e.g. phosphatases (3.1.3), phospholipases C or phospholipases D (3.1.4)

Definitions

  • the present invention relates to a sulfate-conjugated bile acid detection method, a test paper and a biosensor used for the method. More specifically, the present invention relates to a method for detecting sulfate-conjugated bile acid by a colorimetric method or an amperometric method, a test paper and a biosensor used for the method.
  • Urine contains end products of metabolism of proteins and nucleic acids, intermediate metabolites, and the like. By observing the appearance of these substances, it is possible to know the functions and pathological conditions of various organs such as the kidney. Testing is an important index for estimating and determining various diseases.
  • the measurement of sulfate-conjugated bile acids in urine has clinical significance in knowing liver function.
  • the concentration of sulfate-conjugated bile acids in the urine of healthy subjects is about 10 mol / g creatine.
  • the bile acid concentration in blood is 10 mol / L or less.
  • Bile acids are composed of a plurality of compounds and are biosynthesized from cholesterol in the liver.
  • the most abundant component in urine bile acids is sulfated bile acids.
  • Sulfate-conjugated bile acids are those in which the hydroxyl groups of the bile acids have been esterified with sulfuric acid.
  • the measurement of sulfate-conjugated bile acids has been performed, for example, by a chemiluminescence method as follows. That is, the sulfate-conjugated bile acid is hydrolyzed by catalyzed water by the action of an enzyme, bile acid sulfate sulfatase (BSS), and desulfated, and is converted into -hydroxysteroid.
  • BSS bile acid sulfate sulfatase
  • the produced j8-hydroxysteroid reacts with NAD + by the action of -hydroxysteroid dehydrogenase (j8-HSD) to produce 3-ketosteroid and NADH.
  • 1-Methoxyphenazine mesosulfate (1-MPMS) which serves as an electron carrier, becomes 1-MPMSH in response to this NADH.
  • the 1-MPMSH reacts with coexisting dissolved oxygen to generate H0.
  • the generated H 0 is
  • Non-Patent Document 1 Proceedings of the 72nd Annual Meeting of the Nippon Dani Association, 1997, 2B115
  • An object of the present invention is a method for detecting a sulfate-conjugated bile acid by a coloration method, a current value measurement method, or the like, which does not require a complicated operation and a special measurement device!
  • An object of the present invention is to provide a test paper and a biosensor used for the above.
  • a method for detecting an oxidizing and reducing system color reagent by oxidizing it with generated nascent oxygen to form a color is provided.
  • a sample containing sulfate-conjugated bile acids is hydrolyzed by the action of bile acid sulfate sulfatase, and the resulting 13-hydroxysteroid is reacted with NAD + in the presence of 13-hydroxysteroid dehydrogenase to give a 3-ketosteroid.
  • the resulting NADH is preferably reacted with at least one of an electron carrier and NADH oxidase, preferably with further generated NADH.
  • the method is performed by oxidizing the 2 and Z or reduced electron carriers at the anode electrode and detecting the generated current by measuring the current value, and the method of (lb), (lc) and (Id)
  • the sulfate-conjugated bile acid is detected or detected by performing the reaction after hydrolysis, preferably in the presence of a pH buffer, and upon detection or detection,
  • Bile acid sulfate sulfatase and pH coloring reagent are absorbed and arranged on the test paper.Test paper for sulfate-conjugated bile acid detection
  • a sulfate-conjugated bile acid biosensor formed with a dry reagent layer containing hydrogenase, (3) NAD +, preferably (4) an electron carrier and at least one of NADH oxidase.
  • a pH buffer is preferably pre-absorbed on the sample supply side.
  • Sulfate-conjugated bile acid detection test paper prepared from test paper absorbed and arranged in a state of being mixed with reagents other than enzymes is used.
  • pH A buffer is used when forming the reagent layer.
  • bile acid sulfate sulfatase and a coloring reagent are essential components on a test paper.
  • a special measuring device is not required, and a sulfate-conjugated bile acid can be obtained in an inexpensive manner. Can be detected.
  • biosensors have excellent calibration properties.For example, for glycoscholate trisulfate, which is the main component of sulfate-conjugated bile acids, a current between the concentration of 11-20 M and the current value is considered. A good linear relationship was observed, and the reproducibility of the measured values with the coefficient of variation was also excellent.
  • the principle of the first method for detecting sulfate-conjugated bile acids according to the present invention is as follows. As mentioned above, sulfate-conjugated bile acids are hydrolyzed by the action of the enzyme BSS to form 8-hydroxysteroid and sulfuric acid. In the method of the present invention, the presence or absence of the sulfate-conjugated bile acid can be indirectly detected by detecting the sulfuric acid generated there by the change in the color tone of the pH coloring reagent (pH indicator).
  • a mixed indicator of methyl red-bromthymol blue mixed at a weight ratio of 1:20 or less, preferably 1: 4 to 16 and dissolved in ethanol or the like is preferably used.
  • Methyl red turns red when acidic, changes color at pH 4.2-6.2, and turns yellow when neutral or alkaline.
  • Bromthymol blue is yellow when acidic, changes color in the neutral region (pH 6.0-7.6), and turns blue when alkaline.
  • the color changes to red as acidic, yellow as neutral, and blue as alkaline.
  • Test paper for detection used in such a method for detecting sulfate-conjugated bile acids is a test paper (material and structure are not particularly limited, for example, about 0.5 X 5 cm
  • a test paper is made by absorbing BSS and a pH indicator.
  • BSS and the pH indicator may be dissolved and mixed, and may be absorbed and arranged on the test paper, or BSS and the pH indicator may be absorbed and arranged in order from the sample supply side.
  • the BSS and pH indicator are impregnated in solution at specific locations on the test strip (absorption configuration) and then dried. The fabrication ends.
  • the absorption arrangement work is performed by a pipette work, a method using an auto dispenser, etc., and drying is performed under conditions that do not inactivate the enzyme, specifically, at 0-30 ° C and 0-760 mmHg (0-lPa). Done.
  • the principle of the second method for detecting sulfate-conjugated bile acids according to the present invention is as follows. Sulfate-conjugated bile acids are hydrolyzed by the action of BSS to produce j8-hydroxysteroids, which react with NAD + by the action of 13-HSD to produce 3-ketosteroids and NADH, and to transfer electrons. Body, for example, 1-MPMS, reacts with this NADH to form 1-MPMSH, and 1-MPMSH
  • nascent oxygen refers to oxygen in the state of 0 atoms before oxygen (0) is generated, and the oxidizing power of this 0 atom is 0.
  • the electron carrier the aforementioned 1-MPMS or the like is used, and it is not particularly limited thereto. Further, potassium iodide, ortho-tolidine, and the like are used as the acid-reducing reducing color developing reagent, but are not particularly limited thereto.
  • the detection test paper was prepared in the same manner as the test paper used to detect the pH change due to sulfuric acid.
  • the principle of the third method for detecting sulfate-conjugated bile acids according to the present invention is as follows.
  • NADH produced from sulfate-conjugated bile acids reacts with a chromogenic reagent under the action of diaphorase to be oxidized and converted to NAD +, and the chromogenic reagent is reduced to develop color.
  • a tetrazolium salt or the like is used as the oxidizing and reducing system coloring reagent, but it is not particularly limited thereto.
  • the test paper for detection is prepared by absorbing and distributing each component of NADH generation and a coloring reagent in substantially the same manner as in the case of test paper used for detecting pH change due to sulfuric acid.
  • the principle of the fourth method for detecting sulfate-conjugated bile acids according to the present invention is as follows. Glycolithocholic acid trisulfate, the main component of sulfate-conjugated bile acids, is hydrolyzed by the action of BSS to form isolithocholic acid and sulfuric acid. When NAD + is reacted with this isolithocholic acid in the presence of j8-HSD, NADH is produced together with 3-ketosteroid. At this point, By oxidizing NADH at the anode electrode and measuring the generated current value, it is possible to indirectly measure the concentration of glycotolic acid trisulfate.
  • this NADH is oxidized to NAD + by the action of NADH oxidase, and dissolved oxygen in urine becomes an electron carrier, and H0 is generated.
  • Glycolithocholic acid Trisulfate concentration can be measured indirectly.
  • dissolved oxygen present in urine is used as an electron carrier.
  • dried oxygen containing NADH oxidase is used as the electron carrier in the reagent layer.
  • the electron carrier in the reagent layer for example, potassium ferricyanide, fecacene or its derivative, nicotinamide derivative, flavin derivative, benzoquinone, quinone derivative, 1-methoxyphenazine meso sulfate (1-MPMS), etc. You can keep it.
  • the body can be used alone.
  • potassium ferricyanide or potassium ferricyanide is added to NADH produced by sequentially acting BSS and ⁇ -HSD on glycolicholic acid trisulfate sequentially.
  • 1-MPMS is reacted, and potassium ferricyanide or 1-MPMS is changed to 2Fe (CN) "" or 1-MPMSH, respectively.
  • the concentration of glycolicholic acid trisulfate can be indirectly measured.
  • hydrogen peroxide is generated by reacting with dissolved oxygen in coexisting urine, hydrogen peroxide is oxidized at the anode electrode by the reaction at the anode electrode and the force source electrode as described above. By measuring the generated current value, it is possible to indirectly measure the concentration of glycolitocholate trisulfate.
  • Sulfate-conjugated bile acid biosensors include various substrates such as plastic substrates such as polyethylene terephthalate, biodegradable substrates such as polylactic acid, and biosensor substrates such as paper.
  • An anode electrode (working electrode) made of carbon, platinum, platinum black, or nodium on a plate, preferably a carbon anode electrode and a reference electrode if necessary. Is done.
  • As the carbon electrode material graphite, carbon nanotube, carbon microcoil, carbon nanohorn, fullerene, dendrimer and derivatives thereof are used.
  • the dry reagent layer formed on the working electrode comprises (1) generally bile acid sulfate sulfatase (BSS), (2) ⁇ -hydroxysteroid dehydrogenase (13-HSD), (3) NAD + (nicotinamide adenidine). Nucleotides) and preferably also (4) a HEPES buffer solution which contains at least one of an electron carrier and NADH oxidase.
  • BSS generally bile acid sulfate sulfatase
  • 13-HSD ⁇ -hydroxysteroid dehydrogenase
  • NAD + nicotinamide adenidine
  • Nucleotides preferably also (4) a HEPES buffer solution which contains at least one of an electron carrier and NADH oxidase.
  • pH buffer consists of NaH PO ( ⁇ 2 ⁇ ⁇ ) and Na HPO (-12H O)
  • Phosphate buffer acetate buffer composed of acetic acid and sodium acetate, HEPES buffer, and the like are preferably used. There is no particular limitation. These are absorbed and arranged on a test strip in a solution state, that is, as a buffer, and then dried to form a test strip.In a biosensor, these are used as a buffer for a mixed reagent of each enzyme and electron carrier. It is used for forming a reagent layer or preparing a mixed solution of a reagent and a specimen.
  • pH buffer may be absorbed on the test strips (sample supply side) before BSS, other enzymes, NAD +, electron mediator, and redox coloring reagent. If desired, the pH buffer and the enzyme and Z or a reagent other than the enzyme may be mixed and absorbed. In practice, pH buffer, BSS and other enzymes, NAD +, electron mediator, redox coloring reagent are absorbed and arranged at regular intervals from the sample supply side of the test paper, or the pH buffer is used. And the enzyme and Z or a reagent other than the enzyme may be mixed or all mixed and absorbed.
  • the above reagents have a BSS of about 0.01-0.50U, preferably about 0.05-0.10U, per test paper,
  • j8-HSD is about 0.1-1.0U, preferably about 0.5-0.8U, diaphorase is about 0.05-1.0U, Preferably, 0.1 to 0.5 U and peroxidase are used in an amount of about 0.1 to 10.0 U, preferably about 1.0 to 4.0 U, and NAD +, pH coloring reagent, redox coloring reagent, and electron carrier are each used. It is used in amounts ranging from about 0.01 to lmg, preferably from about 0.05 to 0.30 mg.
  • the formation of the reagent layer of the neurosensor is preferably carried out by a method in which an aqueous solution of a mixed reagent of each enzyme and electron carrier, for example, a pH buffer solution is dropped on or near the working electrode by a dispenser and dried.
  • aqueous solution of a mixed reagent of each enzyme and electron carrier for example, a pH buffer solution
  • the mixed reagent has a BSS of about 0.01 to 5 U, preferably 0.05 to 1 U, ⁇ -HSD force S of about 0.01 to 5 U, preferably 0.05 to 5 U, and NADH oxidase of about 0 to 10 U, preferably 1 to 2 mm per working electrode lmm 2.
  • NAD + is used at a concentration of 0-5 U
  • NAD + is used at a concentration such that the final concentration thereof is about 1-1000 mM, preferably 10-100 mM after dropping the measurement sample.
  • a sidase When a sidase is used, its final concentration is used at a rate of 1 to 1000 mM, preferably 10 to 100 mM after dropping the measurement sample. Bonding of each of these samples to the electrode surface or substrate is performed by an adsorption method or a covalent bonding method after drying.
  • the reagent is allowed to react with the sample in a dry state or in a liquid state, and then the sensor It can also be introduced on the electrode.
  • the reagent is allowed to react with the sample in a dry state or in a liquid state, and then the sensor It can also be introduced on the electrode.
  • the amount of sulfate-conjugated bile acid can also be measured by applying such methods.
  • the above-described biosensor is attached to a measuring device, and an electric value generated in the biosensor is measured.
  • This measuring device is provided with a measuring unit for measuring an electrical value at an electrode of the noise sensor, and a display unit for displaying the measured value.
  • Char step chronoamometry, coulometry, voltammetry, or the like can be used as a measuring method in this measuring unit.
  • the device may be provided with a memory for storing the measured values.
  • wireless means for transmitting measurement data to the measuring unit of the biosensor preferably wireless means such as a non-contact IC card or short-range wireless communication (Bluetooth; registered trademark). Can also be installed.
  • bile acid sulfate sulfatase 6 U / mg was dissolved in 1 ml of water, and 20 mg of pH indicator methyl red and 20 mg of bromthymol blue were mixed and dissolved in 1 ml of ethanol.
  • An aqueous solution in which an enzyme was dissolved and a pH indicator mixed solution were applied to the filter paper (0.5 ⁇ 5 cm) at an interval of 5 mm at an interval of 5 mm, and then dried at 4 ° C. for 24 hours.
  • the dry weight of the components of the applied solution per filter paper should be 0.06U, 0.2mg and 0.2mg, respectively.
  • a solution prepared by dissolving glycolitocholate trisulfate (a main component of sulfate-conjugated bile acid) in water at a concentration of 50 M was used.
  • glycolitocholate trisulfate a main component of sulfate-conjugated bile acid
  • the portion coated with the pH indicator became red, confirming the presence of glycolicholic acid trisulfate.
  • water was simply added dropwise no change in color tone was observed.
  • Bile acid sulfate sulfatase (6U / mg) lmg, ⁇ -hydroxysteroid dehydrogenase (31U / mg) 2mg, peroxidase (250U / mg) lmg, 1-MPMS 10mg, NAD + 10mg and orthotolidine 10mg each in 0.1M phosphoric acid Dissolved in 1 ml of buffer.
  • a filter buffer (0.5 ⁇ 5 cm) was coated with 0.01 ml of a phosphate buffer solution containing these dissolved on the filter paper 2 cm from one side and dried at 4 ° C. for 24 hours.
  • the dry components of the applied solution per filter paper are 0.06U, 0.62U, 2.5U, 0.1mg, O.lmg and O.lmg, respectively.
  • a solution prepared by dissolving glycotocholate trisulfate (a main component of sulfate-conjugated bile acid) in water at a concentration of 50 M was used.
  • glycotocholate trisulfate a main component of sulfate-conjugated bile acid
  • Bile acid sulfate sulfatase (provided by Markin Bio) 20 U and sorbitol (Wako Pure Chemicals) 1.6 g dissolved in 8 ml of 50 mM HEPES buffer (pH 7.5) 200 / zl, 50 mM HEPES buffer (pH 7.5)
  • a solution 501 of glycolicholic acid trisulfuric acid (manufactured by Sigma) having a predetermined concentration was prepared by using, and allowed to react at room temperature for 10 minutes. Then, j8-hydroxysteroid dehydrogenase (provided by Malkin Bio) 20U, ⁇ -NAD + (Oriental yeast products
  • Example 5 Two carbon electrodes, an anode electrode (working electrode) and a force sword electrode, were formed on a polyethylene terephthalate substrate by screen printing.
  • Bile acid sulfate sulfatase (provided by Malkin Bio) 0.05 U, ⁇ -hydroxysteroid dehydrogenase (supplied) 0.15 U and ferricyanidani potassium (Kanto Iridaku) 0.02 mg dissolved in 2 ⁇ l of ultrapure water
  • the transmitter solution was applied on the working electrode and dried at 4 ° C for 24 hours.
  • the thus-prepared sulfur sensor for measurement of sulfate-conjugated bile acids was placed on a potentiostat and subjected to measurement at room temperature.
  • the measurement sample was prepared by dissolving NAD + (Oriental yeast product) in 50 mM HEPES buffer (PH7.5) to a concentration of 20 mM, and further dissolving glycotolic acid trisulfate (Sigma product) to a predetermined concentration. 5 ⁇ l was used.
  • the measurement is performed using the potential step chronoam perometry method.
  • the measurement sample is dropped on the working electrode and allowed to stand for 90 seconds. Thereafter, a voltage of 300 mV is applied between the electrodes, and the current value 30 seconds after the application is measured. Measured values.
  • the measurement results are shown in FIG. A good linear relationship was observed between the current and the concentration between 1 and 20 ⁇ of glycolicholic acid trisulfate.
  • Example 5 an enzyme solution in which 1 U of bile acid sulfate sulfatase and 1 U of ⁇ -hydroxysteroid dehydrogenase were dissolved in 2 ⁇ l of ultrapure water was applied to the working electrode in place of the enzyme ' For 24 hours.
  • Example 5 an enzyme 'electron carrier solution obtained by dissolving 1 U of 13-hydroxysteroid dehydrogenase and 0.02 mg of potassium ferricyanide in 2 ⁇ l of ultrapure water was applied on the working electrode, and dried at 4 ° C. for 24 hours.
  • a 50 mM HEPES buffer (pH 7.5) containing 1 U of bile acid sulfate sulfatase, 50 mg of sorbitol, and 20 mM NAD + was prepared, and the measurement sample 10 1 used in Example 8 was prepared in the buffer 10 1.
  • the reaction solution 51 was dropped on the working electrode of this biosensor, and the sensor was evaluated under the same conditions as in Example 5. The results obtained are shown in FIG. Glycolycocholic acid 3-sulfuric acid A linear relationship was observed between the concentration and current value between 1-20 M, and the coefficient of variation was 5 M.
  • Example 6 two platinum electrodes were formed by a sputtering method instead of a carbon electrode, and potassium ferricyanide was removed.
  • a biosensor for measuring a sulfate-conjugated bile acid using an enzyme / electron carrier solution was used. Was manufactured, and the measurement was performed with the applied voltage changed to 700 mV. The measurement results are shown in FIG. A linear relationship was observed between the concentration and the current value of glycolicholic acid trisulfate between 1 and 20 M.
  • FIG. 1 shows the relationship between the concentration of glycolitocholate trisulfate and the absorbance in the presence of bile acid sulfate sulfatase, j8-hydroxysteroid dehydrogenase and NAD + (Example 4).
  • Figure 2 Using a biosensor having a bile acid sulfate sulfatase, a ⁇ -hydroxysteroid dehydrogenase, and a dry reagent layer that also has a potassium ability, the concentration of glycolitocholate 3 sulfate and the value of oxidative current in the presence of NAD + were measured. 10 is a graph showing the relationship (Example 5).
  • FIG. 5 A graph showing the relationship between the concentration of glycolitocholate trisulfate and the current value when using a biosensor having a dry reagent layer composed of bile acid sulfate sulfatase, 13-hydroxysteroid dehydrogenase, potassium potassium, and NAD +. (Example 8)
  • FIG. 6 is a graph showing the relationship between the concentration of glycolitocholate trisulfate and the current value in the presence of bile acid sulfate sulfatase and NAD + using a biosensor having a dry reagent layer that also has ⁇ -hydroxysteroid dehydrogenase and potassium ferricyanide. Yes (Example 9).
  • FIG. 7 is a graph showing the relationship between the concentration of glycotolic acid trisulfate and the current value in the presence of NAD + using a biosensor having a dry reagent layer that also has bile acid sulfate sulfatase, ⁇ -hydroxysteroid dehydrogenase, and NADH oxidase. (Example 10).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Urology & Nephrology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

硫酸抱合型胆汁酸の検知または検出方法として、次の方法が用いられる。  (1a) 硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフェターゼ〔BSS〕を作用させ、β-ヒドロキシステロイド〔B-HSD〕と共に生成した硫酸をpH発色試薬で検知する  (1b) 硫酸抱合型胆汁酸含有試料にBSSを作用させて生成したB-HSDを、B-HSDデヒドロゲナーゼの存在下にNAD+と反応させ、生成したNADHに電子伝達体を反応させた後、生成H2O2にペルオキシダーゼを作用させて発生した発生期の酸素で酸化還元系発色試薬を酸化し、発色させる  (1c) 上記(1b)の方法において、生成NADHにジアホラーゼの作用下に酸化還元系発色試薬と反応させ、発色試薬を還元し、発色させる  (1d) 前記(1b)の方法において、生成したNADHを、好ましくはさらに生成したNADHに電子伝達体またはNADHオキシダーゼを反応させた後、生成H2O2、還元型電子伝達体を酸化し、発生電流値を測定する。

Description

明 細 書
硫酸抱合型胆汁酸の検出方法、それに用いられる試験紙およびバイオセ ンサ
技術分野
[0001] 本発明は、硫酸抱合型胆汁酸の検出方法、それに用いられる試験紙およびバイオ センサに関する。さらに詳しくは、発色法または電流値測定法による硫酸抱合型胆汁 酸の検出方法、それに用いられる試験紙およびバイオセンサに関する。
背景技術
[0002] 尿は、タンパク質や核酸代謝の終末産物や中間代謝物などを含有し、それらの物 質の出現状況をみることで、腎臓など諸器官の機能や病態を知ることができるので、 尿検査は各種疾患の推定、判定の重要な指標となっている。特に、尿中の硫酸抱合 型胆汁酸の測定は、肝機能を知る上で臨床上重要な意義がある。そして、一般に健 常人の尿中の硫酸抱合型胆汁酸濃度は、ほぼ 10 モル/ gクレアチュン程度である。 また、血中胆汁酸濃度は、 10 モル/ L以下である。
[0003] 胆汁酸は、複数の化合物から構成されており、肝臓でコレステロールより生合成さ れる。肝胆道系の異常により、血中胆汁酸が増加すると、それに伴い尿中胆汁酸が 増加する。その際、尿中胆汁酸中の最も多い成分が硫酸抱合型胆汁酸である。硫酸 抱合型胆汁酸は、胆汁酸の水酸基が硫酸でエステルイ匕されたものである。
[0004] 従来、硫酸抱合型胆汁酸の測定は、例えば化学発光法で次のようにして行われて いる。すなわち、硫酸抱合型胆汁酸は、酵素である胆汁酸硫酸スルフエターゼ (Bile acid sulfate sulfatase;BSS)の作用でカ卩水分解して脱硫酸され、 -ヒドロキシステロィ ドに変わる。生成した j8 -ヒドロキシステロイドは、 -ヒドロキシステロイドデヒドロゲナ ーゼ(j8 - HSD)の作用で NAD+と反応して、 3-ケトステロイドと NADHを生成する。電子 伝達体の役を果す 1-メトキシフエナジンメソサルフェート (1-MPMS)は、この NADHと反 応して 1-MPMSHとなる。
2
[0005] この 1-MPMSHは、共存する溶存酸素と反応して H 0を生成する。生成した H 0は
2 2 2 2 2
、ペルォキシダーゼの作用でルミノールと反応して発光する。この発光強度を測定す ることにより、硫酸抱合型胆汁酸の濃度を決定することができる。また、 GC、 GC-MS、 HPLCなどの高価な測定機器を用いる方法もある。し力しながら、このような一連のェ 程は、煩雑であるば力りではなぐ特別の測定装置を必要としている。さらに、尿を測 定試料とする肝機能検査としては、他にゥロビリノ一ゲン、ピリルビン検査などがある 力 いずれも感度、特異性、安定性、信頼性の点で問題がある。
非特許文献 1 :日本ィ匕学会第 72回春季年会要旨集、 1997, 2B115
発明の開示
発明が解決しょうとする課題
[0006] 本発明の目的は、硫酸抱合型胆汁酸の発色法、電流値測定法などによる検出方 法であって、煩雑な操作および特別の測定装置を必要としな!ヽ測定方法ならびにそ れに用いられる試験紙およびバイオセンサを提供することにある。
課題を解決するための手段
[0007] 力かる本発明の目的は、次のような手段によって達成される。
(la)硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分 解し、 β -ヒドロキシステロイドと共に生成した硫酸を ρΗ発色試薬で検知する 方法
(lb)硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分 解し、生成した 13 -ヒドロキシステロイドを 13 -ヒドロキシステロイドデヒドロ ゲナーゼの存在下に NAD+と反応させ、 3-ケトステロイドと共に生成した NADHに 電子伝達体を反応させた後、生成した H 0にペルォキシダーゼを作用させて発
2 2
生した発生期の酸素で酸ィ匕還元系発色試薬を酸ィ匕し、発色させて検知する方 法
(lc)硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分 解し、生成した 13 -ヒドロキシステロイドを 13 -ヒドロキシステロイドデヒドロ ゲナーゼの存在下に NAD+と反応させ、 3-ケトステロイドと共に生成した NADHに ジァホラーゼの作用の下に酸化還元系発色試薬と反応させ、 NADHは酸化され て NAD+に変化すると共に発色試薬を還元し、発色させることにより検知する方 法 (Id)硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分 解し、生成した 13 -ヒドロキシステロイドを 13 -ヒドロキシステロイドデヒドロ ゲナーゼの存在下に NAD+と反応させ、 3-ケトステロイドと共に生成した NADHを 、好ましくはさらに生成した NADHに電子伝達体および NADHォキシダーゼの少 くとも一種を反応させた後、生成した H 0
2 2および Zまたは還元型電子伝達体を アノード電極で酸化し、発生した電流値を測定することにより検出する方法 のいずれかの方法によって行われ、(lb)、(lc)および (Id)の場合には、好ましくは pH 緩衝剤の存在下で加水分解以降の反応が行われることにより硫酸抱合型胆汁酸が 検知または検出され、検知または検出に際しては、
(2a)試験紙に胆汁酸硫酸スルフヱターゼおよび pH発色試薬が吸収配置されて ヽる 硫酸抱合型胆汁酸検出用試験紙
(2b)試験紙に胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイドデヒドロゲナ
ーゼ、 NAD+、電子伝達体、ペルォキシダーゼおよび酸化還元系発色試薬が吸 収配置されて!ヽる硫酸抱合型胆汁酸検出用試験紙
(2c)試験紙に胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイドデヒドロゲナ
ーゼ、 NAD+、ジァホラーゼおよび酸化還元系発色試薬が吸収配置されている 硫酸抱合型胆汁酸検出用試験紙
(2d)作用極上に、(1)胆汁酸硫酸スルフエターゼ、(2) |8 -ヒドロキシステロイドデ
ヒドロゲナーゼ、(3)NAD+、好ましくはさらに (4)電子伝達体および NADHォキシ ダーゼの少くとも一種を含有する乾燥試薬層を形成させた硫酸抱合型胆汁酸 バイオセンサ
のいずれかの試験紙またはバイオセンサが用いられ、(2b)、(2c)の場合には、好ましく は試料供給側に予め pH緩衝剤を吸収配置ある 、は pH緩衝剤が酵素および Zまた は酵素以外の試薬と混合された状態で吸収配置された試験紙から作製された硫酸 抱合型胆汁酸検出用試験紙が用いられ、(2d)の場合には試薬層の形成に際しては 、好ましくは pH緩衝剤が用いられる。
発明の効果
本発明方法によれば、試験紙上に胆汁酸硫酸スルフエターゼと発色試薬を必須成 分として吸収配置するという手段またはバイオセンサの作用極上に必要な試薬層を 形成させるという手段を用いることにより、特別な測定装置を必要とはせず、コストの かからない方法で、硫酸抱合型胆汁酸の検知を可能とする。また、バイオセンサにあ つては、検量性にもすぐれており、例えば硫酸抱合型胆汁酸の主成分であるグリコリ トコール酸 3硫酸について、 1一 20 Mの間の濃度と電流値との間に良好な直線関係 が認められ、また変動係数力もみた測定値の再現性の点でもすぐれている。
発明を実施するための最良の形態
[0009] 本発明に係る硫酸抱合型胆汁酸の第一の検出方法の原理は、次の如くである。硫 酸抱合型胆汁酸は、酵素である BSSの作用で加水分解し、 |8 -ヒドロキシステロイドと 硫酸とになること前述の如くである。本発明方法においては、そこに発生した硫酸を pH発色試薬 (pH指示薬)の色調の変化で検知することにより、硫酸抱合型胆汁酸の 存在の有無を間接的に検知することができる。
[0010] pH指示薬としては、 1 : 20以下、好ましくは 1 :4一 6の重量比で混合し、エタノールな どに溶解させたメチルレッド-ブロムチモールブルー混合指示薬が好んで用いられる 1S 特にこれに限定されるものではない。メチルレッドは、酸性で赤、 pH4.2— 6.2で変 色し、中性、アルカリ性では黄色となる。一方、ブロムチモールブルーは、酸性では 黄色で、中性領域 (pH6.0— 7.6)で変色し、アルカリ性では青くなる。混合試薬では、 全体として酸性で赤、中性で黄色、アルカリ性で青色に変化する。
[0011] 検出に際しては、尿を試験紙に吸収し、試験紙中で上記の如き酵素反応と指示薬 の反応を行うことにより、硫酸抱合型胆汁酸の尿中での存在の有無を色調の変化で 判定でき、赤色なら陽性 (硫酸抱合型胆汁酸あり)、黄色または青色ならば陰性 (硫酸 抱合型胆汁酸なし)とすることができる。
[0012] このような硫酸抱合型胆汁酸の検出方法に用いられる検出用試験紙は、ペーパー クロマイグラフィ一の原理を応用し、試験紙 (素材、構造は特に限定されず、例えば 0.5 X 5cm程度の大きさ)上に、 BSSと pH指示薬とを吸収配置することによって作製さ れる。この場合、 BSSと pH指示薬とを溶解混合して試験紙に吸収配置してもよいし、 試料供給側から BSS、 pH指示薬の順で吸収配置させてもよい。 BSSと pH指示薬は、 溶液状態で試験紙上の特定の位置に染み込まされ (吸収配置)、その後乾燥させて 作製は終了する。吸収配置作業は、ピペットによる作業やオートデスペンサによる方 法などによって行われ、その乾燥は、酵素を失活させない条件、具体的には 0— 30°C 、 0— 760mmHg(0— lPa)で行われる。
[0013] 本発明に係る硫酸抱合型胆汁酸の第二の検出方法の原理は、次の如くである。硫 酸抱合型胆汁酸は、 BSSの作用で加水分解し、 j8 -ヒドロキシステロイドを生成し、こ れは 13 - HSDの作用で NAD+と反応して 3-ケトステロイドと NADHを生成し、電子伝達 体、例えば 1-MPMSは、この NADHと反応して 1-MPMSHとなり、 1-MPMSHは溶存酸
2 2 素と反応して H 0を生成すること前述の如くであり、生成した H 0はペルォキシダー
2 2 2 2
ゼの作用で発生した発生期の酸素で発色試薬を酸化し、発色させるので、その発色 具合で硫酸抱合型胆汁酸の有無を判定することができる。ここで発生期の酸素とは、 酸素 (0 )が発生する前の、 0原子の状態の酸素をいい、この 0原子の酸化力は 0の
2 2 状態より、比較にならないほど強力である。
[0014] 電子伝達体としては、前記 1-MPMSなどが用いられ、特にこれに限定されることはな い。また、酸ィ匕還元系発色試薬としては、ヨウ化カリウム、オルトトリジンなどが用いら れるが、特にこれらに限定されない。さらに、検出用試験紙の作製は、硫酸による pH 変化を検知するのに用いられる試験紙の場合と同様に、 H 0
2 2生成各成分および発 色試薬を吸収配置することによって行われる。
[0015] 本発明に係る硫酸抱合型胆汁酸の第三の検出方法の原理は、次の如くである。上 記した如ぐ硫酸抱合型胆汁酸から生成された NADHは、ジァホラーゼの作用の下で 発色試薬と反応して酸化され、 NAD+に変化すると共に、発色試薬は還元されて発色 する。ここで、酸ィ匕還元系発色試薬としてはテトラゾリゥム塩などが用いられるが、特 にこれに限定されない。また、検出用試験紙の作製は、硫酸による pH変化を検出す るのに用いられる試験紙の場合とほぼ同様に、 NADH生成各成分および発色試薬を 吸収配置することによって行われる。
[0016] 本発明に係る硫酸抱合型胆汁酸の第四の検出方法の原理は、次の如くである。硫 酸抱合型胆汁酸の主成分であるグリコリトコール酸 3硫酸は、 BSSの作用で加水分解 され、イソリトコール酸と硫酸とになる。このイソリトコール酸に NAD+を j8 - HSDの存在 下で反応させると、 3-ケトステロイドと共に、 NADHを生成させる。この時点において、 NADHをアノード電極で酸ィ匕し、発生した電流値を計測することにより、グリコリトコ一 ル酸 3硫酸の濃度を間接的に測定できる。
[0017] また、この NADHは、 NADHォキシダーゼの作用により NAD+に酸化され、尿中の溶 存酸素が電子伝達体となり、 H 0が生成するので、この過酸化水素をアノード電極
2 2
で酸化し、発生した電流値を計測することにより、
¾02 ~~ > 21f+02+2e— (ァノード龍)
2e~+2ir+l/202 ~~ > ¾0 (力ソード電極) グリコリトコール酸 3硫酸の濃度を間接的に測定できる。
[0018] さらに、ここでは電子伝達体として尿中に存在する溶存酸素を用いているが、尿中 の溶存酸素の濃度は一定しな 、ことが多 、ので、予め NADHォキシダーゼを含有す る乾燥試薬層中に電子伝達体として、例えばフェリシアン化カリウム、フエ口センまた はその誘導体、ニコチンアミド誘導体、フラビン誘導体、ベンゾキノン、キノン誘導体、 1-メトキシフエナジンメソサルフェート (1-MPMS)などをカ卩えておくこともできる。
[0019] また、 NADHォキシダーゼの代りに、電子伝達体の役を果すフェリシアンィ匕カリウム K [Fe(CN)〕または 1-メトキシフエナジンメソサルフェート (1-MPMS)などの電子伝達
3 6
体を単独で用いることもできる。
[0020] このように電子伝達体を単独で用いる場合には、前述の如くグリコリトコール酸 3硫 酸に順次 BSSおよび β -HSDを順次作用させて生成した NADHに、フェリシアン化カリ ゥムまたは 1-MPMSを反応させ、フェリシアン化カリウムまたは 1-MPMSをそれぞれ 2Fe(CN) ""または 1-MPMSHとする。これらは、直接電極と反応させることができ、ァ
6 2
ノード電極で酸ィ匕して発生した電流値を計測することにより、グリコリトコール酸 3硫酸 の濃度を間接的に測定することができる。また、共存している尿中の溶存酸素と反応 して過酸ィ匕水素を発生するので、上述の如きアノード電極および力ソード電極での反 応により、過酸化水素をアノード電極で酸化して発生した電流値を計測することによ り、グリコリトコール酸 3硫酸の濃度を間接的に測定することができる。
[0021] 硫酸抱合型胆汁酸バイオセンサは、ポリエチレンテレフタレートなどのプラスチック 製基板、ポリ乳酸などの生分解性基板、紙などのバイオセンサ用基板などの各種基 板上に、カーボン製、白金製、白金黒製、ノ《ラジウム製などのアノード電極 (作用極)、 好ましくはカーボン製のアノード電極力 力ソード電極および必要に応じて参照電極 と共に設けることによって形成される。カーボン製電極材料としては、グラフアイト、力 一ボンナノチューブ、カーボンマイクロコイル、カーボンナノホーン、フラーレン、デン ドリマーおよびそれらの誘導体などが用いられる。
[0022] 作用極上に形成される乾燥試薬層は、(1)一般に胆汁酸硫酸スルフエターゼ (BSS)、 (2) β -ヒドロキシステロイドデヒドロゲナーゼ( 13 - HSD)、(3)NAD+(ニコチンアミドアデニ ンジヌクレオチド)および好ましくはさらに (4)電子伝達体および NADHォキシダーゼの 少くとも一種を含有したものの HEPES緩衝液力も形成される。
[0023] 以上第二、第三の検出方法の如ぐ酸ィ匕還元系発色試薬を用いる場合または第四 の検出方法の場合には、例えば pH緩衝剤が加水分解以降の反応において用いら れる。 pH緩衝剤としては、 NaH PO (·2Η Ο)および Na HPO (- 12H O)力ら構成される
2 4 2 2 4 2
リン酸緩衝剤、酢酸と酢酸ナトリウムとから構成される酢酸緩衝剤、 HEPES緩衝剤な どが好んで用いられる力 特に限定はされない。これらは、溶液状態、つまり緩衝液と して試験紙上に吸収配置され、その後乾燥させて試験紙が作製され、またバイオセ ンサにあっては、各酵素や電子伝達体の混合試薬の緩衝剤として、試薬層形成また は試薬と検体の混合溶液調製に用いられる。
[0024] pH緩衝剤を用いる理由は、 2つある。その 1つは、酵素の最適 pHを実現することに ある。また、 2つ目は、尿の pHを一定にするためである。このため試験紙を用いる場合 にあっては、 pH緩衝剤は試験紙上で BSSや他の酵素、 NAD+、電子伝達体、酸化還 元発色試薬より前段 (試料供給側)に吸収配置されることが望まし ヽが、 pH緩衝剤と 酵素および Zまたは酵素以外の試薬を混合した状態で吸収配置しても良い。実際に は、試験紙の試料供給側カゝら一定の間隔で pH緩衝剤、 BSSや他の酵素、 NAD+、電 子伝達体、酸化還元発色試薬の順序で吸収配置されるか、 pH緩衝剤と酵素および Zまたは酵素以外の試薬をそれぞれ混合あるいはすべてを混合して吸収配置しても よい。
[0025] 以上の試薬は、試験紙 1枚当り BSSが約 0.01— 0.50U、好ましくは約 0.05— 0.10U、
j8 - HSDが約 0.1— 1.0U、好ましくは約 0.5— 0.8U、ジァホラーゼが約 0.05— 1.0U、好 ましくは約 0.1— 0.5U、ペルォキシダーゼが約 0.1— 10.0U、好ましくは約 1.0— 4.0Uの 範囲の量で用いられ、また NAD+、 pH発色試薬、酸化還元系発色試薬、電子伝達体 はそれぞれ約 0.01— lmg、好ましくは約 0.05— 0.30mgの範囲の量で用いられる。
[0026] ノィォセンサの試薬層の形成は、各酵素や電子伝達体の混合試薬の水性溶液、 例えば pH緩衝液を、デスペンサなどにより作用極またはその近傍に滴下し、乾燥さ せる方法が好んで用いられるが、溶液粘度を調節し、スクリーン印刷法を適用するこ とちでさる。
[0027] 混合試薬は、作用極 lmm2当り BSSが約 0.01— 5U、好ましくは 0.05— 1U、 β - HSD力 S 約 0.01— 5U、好ましくは 0.05— 5U、 NADHォキシダーゼが約 0— 10U、好ましくは 0— 5Uの割合で用いられ、また NAD+はその終濃度が測定試料滴下後約 1一 1000mM、好 ましくは 10— lOOmMとなるような濃度で用いられ、さらに電子伝達体または NADHォキ シダーゼが用いられる場合には、その終濃度が、測定試料滴下後 1一 1000mM、好ま しくは 10— lOOmMとなる割合で用いられる。これらの各試料の電極表面または基板と の結合は、乾燥後での吸着法や共有結合法による。
[0028] なお、以上の各試薬は必ずしもすべてを乾燥試薬層形成に用いなくとも足り、乾燥 試薬層形成に用いられない試薬については、乾燥状態あるいは液状で、検体と反応 させた上で、センサ電極上に導入することもできる。例えば
(1) β -HSD, BSS、好ましくはさらに電子伝達体を電極上に配置したセンサに、検体 および NAD+を含む溶液を導入する方法
(2) β - HSD、好ましくはさらに電子伝達体を電極上に配置したセンサに、検体に BSS および NAD+を反応させた溶液を導入する方法
(3) β - HSDおよび NAD+、好ましくはさらに電子伝達体を電極上に配置したセンサに 、検体に BSSを反応させた溶液を導入する方法
などを適用することによつても、硫酸抱合型胆汁酸量を測定することができる。
[0029] 上述のようなバイオセンサを用いて測定する場合には、測定装置に上記バイオセン サを取り付け、バイオセンサに生じた電気的な値を測定する。この測定装置には、ノ ィォセンサの電極における電気的な値を計測する計測部と、計測された値を表示す る表示部が備えられる。この計測部における計測方法としては、上述した如くポテン シャルステップクロノアンべロメトリー法またはクーロメトリー法またはボルタンメトリー法 などを用いることができる。
[0030] また、この装置には計測値を保存するためのメモリーを備えることもできる。さらに、 測定値を遠隔的に管理する場合には、バイオセンサの計測部に計測データを送信 する無線手段、好ましくは非接触型 ICカードまたは短距離無線通信 (ブルートゥース; 登録商標)などの無線手段を搭載することもできる。
実施例
[0031] 次に、実施例について本発明を説明する。
[0032] 実施例 1
胆汁酸硫酸スルフエターゼ (6U/mg)lmgを水 lmlに溶解させ、 pH指示薬のメチルレ ッド 20mgおよびブロムチモールブルー 20mgを混合してエタノール lmlに溶解させた。 ろ紙 (0.5 X 5cm)の片側 lcmの所力も 5mm間隔で、ろ紙上に酵素を溶解させた水溶液 および pH指示薬混合溶液をそれぞれ Ο.ΟΙπιΓ塗布した後、 4°Cで 24時間乾燥した。塗 布した溶液のろ紙 1枚あたりの成分乾燥量は、それぞれ 0.06U、 0.2mgおよび 0.2mgで める。
[0033] 試料としては、水中にグリコリトコール酸 3硫酸 (硫酸抱合型胆汁酸の主成分)を 50 Mの濃度で溶解したものを用いた。ろ紙の片側 (塗布面側)〖こ試料溶液 0.1mlを滴下し 、色調の変化を観察すると、 pH指示薬塗布部分が赤色となり、グリコリトコール酸 3硫 酸の存在が確認された。一方、単に水を滴下した場合には、色調の変化は観察され なかった。
[0034] 実施例 2
胆汁酸硫酸スルフエターゼ (6U/mg)lmg、 β -ヒドロキシステロイドデヒドロゲナーゼ (31U/mg)2mg、ペルォキシダーゼ (250U/mg)lmg、 1-MPMS 10mg、 NAD+ 10mgおよ びオルトトリジン 10mgを、それぞれ 0.1Mリン酸緩衝液 lmlに溶解させた。ろ紙 (0.5 X 5cm)の片側から 2cmの所に、ろ紙上にこれらを溶解させたリン酸緩衝液 0.01mlを塗布 した後、 4°Cで 24時間乾燥した。塗布した溶液のろ紙 1枚あたりの成分乾燥量は、そ れぞれ 0.06U、 0.62U、 2.5U、 0.1mg、 O.lmgおよび O.lmgである。
[0035] 試料としては、水中にグリコリトコール酸 3硫酸を 50 Mの濃度で溶解したものを用 いた。ろ紙の片側 (塗布面側)に試料溶液 0.1mlを滴下し、色調の変化を観察すると、 試薬塗布部分が青緑色となり、グリコリトコール酸 3硫酸の存在が確認された。一方、 単に水を滴下した場合には、色調の変化は観察されな力つた。
[0036] 実施例 3
胆汁酸硫酸スルフエターゼ (6U/mg)lmg、 β -ヒドロキシステロイドデヒドロゲナーゼ (31U/mg)2mg、ジァホラーゼ (10U/mg)3mgおよび NAD+(ニコチンアミドアデニンジヌク レオチド) 10mgを、それぞれ 0.1Mリン酸緩衝液 lmlに溶解させ、また酸化還元系発色 試薬のテトラゾリゥム塩 20mgは水 lmlに溶解させた。ろ紙 (0.5 X 5cm)の片側から lcmの 所から 5mm間隔で上記順に従 、、ろ紙上に各酵素または NAD+を溶解させたリン酸緩 衝液および発色試薬溶液をそれぞれ Ο.ΟΙπιΓ塗布した後、 4°Cで 24時間乾燥した。塗 布した溶液のろ紙 1枚あたりの成分乾燥量は、それぞれ 0.06U、 0.62U、 0.3U、 O.lmg および 0.2mgである。
[0037] 試料としては、水中にグリコリトコール酸 3硫酸 (硫酸抱合型胆汁酸の主成分)を 50 Mの濃度で溶解したものを用いた。ろ紙の片側 (塗布面側)〖こ試料溶液 0.1mlを滴下し 、色調の変化を観察すると、発色試薬塗布部分が赤紫色となり、グリコリトコール酸 3 硫酸の存在が確認された。一方、単に水を滴下した場合には、色調の変化は観察さ れなかった。
[0038] 実施例 4
胆汁酸硫酸スルフエターゼ (マルキンバイオ提供) 20Uおよびソルビトール (和光純薬 製品) 1.6gを 50mM HEPES緩衝液 (pH7.5)8ml中に溶解した溶液 200 /z lに、 50mM HEPES緩衝液 (pH7.5)を用いて所定濃度としたグリコリトコール酸 3硫酸 (シグマ社製 品)溶液 50 1をカ卩え、室温で 10分間反応させた。その後、 j8 -ヒドロキシステロイドデヒ ドロゲナーゼ (マルキンバイオ提供) 20U、 β -NAD+(オリエンタル酵母製品
)33.18mg(5mM)およびソルビトール 1.5gを 50mM HEPES緩衝液 (pH7.5)10ml中に溶解 した溶液 250 1をカ卩え、さらに 10分間反応させ、 NADHの吸収波長である 340nmにお ける吸光度を測定したところ、図 1に示される如くグリコリトコール酸 3硫酸 20— 1000 Mの間の濃度と吸光度の間に良好な直線関係が認められた。
[0039] 実施例 5 ポリエチレンテレフタレート製基板上に、アノード電極 (作用極)および力ソード電極 の 2本のカーボン電極をスクリーン印刷法によって形成させた。胆汁酸硫酸スルフエ ターゼ (マルキンバイオ提供) 0.05U、 β -ヒドロキシステロイドデヒドロゲナーゼ (同提供 )0.15Uおよびフェリシアンィ匕カリウム (関東ィ匕学製品) 0.02mgを超純水 2 μ 1に溶解した 酵素 ·電子伝達体溶液を作用電極上に塗布し、 4°Cで 24時間乾燥させた。
[0040] このようにして作製した硫酸抱合型胆汁酸測定用ノィォセンサをポテンシヨスタツト に設置し、室温条件下で測定に供した。測定試料としては、 50mM HEPES緩衝液 (PH7.5)中に NAD+(オリエンタル酵母製品)を 20mMになるよう溶解し、さらにグリコリトコ ール酸 3硫酸 (シグマ社製品)を所定濃度に溶解したものが 5 μ 1用いられた。
[0041] 測定は、ポテンシャルステップクロノアンべロメトリー法を用い、測定試料を作用電 極上に滴下後 90秒間静置し、その後 300mVの電圧を両極間に印加し、印加 30秒後 の電流値を測定値とした。測定結果は図 2に示される。グリコリトコール酸 3硫酸 1一 20 μ Μの間の濃度と電流値の間に良好な直線関係が認められた。また、濃度 10 Μで の変動変数は 13.0%(η=5)であり、再現性も良好であった。
[0042] 実施例 6
実施例 5にお!/、て、さらに NADHォキシダーゼ (マルキンバイオ提供) 0.5Uをカ卩えた 酵素 ·電子伝達体溶液を用いて硫酸抱合型胆汁酸測定用バイオセンサを製作した。 測定結果は、図 3に示される。グリコリトコール酸 3硫酸 1一 20 Μの間の濃度と電流 値の間に直線関係が認められ、また変動変数も 18.5%(η= 5)であった。
[0043] 実施例 7
実施例 5において、酵素'電子伝達体溶液の代りに、胆汁酸硫酸スルフエターゼ 1U および β -ヒドロキシステロイドデヒドロゲナーゼ 1Uを超純水 2 μ 1に溶解した酵素溶液 を作用電極上に塗布し、 4°Cで 24時間乾燥させた。このようにして作製した硫酸抱合 型胆汁酸測定用バイオセンサを用い、実施例 5と同様の条件 (ただし、印加電圧は + 700mV)でセンサを評価した結果、図 4に示されたような結果が得られた。グリコリトコ ール酸 3硫酸 1一 20 Mの間の濃度と電流値の間に直線関係が認められ、また変動 係数も 5 μ Μのとき 17.2%(η=5)であった。
[0044] 実施例 8 実施例 5において、胆汁酸硫酸スルフエターゼ 1U、 -ヒドロキシステロイドデヒドロゲ ナーゼ 1Uおよびフェリシアンィ匕カリウム O. lmgを超純水 2 μ 1に溶解した酵素'電子伝 達体溶液を作用電極上に塗布し、さらに lOOmMの 13 - NAD+を 1 μ 1塗布して、 4°Cで 24 時間乾燥させた。測定試料としては、 50mM HEPES緩衝液 (pH7.5)中にグリコリトコ ール酸 3硫酸を所定濃度に溶解したものが 5 1用いられた。このバイオセンサを用い て、実施例 5と同様の条件でセンサを評価した結果、図 5に示されたような結果が得ら れた。グリコリトコール酸 3硫酸 1一 20 Mの間の濃度と電流値の間に直線関係が認 められ、また変動係数も 5 μ Μのとき 18.4%(η=5)であった。
[0045] 実施例 9
実施例 5において、 13 -ヒドロキシステロイドデヒドロゲナーゼ 1Uおよびフェリシアン化 カリウム 0.02mgを超純水 2 μ 1に溶解した酵素'電子伝達体溶液を作用電極上に塗布 し、 4°Cで 24時間乾燥させた。これとは別に、胆汁酸硫酸スルフエターゼ 1U、ソルビト ール 50mgおよび 20mM NAD+を含む 50mM HEPES緩衝液(pH7.5)を調製し、その 緩衝液 10 1中に実施例 8で用いた測定試料 10 1を添加し、 10分間反応させた。反 応液 5 1を、このバイオセンサの作用電極上に滴下し、実施例 5と同様の条件でセン サを評価した。得られた結果は、図 6に示される。グリコリトコール酸 3-硫酸 1一 20 M の間の濃度と電流値の間に直線関係が認められ、また変動係数も 5 Mのとき
8.6%(n=5)であった。
[0046] 実施例 10
実施例 6において、カーボン電極の代わりに 2本の白金電極をスパッタリング法によ つて形成し、またフェリシアン化カリウムを除!、た酵素 ·電子伝達体溶液を用いて硫酸 抱合型胆汁酸測定用バイオセンサが製作され、さらに測定は、印加電圧を 700mVに 変更して行われた。測定結果は図 7に示される。グリコリトコール酸 3硫酸 1一 20 Mの 間の濃度と電流値の間に直線関係が認められた。
図面の簡単な説明
[0047] [図 1]胆汁酸硫酸スルフエターゼ、 j8 -ヒドロキシステロイドデヒドロゲナーゼおよび NAD+存在下における、グリコリトコール酸 3硫酸濃度と吸光度の関係を示- ある (実施例 4)。 [図 2]胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイドデヒドロゲナーゼおよびフエ リシアンィ匕カリウム力もなる乾燥試薬層を有するバイオセンサを用い、 NAD+存在下に おける、グリコリトコール酸 3硫酸濃度と酸ィ匕電流値の関係を示すグラフである (実施 例 5)。
[図 3]胆汁酸硫酸スルフエターゼ、 13 -ヒドロキシステロイドデヒドロゲナーゼ、フエリシ アンィ匕カリウムおよび NADHォキシダーゼ力 なる乾燥試薬層を有するバイオセンサ を用い、 NAD+存在下における、グリコリトコール酸 3硫酸濃度と電流値の関係を示す グラフである (実施例 6)。
[図 4]胆汁酸硫酸スルフエターゼおよび β -ヒドロキシステロイドデヒドロゲナーゼから なる乾燥試薬層を有するノィォセンサを用い、 NAD+存在下における生成 NADHを測 定することにより、グリコリトコール酸 3硫酸濃度と電流値の関係を示すグラフである (実 施例 7)。
[図 5]胆汁酸硫酸スルフエターゼ、 13 -ヒドロキシステロイドデヒドロゲナーゼ、フエリシ アンィ匕カリウムおよび NAD+からなる乾燥試薬層を有するバイオセンサを用いた場合 における、グリコリトコール酸 3硫酸濃度と電流値の関係を示すグラフである (実施例 8)
[図 6] β -ヒドロキシステロイドデヒドロゲナーゼおよびフェリシアン化カリウム力もなる乾 燥試薬層を有するバイオセンサを用い、胆汁酸硫酸スルフエターゼおよび NAD+存在 下における、グリコリトコール酸 3硫酸濃度と電流値の関係を示すグラフである (実施 例 9)。
[図 7]胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイドデヒドロゲナーゼおよび NADHォキシダーゼ力もなる乾燥試薬層を有するバイオセンサを用い、 NAD+存在下 における、グリコリトコール酸 3硫酸濃度と電流値の関係を示すグラフである (実施例 10)。

Claims

請求の範囲
[1] 硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分解 し、 β -ヒドロキシステロイドと共に生成した硫酸を発色試薬で検知することを特徴とす る硫酸抱合型胆汁酸の検出方法。
[2] 発色試薬が ρΗ発色試薬である請求項 1記載の硫酸抱合型胆汁酸の検出方法。
[3] 硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分解 し、生成した 13 -ヒドロキシステロイドを 13 -ヒドロキシステロイドデヒドロゲナーゼの存在 下に NAD+と反応させ、 3-ケトステロイドと共に生成した NADHに電子伝達体を反応さ せた後溶存酸素と反応させ、生成した Η 0にペルォキシダーゼを作用させて発生し
2 2
た発生期の酸素で酸化還元系発色試薬を酸化し、発色させて検知することを特徴と する硫酸抱合型胆汁酸の検出方法。
[4] 酸ィ匕還元系発色試薬がヨウ化カリウムまたはオルトトリジンである請求項 3記載の硫 酸抱合型胆汁酸の検出方法。
[5] 硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分解 し、生成した 13 -ヒドロキシステロイドを 13 -ヒドロキシステロイドデヒドロゲナーゼの存在 下に NAD+と反応させ、 3-ケトステロイドと共に生成した NADHにジァホラーゼの作用 の下に酸化還元系発色試薬と反応させ、 NADHは酸化されて NAD+に変化すると共 に発色試薬を還元し、発色させて検知することを特徴とする硫酸抱合型胆汁酸の検 出方法。
[6] 酸化還元系発色試薬がテトラゾリゥム塩である請求項 5記載の硫酸抱合型胆汁酸 の検出方法。
[7] 硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分解 し、生成した 13 -ヒドロキシステロイドを 13 -ヒドロキシステロイドデヒドロゲナーゼの存在 下に NAD+と反応させ、 3-ケトステロイドと共に生成した NADHをアノード電極で酸ィ匕し 、発生した電流値を測定することを特徴とする硫酸抱合型胆汁酸の検出方法。
[8] 硫酸抱合型胆汁酸含有試料に胆汁酸硫酸スルフエターゼを作用させて加水分解 し、生成した 13 -ヒドロキシステロイドを 13 -ヒドロキシステロイドデヒドロゲナーゼの存在 下に NAD+と反応させ、 3-ケトステロイドと共に生成した NADHに電子伝達体および NADHォキシダーゼの少くとも一種を反応させた後、生成した H 0および
2 2 Zまたは還 元型電子伝達体をアノード電極で酸化し、発生した電流値を測定することを特徴とす る硫酸抱合型胆汁酸の検出方法。
[9] 電子伝達体力 フェリシアンィ匕カリウムまたは 1-メトキシフエナジンメソサルフェート である請求項 8記載の硫酸抱合型胆汁酸の検出方法。
[10] pH緩衝剤の存在下で加水分解以降の反応が行われる請求項 3、 5、 7または 8記載 の硫酸抱合型胆汁酸の検出方法。
[11] 試験紙に胆汁酸硫酸スルフヱターゼおよび pH発色試薬が吸収配置されている硫 酸抱合型胆汁酸検出用試験紙。
[12] 試験紙に胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイドデヒドロゲナーゼ、 NAD+、電子伝達体、ペルォキシダーゼおよび酸化還元系発色試薬が吸収配置され て ヽる硫酸抱合型胆汁酸検出用試験紙。
[13] 試験紙に胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイドデヒドロゲナーゼ、 NAD+、ジァホラーゼおよび酸ィ匕還元系発色試薬が吸収配置されて 、る硫酸抱合型 胆汁酸検出用試験紙。
[14] 試料供給側に予め pH緩衝剤を吸収配置あるいは酵素および Zまたは酵素以外の 試薬と pH緩衝剤の混合液を吸収配置させた試験紙が用いられた請求項 12または 1 3記載の硫酸抱合型胆汁酸検出用試験紙。
[15] 作用極上またはその近傍に、(1)胆汁酸硫酸スルフエターゼ、(2) β -ヒドロキシステロ イドデヒドロゲナーゼおよび (3)NAD+を含有する乾燥試薬層を形成させてなる硫酸抱 合型胆汁酸バイオセンサ。
[16] 作用極上またはその近傍に、(1)胆汁酸硫酸スルフエターゼ、(2) β -ヒドロキシステロ イドデヒドロゲナーゼ、(3)NAD+および (4)電子伝達体および NADHォキシダーゼの少 くとも一種を含有する乾燥試薬層を形成させてなる硫酸抱合型胆汁酸バイオセンサ
[17] 電子伝達体力 フェリシアンィ匕カリウムまたは 1-メトキシフエナジンメソサルフェート である請求項 16記載の硫酸抱合型胆汁酸バイオセンサ。
[18] 請求項 15、 16または 17記載のバイオセンサ、バイオセンサの電極における電気的 な値を計測する計測部、計測部における計測値を表示する表示部および計測値を 保存するメモリー部を備えたバイオセンサ装置。
[19] 計測部における計測方法としてポテンシャルステップクロノアンべロメトリー法、クー ロメトリー法またはサイクリックボルタンメトリー法が適用される請求項 18記載のノィォ センサ装置。
[20] さらに、バイオセンサの計測部に計測データを送信する無線手段を備え、無線手 段が非接触型 ICカードまたは短距離無線通信である請求項 18または 19記載のバイ ォセンサ装置。
[21] 作用極上またはその近傍に、胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイド デヒドロゲナーゼおよび NAD+の少くとも一種を含有する乾燥試薬層を形成させてな るセンサに、前記試薬のうち乾燥試薬層に用いられな ヽ試薬と検体の混合溶液を導 入し、発生する電流値を測定することを特徴とする硫酸抱合型胆汁酸量の測定方法
[22] 作用極上またはその近傍に、胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイド デヒドロゲナーゼ、 NAD+および電子伝達体の少くとも一種を含有する乾燥試薬層を 形成させてなるセンサに、前記試薬のうち乾燥試薬層に用いられな ヽ試薬と検体の 混合溶液を導入し、発生する電流値を測定することを特徴とする硫酸抱合型胆汁酸 量の測定方法。
[23] 作用極上またはその近傍に、胆汁酸硫酸スルフエターゼ、 β -ヒドロキシステロイド デヒドロゲナーゼ、 NAD+、電子伝達体および NADHォキシダーゼの少くとも一種を含 有する乾燥試薬層を形成させてなるセンサに、前記試薬のうち乾燥試薬層に用いら れな 、試薬と検体の混合溶液を導入し、発生する電流値を測定することを特徴とす る硫酸抱合型胆汁酸量の測定方法。
PCT/JP2004/018193 2003-12-08 2004-12-07 硫酸抱合型胆汁酸の検出方法、それに用いられる試験紙およびバイオセンサ WO2005056824A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005516117A JPWO2005056824A1 (ja) 2003-12-08 2004-12-07 硫酸抱合型胆汁酸の検出方法、それに用いられる試験紙およびバイオセンサ

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2003408930 2003-12-08
JP2003-408930 2003-12-08
JP2003-411227 2003-12-10
JP2003411227 2003-12-10
JP2004274812 2004-09-22
JP2004-274812 2004-09-22

Publications (1)

Publication Number Publication Date
WO2005056824A1 true WO2005056824A1 (ja) 2005-06-23

Family

ID=34681960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018193 WO2005056824A1 (ja) 2003-12-08 2004-12-07 硫酸抱合型胆汁酸の検出方法、それに用いられる試験紙およびバイオセンサ

Country Status (2)

Country Link
JP (1) JPWO2005056824A1 (ja)
WO (1) WO2005056824A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187582A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp バイオチップ、バイオセンサ、及び検査システム
KR101691174B1 (ko) * 2015-07-31 2016-12-30 동국대학교 산학협력단 자가발전형 비색 산소 센서-지시계
JP2020076765A (ja) * 2018-11-02 2020-05-21 国立研究開発法人産業技術総合研究所 ステロイドの測定方法、ステロイドの測定キット及びストレス度の測定方法
CN111966857A (zh) * 2020-08-19 2020-11-20 南京英德利汽车有限公司 一种检测改装车辆的方法及检测系统
CN112881370A (zh) * 2021-03-19 2021-06-01 浙江达美生物技术有限公司 一种甘胆酸的测定试剂及其制备方法
CN114235790A (zh) * 2021-11-29 2022-03-25 北京华晟源医疗科技有限公司 体液中乳酸含量检测试纸的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257499A (ja) * 1988-04-07 1989-10-13 Sekisui Chem Co Ltd Nad(p)hオキシダーゼを用いたnad(p)hの定量法
JPH09206098A (ja) * 1996-02-07 1997-08-12 Hoometsuto:Kk 硫酸抱合胆汁酸検出方法及び硫酸抱合胆汁酸検出装置
JP2000093197A (ja) * 1998-09-24 2000-04-04 Hoometto:Kk 固定化酵素による液体試料中成分の測定方法
JP2000146905A (ja) * 1998-11-11 2000-05-26 Robert Bosch Gmbh 流動する排気ガス成分用センサ及び排気ガス中の還元可能な成分及び酸化可能な成分の割合を測定する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257499A (ja) * 1988-04-07 1989-10-13 Sekisui Chem Co Ltd Nad(p)hオキシダーゼを用いたnad(p)hの定量法
JPH09206098A (ja) * 1996-02-07 1997-08-12 Hoometsuto:Kk 硫酸抱合胆汁酸検出方法及び硫酸抱合胆汁酸検出装置
JP2000093197A (ja) * 1998-09-24 2000-04-04 Hoometto:Kk 固定化酵素による液体試料中成分の測定方法
JP2000146905A (ja) * 1998-11-11 2000-05-26 Robert Bosch Gmbh 流動する排気ガス成分用センサ及び排気ガス中の還元可能な成分及び酸化可能な成分の割合を測定する方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007187582A (ja) * 2006-01-13 2007-07-26 Seiko Epson Corp バイオチップ、バイオセンサ、及び検査システム
US7833396B2 (en) 2006-01-13 2010-11-16 Seiko Epson Corporation Biochip, biosensor and inspection system
JP4735833B2 (ja) * 2006-01-13 2011-07-27 セイコーエプソン株式会社 バイオチップ及びバイオセンサ
KR101691174B1 (ko) * 2015-07-31 2016-12-30 동국대학교 산학협력단 자가발전형 비색 산소 센서-지시계
JP2020076765A (ja) * 2018-11-02 2020-05-21 国立研究開発法人産業技術総合研究所 ステロイドの測定方法、ステロイドの測定キット及びストレス度の測定方法
JP7403119B2 (ja) 2018-11-02 2023-12-22 国立研究開発法人産業技術総合研究所 ステロイドの測定方法、ステロイドの測定キット及びストレス度の測定方法
CN111966857A (zh) * 2020-08-19 2020-11-20 南京英德利汽车有限公司 一种检测改装车辆的方法及检测系统
CN111966857B (zh) * 2020-08-19 2023-09-29 南京英德利汽车有限公司 一种检测改装车辆的方法及检测系统
CN112881370A (zh) * 2021-03-19 2021-06-01 浙江达美生物技术有限公司 一种甘胆酸的测定试剂及其制备方法
CN112881370B (zh) * 2021-03-19 2021-11-26 浙江达美生物技术有限公司 一种甘胆酸的测定试剂及其制备方法
CN114235790A (zh) * 2021-11-29 2022-03-25 北京华晟源医疗科技有限公司 体液中乳酸含量检测试纸的制备方法

Also Published As

Publication number Publication date
JPWO2005056824A1 (ja) 2007-07-05

Similar Documents

Publication Publication Date Title
Chaubey et al. Mediated biosensors
JP7003103B2 (ja) 干渉補償型の2電極テストストリップ
Cass et al. Ferrocene-mediated enzyme electrode for amperometric determination of glucose
Shan et al. HRP/[Zn–Cr–ABTS] redox clay-based biosensor: design and optimization for cyanide detection
Monošík et al. Amperometric glucose biosensor utilizing FAD-dependent glucose dehydrogenase immobilized on nanocomposite electrode
Hnaien et al. A rapid and sensitive alcohol oxidase/catalase conductometric biosensor for alcohol determination
Das et al. Direct electrochemistry of alcohol oxidase using multiwalled carbon nanotube as electroactive matrix for biosensor application
Li et al. Development of an amperometric biosensor based on glucose oxidase immobilized through silica sol–gel film onto Prussian Blue modified electrode
JP2005501253A (ja) 自己動力供給式(self−powered)バイオセンサー
JP2005501253A5 (ja)
CA2553632A1 (en) Oxidizable species as an internal reference for biosensors and method of use
Castilho et al. Amperometric biosensor based on horseradish peroxidase for biogenic amine determinations in biological samples
Şen et al. Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes
Huang et al. A sensitive H2O2 biosensor based on carbon nanotubes/tetrathiafulvalene and its application in detecting NADH
Ricci et al. A probe for NADH and H2O2 amperometric detection at low applied potential for oxidase and dehydrogenase based biosensor applications
EP0230786B1 (en) Assay for cholesterol and derivatives thereof
Hu et al. A versatile strategy for electrochemical detection of hydrogen peroxide as well as related enzymes and substrates based on selective hydrogen peroxide-mediated boronate deprotection
Song et al. Optical enzymatic detection of glucose based on hydrogen peroxide-sensitive HiPco carbon nanotubes
KR100824731B1 (ko) 바이오센서 및 그 제조방법
WO2005056824A1 (ja) 硫酸抱合型胆汁酸の検出方法、それに用いられる試験紙およびバイオセンサ
Ramanavicius et al. Potentiometric study of quinohemoprotein alcohol dehydrogenase immobilized on the carbon rod electrode
Dzyadevich et al. Glucose conductometric biosensor with potassium hexacyanoferrate (III) as an oxidizing agent
JP2009244013A (ja) 中性脂肪測定用バイオセンサ
Gülce et al. Polyvinylferrocenium immobilized enzyme electrode for choline analysis
JP2005118014A (ja) 分析方法およびそれに用いる試薬

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005516117

Country of ref document: JP

122 Ep: pct application non-entry in european phase