WO2005052472A1 - 冷凍装置 - Google Patents

冷凍装置 Download PDF

Info

Publication number
WO2005052472A1
WO2005052472A1 PCT/JP2004/017400 JP2004017400W WO2005052472A1 WO 2005052472 A1 WO2005052472 A1 WO 2005052472A1 JP 2004017400 W JP2004017400 W JP 2004017400W WO 2005052472 A1 WO2005052472 A1 WO 2005052472A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
side communication
communication pipe
refrigerant
pipe
Prior art date
Application number
PCT/JP2004/017400
Other languages
English (en)
French (fr)
Inventor
Atsushi Yoshimi
Manabu Yoshimi
Kazuhide Mizutani
Hiromune Matsuoka
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP04819363A priority Critical patent/EP1640677B1/en
Priority to AU2004293713A priority patent/AU2004293713B2/en
Priority to US10/545,705 priority patent/US7334426B2/en
Priority to DE602004016509T priority patent/DE602004016509D1/de
Priority to JP2005515776A priority patent/JPWO2005052472A1/ja
Publication of WO2005052472A1 publication Critical patent/WO2005052472A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G1/00Non-rotary, e.g. reciprocated, appliances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/18Refrigerant conversion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass

Definitions

  • the present invention relates to a refrigerating apparatus connected to an existing communication pipe, which performs a cleaning operation of the communication pipe.
  • a refrigerating apparatus including a refrigerant circuit in which a refrigerant circulates to perform a vapor compression refrigeration cycle is known.
  • the refrigeration system is composed of indoor and outdoor units, and these indoor and outdoor units are connected by connecting pipes. These connecting pipes are often embedded inside buildings. For this reason, it is difficult to replace the communication pipe when the refrigeration system is updated, and a new refrigeration system has been introduced using the existing connection pipe.
  • CFC refrigerants and HCFC refrigerants that have been used as refrigerants to be filled in the refrigerant circuit have been totally abolished because they have adverse effects on the environment such as destruction of the ozone layer.
  • a refrigeration system using a new refrigerant such as HFC refrigerant
  • CFC refrigerant / HCFC refrigerant mineral oil, which is a refrigerating machine oil for CFC refrigerant and HCFC refrigerant, remains in the existing connection pipe.
  • Patent Document 1 JP-A-2000-329432
  • an air conditioner which is a type of refrigerator, often has a height difference between the installation positions of the outdoor unit and the indoor unit.
  • a vertically extending portion is formed in the communication pipe for connecting the outdoor unit and the indoor unit.
  • the present invention has been made in view of the power, and an object of the present invention is to provide a refrigerating apparatus that performs a cleaning operation of an existing communication pipe! The purpose is to reliably reduce the remaining amount of refuse and prevent problems.
  • the first and second means for solving the problem are to provide the compressor (21) and the heat source side heat exchange (24) together with the existing liquid side communication pipe (60) and gas side communication pipe (70).
  • a heat source side circuit (11) connected to the use side heat exchanger (33), and operating the compressor (21) to operate the existing liquid side connection pipe (60) and gas side connection pipe (70). Power This is intended for refrigeration systems that perform cleaning operations to remove refrigeration oil for old refrigerants.
  • the operation state during the cleaning operation is set.
  • a second solution is that the gas-side communication pipe (70) to which the heat source-side circuit (11) of the refrigeration apparatus is connected has a plurality of branches connected to a plurality of use-side heat exchangers.
  • the gas refrigerant flowing through the main pipe (72) of the gas-side communication pipe (70) is constituted by a pipe (71) and a main pipe (72) to which the plurality of branch pipes (71) are connected. Is U, the inner diameter of the main pipe (72) is D, the density of the gas refrigerant flowing through the main pipe (72) is d, and the density of the liquid existing in the main pipe (72) is d.
  • the operating state during the cleaning operation is set based on the above.
  • the third and fourth solutions are to provide a compressor (21) and a heat source side heat exchange (24), and at the same time, through an existing liquid side communication pipe (60) and gas side communication pipe (70).
  • the heat source side circuit (11) connected to the use side heat exchanger (33) and the refrigerating machine oil that is provided on the suction side of the compressor (21) in the heat source side circuit (11) and is separated from the gas refrigerant are stored.
  • the compressor (21) is operated to recover the refrigerating machine oil for the old refrigerant remaining in the existing liquid-side communication pipe (60) and gas-side communication pipe (70). It is intended for refrigeration equipment that performs a washing operation to be collected in a container (40).
  • a third solution is that the velocity of the gas refrigerant flowing through the gas side communication pipe (70) is U, the inner diameter of the gas side communication pipe (70) is D, and the gas side communication pipe is Let d be the density of the gas refrigerant flowing through (70), let d be the density of the liquid present in the gas side communication pipe (70), and let the gravitational acceleration be gg 1
  • the operation state during the cleaning operation is set.
  • the gas-side communication pipe (70) to which the heat source-side circuit (11) of the refrigeration apparatus is connected has a plurality of branches connected to a plurality of use-side heat exchangers.
  • the gas refrigerant flowing through the main pipe (72) of the gas-side communication pipe (70) is constituted by a pipe (71) and a main pipe (72) to which the plurality of branch pipes (71) are connected. Is U, the inner diameter of the main pipe (72) is D, the density of the gas refrigerant flowing through the main pipe (72) is d, and the density of the liquid existing in the main pipe (72) is d.
  • the operating state during the cleaning operation is set based on the above.
  • the operation state during the cleaning operation is set such that the Froude number Fr is larger than 1. .
  • a sixth solution is the solution according to the first, second, third or fourth solution, wherein the operating state during the cleaning operation is set such that the Froude number Fr becomes 1.5 or more. It is.
  • a seventh solution is the first, second, third or fourth solution, wherein the heat source side circuit (11
  • the refrigerant filled in ()) is a mixed refrigerant containing R32 or a natural refrigerant.
  • the heat source side circuit (11) is connected to the use side heat exchanger (33) via the existing liquid side communication pipe (60) and gas side communication pipe (70). .
  • the compressor (21) of the heat source side circuit (11) is operated and the liquid side communication pipe (60) and The refrigerant flows through the gas side communication pipe (70).
  • the refrigerating machine oil for the old refrigerant remaining in the existing liquid-side communication pipe (60) and gas-side communication pipe (70) is washed away by the refrigerant, and is then washed away by the liquid-side communication pipe (60). And from the gas side communication pipe (70).
  • the heat source side circuit (11) is connected to the use side heat exchanger (33) via the existing liquid side communication pipe (60) and gas side communication pipe (70). ).
  • the compressor (21) of the heat source side circuit (11) is operated, and the liquid side communication pipe (60) and The refrigerant flows through the gas side communication pipe (70).
  • the refrigerating machine oil for the old refrigerant remaining in the existing liquid-side connecting pipe (60) and gas-side connecting pipe (70) flows to the heat source side circuit (11) and is separated by gas refrigerant power. And collected in a collection container (40).
  • the Froude number Fr is determined by the inertia of the gas refrigerant flowing through the gas side communication pipe (70) with respect to gravity acting on the liquid in the gas side communication pipe (70). Expresses the force ratio. That is, the Froude number Fr represents the magnitude relationship between the gravity acting on the liquid in the gas side communication tube (70) and the inertia force of the gas refrigerant flowing through the gas side communication tube (70). Therefore, in these solutions, the operation state during the cleaning operation is set based on the Froude number Fr.
  • the gas side communication pipe (70) is composed of a plurality of branch pipes (71) and one main pipe (72).
  • the Froude number Fr in this solution means the ratio of the inertial force of the gas refrigerant flowing through the main pipe (72) to the gravity acting on the liquid in the main pipe (72) of the gas side communication pipe (70). That is, the fluid number Fr represents the magnitude relationship between the gravity acting on the liquid in the main pipe (72) of the gas-side communication pipe (70) and the inertial force of the gas refrigerant flowing through the main pipe (72). I have. Therefore, in these solutions, the operating state during the cleaning operation is set based on the Froude number Fr.
  • examples of the liquid that may exist in the gas-side communication pipe (70) include a refrigerating machine oil for an old refrigerant, a new refrigerant, and a refrigerating machine oil for a new refrigerant.
  • the value of the liquid density d used to derive the Froude number Fr is as follows: the refrigerant oil for the old refrigerant, the new refrigerant, and the refrigerant oil for the new refrigerant.
  • the density of the mixture of the refrigerant oil for the old refrigerant, the new refrigerant, and the refrigerant oil for the new refrigerant is always higher, and the liquid in the gas side communication pipe (70) is surely swept away by the gas refrigerant.
  • the operating state during the cleaning operation is set so that the Froude number Fr is greater than one.
  • the Froude number Fr represents the ratio of the inertia of the gas refrigerant flowing through the gas side communication pipe (70) to the gravity acting on the liquid in the gas side communication pipe (70). For this reason, when the operation state is set so that the Froude number Fr is larger than 1, the gas refrigerant flowing through the gas side communication pipe (70) is less than the gravity acting on the liquid in the gas side communication pipe (70). The inertia force of becomes larger.
  • the operating state during the cleaning operation is set so that the Froude number becomes 1.5 or more.
  • the Froude number Fr represents the ratio of the inertial force of the gas refrigerant flowing through the gas side communication pipe (70) to the gravity acting on the liquid in the gas side communication pipe (70). For this reason, when the operating state is set so that the Froude number Fr is 1.5 or more, the inertia of the gas refrigerant flowing through the gas side communication pipe (70) increases the liquid in the gas side communication pipe (70). It becomes 1.5 times or more of gravity acting on
  • a mixed refrigerant containing R32 as a component or a natural refrigerant is charged into the heat source side circuit (11).
  • Mixed refrigerants containing R32 include R410A and R407C HFC mixed refrigerant is exemplified.
  • natural refrigerants include carbon dioxide (CO),
  • Hydrocarbons such as moa (NH) and propane (C H) are exemplified.
  • the operation state during the cleaning operation is set based on the Froude number Fr.
  • the relationship between the gravity acting on the liquid in the gas-side communication pipe (70) and the inertial force of the gas refrigerant flowing through the gas-side communication pipe (70) is expressed.
  • the operation state during the cleaning operation is set in consideration of the fluid number Fr.
  • the relationship between the gravity acting on the liquid in the main pipe (72) of the gas side communication pipe (70) and the gas refrigerant flowing through the main pipe (72) is expressed.
  • the operation state during the cleaning operation is set in consideration of the Froude number Fr.
  • the old refrigerant and the refrigerating machine oil for the old refrigerant are compatible with each other and flow through the liquid-side communication pipe (60), and foreign matters are flowed by the old refrigerant in the liquid phase.
  • the amount of refrigerating machine oil and foreign matter for the old refrigerant remaining in 60) is extremely small.
  • the inertia of the liquid refrigerant flowing through the liquid-side communication pipe (60), which has a higher specific gravity than the gas refrigerant flowing through the gas-side communication pipe (70), is larger than the inertia of the gas refrigerant.
  • the refrigerating machine oil and foreign matter for the old refrigerant remaining in the gas side communication pipe (70) can be washed away, the refrigerating machine oil and the foreign matter for the old refrigerant remaining in the liquid side communication pipe (60) can also be removed. Can be washed away.
  • the operating state is determined based on the fluid number Fr of the liquid and the gas refrigerant in the gas-side communication pipe (70).
  • the refrigerant oil and foreign matter for the old refrigerant remaining in the liquid-side communication pipe (60) and the gas-side communication pipe (70) can be reliably flushed with the refrigerant.
  • the operating state is set based on the Froude number Fr of the liquid and the gas refrigerant in the main pipe (72) of the gas side communication pipe (70).
  • the refrigerant can reliably remove old refrigerant refrigerant oil and foreign matter remaining in the gas-side connecting pipe (70) consisting of the liquid-side connecting pipe (60) and the main pipe (72) and the branch pipe (71). be able to.
  • the remaining amounts of the old refrigerant oil and foreign matter in the existing communication pipe can be reliably reduced by the cleaning operation, and troubles caused by the old refrigerant oil and foreign matter can be reduced. It can be prevented before it happens.
  • the operating state during the cleaning operation is set such that the Froude number Fr is greater than one. In this state, the inertia of the gas refrigerant flowing through the gas-side communication pipe (70) becomes larger than the gravity acting on the liquid in the gas-side communication pipe (70), and the vertical direction of the gas-side communication pipe (70) is reduced.
  • the refrigerant oil and foreign matter for the old refrigerant can be pushed upward by the gas refrigerant even in the portion extending to the upper side. Therefore, according to this solution, the remaining amounts of the refrigerating machine oil and the foreign matter for the old refrigerant in the existing connecting pipe can be further reduced.
  • the operation state during the cleaning operation is set so that the Froude number Fr becomes 1.5 or more.
  • the inertia of the gas refrigerant flowing through the gas-side communication pipe (70) becomes 1.5 times or more the gravitational force acting on the liquid in the gas-side communication pipe (70).
  • the effect of pushing the refrigerating machine oil and foreign matter for the old refrigerant upward by the gas refrigerant also increases in the portion extending in the vertical direction. Therefore, according to this solution, the remaining amounts of the refrigerating machine oil and foreign matter for the old refrigerant in the existing connecting pipe can be reduced more reliably.
  • FIG. 1 is a refrigerant circuit diagram of an air conditioner according to Embodiment 1.
  • FIG. 2 is a diagram showing a relationship between a Froude number Fr and a residual amount ratio.
  • FIG. 3 is a refrigerant circuit diagram of an air conditioner according to Embodiment 2.
  • the air conditioner of the present embodiment includes one outdoor unit (20) and one indoor unit (30).
  • the outdoor unit (20) and the indoor unit (30) are configured for HFC refrigerant.
  • the outdoor unit (20) constitutes a refrigeration apparatus according to the present invention.
  • the outdoor unit (20) and the indoor unit (30) are connected to the existing liquid side communication pipe (60) and the gas connecting the outdoor unit and the indoor unit for the CFC refrigerant or the HCFC refrigerant. They are connected to each other by a side communication pipe (70).
  • the outdoor circuit (11) of the outdoor unit (20) and the indoor circuit (12) of the indoor unit (30) are connected to the existing liquid-side communication pipe (60) and gas-side communication pipe (70). ), A refrigerant circuit (10) is formed.
  • the outdoor circuit (11) of the outdoor unit (20) constitutes a heat source side circuit.
  • a compressor (21), an oil separator (22), a four-way switching valve (23), and an outdoor heat exchanger (24), which is a heat source side heat exchanger, are connected by refrigerant piping. And filled with HFC refrigerant.
  • the outdoor unit (20) is provided with an outdoor fan (24a).
  • the HFC refrigerant to be charged into the outdoor circuit (11) includes R32, R134a, R404A, R407C, R410A, R507A, a mixed refrigerant of R32 and R125, a mixed refrigerant of R32, R125 and R134a, And a mixed refrigerant containing R32 and R32 as a main component.
  • the outdoor circuit (11) is not limited to the HFC refrigerant, and may be filled with a non-fluorinated natural refrigerant. Examples of the natural refrigerant include CO, CH, NH, and H 2 O.
  • the discharge side of the compressor (21) is connected to the first port of the four-way switching valve (23) via the oil separator (22).
  • the second port of the four-way switching valve (23) is connected to one end of the outdoor heat exchange (24).
  • the third port of the four-way switching valve (23) is connected to the suction side of the compressor (21) via a recovery container (40) described later.
  • the fourth port of the four-way switching valve (23) is connected to the gas side shut-off valve (27).
  • the other end of the outdoor heat exchanger (24) is connected to a liquid stop valve (26) via an outdoor expansion valve (25).
  • the compressor (21) is a hermetic scroll compressor.
  • the compressor (21) is configured in a so-called high-pressure dome shape. That is, in the compressor (21), the compression mechanism (21b ), The gas refrigerant is discharged into the casing (21a) and then discharged out of the casing (21a).
  • the bottom of the casing (21a) stores refrigerating machine oil for HFC refrigerant.
  • refrigerating machine oil for example, a synthetic oil such as an ether oil / ester oil is used.
  • the compressor (21) has a variable capacity. Electric motor of compressor (21)
  • the refrigerant circuit (10) is configured to switch between a cooling mode operation and a heating mode operation by switching the four-way switching valve (23). Specifically, the first port and the second port of the four-way switching valve (23) are connected to each other, and the third port and the fourth port are connected to each other (the state shown by the solid line in FIG. 1). In other words, in the refrigerant circuit (10), the refrigerant circulates in a cooling mode operation in which the outdoor heat exchanger (24) becomes a condenser and the indoor heat exchange (33) becomes an evaporator. When the first and fourth ports of the four-way switching valve (23) communicate with each other and the second and third ports communicate with each other (the state shown by the broken line in FIG. 1), the state is switched. In the refrigerant circuit (10), the refrigerant circulates in a heating mode operation in which the outdoor heat exchange (24) becomes an evaporator and the indoor heat exchange (33) becomes a condenser.
  • the outdoor circuit (11) includes a collection container for collecting foreign substances such as mineral oil, which is a refrigerating machine oil for the old refrigerant, remaining in the existing liquid-side connecting pipe (60) and gas-side connecting pipe (70). (40) is provided.
  • the recovery container (40) is formed in a sealed shape, and is connected to the inflow pipe (41) and the outflow pipe (42).
  • the inflow pipe (41) is connected to the third port of the four-way switching valve (23).
  • the outflow pipe (42) is connected to the suction side of the compressor (21).
  • the inflow pipe (41) is formed such that its outlet end is located at the bottom of the collection container (40) and opens toward the bottom of the collection container (40).
  • the inflow pipe (41) is provided with an inflow valve (51).
  • the outflow pipe (42) is formed so that its inlet end is located at the upper part in the collection container (40) and opens toward the bottom of the collection container (40).
  • the outflow pipe (42) is provided with an outflow valve (52).
  • the inflow valve (51) and the outflow valve (52) constitute an on-off valve.
  • the outdoor circuit (11) is provided with a bypass pipe (54) that bypasses the collection container (40).
  • the bypass pipe (54) has one end connected between the inlet valve (51) and the third port of the four-way switching valve (23), and the other end connected to the outlet valve (52) and the compressor (21). Connected to the side.
  • the bypass pipe (54) is provided with a no-pass valve (53) that is an on-off valve.
  • Oil return pipe (22a) One end of an oil return pipe (22a) is connected to the oil separator (22). Oil return pipe
  • (22a) The other end of (22a) is connected between the outflow valve (52) and the suction side of the compressor (21) and downstream of the connection portion of the bypass pipe (54).
  • Compressor (21) power The synthetic oil discharged mixed with the gas refrigerant is separated from the gas refrigerant by the oil separator (22), and then passes through the oil return pipe (22a) to the compressor (21). It is returned to the suction side.
  • the indoor expansion valve (32) and the indoor heat exchange (33), which is a use-side heat exchanger, are connected in series. Further, the indoor unit (30) is provided with an indoor fan (33a).
  • One end of the liquid side communication pipe (60) is connected to the outdoor circuit (11) via the liquid side shutoff valve (26).
  • the other end of the liquid side communication pipe (60) is connected to the indoor circuit (12) of the indoor unit (30) via the liquid side connector (31).
  • one end of the gas-side communication pipe (70) is connected to the outdoor circuit (11) via a gas-side shutoff valve (27).
  • the other end of the gas side communication pipe (70) is connected to the indoor circuit (12) of the indoor unit (30) via the gas side connector (34).
  • the capacity of the compressor (21) during the cleaning operation is set based on the Froude number Fr represented by the following equation.
  • the Froude number Fr is a dimensionless number representing the ratio of the inertial force of the gas refrigerant flowing through the gas-side communication pipe (70) to the gravity acting on the liquid in the gas-side communication pipe (70).
  • U is the velocity of the gas refrigerant flowing through the gas side communication pipe (70), and its unit is [mZs].
  • D is the inner diameter of the gas side communication pipe (70), and its unit is [m]. d is gas
  • the density of the liquid present in the source-side connecting pipe (70), and its unit is [kgZm 3 ].
  • g is the acceleration of gravity, and its unit is [mZs 2 ].
  • mineral oil refrigeration oil for old refrigerant
  • new refrigerant new refrigerant
  • synthetic oil refrigeration oil for new refrigerant
  • solid or liquid Exists in the form of a mixture with foreign substances.
  • the solid or liquid foreign matter is abrasion powder generated by sliding of the compressor (21), various acids and ions generated by deterioration of mineral oil and old refrigerant, and moisture invading the piping.
  • a mixture of the mineral oil, the new refrigerant, the synthetic oil, and various foreign substances is swept away by the gas refrigerant.
  • liquids that may be present in the gas-side communication pipe (70) include mineral oil, new refrigerant, and synthetic oil. Considering that the amount of foreign matter such as abrasion powder is not so large, the value of the density d of the liquid used to derive the Froude number Fr can be calculated from mineral oil, new refrigerant, and synthetic oil.
  • the value of the one with the highest density is the highest among these three. Therefore, it is desirable that the value of the liquid density d in this case be the density of R410A in the liquid state.
  • the existing liquid-side connecting pipe (60) and gas-side connecting pipe (70) are diverted as they are, and the existing outdoor Units and indoor units will be replaced with new outdoor units (20) and indoor units (30) for HFC refrigerant, a new refrigerant.
  • the CFC refrigerant or the HCFC refrigerant is recovered from the air conditioner.
  • the existing Remove the outdoor unit and indoor unit for CFC refrigerant or HCFC refrigerant by removing the liquid-side connecting pipe (60) and gas-side connecting pipe (70).
  • the outdoor unit (20) and the indoor unit (30) for the HFC refrigerant are connected to the existing liquid-side connecting pipe (60) and gas-side connecting pipe (70) with the fittings (31,34) and the shut-off valves (26, 27) to form the above refrigerant circuit (10)
  • the indoor unit (30), the liquid-side communication pipe (60), and the gas-side communication pipe (70) are removed.
  • the liquid-side stop valve (26) and the gas-side stop valve (27) are opened, and the refrigerant circuit (10) is additionally filled with the HFC refrigerant.
  • This cleaning operation is performed to remove foreign substances such as mineral oil remaining in the existing liquid-side communication pipe (60) and gas-side communication pipe (70). Performed immediately after installing the unit (30) and outdoor unit (20).
  • the compressed gas refrigerant is discharged from the compressor (21).
  • the discharged gas refrigerant flows through the oil separator (22) to the four-way switching valve (23).
  • the gas refrigerant having passed through the four-way switching valve (23) flows into the outdoor heat exchanger (24), and exchanges heat with outdoor air to condense.
  • the liquid refrigerant passes through the outdoor expansion valve (25), flows into the liquid side communication pipe (60) through the liquid side closing valve (26).
  • the mineral oil and the foreign matter are flushed by the gas refrigerant together with the liquid containing the mineral oil and the foreign matter flowing from the liquid side connecting pipe (60). Then, the mixture of the gas refrigerant and the liquid containing mineral oil and foreign matter flows into the recovery vessel (40) from the inflow pipe (41) through the gas side shutoff valve (27) and the four-way switching valve (23).
  • the mixture of the gas refrigerant and the liquid containing mineral oil and foreign matter that has flowed into the recovery container (40) is discharged toward the bottom of the recovery container (40).
  • the liquid containing mineral oil and foreign substances is stored at the bottom of the recovery container (40).
  • the gas refrigerant flows out through the outflow pipe (42) to the recovery vessel (40) refrigerant circuit (10), and flows into the compressor (21) from the suction side of the compressor (21).
  • the liquid containing mineral oil and foreign matter remaining in the existing liquid-side communication pipe (60) and gas-side communication pipe (70) is removed from the gas flowing through the refrigerant circuit (10). Collected in the collection container (40) together with the refrigerant. Thereby, the mineral oil and the foreign matter, which are the refrigerating machine oil for the old refrigerant, are removed from the liquid side communication pipe (60) and the gas side communication pipe (70).
  • the inflow valve (51) and the outflow valve (52) are closed, and the bypass valve (53) is opened. Thereafter, the inflow valve (51) and the outflow valve (52) are always closed, and the bypass valve (53) is always opened. In this state, switching between the cooling mode operation and the heating mode operation, which are normal operations, is performed.
  • the four-way switching valve (23) is in the state shown by the solid line in FIG.
  • the refrigerant discharged from the compressor (21) flows into the oil separator (22), passes through the four-way switching valve (23), exchanges heat with outdoor air in the outdoor heat exchanger (24), and condenses.
  • the condensed refrigerant passes through the outdoor expansion valve (25), flows through the liquid side communication pipe (60), and exchanges heat with indoor air in the indoor heat exchanger (33) to evaporate.
  • the evaporated refrigerant flows through the gas side communication pipe (70), passes through the four-way switching valve (23) and the bypass pipe (54), and is returned to the suction side of the compressor (21).
  • the four-way switching valve is in the state shown by the broken line in FIG.
  • the refrigerant discharged from the compressor (21) flows into the oil separator (22), where the refrigerant is discharged to the four-way switching valve (23).
  • the condensed refrigerant flows through the liquid side communication pipe (60), passes through the outdoor expansion valve (25), and exchanges heat with outdoor air in the outdoor heat exchanger (24) to evaporate.
  • the evaporated refrigerant is returned to the suction side of the compressor (21) through the four-way switching valve (23) and the bypass pipe (54).
  • the outdoor unit (20) may be disposed above the indoor unit (30).
  • the liquid side communication pipe (60) and the gas side communication pipe ( 70) is laid vertically.
  • the capacity of the compressor (21) during the cleaning operation is set so that the Froude number Fr is larger than 1.
  • the inertia force of the gas refrigerant flowing through the gas side communication pipe (70) becomes larger than the gravity acting on the liquid containing the mineral oil and foreign matter remaining in the gas side communication pipe (70).
  • the resultant force acting on the liquid containing mineral oil and foreign matter is directed upward in the vertically extending portion of the gas-side connecting pipe (70).
  • the liquid containing the mineral oil and the foreign matter is also pushed up by the gas refrigerant in the vertically extending portion of the gas-side communication pipe (70).
  • the liquid containing mineral oil and foreign matter remaining in the existing gas-side communication pipe (70) is removed by the cleaning operation. Then, the liquid containing the mineral oil and the foreign matter removed from the existing gas-side communication pipe (70) is reliably collected in the container (40).
  • the old refrigerant and the mineral oil which is a refrigerating machine oil for the old refrigerant, are compatible with each other and flow through the liquid-side connecting pipe (60).
  • the amount of mineral oil and foreign matter remaining in the connecting pipe (60) is very small.
  • the liquid side communication pipe (60) Refrigerant flows downward.
  • the mineral oil and foreign matters remaining in the liquid side communication pipe (60) are swept downward by the liquid refrigerant. Therefore, taking into account the Froude number Fr in the gas side communication pipe (70), mineral oil and foreign matter can be reliably removed from the liquid side communication pipe (60).
  • the capacity of the compressor (21) during the cleaning operation is set so that the Froude number Fr in the gas side communication pipe (70) becomes larger than 1. The reason will be described with reference to FIG.
  • the horizontal axis is the Froude number Fr represented by ⁇ Equation 1>
  • the vertical axis is the remaining amount ratio.
  • the remaining amount ratio means that the washing operation was performed for about 1 to 3 hours, based on the allowable amount of mineral oil and foreign matter remaining in the liquid side connecting pipe (60) and gas side connecting pipe (70).
  • the amount of mineral oil and foreign matter remaining in the liquid-side connecting pipe (60) and the gas-side connecting pipe (70) later is expressed as a ratio to this reference value.
  • the residual amount ratio decreases as the Froude number Fr increases.
  • the Froude number Fr increases, the difference between the inertial force of the gas refrigerant and the gravity acting on the liquid containing mineral oil and foreign matter increases, and the force that the liquid containing mineral oil and foreign matter also receives on the gas refrigerant increases. It is.
  • the fluid number Fr becomes 1.4 or more
  • the gradient of the residual amount ratio to the fluid number Fr becomes even larger, and when the fluid number Fr becomes 1.5 or more, the residual amount ratio becomes 1 or less.
  • the Froude number Fr is 1.6
  • the remaining amount ratio becomes about 0.3, and when the Froude number Fr becomes 1.6 or more, the remaining amount ratio decreases very slowly.
  • the remaining amount ratio after performing the cleaning operation for 1 hour and about 3 hours is larger than 1. That is, after the cleaning operation, more mineral oil and foreign substances than the allowable amount remain in the liquid side communication pipe (60) and the gas side communication pipe (70). If the cleaning operation is performed over this time, the residual amount ratio can be made smaller than 1, and the residual oil and foreign matter remaining in the liquid-side connecting pipe (60) and the gas-side connecting pipe (70) can be reduced. The amount can be less than the allowed amount.
  • the capacity of the compressor (21) is set so that the Froude number Fr is larger than one. Further, the capacity of the compressor (21) is preferably set such that the Froude number Fr is 1.5 or more. Most preferably, the Froude number Fr is set to about 1.6. desirable.
  • the capacity of the compressor (21) is set such that the upper limit of the Froude number Fr becomes 120.
  • the capacity of the compressor (21) is set so that the Froude number Fr becomes 1.5 or more, even if the operating conditions such as the outside air conditions are different, the remaining amount is about 1 to 3 hours.
  • the ratio can be made smaller than 1, and the cleaning operation of the existing liquid side communication pipe (60) and gas side communication pipe (70) can be completed.
  • the capacity of the compressor (21) during the cleaning operation is set in advance at the design stage of the air conditioner so that the Froude number Fr is larger than 1 even under the strictest assumed conditions! You.
  • the most severe condition is that, among the assumed operating conditions, the density d of the gas refrigerant in the gas side communication pipe (70) is the smallest and the density d of the liquid in the gas side communication pipe (70) is the largest.
  • the value of the liquid density d is stored in the gas side communication pipe (70).
  • the value of 1 will always be greater than the density of the liquid that actually exists in the gas side communication pipe (70). If the compressor (21) is operated with the capacity set as described above during the cleaning operation, the Froude number Fr in the gas side communication pipe (70) surely exceeds 1, and the gas side communication pipe ( The liquid in 70) is surely swept away by the gas refrigerant.
  • the values of the density d of the gas refrigerant and the density d of the liquid change depending on the temperature and the pressure.
  • the compressor (21) during the predetermined cleaning operation is determined in consideration of the actually measured and estimated values of temperature and pressure at the time when the cleaning operation is actually performed. Correct the capacity setting value!
  • the capacity of the compressor (21) suitable for the washing operation is stored for each of the plurality of operating conditions, and the stored set value is suitable for the operating condition during the actual washing operation. You may be able to select one. In this case, tests under various operating conditions were conducted at the design stage of the air conditioner, and the capacity of the compressor (21) to ensure that the gas side communication pipe (70) was washed by the washing operation under each operating condition Is determined, and the value is stored in the air conditioner.
  • the capacity of the compressor (21) during the cleaning operation is set based on the Froude number Fr.
  • the gravity acting on the liquid in the gas side communication pipe (70) and the gas side communication Set the capacity of the compressor (21) during the cleaning operation in consideration of the Froude number Fr indicating the relationship with the inertia force of the gas refrigerant flowing through the pipe (70)!
  • the old refrigerant and the mineral oil which is a refrigerating machine oil for the old refrigerant, are compatible with each other and flow through the liquid-side communication pipe (60), and foreign matter is flown by the liquid-phase old refrigerant.
  • the amount of mineral oil and foreign matter remaining in the connecting pipe (60) is very small.
  • the inertia of the liquid refrigerant flowing through the liquid-side communication pipe (60) which has a higher specific gravity than the gas refrigerant flowing through the gas-side communication pipe (70), is greater than the inertia of the gas refrigerant. Therefore, if the mineral oil and foreign matter remaining in the gas side communication pipe (70) can be flushed, the mineral oil and foreign matter remaining in the liquid side communication pipe (60) can also be flushed.
  • the liquid side communication pipe (70) By setting the capacity of the compressor (21) based on the Froude number Fr of the liquid and the gas refrigerant in the gas side communication pipe (70), the liquid side communication pipe ( The liquid containing the mineral oil and foreign matter remaining in the gas pipe 60 and the gas side communication pipe 70 can be reliably flushed with the refrigerant and collected in the collection vessel 40. Therefore, according to the present embodiment, the remaining amount of mineral oil and foreign matter in the existing liquid-side communication pipe (60) and gas-side communication pipe (70) can be reliably reduced by the cleaning operation, and troubles caused by mineral oil can be prevented beforehand. Can be prevented.
  • the compressor during the cleaning operation is operated such that the Froude number Fr is larger than 1.
  • the capacity of (21) is set.
  • the inertia of the gas refrigerant flowing through the gas side communication pipe (70) becomes greater than the gravity acting on the liquid containing mineral oil and foreign matter remaining in the gas side communication pipe (70), and The liquid containing mineral oil and foreign matter can be pushed up by the gas refrigerant even in the vertically extending part of (70). Therefore, according to the present embodiment, the remaining amount of mineral oil and foreign matter in the existing liquid-side communication pipe (60) and gas-side communication pipe (70) can be further reduced.
  • one compressor (21) is provided, and the capacity of the compressor (21) is set by adjusting the output frequency of the inverter.
  • the capacity of the compressor (21) may be set by providing a plurality of compressors (21) and changing the number of operating compressors (21).
  • Embodiment 2 of the present invention will be described.
  • This embodiment is a modification of the configuration of the air conditioner of the first embodiment.
  • points of this embodiment that are different from the first embodiment will be described.
  • Embodiment 2 of the present invention is a modification of the configuration of the air conditioner of Embodiment 1 described above. Here, points of this embodiment different from the first embodiment will be described.
  • the air conditioner of the present embodiment includes one outdoor unit (20) and three indoor units (30, 30, 30). Note that the number of indoor units (30) is merely an example. Each indoor unit (30) is provided with an indoor circuit (12). Then, the outdoor circuit (11) of the outdoor unit (20) and the indoor circuit (12) of each indoor unit (30) are connected by the existing liquid-side connecting pipe (60) and gas-side connecting pipe (70). The refrigerant circuit (10) is configured!
  • each indoor unit (30) In the indoor circuit (12) of each indoor unit (30), the indoor expansion valve (32) and the indoor heat exchanger (33) are connected in series. Each indoor unit (30) is provided with an indoor fan (33a).
  • the liquid side communication pipe (60) includes one main pipe (62) and three branch pipes (61, 61, 61). One end of the main pipe (62) of the liquid side communication pipe (60) is connected to the outdoor circuit (11) via the liquid side shutoff valve (26). The main pipe (62) of the liquid side communication pipe (60) is connected to three branch pipes (61, 61, 61). Each of the branch pipes (61, 61, 61) of the liquid side communication pipe (60) is connected to the indoor circuit (12) of each indoor unit (30) via the liquid side connector (31). .
  • the gas-side communication pipe (70) includes one main pipe (72) and three branch pipes (71, 71, 71).
  • One end of the main pipe (72) of the gas side communication pipe (70) is connected to the outdoor circuit (11) via the gas side shutoff valve (26).
  • the main pipe (72) of the gas side communication pipe (70) has three branch pipes ( 71,71,71).
  • the branch pipes (71, 71, 71) of the gas side communication pipe (70) are connected to the indoor circuit (12) of each indoor unit (30) via the gas side fittings (34). .
  • the capacity of the compressor (21) during the cleaning operation is set based on the Froude number Fr expressed by ⁇ Equation 1>, as in the first embodiment.
  • the definitions of U, D, d, and d are different from those in the first embodiment. Specifically, U is the gas g 1
  • D is the inner diameter of the main pipe (72) of the gas side communication pipe (70).
  • d is g of the gas refrigerant flowing through the main pipe (72) of the gas side communication pipe (70).
  • Density. d is the density of the liquid existing in the main pipe (72) of the gas side communication pipe (70).
  • the branch pipe (71, 71) is often provided horizontally along the ceiling, and the trunk pipe (72) is often provided in the vertical direction.
  • mineral oil and foreign matter can be reliably removed from the branch pipes (71, 71, 71) by taking into account the Froude number Fr in the main pipe (72) of the gas side communication pipe (70).
  • the capacity of the compressor (21) during the cleaning operation is set so that the Froude number Fr is larger than 1.
  • the inertia of the gas coolant flowing through the main pipe (72) is greater than the gravity acting on the liquid containing mineral oil and foreign matter remaining in the main pipe (72) of the gas side communication pipe (70). growing. That is, in the main pipe (72) of the gas-side connecting pipe (70), the resultant force acting on the liquid containing the mineral oil and foreign substances is directed upward. For this reason, also in the main pipe (72) of the gas side communication pipe (70) extending in the vertical direction, the liquid containing mineral oil and foreign matter is pushed up by the gas refrigerant.
  • the liquid containing mineral oil and foreign matter remaining in the existing gas-side communication pipe (70) is removed by the cleaning operation. Then, the liquid containing the mineral oil and the foreign matter, from which the existing gas-side connecting pipe (70) has also been removed, is reliably collected in the collecting container (40).
  • the compressor is so set that the Froude number Fr is larger than 1 in both the main pipe (72) and the branch pipes (71, 71, 71) of the gas side communication pipe (70).
  • the capacity of (21) may be set.
  • the capacity of the compressor (21) during the cleaning operation is determined by the relationship between the gravity acting on the liquid in the gas side communication pipe (70) and the gas refrigerant flowing through the main pipe (72). Representing fluid Set in consideration of several Fr.
  • the present invention is useful for a refrigerating apparatus connected to an existing communication pipe, which performs a cleaning operation of the communication pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Compressor (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 洗浄動作中には、圧縮機(21)の容量がフルード数Frに基づいて設定される。フルード数Frは、ガス側連絡管(70)内の液体に作用する重力に対するガス側連絡管(70)を流れるガス冷媒の慣性力の比を表す。洗浄動作中にはフルード数Frが1より大きくなるように圧縮機(21)の容量が設定され、ガス側連絡管(70)を流れるガス冷媒の慣性力がガス側連絡管(70)内の鉱油や異物を含んだ液体に作用する重力よりも大きくなる。このため、ガス側連絡管(70)のうちの鉛直部分においても、鉱油や異物を含んだ液体がガス冷媒によって押し上げられる。このようにして、既設の液側連絡管(60)及びガス側連絡管(70)に残存する鉱油及び異物が回収される。

Description

明 細 書
冷凍装置
技術分野
[0001] 本発明は、既設の連絡配管に接続される冷凍装置であって、連絡配管の洗浄動作 を行うものに関する。
背景技術
[0002] 従来より、冷媒が循環して蒸気圧縮式冷凍サイクルを行う冷媒回路を備えた冷凍 装置が知られている。上記冷凍装置は室内外のユニットから成り、これら室内外のュ ニットは連絡配管によって接続されている。この連絡配管は、建物の内部に埋め込ま れていることが多い。このため、冷凍装置の更新時に連絡配管を交換することが困難 であり、既設の連絡配管を流用して新たな冷凍装置が導入されている。
[0003] 一方、上記冷媒回路に充填される冷媒として、これまで用いられてきた CFC冷媒ゃ HCFC冷媒は、オゾン層を破壊する等環境に悪影響を及ぼすために全廃となってい る。このため、冷凍装置の更新時には、 CFC冷媒ゃ HCFC冷媒を使用した既設の 連絡配管に、新冷媒である HFC冷媒等を使用した冷凍装置を接続する必要がある 。ところが、既設の連絡配管には、 CFC冷媒ゃ HCFC冷媒用の冷凍機油である鉱 油が残存している。そして、 CFC冷媒ゃ HCFC冷媒及び鉱油の劣化により発生する 酸やイオンのため、膨張弁等が腐食するおそれを生じる。よって、新たな冷凍装置を 導入して試運転を行う前に、既設の連絡配管を洗浄して鉱油を除去する必要がある
[0004] そこで、既設の連絡配管の洗浄動作を可能とする冷凍装置が提案されて!、る(例え ば、特許文献 1参照)。この冷凍装置では、圧縮機及び熱源側熱交換器を備える熱 源機と、利用側熱交換器を備える室内機とが既設の連絡配管である第 1及び第 2の 接続配管を介して接続されて冷媒回路が構成されている。圧縮機の吸入側には、冷 媒力 鉱油及び異物を分離して回収するための異物捕捉手段が設けられて 、る。上 記冷凍装置では、 HFC冷媒を充填した後、冷房モードで洗浄動作を行い、冷媒回 路を循環する冷媒によって第 1及び第 2の接続配管を洗浄して異物捕捉手段に鉱油 及び異物を回収している。
特許文献 1:特開 2000-329432号公報
発明の開示
発明が解決しょうとする課題
[0005] ここで、例えば冷凍機の一種である空調機については、室外ユニットと室内ユニット の設置位置の間に高低差がある場合も多い。このような場合、室外ユニットと室内ュ ニットとを接続するための連絡配管には、鉛直方向に延びる部分が形成される。
[0006] 一方、ガス側の連絡配管に残存する鉱油及び異物を取り除くには、ガス冷媒の流 れによって鉱油及び異物を押し流す必要がある。特に、ガス側の連絡配管のうち鉛 直方向に延びる部分では、ガス冷媒によって鉱油及び異物を上方へ押し上げなけ ればならないこともある。
[0007] ところが、従来の冷凍装置では、洗浄動作中の運転状態について特に考慮されて いなかった。このため、運転状態によっては、ガス側の連絡配管内におけるガス冷媒 の流速が低すぎて鉱油及び異物を押し流すことができない状態となり、連絡配管内 に鉱油及び異物が残存してしまってトラブルの原因となるおそれがあった。
[0008] 本発明は、力かる点に鑑みてなされたものであり、その目的とするところは、既設の 連絡配管の洗浄動作を行う冷凍装置にお!、て、連絡配管での鉱油及び異物の残存 量を確実に削減してトラブルを未然に防止することにある。
課題を解決するための手段
[0009] 本発明が講じた解決手段について説明する。
[0010] 第 1及び第 2の解決手段は、圧縮機 (21)及び熱源側熱交 (24)が設けられると 共に既設の液側連絡管 (60)及びガス側連絡管 (70)を介して利用側熱交換器 (33) に接続される熱源側回路 (11)を備え、上記圧縮機 (21)を運転して上記既設の液側 連絡管 (60)及びガス側連絡管 (70)力 旧冷媒用の冷凍機油を除去する洗浄動作を 行う冷凍装置を対象として!ヽる。
[0011] そして、第 1の解決手段は、上記ガス側連絡管(70)を流れるガス冷媒の速度を Uと し、該ガス側連絡管(70)の内径を Dとし、該ガス側連絡管(70)を流れるガス冷媒の 密度を dとし、該ガス側連絡管(70)に存在する液体の密度を dとし、重力加速度を g g 1 としたときに、式 Fr= (d /ά ) X (U2/gD)で表されるフルード数 Frに基づき、上記
g 1
洗浄動作中の運転状態が設定されるものである。
[0012] また、第 2の解決手段は、上記冷凍装置の熱源側回路(11)が接続されるガス側連 絡管 (70)は、複数の利用側熱交換器にそれぞれ接続する複数の枝管 (71)と、該複 数の枝管 (71)が接続する幹管 (72)とによって構成される一方、上記ガス側連絡管( 70)の幹管(72)を流れるガス冷媒の速度を Uとし、該幹管(72)の内径を Dとし、該幹 管(72)を流れるガス冷媒の密度を dとし、該幹管(72)に存在する液体の密度を dとし
g 1
、重力加速度を gとしたときに、式 Fr= (d /ά ) X (U2ZgD)で表されるフルード数 Fr
g 1
に基づき、上記洗浄動作中の運転状態が設定されるものである。
[0013] 第 3及び第 4の解決手段は、圧縮機 (21)及び熱源側熱交 (24)が設けられると 共に既設の液側連絡管 (60)及びガス側連絡管 (70)を介して利用側熱交換器 (33) に接続される熱源側回路(11)と、上記熱源側回路(11)における圧縮機 (21)の吸入 側に設けられてガス冷媒から分離した冷凍機油を貯留する回収容器 (40)とを備え、 上記圧縮機 (21)を運転して上記既設の液側連絡管 (60)及びガス側連絡管 (70)に 残存する旧冷媒用の冷凍機油を上記回収容器 (40)へ回収する洗浄動作を行う冷凍 装置を対象としている。
[0014] そして、第 3の解決手段は、上記ガス側連絡管(70)を流れるガス冷媒の速度を Uと し、該ガス側連絡管(70)の内径を Dとし、該ガス側連絡管(70)を流れるガス冷媒の 密度を dとし、該ガス側連絡管(70)に存在する液体の密度を dとし、重力加速度を g g 1
としたときに、式 Fr= (d /ά ) X (U2/gD)で表されるフルード数 Frに基づき、上記
g 1
洗浄動作中の運転状態が設定されるものである。
[0015] また、第 4の解決手段は、上記冷凍装置の熱源側回路(11)が接続されるガス側連 絡管 (70)が、複数の利用側熱交換器にそれぞれ接続する複数の枝管 (71)と、該複 数の枝管 (71)が接続する幹管 (72)とによって構成される一方、上記ガス側連絡管( 70)の幹管(72)を流れるガス冷媒の速度を Uとし、該幹管(72)の内径を Dとし、該幹 管(72)を流れるガス冷媒の密度を dとし、該幹管(72)に存在する液体の密度を dとし
g 1
、重力加速度を gとしたときに、式 Fr= (d /ά ) X (U2ZgD)で表されるフルード数 Fr
g 1
に基づき、上記洗浄動作中の運転状態が設定されるものである。 [0016] 第 5の解決手段は、第 1,第 2,第 3又は第 4の解決手段において、洗浄動作中の 運転状態が、フルード数 Frが 1より大きくなるように設定されるものである。
[0017] 第 6の解決手段は、第 1,第 2,第 3又は第 4の解決手段において、洗浄動作中の 運転状態が、フルード数 Frが 1. 5以上となるように設定されるものである。
[0018] 第 7の解決手段は、第 1,第 2,第 3又は第 4の解決手段において、熱源側回路(11
)に充填されている冷媒は、 R32が含まれる混合冷媒、又は自然冷媒であるものであ る。
[0019] 一作用
上記第 1及び第 2の解決手段では、既設の液側連絡管 (60)及びガス側連絡管(70 )を介して熱源側回路 (11)が利用側熱交換器 (33)に接続される。既設の液側連絡 管 (60)及びガス側連絡管 (70)を洗浄する洗浄動作中には、熱源側回路(11)の圧縮 機 (21)が運転され、液側連絡管 (60)及びガス側連絡管 (70)を冷媒が流れる。また、 洗浄動作中にぉ 、て、既設の液側連絡管 (60)及びガス側連絡管(70)に残存する旧 冷媒用の冷凍機油は、冷媒によって押し流されて液側連絡管 (60)及びガス側連絡 管 (70)から除去される。
[0020] また、上記第 3及び第 4の解決手段では、既設の液側連絡管(60)及びガス側連絡 管 (70)を介して熱源側回路 (11)が利用側熱交換器 (33)に接続される。既設の液側 連絡管 (60)及びガス側連絡管 (70)を洗浄する洗浄動作中には、熱源側回路(11)の 圧縮機 (21)が運転され、液側連絡管 (60)及びガス側連絡管 (70)を冷媒が流れる。 また、洗浄動作中において、既設の液側連絡管 (60)及びガス側連絡管 (70)に残存 する旧冷媒用の冷凍機油は、熱源側回路(11)へと流れ、ガス冷媒力 分離して回収 容器 (40)へ回収される。
[0021] 上記第 1及び第 3の解決手段にぉ 、て、フルード数 Frは、ガス側連絡管(70)内の 液体に作用する重力に対するガス側連絡管(70)を流れるガス冷媒の慣性力の比を 表す。つまり、フルード数 Frは、ガス側連絡管(70)内の液体に作用する重力とガス側 連絡管(70)を流れるガス冷媒の慣性力との大小関係を表している。そこで、これらの 解決手段では、洗浄動作中の運転状態を、このフルード数 Frに基づいて設定してい る。 [0022] 一方、上記第 2及び第 4の解決手段において、ガス側連絡管(70)は、複数の枝管( 71)と 1つの幹管(72)とで構成される。複数の枝管(71)は、それぞれの一端が複数の 利用側熱交換器 (33)に接続され、それぞれの他端が幹管(72)に接続される。この解 決手段におけるフルード数 Frは、ガス側連絡管(70)の幹管(72)内の液体に作用す る重力に対するこの幹管(72)を流れるガス冷媒の慣性力の比を表す。つまり、フル ード数 Frは、ガス側連絡管(70)の幹管(72)内の液体に作用する重力とこの幹管(72 )を流れるガス冷媒の慣性力との大小関係を表している。そこで、これらの解決手段 では、洗浄動作中の運転状態を、このフルード数 Frに基づいて設定している。
[0023] ここで、ガス側連絡管(70)内に存在し得る液体としては、旧冷媒用の冷凍機油、新 冷媒、新冷媒用の冷凍機油が挙げられる。フルード数 Frを導出する際に用いる液体 の密度 dの値としては、旧冷媒用の冷凍機油、新冷媒、及び新冷媒用の冷凍機油の
1
うち最も密度が大き 、ものの値を用いるのが望まし 、。このように設定された dの
1 値は
、旧冷媒用の冷凍機油と新冷媒と新冷媒用の冷凍機油との混合物の密度よりも必ず 大きくなり、ガス側連絡管(70)内の液体がガス冷媒によって確実に押し流される。
[0024] 上記第 5の解決手段では、洗浄動作中の運転状態が、フルード数 Frが 1より大きく なるように設定される。上述のように、フルード数 Frは、ガス側連絡管(70)内の液体 に作用する重力に対するガス側連絡管(70)を流れるガス冷媒の慣性力の比を表す 。このため、フルード数 Frが 1より大きくなるように運転状態が設定された状態では、 ガス側連絡管(70)内の液体に作用する重力よりもガス側連絡管(70)を流れるガス冷 媒の慣性力の方が大きくなる。
[0025] 上記第 6の解決手段では、洗浄動作中の運転状態が、フルード数が 1. 5以上とな るように設定される。上述のように、フルード数 Frは、ガス側連絡管(70)内の液体に 作用する重力に対するガス側連絡管(70)を流れるガス冷媒の慣性力の比を表す。こ のため、フルード数 Frが 1. 5以上となるように運転状態が設定された状態では、ガス 側連絡管(70)を流れるガス冷媒の慣性力がガス側連絡管(70)内の液体に作用する 重力の 1. 5倍以上となる。
[0026] 上記第 7の解決手段では、 R32を一成分とする混合冷媒、又は自然冷媒が熱源側 回路(11)に充填される。 R32が含まれる混合冷媒としては、 R410Aや R407Cなど の HFC混合冷媒が例示される。一方、自然冷媒としては、二酸化炭素 (CO )、アン
2 モ-ァ(NH )、プロパン (C H )等の炭化水素が例示される。
3 3 8
発明の効果
[0027] 本発明では、洗浄動作中の運転状態をフルード数 Frに基づいて設定している。具 体的に、上記第 1及び第 3の解決手段では、ガス側連絡管(70)内の液体に作用する 重力とガス側連絡管(70)を流れるガス冷媒の慣性力との関係を表すフルード数 Frを 考慮して、洗浄動作中の運転状態を設定している。また、上記第 2及び第 4の解決手 段では、ガス側連絡管(70)の幹管(72)内の液体に作用する重力とこの幹管(72)を 流れるガス冷媒との関係を表すフルード数 Frを考慮して、洗浄動作中の運転状態を 設定している。
[0028] ここで、旧冷媒と旧冷媒用の冷凍機油とは相溶して液側連絡管(60)を流れ、また 異物は液相の旧冷媒で流されるため、この液側連絡管(60)に残存する旧冷媒用の 冷凍機油及び異物の量は、非常に少ない。また、液側連絡管 (60)を流れる液冷媒 は、ガス側連絡管(70)を流れるガス冷媒よりも比重が大きぐ液冷媒の慣性力の方が ガス冷媒の慣性力よりも大きい。よって、洗浄動作中には、ガス側連絡管 (70)に残存 する旧冷媒用の冷凍機油及び異物を押し流すことができれば液側連絡管 (60)に残 存する旧冷媒用の冷凍機油及び異物も押し流すことができる。
[0029] このため、上記第 1及び第 3の解決手段のように、ガス側連絡管(70)内における液 体とガス冷媒とにつ!ヽてのフルード数 Frに基づ ヽて運転状態を設定すれば、液側連 絡管 (60)及びガス側連絡管(70)に残存する旧冷媒用の冷凍機油及び異物を冷媒 で確実に押し流すことができる。また、上記第 2及び第 4の解決手段のように、ガス側 連絡管(70)の幹管(72)内における液体とガス冷媒とについてのフルード数 Frに基 づ 、て運転状態を設定すれば、液側連絡管 (60)や幹管 (72)と枝管 (71)からなるガ ス側連絡管(70)に残存する旧冷媒用の冷凍機油及び異物を冷媒で確実に押し流 すことができる。
[0030] 従って、本発明によれば、既設の連絡配管における旧冷媒用の冷凍機油及び異 物の残存量を洗浄動作によって確実に削減でき、旧冷媒用の冷凍機油及び異物に 起因するトラブルを未然に防止できる。 [0031] 上記第 5の解決手段では、フルード数 Frが 1より大きくなるように洗浄動作中の運転 状態が設定される。この状態では、ガス側連絡管(70)を流れるガス冷媒の慣性力が ガス側連絡管(70)内の液体に作用する重力よりも大きくなり、ガス側連絡管(70)のう ち鉛直方向に延びる部分でも旧冷媒用の冷凍機油及び異物をガス冷媒で上方へ押 し上げることができる。従って、この解決手段によれば、既設の連絡配管における旧 冷媒用の冷凍機油及び異物の残存量を一層削減できる。
[0032] 上記第 6の解決手段では、フルード数 Frが 1. 5以上となるように洗浄動作中の運 転状態が設定される。この状態では、ガス側連絡管(70)を流れるガス冷媒の慣性力 がガス側連絡管(70)内の液体に作用する重力の 1. 5倍以上となり、ガス側連絡管( 70)のうち鉛直方向に延びる部分でも旧冷媒用の冷凍機油及び異物をガス冷媒で上 方へ押し上げる作用が増大する。従って、この解決手段によれば、既設の連絡配管 における旧冷媒用の冷凍機油及び異物の残存量を一層確実に削減できる。
図面の簡単な説明
[0033] [図 1]図 1は、実施形態 1に係る空調機の冷媒回路図である。
[図 2]図 2は、フルード数 Frと残存量比の関係を示す図である。
[図 3]図 3は、実施形態 2に係る空調機の冷媒回路図である。
符号の説明
11 熱源側回路 (室外回路)
21 圧縮機
24 熱源側熱交換器 (室外熱交換器)
33 利用側熱交翻 (室内熱交翻)
40 回収容器
60 液側連絡管
70 ガス側連絡管
71 枝管
72 幹管
発明を実施するための最良の形態
以下、本発明の実施形態を図面に基づいて詳細に説明する。 [0036] 《発明の実施形態 1》
図 1に示すように、本実施形態の空調機は、室外ュ ノト (20)と室内ュ ノト (30)と を 1つずつ備えて 、る。室外ユニット(20)と室内ユニット(30)とは、 HFC冷媒用に構 成されている。また、室外ユニット (20)は、本発明に係る冷凍装置を構成している。
[0037] 室外ユニット(20)と室内ユニット(30)とは、それまで CFC冷媒用或いは HCFC冷媒 用の室外ユニット及び室内ユニットが接続されて 、た既設の液側連絡管(60)及びガ ス側連絡管(70)によって互いに接続されている。本実施形態の空調機では、室外ュ ニット (20)の室外回路(11)と室内ユニット (30)の室内回路(12)とを既設の液側連絡 管 (60)及びガス側連絡管 (70)で接続することによって、冷媒回路(10)が形成されて いる。
[0038] 上記室外ユニット (20)の室外回路(11)は、熱源側回路を構成している。この室外 回路 (11)には、圧縮機 (21)と油分離器 (22)と四路切換弁 (23)と熱源側熱交^^で ある室外熱交 (24)とが冷媒配管によって接続され、 HFC冷媒が充填されている 。また、室外ユニット(20)には、室外ファン (24a)が設けられている。
[0039] 尚、上記室外回路(11)に充填される HFC冷媒としては、 R32、 R134a、 R404A、 R407C、 R410A, R507A, R32と R125との混合冷媒、 R32と R125と R134aとの 混合冷媒、及び R32を含有する混合冷媒で R32を主成分とするもの等が挙げられる 。また、上記室外回路(11)には、 HFC冷媒に限らず、非フッ素系の自然冷媒が充填 されていてもよい。この自然冷媒としては、 CO、 C H、 NH、及び H O等が挙げら
2 m n 3 2
れる。
[0040] 上記室外回路(11)において、圧縮機 (21)の吐出側は、油分離器 (22)を介して四 路切換弁 (23)の第 1ポートに接続されている。四路切換弁 (23)の第 2ポートは、室外 熱交翻 (24)の一端に接続されている。四路切換弁 (23)の第 3ポートは、後述する 回収容器 (40)を介して圧縮機 (21)の吸入側に接続されて!ヽる。四路切換弁 (23)の 第 4ポートは、ガス側閉鎖弁 (27)に接続されている。上記室外熱交換器 (24)の他端 は、室外膨張弁 (25)を介して液側閉鎖弁 (26)に接続されている。
[0041] 上記圧縮機 (21)は、全密閉型のスクロール圧縮機である。また、圧縮機 (21)は、い わゆる高圧ドーム型に構成されている。つまり、この圧縮機 (21)では、圧縮機構 (21b )で圧縮されたガス冷媒がー且ケーシング (21a)内に流出した後にケーシング (21a) 外へ吐出されるように構成されている。ケーシング (21a)の底部には、 HFC冷媒用の 冷凍機油が貯まるようになっている。この冷凍機油としては、例えばエーテル油ゃェ ステル油などの合成油が用いられる。
[0042] 上記圧縮機 (21)は、その容量が可変に設定されている。圧縮機 (21)の電動機(
21c)には、図示しないインバータを介して電力が供給される。インバータの出力周波 数を変更すると、電動機 (21c)の回転速度が変化し、圧縮機 (21)の容量が変化する
[0043] 上記冷媒回路(10)は、四路切換弁 (23)の切り換えによって冷房モードの動作と暖 房モードの動作とに切り換わるように構成されている。具体的に、上記四路切換弁( 23)の第 1ポートと第 2ポートとが連通してその第 3ポートと第 4ポートとが連通する状 態(図 1の実線で示す状態)に切り換わると、冷媒回路(10)では、室外熱交換器 (24) が凝縮器となり室内熱交 (33)が蒸発器となる冷房モードの動作で冷媒が循環 する。また、上記四路切換弁 (23)の第 1ポートと第 4ポートとが連通してその第 2ポー トと第 3ポートとが連通する状態(図 1の破線で示す状態)に切り換わると、冷媒回路( 10)では、室外熱交 (24)が蒸発器となり室内熱交 (33)が凝縮器となる暖房 モードの動作で冷媒が循環する。
[0044] 上記室外回路(11)には、既設の液側連絡管 (60)及びガス側連絡管(70)に残存す る旧冷媒用の冷凍機油である鉱油などの異物を回収する回収容器 (40)が設けられ ている。この回収容器 (40)は、密閉状に形成されており、流入管 (41)と流出管 (42)と に接続されている。流入管 (41)は、四路切換弁 (23)の第 3ポートに接続されている。 流出管 (42)は、圧縮機 (21)の吸入側に接続されている。
[0045] 上記流入管 (41)は、その出口端が回収容器 (40)内の底部に位置し、回収容器 (40 )の底部に向力つて開口するように形成されている。流入管 (41)には、流入弁 (51)が 設けられている。一方、上記流出管 (42)は、その入口端が回収容器 (40)内の上部 に位置し、回収容器 (40)の底部に向力つて開口するように形成されている。流出管( 42)には、流出弁 (52)が設けられている。尚、上記流入弁 (51)及び流出弁 (52)は、 開閉弁を構成している。 [0046] 上記室外回路(11)には、回収容器 (40)をバイパスするバイパス管 (54)が設けられ ている。バイパス管 (54)は、その一端が流入弁 (51)と四路切換弁 (23)の第 3ポートと の間に接続され、その他端が流出弁 (52)と圧縮機 (21)の吸入側との間に接続され ている。バイパス管(54)には、開閉弁であるノ ィパス弁(53)が設けられている。
[0047] また、上記油分離器 (22)には、油戻し管 (22a)の一端が接続されている。油戻し管
(22a)の他端は、流出弁 (52)と圧縮機 (21)の吸入側との間であってバイパス管 (54) の接続部分より下流側に接続されている。圧縮機 (21)力 ガス冷媒に混じって吐出 された合成油は、油分離器 (22)でガス冷媒から分離された後に、この油戻し管 (22a) を通って、圧縮機 (21)の吸入側へ戻される。
[0048] 上記室内ユニット (30)の室内回路(12)では、室内膨張弁 (32)と利用側熱交換器 である室内熱交 (33)とが直列に接続されている。また、室内ユニット (30)には、 室内ファン(33a)が設けられて!/、る。
[0049] 上記液側連絡管 (60)は、その一端が液側閉鎖弁 (26)を介して室外回路(11)に接 続されて!、る。液側連絡管(60)の他端は、液側接続具 (31)を介して室内ユニット(30 )の室内回路(12)に接続されている。また、上記ガス側連絡管(70)は、その一端が ガス側閉鎖弁 (27)を介して室外回路(11)に接続されている。ガス側連絡管(70)の 他端は、ガス側接続具 (34)を介して室内ユニット(30)の室内回路(12)に接続されて いる。
[0050] 本実施形態の空調機では、洗浄動作中における圧縮機 (21)の容量が、以下の式 によって表されるフルード数 Frに基づいて設定される。
[0051] Fr= (d /ά ) X (U2/gD) 〈式 1〉
g 1
上式において、フルード数 Frは、ガス側連絡管(70)内の液体に作用する重力に対 するガス側連絡管(70)を流れるガス冷媒の慣性力の比を表す無次元数である。この 式において、 Uはガス側連絡管(70)を流れるガス冷媒の速度であり、その単位は〔m Zs〕である。 Dはガス側連絡管(70)の内径であり、その単位は〔m〕である。 dはガス
g 側連絡管(70)を流れるガス冷媒の密度であり、その単位は〔kg/m3〕である。 dはガ
1 ス側連絡管(70)に存在する液体の密度であり、その単位は〔kgZm3〕である。 gは重 力加速度であり、その単位は〔mZs2〕である。 [0052] ここで、洗浄動作中のガス側連絡管 (70)では、鉱油(旧冷媒用の冷凍機油)と、新 冷媒と、合成油 (新冷媒用の冷凍機油)と、固体状或いは液体状の異物とが混じり合 つて存在している。尚、固体状或いは液体状の異物とは、圧縮機 (21)の摺動により 生じる摩耗粉、鉱油や旧冷媒の劣化により生じる各種の酸やイオン、配管内に侵入 した水分などである。そして、洗浄動作中には、鉱油と新冷媒と合成油と各種の異物 との混合物がガス冷媒によって押し流されてゆく。
[0053] ただ、ガス側連絡管(70)内に存在する混合物における各成分の割合を予測したり 実測することは不可能に近い。また、この混合物における各成分の割合は、洗浄動 作中に刻々と変化する。そこで、ガス側連絡管(70)に存在する液体の密度 dとしては
1
、想定し得る最も大きな値を用いるのが望ましい。
[0054] 具体的に、ガス側連絡管(70)内に存在し得る液体としては、鉱油と新冷媒と合成油 とが挙げられる。摩耗粉などの異物の量はさほど多くない点を考慮すると、フルード 数 Frを導出する際に用いる液体の密度 dの値としては、鉱油、新冷媒、及び合成油
1
のうち最も密度が大きいものの値を用いるのが望ましい。例えば、新冷媒として R410 Aを用いる場合は、これら 3つのうちで液状態の R410Aの密度が最も大きくなる。従 つて、この場合における液体の密度 dの値は、液状態の R410Aの密度とするのが望
1
ましい。
[0055] 洗浄動作中には、冷媒回路(10)に設けられる室外膨張弁 (32)及び室内膨張弁( 25)の開度や室外ファン(24a)及び室内ファン(33a)の風量に基づ 、てフルード数 Fr を設定してもよ 、。膨張弁 (25,32)の開度やファン (24a,33a)の風量の設定値が決ま ると、冷媒回路(10)における冷媒循環量が決まり、ガス側連絡管(70)を流れるガス 冷媒の速度が決まる。
[0056] 一室内及び室外ユニットの交換方法
旧冷媒である CFC冷媒又は HCFC冷媒を用いた空調機の更新にぉ 、て、既設の 液側連絡管(60)及びガス側連絡管(70)につ 、てはそのまま流用し、既設の室外ュ ニット及び室内ユニットを新冷媒である HFC冷媒用の新設の室外ユニット(20)及び 室内ユニット (30)に交換する。
[0057] 具体的には、まず空調機から CFC冷媒又は HCFC冷媒を回収する。そして、既設 の液側連絡管(60)及びガス側連絡管(70)力 CFC冷媒用又は HCFC冷媒用の室 外ユニット及び室内ユニットを取り外す。その後、 HFC冷媒用の室外ユニット (20)及 び室内ユニット (30)を既設の液側連絡管 (60)及びガス側連絡管(70)に接続具( 31,34)及び閉鎖弁 (26,27)を介して接続することにより上記冷媒回路(10)を構成する
[0058] 次に、液側閉鎖弁 (26)及びガス側閉鎖弁 (27)を閉じたままの状態で室内ユニット ( 30)と液側連絡管 (60)とガス側連絡管(70)との真空引きを行 、、室外ユニット (20)を 除く冷媒回路 (10)内の空気や水分等を除去する。その後、液側閉鎖弁 (26)及びガ ス側閉鎖弁 (27)を開くと共に、冷媒回路(10)内に HFC冷媒を追加充填する。
[0059] 洗浄動作
次に、上記空調機の洗浄動作について説明する。この洗浄動作は、既設の液側連 絡管(60)及びガス側連絡管(70)内に残存して 、る鉱油などの異物を除去するため に行うものであって、 HFC冷媒用の室内ユニット(30)及び室外ユニット(20)を据え付 けた直後に行われる。
[0060] HFC冷媒用の室内ユニット(30)及び室外ユニット(20)の据え付けが完了すると、 圧縮機 (21)を起動すると共に、四路切換弁 (23)を図 1の実線で示す状態に切り換え る。また、流入弁 (51)及び流出弁 (52)を開き、バイパス弁 (53)を閉じる。尚、洗浄動 作中において、室外膨張弁 (25)及び室内膨張弁 (32)は、その開度が適宜調節され る。
[0061] 圧縮機 (21)を駆動すると、圧縮されたガス冷媒が圧縮機 (21)から吐出される。吐出 されたガス冷媒は、油分離器 (22)を通って四路切換弁 (23)へと流れる。四路切換弁 (23)を通過したガス冷媒は、室外熱交 (24)へ流入し、室外空気と熱交換して凝 縮する。その後、液冷媒は、室外膨張弁 (25)を通り、液側閉鎖弁 (26)を経て液側連 絡管 (60)へ流入する。
[0062] 液側連絡管(60)には、旧冷媒用の冷凍機油である鉱油や異物が残存している。こ の鉱油及び異物は、液側連絡管(60)へ流入してきた液冷媒によって押し流される。 そして、液冷媒と鉱油や異物を含んだ液体との混合物は、室内膨張弁 (32)を通って 室内熱交換器 (33)へ流入する。室内熱交換器 (33)において、液冷媒は、室内空気 と熱交換して蒸発する。蒸発した冷媒は、鉱油や異物を含んだ液体と共にガス側連 絡管 (70)へ流入する。
[0063] ガス側連絡管(70)には、旧冷媒用の冷凍機油である鉱油や異物が残存している。
この鉱油及び異物は、液側連絡管(60)から流れてきた鉱油や異物を含んだ液体と 共にガス冷媒によって押し流される。そして、ガス冷媒と鉱油や異物を含んだ液体と の混合物は、ガス側閉鎖弁 (27)及び四路切換弁 (23)を経て、流入管 (41)から回収 容器 (40)へ流入する。
[0064] 回収容器 (40)へ流入したガス冷媒と鉱油や異物を含んだ液体との混合物は、この 回収容器 (40)の底部に向かって吐出される。このうち鉱油や異物を含んだ液体は、 回収容器 (40)の底部に貯留される。ガス冷媒は、流出管 (42)を通じて回収容器 (40 )力 冷媒回路(10)へ流出し、圧縮機 (21)の吸入側から圧縮機 (21)へ流入する。
[0065] 上記の洗浄動作を所定時間行うことによって、既設の液側連絡管 (60)及びガス側 連絡管 (70)に残存する鉱油や異物を含んだ液体が冷媒回路(10)を流れるガス冷媒 と共に回収容器 (40)へ回収される。これにより、液側連絡管 (60)及びガス側連絡管( 70)から旧冷媒用の冷凍機油である鉱油及び異物が除去される。
[0066] 洗浄動作の終了後に、流入弁 (51)及び流出弁 (52)を閉じ、バイパス弁 (53)を開く 。その後、流入弁 (51)及び流出弁 (52)は常に閉鎖され、バイパス弁 (53)は常に開 放される。この状態において、通常動作である冷房モードの動作と暖房モードの動作 とが切り換えて行われる。
[0067] 冷房モード、暖房モード
冷房モードの動作では、四路切換弁 (23)が図 1の実線で示す状態となる。圧縮機( 21)から吐出された冷媒は、油分離器 (22)へ流入し、四路切換弁 (23)を通過後に室 外熱交換器 (24)で室外空気と熱交換して凝縮する。凝縮した冷媒は、室外膨張弁( 25)を通過し、液側連絡管 (60)を流れた後に室内熱交換器 (33)で室内空気と熱交 換して蒸発する。蒸発した冷媒は、ガス側連絡管 (70)を流れ、四路切換弁 (23)及び バイパス管 (54)を通って、圧縮機 (21)の吸入側へ戻される。
[0068] 一方、暖房モードの動作では、四路切換弁が図 1の破線で示す状態となる。圧縮 機 (21)カゝら吐出された冷媒は、油分離器 (22)へ流入し、四路切換弁 (23)及びガス 側連絡管 (70)を通過後に、室内熱交換器 (33)で室内空気と熱交換して凝縮する。 凝縮した冷媒は、液側連絡管 (60)を流れ、室外膨張弁 (25)を通過後に室外熱交換 器 (24)で室外空気と熱交換して蒸発する。蒸発した冷媒は、四路切換弁 (23)及び バイパス管 (54)を通って、圧縮機 (21)の吸入側へ戻される。
[0069] 洗浄動作中の運転状態
上述のように、上記空調機の洗浄動作中には、冷媒回路(10)を流れる冷媒によつ て既設の液側連絡管 (60)及びガス側連絡管 (70)に残存する鉱油や異物を含んだ 液体を押し流し、回収容器 (40)に回収している。尚、洗浄動作中には、ガス側連絡 管(70)を流れる冷媒が気相のみとなる乾き運転を行ってもよ!、し、ガス側連絡管(70 )を流れる冷媒が気液二相となる湿り運転を行ってもょ 、。
[0070] ここで、上記空調機では、室外ユニット (20)が室内ユニット (30)よりも上方に配置さ れる場合があり、この場合には液側連絡管 (60)及びガス側連絡管(70)が鉛直方向 に敷設される。このように設置された上記空調機で洗浄動作を行うと、液側連絡管( 60)内では液冷媒が下向きに流れ、ガス側連絡管(70)内ではガス冷媒が上向きに流 れる。
[0071] 本実施形態の空調機では、フルード数 Frが 1より大きくなるように洗浄動作中の圧 縮機 (21)の容量が設定される。この状態では、ガス側連絡管(70)に残存する鉱油や 異物を含んだ液体に作用する重力よりもガス側連絡管(70)を流れるガス冷媒の慣性 力の方が大きくなる。つまり、ガス側連絡管(70)のうち鉛直方向へ延びる部分では鉱 油や異物を含んだ液体に作用する合力が上向きとなる。このため、ガス側連絡管(70 )のうち鉛直方向へ延びる部分においても、鉱油や異物を含んだ液体がガス冷媒に よって押し上げられる。このようにして、既設のガス側連絡管(70)に残存する鉱油や 異物を含んだ液体は、洗浄動作によって既設のガス側連絡管 (70)力 除去される。 そして、既設のガス側連絡管(70)から除去された鉱油や異物を含む液体は、回収容 器 (40)へ確実に回収される。
[0072] ここで、旧冷媒と旧冷媒用の冷凍機油である鉱油とは相溶して液側連絡管(60)を 流れ、また異物は液相の旧冷媒で流されるため、この液側連絡管(60)に残存する鉱 油及び異物の量は、非常に少ない。また、洗浄動作中の液側連絡管(60)では、液 冷媒が下向きに流れる。このため、液側連絡管(60)に残存する鉱油及び異物は、液 冷媒によって下向きに押し流される。従って、ガス側連絡管(70)でのフルード数 Frを 考慮すれば、液側連絡管 (60)からも鉱油及び異物を確実に除去できる。
[0073] 本実施形態の空調機では、ガス側連絡管(70)におけるフルード数 Frが 1より大きく なるように洗浄動作中の圧縮機 (21)の容量が設定されて!、る。その理由につ 、て、 図 2を参照しながら説明する。
[0074] 図 2において、横軸は〈式 1〉で表されるフルード数 Frであり、縦軸は残存量比であ る。残存量比とは、液側連絡管 (60)及びガス側連絡管(70)に残存する鉱油及び異 物の許容量を基準値とした場合に、洗浄動作を 1時間から 3時間程度行った後の液 側連絡管(60)及びガス側連絡管(70)に残存する鉱油及び異物の量をこの基準値に 対する比で表したものである。
[0075] 図 2に示すように、フルード数 Frが 1より大きいところでは、フルード数 Frが大きくな るにつれて残存量比が小さくなる。フルード数 Frが大きくなるにつれてガス冷媒の慣 性力と鉱油や異物を含んだ液体に作用する重力との差が大きくなり、鉱油や異物を 含んだ液体がガス冷媒カも受ける力が増加するからである。また、フルード数 Frが 1 . 4以上になるとフルード数 Frに対する残存量比の傾きが一層大きくなり、フルード数 Frが 1. 5以上になると残存量比が 1以下となる。更に、フルード数 Frが 1. 6のところ で残存量比が 0. 3程度となり、フルード数 Frが 1. 6以上になると残存量比が非常に 緩やかに低下してゆく。
[0076] このように、フルード数 Frが 1より大きく 1. 5より小さいところでは、洗浄動作を 1時間 力も 3時間程度行った後の残存量比が 1よりも大きくなる。つまり、洗浄動作後におい て、液側連絡管(60)及びガス側連絡管(70)には許容量よりも多くの鉱油及び異物が 残存している。し力しながら、洗浄動作をそれ以上に亘つて行えば残存量比を 1よりも 小さくすることができ、液側連絡管 (60)及びガス側連絡管(70)に残存する鉱油及び 異物の量を許容量よりも少なくすることができる。
[0077] そこで、洗浄動作中において、圧縮機 (21)の容量は、フルード数 Frが 1より大きくな るように設定される。更に、圧縮機 (21)の容量は、フルード数 Frが 1. 5以上となるよう に設定されるのが望ましぐフルード数 Frが 1. 6前後となるように設定されるのが最も 望ましい。
[0078] 尚、上記洗浄動作では、フルード数 Frの上限が 120となるように圧縮機 (21)の容 量が設定される。また、フルード数 Frが 1. 5以上となるように圧縮機 (21)の容量が設 定された状態では、外気条件等の運転条件が異なる場合においても 1時間から 3時 間程度で残存量比を 1よりも小さくすることができ、既設の液側連絡管 (60)及びガス 側連絡管(70)の洗浄動作を終えることができる。
[0079] ここで、洗浄動作中における圧縮機 (21)の容量は、想定される最も厳しい条件でも フルード数 Frが 1よりも大きくなるように、空調機の設計段階で予め設定されて!、る。 最も厳しい条件とは、想定される運転条件のうち、ガス側連絡管(70)内におけるガス 冷媒の密度 dが最も小さくてガス側連絡管(70)内における液体の密度 dが最も大き g 1
くなる運転条件である。また、液体の密度 dの値としては、ガス側連絡管(70)内に存
1
在しうる液体成分のうち密度が最大のものの値が用いられる。このように設定された d
1 の値は、ガス側連絡管(70)内に実在する液体の密度よりも必ず大きくなる。そして、 洗浄動作中に上述のように設定された容量で圧縮機 (21)を運転すれば、ガス側連 絡管(70)内におけるフルード数 Frが確実に 1を上回り、ガス側連絡管(70)内の液体 がガス冷媒によって確実に押し流される。
[0080] ただし、ガス冷媒の密度 dや液体の密度 dの値は、温度や圧力によって変化する。
g 1
そこで、本実施形態の空調機では、実際に洗浄動作が行われている時点における温 度や圧力の実測値や推定値を考慮して、予め定められた洗浄動作中における圧縮 機 (21)の容量の設定値を補正して!/ヽる。
[0081] 尚、複数の運転条件毎に洗浄動作中に適した圧縮機 (21)の容量を記憶しておき、 記憶する複数の設定値の中から実際の洗浄運転時の運転条件に適したものを選択 するようにしてもよい。この場合には、空調機の設計段階で様々な運転条件での試験 を行 ヽ、各運転条件下での洗浄運転によってガス側連絡管(70)を確実に洗浄できる 圧縮機 (21)の容量を決定し、その値を空調機に記憶させておくこととなる。
[0082] 一実施形態 1の効果
本実施形態では、洗浄動作中における圧縮機 (21)の容量をフルード数 Frに基づ いて設定している。つまり、ガス側連絡管(70)内の液体に作用する重力とガス側連絡 管 (70)を流れるガス冷媒の慣性力との関係を表すフルード数 Frを考慮して、洗浄動 作中の圧縮機 (21)の容量を設定して!/ヽる。
[0083] ここで、旧冷媒と旧冷媒用の冷凍機油である鉱油とは相溶して液側連絡管(60)を 流れ、また異物は液相の旧冷媒によって流されるため、この液側連絡管(60)に残存 する鉱油及び異物の量は、非常に少ない。また、液側連絡管(60)を流れる液冷媒は 、ガス側連絡管(70)を流れるガス冷媒よりも比重が大きぐ液冷媒の慣性力の方がガ ス冷媒の慣性力よりも大きい。よって、ガス側連絡管 (70)に残存する鉱油及び異物を 押し流すことができれば、液側連絡管 (60)に残存する鉱油及び異物も押し流すこと ができる。
[0084] このため、ガス側連絡管(70)内における液体とガス冷媒とについてのフルード数 Fr に基づ!/ヽて圧縮機 (21)の容量を設定することで、液側連絡管(60)及びガス側連絡 管 (70)に残存する鉱油や異物を含んだ液体を冷媒で確実に押し流して回収容器 ( 40)へ回収できる。従って、本実施形態によれば、既設の液側連絡管(60)及びガス 側連絡管(70)における鉱油及び異物の残存量を洗浄動作によって確実に削減でき 、鉱油に起因するトラブルを未然に防止できる。
[0085] また、本実施形態では、フルード数 Frが 1より大きくなるように洗浄動作中の圧縮機
(21)の容量が設定される。この状態では、ガス側連絡管(70)を流れるガス冷媒の慣 性力がガス側連絡管(70)に残存する鉱油や異物を含んだ液体に作用する重力より も大きくなり、ガス側連絡管(70)のうち鉛直方向に延びる部分でも鉱油や異物を含ん だ液体をガス冷媒で上方へ押し上げることができる。従って、本実施形態によれば、 既設の液側連絡管 (60)及びガス側連絡管(70)における鉱油及び異物の残存量を 一層削減できる。
[0086] 更に、フルード数 Frが 1. 5以上となるように洗浄動作中の圧縮機 (21)の容量を設 定すると、ガス側連絡管 (70)を流れるガス冷媒の慣性力がガス側連絡管 (70)に残存 する鉱油や異物を含んだ液体に作用する重力の 1. 5倍以上となり、ガス側連絡管( 70)のうち鉛直方向に延びる部分でも鉱油や異物を含んだ液体をガス冷媒で上方へ 押し上げる作用が増大する。このため、既設の液側連絡管 (60)及びガス側連絡管( 70)における鉱油及び異物の残存量を 1時間から 3時間程度の洗浄時間で確実に削 減できる。
[0087] 一実施形態 1の変形例
上記実施形態 1では、圧縮機 (21)を 1台設け、インバータの出力周波数を調節する ことによって圧縮機 (21)の容量を設定している。これに限らず、圧縮機 (21)を複数台 設け、運転する圧縮機 (21)の台数を変えることにより圧縮機 (21)の容量を設定しても よい。
[0088] 《発明の実施形態 2》
本発明の実施形態 2について説明する。本実施形態は、上記実施形態 1の空調機 の構成を変更したものである。ここでは、本実施形態について、上記実施形態 1と異 なる点を説明する。
[0089] 本発明の実施形態 2は、上記実施形態 1の空調機の構成を変更したものである。こ こでは、本実施形態について、上記実施形態 1と異なる点を説明する。
[0090] 本実施形態の空調機は、 1台の室外ユニット (20)と 3台の室内ユニット(30,30,30)と を備えている。尚、室内ユニット(30)の台数は、単なる例示である。各室内ユニット( 30)には、室内回路(12)が設けられている。そして、室外ユニット(20)の室外回路(11 )と各室内ユニット (30)の室内回路(12)とを既設の液側連絡管 (60)及びガス側連絡 管(70)で接続することによって、冷媒回路(10)が構成されて!、る。
[0091] 上記各室内ユニット (30)の室内回路(12)では、室内膨張弁 (32)と室内熱交換器 ( 33)とが直列に接続されている。また、各室内ユニット(30)には、室内ファン (33a)が 設けられている。
[0092] 上記液側連絡管(60)は、 1つの幹管(62)と 3つの枝管(61,61,61)とで構成されて いる。液側連絡管 (60)の幹管 (62)は、その一端が液側閉鎖弁 (26)を介して室外回 路(11)に接続されて 、る。また、液側連絡管 (60)の幹管 (62)は、 3つの枝管( 61,61,61)に接続している。液側連絡管(60)の枝管(61,61,61)は、それぞれが液側 接続具 (31)を介して各室内ユニット(30)の室内回路(12)に接続されて!、る。
[0093] 上記ガス側連絡管(70)は、 1つの幹管(72)と 3つの枝管(71,71,71)とで構成されて いる。ガス側連絡管(70)の幹管(72)は、その一端がガス側閉鎖弁 (26)を介して室外 回路(11)に接続されて 、る。また、ガス側連絡管(70)の幹管(72)は、 3つの枝管( 71,71,71)に接続している。ガス側連絡管(70)の枝管(71,71,71)は、それぞれがガス 側接続具 (34)を介して各室内ユニット(30)の室内回路(12)に接続されて!、る。
[0094] 本実施形態の空調機では、洗浄動作中における圧縮機 (21)の容量が、実施形態 1と同様に、〈式 1〉で表されるフルード数 Frに基づいて設定される。但し、本実施形 態では、 U, D, d , dの定義が上記実施形態 1と相違している。具体的に、 Uはガス g 1
側連絡管(70)の幹管(72)を流れるガス冷媒の速度である。 Dは、ガス側連絡管(70) の幹管(72)の内径である。 dは、ガス側連絡管(70)の幹管(72)を流れるガス冷媒の g
密度である。 dは、ガス側連絡管(70)の幹管(72)に存在する液体の密度である。
1
[0095] ここで、例えば建物の屋上に室外ユニット(20)を配置して建物の内部の各フロアに 室内ユニット (30)を配置する場合、ガス側連絡管(70)の枝管(71,71,71)は天井に沿 つて水平に設けられることが多ぐこの幹管(72)は鉛直方向に設けられることが多い 。このような設置状態では、ガス側連絡管(70)の幹管(72)におけるフルード数 Frを 考慮すれば、この枝管(71,71,71)からも鉱油及び異物を確実に除去できる。
[0096] 本実施形態の空調機では、フルード数 Frが 1より大きくなるように洗浄動作中の圧 縮機 (21)の容量が設定される。この状態では、ガス側連絡管(70)の幹管(72)に残 存する鉱油や異物を含んだ液体に作用する重力よりもこの幹管(72)を流れるガス冷 媒の慣性力の方が大きくなる。つまり、ガス側連絡管(70)の幹管(72)では鉱油ゃ異 物を含んだ液体に作用する合力が上向きとなる。このため、鉛直方向に延びるガス 側連絡管(70)の幹管(72)においても、鉱油や異物を含んだ液体がガス冷媒によつ て押し上げられる。このようにして、既設のガス側連絡管(70)に残存する鉱油や異物 を含んだ液体は、洗浄動作によって既設のガス側連絡管(70)力 除去される。そし て、既設のガス側連絡管 (70)力も除去された鉱油や異物を含む液体は、回収容器( 40)へ確実に回収される。
[0097] 尚、上記洗浄動作において、ガス側連絡管(70)の幹管(72)と枝管(71,71,71)の両 方でフルード数 Frが 1より大きくなるように、圧縮機 (21)の容量が設定されていてもよ い。
[0098] 本実施形態では、洗浄動作中における圧縮機 (21)の容量を、ガス側連絡管(70) 内の液体に作用する重力とこの幹管(72)を流れるガス冷媒との関係を表すフルード 数 Frを考慮して設定して ヽる。
[0099] 上述のように、ガス側連絡管(70)に残存する鉱油及び異物を押し流すことができれ ば、液側連絡管(60)に残存する鉱油及び異物も押し流すことができる。このため、ガ ス側連絡管(70)の幹管(72)内における液体とガス冷媒とについてのフルード数 Frに 基づ!/、て圧縮機 (21)の容量を設定することで、液側連絡管 (60)とガス側連絡管 (70) の幹管 (72)及び枝管 (71,71,71)とに残存する鉱油や異物を含んだ液体を冷媒で確 実に押し流して回収容器 (40)へ回収できる。従って、本実施形態によれば、冷凍装 置に複数の室内熱交換器 (33)が接続される場合でも、既設の液側連絡管 (60)及び ガス側連絡管(70)における鉱油及び異物の残存量を洗浄動作によって確実に削減 でき、鉱油に起因するトラブルを未然に防止できる。
産業上の利用可能性
[0100] 以上説明したように、本発明は、既設の連絡配管に接続される冷凍装置であって、 連絡配管の洗浄動作を行うものについて有用である。

Claims

請求の範囲
[1] 圧縮機 (21)及び熱源側熱交換器 (24)が設けられると共に既設の液側連絡管 (60) 及びガス側連絡管 (70)を介して利用側熱交換器 (33)に接続される熱源側回路(11) を備え、
上記圧縮機 (21)を運転して上記既設の液側連絡管 (60)及びガス側連絡管 (70)か ら旧冷媒用の冷凍機油を除去する洗浄動作を行う冷凍装置であって、
上記ガス側連絡管(70)を流れるガス冷媒の速度を Uとし、該ガス側連絡管(70)の 内径を Dとし、該ガス側連絡管(70)を流れるガス冷媒の密度を dとし、該ガス側連絡
g
管(70)に存在する液体の密度を dとし、重力加速度を gとしたときに、式 Fr= (d /ά
1 g 1
) X (U2ZgD)で表されるフルード数 Frに基づき、上記洗浄動作中の運転状態が設 定されている冷凍装置。
[2] 圧縮機 (21)及び熱源側熱交換器 (24)が設けられると共に既設の液側連絡管 (60) 及びガス側連絡管 (70)を介して利用側熱交換器 (33)に接続される熱源側回路(11) を備え、
上記圧縮機 (21)を運転して上記既設の液側連絡管 (60)及びガス側連絡管 (70)か ら旧冷媒用の冷凍機油を除去する洗浄動作を行う冷凍装置であって、
上記冷凍装置の熱源側回路(11)が接続されるガス側連絡管 (70)は、複数の利用 側熱交換器にそれぞれ接続する複数の枝管 (71)と、該複数の枝管 (71)が接続する 幹管(72)とによって構成される一方、
上記ガス側連絡管(70)の幹管(72)を流れるガス冷媒の速度を Uとし、該幹管(72) の内径を Dとし、該幹管(72)を流れるガス冷媒の密度を dとし、該幹管(72)に存在す
g
る液体の密度を dとし、重力加速度を gとしたときに、式 Fr= (d /ά ) X (U2ZgD)で
1 g 1
表されるフルード数 Frに基づき、上記洗浄動作中の運転状態が設定されている冷凍 装置。
[3] 圧縮機 (21)及び熱源側熱交換器 (24)が設けられると共に既設の液側連絡管 (60) 及びガス側連絡管 (70)を介して利用側熱交換器 (33)に接続される熱源側回路(11) と、
上記熱源側回路(11)における圧縮機 (21)の吸入側に設けられてガス冷媒から分 離した冷凍機油を貯留する回収容器 (40)とを備え、
上記圧縮機 (21)を運転して上記既設の液側連絡管 (60)及びガス側連絡管 (70)に 残存する旧冷媒用の冷凍機油を上記回収容器 (40)へ回収する洗浄動作を行う冷凍 装置であって、
上記ガス側連絡管(70)を流れるガス冷媒の速度を Uとし、該ガス側連絡管(70)の 内径を Dとし、該ガス側連絡管(70)を流れるガス冷媒の密度を dとし、該ガス側連絡
g
管(70)に存在する液体の密度を dとし、重力加速度を gとしたときに、式 Fr= (d /ά
1 g 1
) X (U2ZgD)で表されるフルード数 Frに基づき、上記洗浄動作中の運転状態が設 定されている冷凍装置。
[4] 圧縮機 (21)及び熱源側熱交換器 (24)が設けられると共に既設の液側連絡管 (60) 及びガス側連絡管 (70)を介して利用側熱交換器 (33)に接続される熱源側回路(11) と、
上記熱源側回路(11)における圧縮機 (21)の吸入側に設けられてガス冷媒から分 離した冷凍機油を貯留する回収容器 (40)とを備え、
上記圧縮機 (21)を運転して上記既設の液側連絡管 (60)及びガス側連絡管 (70)に 残存する旧冷媒用の冷凍機油を上記回収容器 (40)へ回収する洗浄動作を行う冷凍 装置であって、
上記冷凍装置の熱源側回路(11)が接続されるガス側連絡管 (70)は、複数の利用 側熱交換器にそれぞれ接続する複数の枝管 (71)と、該複数の枝管 (71)が接続する 幹管(72)とによって構成される一方、
上記ガス側連絡管(70)の幹管(72)を流れるガス冷媒の速度を Uとし、該幹管(72) の内径を Dとし、該幹管(72)を流れるガス冷媒の密度を dとし、該幹管(72)に存在す
g
る液体の密度を dとし、重力加速度を gとしたときに、式 Fr= (d /ά ) X (U2ZgD)で
1 g 1
表されるフルード数 Frに基づき、上記洗浄動作中の運転状態が設定されている冷凍 装置。
[5] 請求項 1, 2, 3又は 4に記載の冷凍装置において、
洗浄動作中の運転状態は、フルード数 Frが 1より大きくなるように設定されている冷 凍装置。
[6] 請求項 1, 2, 3又は 4に記載の冷凍装置において、
洗浄動作中の運転状態は、フルード数 Frが 1. 5以上となるように設定されている冷 凍装置。
[7] 請求項 1, 2, 3又は 4に記載の冷凍装置において、
熱源側回路(11)に充填されている冷媒は、 R32が含まれる混合冷媒、又は自然冷 媒である冷凍装置。
PCT/JP2004/017400 2003-11-25 2004-11-24 冷凍装置 WO2005052472A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04819363A EP1640677B1 (en) 2003-11-25 2004-11-24 Refrigerating apparatus
AU2004293713A AU2004293713B2 (en) 2003-11-25 2004-11-24 Refrigerating apparatus
US10/545,705 US7334426B2 (en) 2003-11-25 2004-11-24 Refrigerating apparatus
DE602004016509T DE602004016509D1 (de) 2003-11-25 2004-11-24 Kühlvorrichtung
JP2005515776A JPWO2005052472A1 (ja) 2003-11-25 2004-11-24 冷凍装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003394236 2003-11-25
JP2003-394236 2003-11-25
JP2004-026881 2004-02-03
JP2004026881 2004-02-03

Publications (1)

Publication Number Publication Date
WO2005052472A1 true WO2005052472A1 (ja) 2005-06-09

Family

ID=34635598

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017400 WO2005052472A1 (ja) 2003-11-25 2004-11-24 冷凍装置

Country Status (9)

Country Link
US (1) US7334426B2 (ja)
EP (1) EP1640677B1 (ja)
JP (1) JPWO2005052472A1 (ja)
KR (1) KR100709595B1 (ja)
AT (1) ATE408107T1 (ja)
AU (1) AU2004293713B2 (ja)
DE (1) DE602004016509D1 (ja)
ES (1) ES2311882T3 (ja)
WO (1) WO2005052472A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958729B1 (ko) * 2009-06-12 2010-05-18 주식회사 일진엔지니어링 어선용 냉동기의 냉매 회수와 주입 장치
WO2012032587A1 (ja) * 2010-09-10 2012-03-15 三菱電機株式会社 車両用空調装置の更新方法、車両用空調装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141340A (ja) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp 洗浄装置、配管の洗浄方法、冷凍空調装置とその取替え方法
JP2002107011A (ja) * 2000-10-02 2002-04-10 Mitsubishi Electric Corp 冷凍サイクル装置の洗浄運転方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3765192A (en) * 1972-08-17 1973-10-16 D Root Evaporator and/or condenser for refrigeration or heat pump systems
US4305257A (en) * 1980-07-03 1981-12-15 Air Products And Chemicals, Inc. In-line slush making process
JP3149640B2 (ja) 1993-09-17 2001-03-26 株式会社日立製作所 空気調和機の冷媒変更方法
US6223549B1 (en) 1998-04-24 2001-05-01 Mitsubishi Denki Kabushiki Kaisha Refrigeration cycle device, a method of producing the device, and a method of operating the device
JP3361771B2 (ja) 1999-05-20 2003-01-07 三菱電機株式会社 冷凍サイクル装置の運転方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001141340A (ja) * 1999-11-16 2001-05-25 Mitsubishi Electric Corp 洗浄装置、配管の洗浄方法、冷凍空調装置とその取替え方法
JP2002107011A (ja) * 2000-10-02 2002-04-10 Mitsubishi Electric Corp 冷凍サイクル装置の洗浄運転方法

Also Published As

Publication number Publication date
ATE408107T1 (de) 2008-09-15
US7334426B2 (en) 2008-02-26
KR20060024392A (ko) 2006-03-16
EP1640677A1 (en) 2006-03-29
AU2004293713B2 (en) 2007-06-14
AU2004293713A1 (en) 2005-06-09
EP1640677B1 (en) 2008-09-10
JPWO2005052472A1 (ja) 2007-06-21
DE602004016509D1 (de) 2008-10-23
US20060150664A1 (en) 2006-07-13
EP1640677A4 (en) 2006-05-03
KR100709595B1 (ko) 2007-04-20
ES2311882T3 (es) 2009-02-16

Similar Documents

Publication Publication Date Title
JP4120221B2 (ja) 冷媒及び油回収運転方法、および、冷媒及び油の回収制御装置
WO2006118140A1 (ja) 空気調和装置、熱源ユニット、及び空気調和装置の更新方法
EP1591730B1 (en) Refrigerant pipe washing method
WO2004090442A1 (ja) 冷凍装置
WO2005052472A1 (ja) 冷凍装置
JP2003302127A (ja) 冷凍装置
JP4186764B2 (ja) 冷凍装置
WO2004008050A1 (ja) 冷凍装置
JP2003021436A (ja) 配管洗浄方法、空気調和機の更新方法及び空気調和機
JP3885601B2 (ja) 冷媒及び油回収方法、冷媒及び油回収制御装置、及び空気調和装置
JP3680740B2 (ja) 既設冷媒配管の利用方法、空気調和機の設置方法、空気調和機
CN100381769C (zh) 冷冻装置
JP4517834B2 (ja) 既設冷媒配管の利用方法
JP2004308934A (ja) 冷凍装置およびその配管洗浄方法
JP3700723B2 (ja) 冷凍装置
JP2004333121A (ja) 空気調和装置の更新方法、及び、空気調和装置
JP2004333121A5 (ja)
JP3704608B2 (ja) 配管洗浄方法及び配管洗浄装置並びに冷凍機器
JP5063670B2 (ja) 空気調和装置、および空気調和装置の洗浄運転方法
JP3835365B2 (ja) 冷凍装置及び冷凍装置の配管洗浄方法
JP2005043025A (ja) 冷凍空調装置及びその更新方法
WO2003064939A1 (fr) Procede de recuperation d'huile de refrigerateur
JP2004340430A (ja) 冷凍装置
JP4375925B2 (ja) 空気調和装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2005515776

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004293713

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2006150664

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10545705

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004819363

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004293713

Country of ref document: AU

Date of ref document: 20041124

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004293713

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 20048057502

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057023140

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020057023140

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2004819363

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 10545705

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 1020057023140

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2004293713

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 2004819363

Country of ref document: EP