WO2005051925A1 - フェニルアラニン誘導体の結晶及びその製造方法 - Google Patents

フェニルアラニン誘導体の結晶及びその製造方法 Download PDF

Info

Publication number
WO2005051925A1
WO2005051925A1 PCT/JP2004/017708 JP2004017708W WO2005051925A1 WO 2005051925 A1 WO2005051925 A1 WO 2005051925A1 JP 2004017708 W JP2004017708 W JP 2004017708W WO 2005051925 A1 WO2005051925 A1 WO 2005051925A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal
type
formula
compound represented
acetonitrile
Prior art date
Application number
PCT/JP2004/017708
Other languages
English (en)
French (fr)
Inventor
Shinichiro Takahashi
Noriyasu Kataoka
Akinori Tatara
Toshihiro Matsuzawa
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to JP2005515836A priority Critical patent/JP4748449B2/ja
Priority to ES04819474.0T priority patent/ES2451140T3/es
Priority to CN2004800350531A priority patent/CN1886385B/zh
Priority to CA2547625A priority patent/CA2547625C/en
Priority to KR1020067010493A priority patent/KR101123606B1/ko
Priority to EP04819474.0A priority patent/EP1688410B1/en
Publication of WO2005051925A1 publication Critical patent/WO2005051925A1/ja
Priority to US11/441,106 priority patent/US7683169B2/en
Priority to US12/697,816 priority patent/US7951942B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/70Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings condensed with carbocyclic rings or ring systems
    • C07D239/72Quinazolines; Hydrogenated quinazolines
    • C07D239/95Quinazolines; Hydrogenated quinazolines with hetero atoms directly attached in positions 2 and 4
    • C07D239/96Two oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to a phenylalanine derivative crystal having a specific structural formula and a method for producing the same.
  • it relates to the ⁇ -type, ⁇ -type, ⁇ -type, 7-type, and 0-type crystals.
  • a compound represented by the following formula (I) (hereinafter, also referred to as compound (I)) or a pharmaceutically acceptable salt thereof is ⁇ 4 has an integrin inhibitory effect and is effective in treating inflammatory bowel disease and the like.
  • this gazette describes the “crystal” of compound (I) or a pharmaceutically acceptable salt thereof. Not disclosed at all.
  • an amorphous or non-crystalline solid drug substance has poor stability against environmental conditions such as temperature, humidity and air. It can be a problem during development.
  • the drug substance of amorphous or non-crystalline solid has hygroscopic decomposition properties, the solvent that can be used in the processing of the drug is limited to anhydrous, which may increase the cost of the drug. In addition, it must be able to withstand industrial-scale production.
  • Patent Document 1 International Publication No. WO 02/16329 pamphlet
  • An object of the present invention is to provide a crystal having excellent storage stability or moisture resistance as compound (I).
  • Another object of the present invention is to provide a crystal which can withstand production on an industrial scale as compound (I).
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, surprisingly, while searching for the crystal form of compound (I) or a pharmaceutically acceptable salt thereof, In addition to finding that compound (I) itself, which cannot be taken, is extremely excellent in stability and crystallinity, among the multiple crystal forms of compound (I), five novel crystal forms that solve the above-mentioned problems were found.
  • the present invention has been completed.
  • the present invention is as follows.
  • a compound represented by the formula (I) is a good solvent containing at least one of acetonitrile, dichloromethane, tetrahydrofuran, acetone, dimethyl sulfoxide, and chloroform, or a mixed solvent of acetonitrile-water, or A method for producing a form crystal, comprising dissolving in a mixed solvent of acetonitrile dimethylformamide and cooling the mixture to 0 to 30 ° C. for crystallization.
  • a compound represented by the formula (I) is suspended in a mixed solvent of acetonitrile, a mixed solvent of acetonitrile-water or a mixed solvent of acetonitrile-dimethylformamide, and stirred at 0 to 40 ° C.
  • a compound represented by the formula (I) or a hydrochloride of the compound represented by the formula (I) is dissolved in an alcohol solution having 16 carbon atoms containing hydrogen chloride and neutralized with a base.
  • Crystal is a solid substance that gives a characteristic diffraction diagram in powder X-ray analysis, and generally means a crystal or crystalline solid. Note that a mixture of a crystal and an amorphous substance is acceptable, but in that case, it suffices to include a crystal in a substantial ratio.
  • ⁇ -type crystal refers to a powder X-ray diffraction pattern (6.2, 10.2, 10.7, 10.8, 14.0, 14.4, 16.0, 16). 2. It means a crystal characterized by showing a peak at the diffraction angle (2 °) shown in 2, 21.7. In particular, it is characterized by showing peaks at the diffraction angles (2 °) shown in 10.7, 10.8, 14.0, 16.2, and 21.7.
  • Type 0 crystal refers to powder X-ray diffraction pattern 7.2, 8.1, 10.3, 10.9, 14.5, 15.1, 16.4, 17. 3, 18.3, 19.4, 23.3 [The diffraction angle shown (2 ⁇ )] means a crystal characterized by exhibiting this peak.
  • ⁇ -type crystal means 5.4, 6.9, 8.3, 10.8, 11. 1, 12.8, 16.1, 17.7, 21.6, 23.4, 24.5, 25.U Diffraction angle shown (2 ⁇ ) [Characterized by this peak Means crystal.
  • “7? -Type crystal” is defined as 9.7, 12.2, 12.8, 14.9, 15.6, 16.9, 18.5, 20 A crystal characterized by showing a peak at the diffraction angle (2 °) shown in .4.
  • ⁇ -type crystal means 5.7, 10.3, 11.5, 13.9, 16.5, 18.5, 20.0, 21.0 Means a crystal characterized by showing a peak at the diffraction angle (2 ⁇ ) shown in (1). Specially, among them, 11.5, 13.9, 18.5, 20.0, 21.0 [The characteristic feature is that it shows a peak at the indicated diffraction angle (2 ⁇ )].
  • an amorphous (amorphous) or non-crystalline solid is used as the compound (1) used as a raw material, but also an amorphous (amorphous) or non-crystalline solid is used. May be used to prepare a crystal once, and then the obtained crystal may be used to produce another crystal by another production of the present invention.
  • crystallization step used examples include crystallization by a cooling method, crystallization by a poor solvent method, crystallization by a suspension method, crystallization by a neutralization method, and crystallization by a concentration method. Any step of dissolving or suspending the target compound for crystallization can be performed. In the crystallization, it is preferable to add a seed crystal (seed). Further, poor solvent crystallization may be combined with cooling crystallization.
  • the crystallization solvent may be one or more mixed solvents which are generally known as usable crystallization solvents.
  • the mixed solvent examples include a mixed solvent obtained by mixing an appropriate amount of a solvent that dissolves the target compound well (good solvent) and a solvent that is soluble in the good solvent but hardly dissolves the target compound (poor solvent). Can be used. Further, a plurality of solvents can be used as a good solvent or a plurality of solvents can be used as a poor solvent. In this case, it is preferable to mix them uniformly.
  • the term "good solvent” refers to a solvent that can be used as long as it is a solvent that can well dissolve the target compound (the compound represented by the formula (I)).
  • a solvent that can be used as long as it is a solvent that is soluble in the above-mentioned good solvent but hardly dissolves the target compound (the compound represented by the formula (I)).
  • the target compound the compound represented by the formula (I)
  • water alcohols ( Methanol, ethanol, octanol, etc.), ethers (eg, acetyl ether), acetates (eg, ethyl acetate), and hydrocarbons (eg, toluene, cyclohexane, hexane, etc.).
  • a compound represented by the formula (I) is converted into a good solvent containing at least one of acetonitrile, dichloromethane, tetrahydrofuran, acetone, dimethyl sulfoxide and chloroform, or acetonitrile monohydrate.
  • a mixed solvent of the above, or a mixed solvent of acetonitrile dimethylformamide it is preferable to crystallize by cooling to 0 to 30 ° C, preferably 4 to 25 ° C.
  • the volume ratio of acetonitrile in the mixed solvent of acetonitrile-water is preferably within a range of 50-100 v / v%, more preferably 80-99 v / v%.
  • the selection of the good solvent and the poor solvent and the amount of use thereof are important, and the addition of the poor solvent to the good solvent precipitates the crystal of the target compound.
  • the selection of the solvent to be used and the amount of the solvent to be used can be selected under optimum conditions in experiments on solubility and the like.
  • the compound of the formula (I) is dissolved in a good solvent, and then the crystallization is performed by adding a poor solvent.
  • Dimethyl sulfoxide toluene, dimethylformamide-ethyl ether, dimethylformamide-toluene, formaldehyde in ethanol, formaldehyde in toluene Preferably, it is selected from the group consisting of formaldehyde dimethyl ether, dichloromethane-dimethyl ether, tetrahydrofuran monohydrate, tetrahydrofuran cyclohexane, acetone monohydrate, acetonitrile monohydrate, and dimethylformamide-acetonitrile. . In these combinations, for example, it is preferable to use a good solvent Z and a poor solvent at 1Z20-5Z1 (volume ratio).
  • the above-mentioned method includes adding another good solvent to the above good solvent to precipitate crystals of the target compound.
  • the compound represented by the formula (I) is dissolved in dimethylformamide under heating (for example, at 30 to 80 ° C.), and acetonitrile (based on dimethylformamide) is added to the solution.
  • a 20-fold volume, more preferably a 2- to 8-fold volume may be dropped at 0 to 80 ° C. for crystallization.
  • the compound represented by the formula (I) is dissolved in a good solvent, and then, when crystallization is performed by adding a poor solvent, the combination of the good solvent and the poor solvent is dimethylformamide.
  • -Water is preferred. In this case, for example, it is preferable to use dimethylformamide Z water at 50Z 1-1000 / 1 (volume ratio)! / ,.
  • the compound of the formula (I) is dissolved in a good solvent, and then the crystallization is performed by adding a poor solvent.
  • a good solvent Dichloromethane, ethanol and dimethylsulfoxydosetyl ether.
  • a good solvent / poor solvent at 1Z5-1Z2 (volume ratio).
  • a compound represented by the formula (I) may be added to either a mixed solvent of acetonitrile, acetonitrile-water, or a mixed solvent of acetonitrile dimethylformamide. Crystallization by suspension and stirring may be mentioned.
  • a mixed solvent it is preferable to use acetonitrile monohydrate or acetonitrile dimethylformamide at 50 ⁇ 50-95 / 5 (volume ratio)! / ,.
  • an ⁇ -type crystal for example, when acetonitrile-water (90Z10: volume ratio) is used as a suspending solvent, an amorphous or crystalline form of the compound represented by the formula (I) Is suspended in a solvent and stirred at 0-30 ° C, and the crystals are stirred at 0-30 ° C. It is preferable to isolate by filtration (for example, at room temperature). At this time, the desired ⁇ -type crystal may be seeded at 0 to 30 ° C.
  • the ⁇ -form crystal for example, acetonitrile dimethylformamide (80 ⁇ 20: volume ratio) at 0-40 ° C. (for example, at room temperature), a compound of the formula (I) It is preferred that the crystals (crystals in this case exhibit various crystal forms) are suspended and stirred at 0 to 40 ° C, and the crystals are isolated by filtration at 0 to 40 ° C (for example, at room temperature). At this time, the desired ex-type crystal may be seeded at 0 to 40 ° C.
  • a type III crystal for example, when using acetonitrile-water (90Z10: volume ratio) as a suspending solvent, an amorphous or crystalline form of the compound represented by the formula (I) (in this case, Suspended in a solvent, stirred at 40 ° C or more (for example, 60 ° C), and isolated by filtration at 40 ° C or more (for example, 60 ° C). Is preferred. In this case, it is preferable that the maximum temperature be equal to or lower than the boiling point of the solvent or the mixed solvent. At this time, the desired ⁇ -type crystal may be seeded at 40-60 ° C.
  • a type III crystal for example, in acetonitrile dimethylformamide (80Z20: volume ratio), an amorphous or crystal of the compound represented by the formula (I) (crystals in this case indicate various crystals) is used. It is preferred that the mixture be turbid and stirred at 50 ° C or higher (for example, 60 ° C), and the precipitated crystals be isolated by filtration at 50 ° C or higher (for example, 60 ° C). In this case, the maximum temperature is preferably lower than the boiling point of the solvent or the mixed solvent. At this time, the desired type III crystal may be seeded at 50-60 ° C.
  • the intersection of the saturation solubility curves for the ⁇ -type crystal and the ⁇ -type crystal for each solvent system is around 30-40 ° C in acetonitrile-water (90/10: volume ratio), In the case of dimethylformamide (80Z20: volume ratio), the temperature is around 40-50 ° C, and near these temperatures, a mixture of rhomboid and ⁇ crystals can be obtained.
  • a compound represented by the formula (I) or a hydrochloride of the compound represented by the formula (I) is dissolved in a lower alcohol solution containing hydrogen chloride, and Is crystallized by neutralizing with a base.
  • Examples of the base include an inorganic base (eg, sodium hydroxide and potassium hydroxide), an organic base (eg, triethylamine) and the like.
  • Examples of the alcohol solution having 16 carbon atoms include methanol, ethanol, propanol, butanol, pentanol, and hexanol, and among them, methanol and ethanol are preferable.
  • the crystal of the present invention is a crystal having excellent “storage stability” or “moisture resistance” of a drug substance or a preparation, and is useful in that it is “a crystal that can withstand production on an industrial scale”.
  • ⁇ -form crystals are the most thermodynamically stable at room temperature, so they can be easily isolated at room temperature and have low hygroscopicity.
  • ⁇ -form crystals are thermodynamic at high temperatures (50 ° C or higher). Is the most stable, and can be easily isolated at high temperature (50 ° C or higher).
  • 7-type crystals are also thermodynamically stable, and ⁇ -type and ⁇ -type crystals are useful because of their low hygroscopicity. is there.
  • the compound represented by the formula (I) (1.81 g of ⁇ -form crystal and 0.99 g of 0-form crystal) was added to 60 mL of acetonitrile-water (volume ratio: 9: l) and stirred at 30 ° C for 4 days. At this time, the suspension was partially extracted once to confirm the crystal form (0.79 g of crystals were extracted). The crystals were separated by filtration and dried under reduced pressure to obtain 1.17 g of the title crystals.
  • Example 26-27 A very small amount of water was added to the dimethylformamide filtrate obtained in Example 20, and the precipitated crystals were separated by filtration and air-dried to obtain the title crystals. (Temperature of the solution before precipitation: room temperature; below, Example 26-27 is the same).
  • the compound represented by the formula (I) ( ⁇ -form crystal 2. Olg and 0-type crystal 1.72 g) was added to 100 g of acetonitrile-water (volume ratio 1: 1) and stirred at 40 ° C. for 95 hours. At this time, the suspension was partially extracted twice to confirm the crystal form (total 1.84 g of crystals was extracted). The crystals were separated by filtration at 40 ° C, and dried under reduced pressure to obtain 1.46 g of the title crystals.
  • FIGS. 1 and 5 The X-ray powder diffraction patterns of the ⁇ -type crystal, ⁇ -type crystal, ⁇ -type crystal, r-type crystal, and 0-type crystal are shown in FIGS. 1 and 5, respectively.
  • Table 1 shows the diffraction angle (20) and intensity of each main peak.
  • Example 196 of Patent Document 1 The conjugate described in Example 196 of Patent Document 1 was synthesized according to Example 196 of Patent Document 1, and was obtained as a hydrochloride.
  • FIG. 7 shows the infrared absorption spectrum of the a-type crystal.
  • Test Example 1 and Test Example 2 confirmed a thermodynamically stable crystal form
  • Test Example 3 confirmed a crystal form with low hygroscopicity.
  • DSC Differential scanning calorimetrv
  • FIG. 8 shows the DSC patterns of the a-type, ⁇ -type, ⁇ -type, and r-type crystals.
  • any of the a-type, ⁇ -type, ⁇ -type, and r-type crystal forms had an endothermic peak near 265 ° C. Also, the melting point was visually observed, and the melting point was found at 257-264 ° C in all of the crystal forms of the cast, ⁇ -form, ⁇ -form and 7-form.
  • the measurement was performed under the same conditions as in the measurement of the powder X-ray diffraction pattern. In order to change the temperature, use a temperature control unit to set the temperature to the desired value.
  • FIG. 9 shows the temperature change of the powder X-ray diffraction pattern of the ⁇ -type, ⁇ -type, ⁇ -type, and r-type crystals.
  • any of the ⁇ -type, ⁇ -type, ⁇ -type, and r-type crystal forms a new crystal form pattern on the high temperature side (corresponding to the ⁇ -type crystal in this specification). It is considered that the melting point of 265 ° C in Test Example 1 for all the crystal forms was the melting point of Type III.
  • the transition temperature from ⁇ -type to ⁇ is found at temperatures between 230 ° C and 250 ° C, the transition temperature from ⁇ -type to ⁇ is found between 160 ° C and 200 ° C, and ⁇ - ⁇
  • the transition temperature to the mold was found between 150 ° C and 200 ° C, and the transition temperature from 7 ° to ⁇ was found between 210 ° C and 230 ° C.
  • thermodynamically stable crystal form at room temperature is ⁇ -form, and the order is ⁇ -form>7?> ⁇ > ⁇ > 0.
  • the crystal transition occurs in the high temperature range, it is considered that the ⁇ -type is formed and exists stably.
  • FIG. 11 shows water vapor adsorption isotherms of ⁇ -type, ⁇ -type, and ⁇ -type crystals (the horizontal axis represents relative humidity [%] / 100; the vertical axis represents moisture adsorption [%]).
  • FIG. 12 shows a water vapor adsorption isotherm of the r? -Type crystal (the horizontal axis represents relative humidity [%] / 100; the vertical axis represents water adsorption amount [%]).
  • a crystal having excellent storage stability or moisture resistance of a drug substance or a preparation of compound (I) or a crystal which can withstand production on an industrial scale is provided.
  • the compound having the crystalline form of the present invention has an ex 4 integrin inhibitory action, and inflammatory disease, rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, in which the oc4 integrin-dependent adhesion process is involved in the pathology.
  • Active ingredient of therapeutic or prophylactic agent for death, multiple sclerosis, siedalen syndrome, asthma, psoriasis, allergy, diabetes, cardiovascular disease, arteriosclerosis, restenosis, tumor growth, tumor metastasis, transplant rejection Useful as
  • FIG. 1 shows a powder X-ray diffraction pattern diagram of the novel ⁇ -type crystal of the present invention (the horizontal axis represents a diffraction angle of 20 [degrees]; the vertical axis represents intensity [ji? 3]).
  • FIG. 2 shows a powder X-ray diffraction pattern diagram of the novel ⁇ -type crystal of the present invention (the horizontal axis represents a diffraction angle of 20 [degrees]; the vertical axis represents intensity [ji? 3]).
  • FIG. 3 shows a powder X-ray diffraction pattern diagram of the novel ⁇ -type crystal of the present invention (the horizontal axis represents a diffraction angle of 20 [degrees]; the vertical axis represents intensity [ji? 3]).
  • ⁇ 4] shows a powder X-ray diffraction pattern diagram of the novel 7 ° type crystal of the present invention (the horizontal axis represents a diffraction angle of 20 [degrees]; the vertical axis represents intensity [ji? 3]).
  • FIG. 5 shows a powder X-ray diffraction pattern diagram of the novel type III crystal of the present invention (the horizontal axis represents a diffraction angle of 20 [degrees]; the vertical axis represents intensity [ji? 3]).
  • FIG. 6 shows a powder X-ray diffraction pattern of a known compound (hydrochloride of the compound represented by formula (I)) shown in Comparative Example 1 (the horizontal axis shows a diffraction angle of 2 ° [degree]; the vertical axis shows a powder). Strength? 3]).
  • FIG. 7 shows an infrared absorption spectrum of the ⁇ -type crystal.
  • FIG. 8 shows DSC patterns of «-type, ⁇ -type, ⁇ -type, and 7-type crystals.
  • FIG. 9 shows the temperature change of the powder X-ray diffraction pattern of ⁇ -type, ⁇ -type, ⁇ -type, and r-type crystals.
  • FIG. 10 shows ⁇ G curves ( ⁇ : temperature ° C, G: relative value of Gibbs free energy) of ⁇ -type, ⁇ -type, ⁇ -type, and type-0 crystals.
  • FIG. 11 shows water vapor adsorption isotherms of ⁇ -type, ⁇ -type, and ⁇ -type crystals (the horizontal axis represents relative humidity [%] / 100; the vertical axis represents moisture adsorption [%]).
  • FIG. 12 shows a water vapor adsorption isotherm of the ⁇ crystal (horizontal axis represents relative humidity [%] / 100; vertical axis represents water adsorption amount [%]).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 式(I)で示されるフェニルアラニン誘導体の結晶、特に、そのα型、γ型、ε型、η型、θ型である結晶。これらの結晶は、保存安定性または耐湿性に優れ、工業スケールでの製造に耐えうるものである。            

Description

明 細 書
フエ二ルァラニン誘導体の結晶及びその製造方法
技術分野
[0001] 本発明は、特定の構造式を有するフエ二ルァラニン誘導体の結晶及びその製造方 法に関する。特に、その α型、 γ型、 ε型、 7?型、 0型結晶に関する。
背景技術
[0002] 後述の式 (I)で示される化合物(以下、化合物 (I)とも 、う)またはその医薬的に許容 される塩は、《4インテグリン阻害作用を有し、炎症性腸疾患等の治療薬として有用 な化合物であり、特許文献 1の記載に従って製造することができることが記載されて いるが、この公報には化合物(I)またはその医薬的に許容される塩の「結晶」に関して は一切開示されていない。
一般に、原薬の保存または製剤の加工若しくは保存時に、非晶質や非結晶性固体 の原薬では、温度、湿度、空気等の環境条件に対し、安定性が悪ぐ高純度の医薬 品の開発に当たっては問題となりうる。更に、非晶質や非結晶性固体の原薬は、吸 湿分解性を有するため、製剤加工時に利用できる溶媒が無水物に限定され、製剤コ ストを上昇させる要因にもなりうる。さらに、工業スケールでの製造に耐えうるものでな ければならない。
[0003] 特許文献 1:国際公開第 02/16329号パンフレット
発明の開示
[0004] 本発明は、化合物 (I)として保存安定性または耐湿性に優れる結晶を提供すること を目的とする。
本発明は、また、化合物 (I)として工業スケールでの製造に耐えうる結晶を提供する ことを目的とする。
[0005] 本発明者らは、上記課題を解決しようと鋭意検討した結果、化合物 (I)またはその 医薬的に許容される塩の結晶形を探索する中で、意外にも、塩の形態をとらない化 合物 (I)そのものが安定性や結晶性に非常に優れることを見出すと共に、化合物 (I) に関する複数の結晶形のうち、上記課題を解決する新規な結晶形 5つを見い出し、 本発明を完成するに至った。
すなわち、本発明は、下記の通りである。
(1)式 (I)で示される化合物の結晶。
Figure imgf000004_0001
(I)
[0007] (2)結晶が α型、 γ型、 ε型、 r?型、 0型である上記(1)記載の結晶。
(3)式 (I)で示される化合物をァセトニトリル、ジクロロメタン、テトラヒドロフラン、ァセト ン、ジメチルスルホキシド、クロ口ホルムのいずれかの少なくとも 1種を含む良溶媒、ま たはァセトニトリル一水の混合溶媒、若しくはァセトニトリルージメチルホルムアミドの混 合溶媒に溶解した後、 0— 30°Cに冷却することで結晶化させることを特徴とするひ型 結晶を製造する方法。
(4)式 (I)で示される化合物を良溶媒に溶解した後、貧溶媒を加えることで結晶化さ せるにあたり、上記良溶媒と上記貧溶媒との組み合わせ力 ジメチルスルホキシドート ルェン、ジメチルホルムアミドージェチルエーテル、ジメチルホルムアミドートルエン、ク ロロホノレム エタノーノレ、クロロホノレムートノレェン、クロロホノレム ジェチノレエーテノレ、ジ クロロメタンージェチルエーテル、テトラヒドロフラン一水、テトラヒドロフランーシクロへキ サン、アセトン一水、ァセトニトリル一水、ジメチルホルムアミドーァセトニトリルのいずれ かであることを特徴とするひ型結晶を製造する方法。
(5)式 (I)で示される化合物をァセトニトリル、ァセトニトリル一水の混合溶媒、もしくは ァセトニトリルージメチルホルムアミドの混合溶媒の 、ずれかに懸濁させ、 0— 40°Cで 撹拌することで結晶化させることを特徴とする O型結晶を製造する方法。
[0008] (6)式 (I)で示される化合物をジメチルホルムアミドに溶解した後、 0— 30°Cに冷却す ることで結晶化させることを特徴とする γ型結晶を製造する方法。
(7)式 (I)で示される化合物を良溶媒に溶解した後、貧溶媒を加えることで結晶化さ せるにあたり、上記良溶媒と上記貧溶媒との組み合わせ力 ジメチルホルムアミドー水 であることを特徴とする γ型結晶を製造する方法。
(8)式 (I)で示される化合物を良溶媒に溶解した後、貧溶媒を加えることで結晶化さ せるにあたり、上記良溶媒と上記貧溶媒との組み合わせ力 ジクロロメタン エタノー ル、ジメチルスルホキシドージェチルエーテルのいずれかであることを特徴とする ε型 結晶を製造する方法。
(9)式 (I)で示される化合物または式 (I)で示される化合物の塩酸塩を、塩化水素を 含む炭素数 1一 6のアルコール溶液に溶解させ、これを塩基で中和することで結晶化 させることを特徴とする r?型結晶を製造する方法。
(10)式 (I)で示される化合物を、ジメチルホルムアミドーァセトニトリルの混合溶媒、ァ セトニトリル一水の混合溶媒の ヽずれかに懸濁させ、 40°C以上で撹拌することで結晶 化させることを特徴とする Θ型結晶を製造する方法。
発明を実施するための最良の形態
本明細書中の定義または例示を下記に示す。
「式 (I)で示される化合物」は、特許文献 1の実施例 196に記載されている。
「結晶」とは、粉末 X線解析において特徴的な回析図を与える固体物質で、一般的 に結晶や結晶性固体を意味する。なお、結晶と非晶質 (アモルファス)との混合物も 許容しうるが、その場合、実質的な割合で結晶を含んでいればよい。
「α型結晶」とは、粉末 X線回折ノ《ターンにぉ ヽて、 6. 2、 10. 2、 10. 7、 10. 8、 1 4. 0、 14. 4、 16. 0、 16. 2、 21. 7に示される回折角 (2 Θ )にピークを示すことを特 徴とする結晶を意味する。特に、このうち、 10. 7、 10. 8、 14. 0、 16. 2、 21. 7に示 される回折角(2 Θ )にピークを示すことが特徴である。
「 0型結晶」とは、粉末 X線回折ノ《ターンにぉ ヽて、 7. 2、 8. 1、 10. 3、 10. 9、 14 . 5、 15. 1、 16. 4、 17. 3、 18. 3、 19. 4、 23. 3【こ示される回折角 (2 Θ )【こピークを 示すことを特徴とする結晶を意味する。
「 ε型結晶」とは、粉末 X線回折ノ《ターンにぉ ヽて、 5. 4、 6. 9、 8. 3、 10. 8、 11. 1、 12. 8、 16. 1、 17. 7、 21. 6、 23. 4、 24. 5、 25. Uこ示される回折角 (2 Θ )【こピ ークを示すことを特徴とする結晶を意味する。
「 7?型結晶」とは、粉末 X線回折ノ《ターンにぉ ヽて、 9. 7、 12. 2、 12. 8、 14. 9、 15 . 6、 16. 9、 18. 5、 20. 4に示される回折角(2 Θ )にピークを示すことを特徴とする 結晶を意味する。
「 Θ型結晶」とは、粉末 X線回折ノターンにぉ ヽて、 5. 7、 10. 3、 11. 5、 13. 9、 1 6. 5、 18. 5、 20. 0、 21. 0に示される回折角(2 Θ )にピークを示すことを特徴とする 結晶を意味する。特【こ、このうち、 11. 5、 13. 9、 18. 5、 20. 0、 21. 0【こ示される回 折角(2 Θ )にピークを示すことが特徴である。
[0010] 本発明の製造方法において、原料として用いる化合物(1)として、非晶質 (ァモル ファス)や非結晶性固体を用いることのみならず、非晶質 (アモルファス)や非結晶性 固体を用いて一旦結晶を調製し、ついで、得られた結晶を用いて本発明の別の製造 により別の結晶を製造してもよい。
使用する晶析工程としては、例えば、冷却法による晶析、貧溶媒法による晶析、懸 濁法による晶析、中和法による晶析、濃縮法による晶析が挙げられるが、晶析溶媒に 目的化合物を溶解または懸濁して結晶化する工程であれば実施可能である。なお、 晶析にあたり、種晶(シード)を加えるのが好ましい。また、冷却晶析に貧溶媒晶析を 組み合わせてもよい。
晶析溶媒としては、通常、使用可能な晶析溶媒として知られているものであればよ ぐ 1種でも複数の混合溶媒でもよい。
複数の混合溶媒としては、目的化合物を良く溶解する溶媒 (良溶媒)及びこの良溶 媒に可溶であるがこの目的化合物を溶解し難い溶媒 (貧溶媒)とを適当量混合した 混合溶媒を使用することができる。また、良溶媒として複数の溶媒、または貧溶媒とし て複数の溶媒を使用することができる。この場合相互に均一に混ざり合う方が好まし い。
[0011] 「良溶媒」としては、目的化合物 (式 (I)で示される化合物)を良く溶解する溶媒であ れば使用することができる力 例えば、ァセトニトリル、テトラヒドロフラン、アセトン、ク ロロホルム、ジクロロメタン、ジメチルホルムアミド、ホルムアミド、ジメチルスルホキシド が挙げられる。
「貧溶媒」としては、上記良溶媒に可溶であるが目的化合物 (式 (I)で示される化合 物)を溶解し難い溶媒であれば使用することができる力 例えば、水、アルコール類( メタノール、エタノール、ォクタノール等)、エーテル類(ジェチルエーテル等)、酢酸 エステル類 (酢酸ェチル等)、炭化水素類(トルエン、シクロへキサン、へキサン等)が 挙げられる。
[0012] 「冷却法による晶析」の場合、上記良溶媒、上記良溶媒同士の混合溶媒、または上 記良溶媒と上記貧溶媒との混合溶媒に一旦溶解させることが重要であり、その後、冷 却して目的化合物の結晶を析出させる。一旦溶解させるには、加熱するのが好ましく 、加熱温度としては、 30°C力 溶媒の沸点付近までの範囲が挙げられる。
例えば、 α型結晶を析出させる場合、式 (I)で示される化合物をァセトニトリル、ジク ロロメタン、テトラヒドロフラン、アセトン、ジメチルスルホキシド、クロ口ホルムのいずれ かの少なくとも 1種を含む良溶媒、またはァセトニトリル一水の混合溶媒、若しくはァセ トニトリルージメチルホルムアミドの混合溶媒に溶解した後、 0— 30°C、好ましくは 4一 25°Cに冷却することで結晶化させる場合が好ま U、。
上記において、ァセトニトリル一水の混合溶媒におけるァセトニトリルの容積比は、 5 0— 100 v/v%未満の範囲内が好ましぐ 80— 99v/v%がより好ましい。
また、 γ型結晶を析出させる場合、式 (I)で示される化合物をジメチルホルムアミド に溶解した後、 0— 30°C、好ましくは 4一 25°Cに冷却することで結晶化させる場合が 好ましい。
[0013] 「貧溶媒法による晶析」の場合、上記良溶媒と上記貧溶媒の選択やその使用量が 重要であり、良溶媒に貧溶媒を加えることで目的化合物の結晶を析出させる。使用 する溶媒の選択やその使用量は、溶解性についての実験等で最適条件を選択する ことができる。
例えば、 α型結晶を析出させる場合、式 (I)で示される化合物を良溶媒に溶解した 後、貧溶媒を加えることで結晶化させるにあたり、上記良溶媒と上記貧溶媒との組み 合わせが、ジメチルスルホキシドートルエン、ジメチルホルムアミドージェチルエーテル 、ジメチルホルムアミドートルエン、クロ口ホルム エタノール、クロ口ホルム トルエン、 クロ口ホルムージェチルエーテル、ジクロロメタンージェチルエーテル、テトラヒドロフラ ン一水、テトラヒドロフランーシクロへキサン、アセトン一水、ァセトニトリル一水、ジメチル ホルムアミドーァセトニトリルの 、ずれかであるのが好まし 、。これらの組み合わせに おいては、例えば、良溶媒 Z貧溶媒を 1Z20— 5Z1 (容量比)で用いるのが好まし い。
なお、良溶媒の組み合わせ次第ではある力 上記良溶媒に、別の良溶媒を加える ことで目的化合物の結晶を析出させることも上記に含まれる。
[0014] 例えば、 α型結晶を析出させる場合、式 (I)に示される化合物を加熱下 (例えば 30 一 80°Cで)ジメチルホルムアミドに溶解させ、この溶解液にァセトニトリル(ジメチルホ ルムアミドに対して 1一 20倍容量、より好ましくは 2— 8倍容量)を、例えば 0— 80°Cで 滴下し、晶析させる場合が挙げられる。
0型結晶を析出させる場合、式 (I)で示される化合物を良溶媒に溶解した後、貧溶 媒を加えることで結晶化させるにあたり、上記良溶媒と上記貧溶媒との組み合わせが 、ジメチルホルムアミドー水であるのが好ましい。この場合、例えば、ジメチルホルムァ ミド Z水を 50Z 1— 1000/ 1 (容量比)で用いるのが好まし!/、。
また、 ε型結晶を析出させる場合、式 (I)で示される化合物を良溶媒に溶解した後 、貧溶媒を加えることで結晶化させるにあたり、上記良溶媒と上記貧溶媒との組み合 わせが、ジクロロメタン エタノール、ジメチルスルホキシドージェチルエーテルのいず れかであるのが好ましい。これらの組み合わせにおいては、例えば、良溶媒 ζ貧溶 媒を 1Z5— 1Z2 (容量比)で用いるのが好ま 、。
[0015] 「懸濁法による晶析」の例としては、式 (I)で示される化合物をァセトニトリル、ァセト 二トリル一水の混合溶媒、もしくはァセトニトリルージメチルホルムアミドの混合溶媒の いずれかに懸濁、撹拌することにより結晶化させる場合が挙げられる。混合溶媒を用 いる場合には、ァセトニトリル一水、またはァセトニトリルージメチルホルムアミドを 50Ζ 50-95/5 (容量比)で用いるのが好まし!/、。
α型結晶を得る場合、例えば、ァセトニトリル一水(90Z10 :容量比)を懸濁溶媒と して用いる場合では、式 (I)で示される化合物のアモルファスまたは結晶(この場合の 結晶は各種結晶形を示す)を溶媒に懸濁させ、 0— 30°Cで撹拌し、結晶を 0— 30°C (例えば室温下)で濾別することにより単離させるのが好ましい。この際、 0— 30°Cで 目的とする α型結晶をシードしても良い。
また、 α型結晶を得る場合、例えばァセトニトリルージメチルホルムアミド (80Ζ20 : 容量比)にお 、て、 0— 40°C (例えば室温下)で式 (I)で示される化合物のァモルファ スまたは結晶(この場合の結晶は各種結晶形を示す)を懸濁して 0— 40°Cで撹拌し、 結晶を 0— 40°C (例えば室温下)で濾別により単離させるのが好ましい。この際、 0— 40°Cで目的とする ex型結晶をシードしても良 、。
[0016] 一方、 Θ型結晶を得る場合、例えば、ァセトニトリル一水(90Z10 :容量比)を懸濁 溶媒として用いる場合では、式 (I)で示される化合物のアモルファスまたは結晶(この 場合の結晶は各種結晶形を示す)を溶媒に懸濁させて、 40°C以上 (例えば 60°C)で 撹拌し、析出した結晶を 40°C以上 (例えば 60°C)で濾別により単離させるのが好まし い。この場合、最高温度は当該溶媒又は混合溶媒の沸点以下とするのが好ましい。 この際、 40— 60°Cで目的とする Θ型結晶をシードしても良い。
また、 Θ型結晶を得る場合、例えば、ァセトニトリルージメチルホルムアミド (80Z20 :容量比)において、式 (I)で示される化合物のアモルファスまたは結晶(この場合の 結晶は各種結晶を示す)を懸濁して 50°C以上 (例えば 60°C)で撹拌し、析出した結 晶を 50°C以上 (例えば 60°C)で濾別により単離させるのが好ましい。この場合、最高 温度は当該溶媒又は混合溶媒の沸点以下とするのが好ましい。この際、 50— 60°C で目的とする Θ型結晶をシードしても良い。
なお、 α型結晶と Θ型結晶についての各溶媒系に対する飽和溶解度曲線の交点 は、ァセトニトリル一水(90/10 :容量比)においては 30— 40°C付近にあり、またァセ トニトリルージメチルホルムアミド(80Z20 :容量比)においては 40— 50°C付近にあり 、これらの温度近辺ではひ型結晶と Θ型結晶の混合物が得られる。
[0017] 「中和法による晶析」の例としては、式 (I)で示される化合物または式 (I)で示される 化合物の塩酸塩を、塩化水素を含む低級アルコール溶液に溶解させ、これを塩基で 中和することで結晶化させる場合が挙げられる。
塩基としては、無機塩基 (例えば、水酸化ナトリウム、水酸化カリウム)、有機塩基( 例えば、トリェチルァミン)等が挙げられる。 炭素数 1一 6のアルコール溶液としては、例えば、メタノール、エタノール、プロパノ ール、ブタノール、ペンタノール、へキサノール等が挙げられるが、中でも、メタノール 、エタノールが好ましい。
[0018] 本発明の結晶は、原薬若しくは製剤の「保存安定性」または「耐湿性」に優れる結 晶であり、「工業スケールでの製造に耐えうる」結晶である点で有用である。
特に、 α型結晶は室温下で熱力学的に最も安定であるため室温下で容易に単離 ができ、かつ吸湿性が低ぐ Θ型結晶は高温下(50°C以上)で熱力学的に最も安定 であり高温下(50°C以上)で容易に単離ができ、 7?型結晶も熱力学的に安定であり、 γ型結晶および ε型結晶は吸湿性が低い点で有用である。
これらの α型、 γ型、 ε型、 7?型、 0型結晶のいずれの結晶形も工業的スケール での製造が可能であり、中でも α型、 0型結晶が工業的スケールでの製造に関し好 ましい。
[0019] 本発明をさらに具体的に説明する。下記に本発明の結晶の製造例について実施 例を挙げて説明するが、本発明はこれらに限定されるものではない。
実施例
a型結晶の製造:実施例 1一 23
Ύ型結晶の製造:実施例 24及び 25
ε型結晶の製造:実施例 26及び 27
r?型結晶の製造:実施例 28
Θ型結晶の製造:実施例 29— 31
[0020] (実施例 1)冷却法(α型結晶)
特許文献 1記載の製造方法により製造される式 (I)で示される化合物 (非晶質、特 記しない限り以下同じ) 400mgをァセトニトリル 12mlに加え、 70°Cで加熱溶解させた 。この溶解液を室温下 (約 20から 30°C、以下同じ)に冷却し、析出した結晶を濾別、 風乾し、標題の結晶 240mgを得た。
(実施例 2)冷却法(α型結晶)
式(I)で示される化合物 455mgをジクロロメタン 3mlに加え、 40°Cで加熱溶解させ た。この溶解液を 4°Cに冷却し、析出した結晶を濾別、風乾し、標題の結晶 339mgを 得た。
(実施例 3)冷却法(α型結晶)
式 (I)で示される化合物 395mgをテトラヒドロフラン 20mlに加え、 70°Cで加熱溶解 させた。この溶解液を室温下に冷却し、析出した結晶を濾別、風乾し、標題の結晶を 微量得た。
[0021] (実施例 4)冷却法( a型結晶)
式 (I)で示される化合物 366mgをアセトン 46mlに加え、 50°Cで加熱溶解させた。 この溶解液を室温下に冷却し、析出した結晶を濾別、風乾し、標題の結晶を微量得 た。
(実施例 5)冷却法(α型結晶)
式 (I)で示される化合物 2539g (主として oc型結晶からなる)をァセトニトリル一水 (容 積比 9 : 1) 65. 9Lに加え、これを 68°Cで加熱溶解させた。この溶解液を 50°Cに冷却 し (途中 55°Cでシード)、 50°Cで 2時間の熟成を行った。その後、この晶析液を 4°Cま で冷却して一晩撹拌した。結晶を濾別して 60°Cで減圧乾燥を行い、標題の結晶を 2 218g得た(収率 88. 5%)。
[0022] (実施例 6)冷却法と貧溶媒法の組合せ ( a型結晶)
式 (I)で示される化合物(主として ex型結晶からなる) 10. 06gをァセトニトリル一水 ( 容積比 9 : l) 200mLにカ卩えて、 75°Cで加熱溶解させた。溶解液を 60°Cに冷却して α型結晶の種晶を加え、 5時間かけて 10°Cに冷却し、引き続き結晶を含む懸濁液を 10°C以下でー晚撹拌した。この懸濁液に水 121. 4mLを 1時間かけて滴下し、さらに 10°C以下で熟成を行った。結晶を濾別し、予め 10°Cに冷却したァセトニトリルを用い て結晶を洗浄して、これを 50°Cで減圧乾燥を行い、標題の結晶を 9. 38g得た (収率 93. 8%)。
(実施例 7)貧溶媒法( a型結晶)
式(I)で示される化合物 500mgをジメチルスルホキシド lmlに溶解した。この溶解 液に、トルエン 16mlを加え、析出した結晶を濾別、風乾し、標題の結晶を得た (析出 前の溶液の温度:室温、以下実施例 8— 17にお ヽても同じ)。
[0023] (実施例 8)貧溶媒法( a型結晶) 式 (I)で示される化合物 400mgをジメチルホルムアミド lmlに溶解した。この溶解液 に、ジェチルエーテル 4mlをカ卩え、析出した結晶を濾別、風乾し、標題の結晶を得た
(実施例 9)貧溶媒法( a型結晶)
式 (I)で示される化合物 400mgをジメチルホルムアミド lmlに溶解した。この溶解液 に、トルエン 8mlをカ卩え、析出した結晶を濾別、風乾し、標題の結晶を得た。
(実施例 10)貧溶媒法( (X型結晶)
式 (I)で示される化合物 300mgをクロ口ホルム 1. 7mlに溶解した。この溶解液に、 エタノール 3. 4mlをカ卩え、析出した結晶を濾別、風乾し、標題の結晶を得た。
(実施例 11)貧溶媒法( (X型結晶)
式 (I)で示される化合物 300mgをクロ口ホルム 1. 7mlに溶解した。この溶解液に、 ジェチルエーテル 2mlを加え、析出した結晶を濾別、風乾し、標題の結晶を得た。
[0024] (実施例 12)貧溶媒法(α型結晶)
式 (I)で示される化合物 300mgをクロ口ホルム 1. 7mlに溶解した。この溶解液に、ト ルェン 3. 4mlをカ卩え、析出した結晶を濾別、風乾し、標題の結晶を得た。
(実施例 13)貧溶媒法( (X型結晶)
式 (I)で示される化合物 450mgをジクロロメタン 3mlに溶解した。この溶解液に、ジ ェチルエーテル 4. 5mlを加え、析出した結晶を濾別、風乾し、標題の結晶を得た。 (実施例 14)貧溶媒法( (X型結晶)
式 (I)で示される化合物 300mgをテトラヒドロフラン 18mlに溶解した。この溶解液に 、水 15mlを加え、析出した結晶を濾別、風乾し、標題の結晶を得た。
(実施例 15)貧溶媒法( (X型結晶)
式 (I)で示される化合物 300mgをテトラヒドロフラン 18mlに溶解した。この溶解液に 、シクロへキサン 25mlを加え、析出した結晶を濾別、風乾し、標題の結晶を得た。
[0025] (実施例 16)貧溶媒法(α型結晶)
式 (I)で示される化合物 170mgをアセトン 22mlに溶解した。この溶解液に、水 30 mlを加え、析出した結晶を濾別、風乾し、標題の結晶を得た。
(実施例 17)貧溶媒法( a型結晶) 式 (I)で示される化合物 300mgをァセトニトリル 15mlに溶解した。この溶解液に、 水 5mlを加え、析出した結晶を濾別、風乾し、標題の結晶を得た。
(実施例 18)貧溶媒法( (X型結晶)
式 (I)で示される化合物 2000g (主として a型結晶からなる)にジメチルホルムアミド 4. 85Lを加え、これを 71°Cで加熱溶解させた。この溶解液にァセトニトリル 19. 4Lを 温度 66— 75°Cで滴下した。これを 40°Cに冷却し、途中の 54°Cで α型結晶をシード 、 40°Cで 2時間の熟成を行った後、この晶析液を次に 5°Cまで 4時間かけて冷却して 一晩撹拌した。結晶を濾別して 60°Cで減圧乾燥を行い、標題の結晶を 1731g得た( 収率 83. 0%)。
(実施例 19)懸濁法( a型結晶)
式 (I)で示される化合物 54. 8gを含む湿結晶(主として水を 310. 5g含む非晶質) をァセトニトリル 633mLに加えて溶解させて 25°Cで 5. 5時間撹拌した。析出した結 晶を濾別により単離し、 60°Cで減圧乾燥を行い、標題の結晶を 47. 4g得た(回収率 86%) o
(実施例 20)懸濁法( a型結晶)
式 (I)で示される化合物 32. 17gをァセトニトリル 330mLに加えて溶解させて室温 で 6時間撹拌した。析出した結晶を濾別により単離し、 60°Cで減圧乾燥を行い、標題 の結晶を 26. 67g得た(回収率 83%)。
(実施例 21)懸濁法( a型結晶)
式(I)で示される化合物 45. Ogをジメチルホルムアミド 112mLに加えて 70°Cで溶 解させた。これに液温度を 65°C以上に保つようにしてァセトニトリル 445mLを滴下し た。滴下後、この溶解液を 10°Cに冷却し、自然起晶を経て得られた結晶を濾別して 50°Cで減圧乾燥を行い、 α型結晶及び 0型結晶の混合物 36. 8g (粉末 X線強度比 から α型 型 =約 1)を得た(回収率 82%)。(急激に冷却して自然起晶させ、更 に短時間で濾別した場合に、 α型と Θ型の混合物が得られる。)
こうして得られた α型結晶と Θ型結晶の混合物 13. 42gをジメチルホルムアミド 30 mLとァセトニトリル 120mLを含む溶液にカ卩えて懸濁させて 40°Cで 5時間撹拌した。 引き続き、 40°Cから 10°Cに 3時間かけて冷却し、 10°C以下で 9時間の熟成を行った 。得られた結晶を濾別し、結晶をァセトニトリル 40mLで洗浄して減圧乾燥を行い、 1 1. 63gの標題の結晶を得た(回収率 87%)。
[0027] (実施例 22)懸濁法( a型結晶)
式 (I)で示される化合物(α型結晶 1. 81gと 0型結晶 0. 99g)をァセトニトリル一水( 容量比 9 : l) 60mLにカ卩えて、 30°Cで 4日間撹拌した。この際に結晶形確認のために 懸濁液の一部引き抜きを 1回実施した (結晶として 0. 79gの引き抜きを実施)。結晶 を濾別して減圧乾燥後、標題の結晶を 1. 17g得た。
(実施例 23)懸濁法( a型結晶)
式 (I)で示される化合物( Θ型結晶) 6. 09gをァセトニトリル一水 (容量比 9 : 1) 120 mLに加えて、 10°Cで 24時間撹拌した。この際に結晶形確認のために懸濁液の一 部引き抜きを 5回実施した (結晶として計 3. 31gの引き抜きを実施)。結晶を濾別して 減圧乾燥後、標題の結晶を 1. 36g得た。
(実施例 24)冷却法( γ型結晶)
式(I)で示される化合物 530mgをジメチルホルムアミド lmlに加え、 70°Cで加熱溶 解させた。この溶解液を室温下に冷却し、析出した結晶を濾別、風乾し、標題の結晶 lOOmgを得た。
(実施例 25)貧溶媒法( γ型結晶)
実施例 20で得られたジメチルホルムアミド濾液に、極僅かの量の水を加え、析出し た結晶を濾別、風乾し、標題の結晶を得た (析出前の溶液の温度:室温、以下、実施 例 26— 27でも同じ)。
[0028] (実施例 26)貧溶媒法( ε型結晶)
式 (I)で示される化合物 450mgをジクロロメタン 3mlに溶解した。この溶解液に、ェ タノール 9mlを加え、析出した結晶を濾別、風乾し、標題の結晶を得た。
(実施例 27)貧溶媒法( ε型結晶)
式(I)で示される化合物 500mgをジメチルスルホキシド lmlに溶解した。この溶解 液に、ジェチルエーテル 4mlをカ卩え、析出した結晶を濾別、風乾し、標題の結晶を得 た。
(実施例 28)中和法( 7?型結晶) 式 (I)で示される化合物 1. 02gを塩ィ匕水素 メタノール溶液 5. Omlに室温下で溶 解させた。これに 1M水酸ィ匕ナトリウム水溶液を滴下し、析出した固体を濾別して水で 結晶を洗浄し、減圧乾燥を行い、標題の結晶を得た。
[0029] (実施例 29)懸濁法( Θ型結晶)
式(I)で示される化合物 45. Ogをジメチルホルムアミド 112mLに加えて 70°Cで溶 解させた。これに液温度を 65°C以上に保つようにしてァセトニトリル 445mLを滴下し た。滴下後、この溶解液を 10°Cに冷却し、自然起晶を経て得られた結晶を濾別して 50°Cで減圧乾燥を行い、 α型結晶及び 0型結晶の混合物 36. 8g (粉末 X線強度比 力も α型 型 =約 1)を得た(回収率 82%)。(急激に冷却して自然起晶させ、更 に短時間で濾別した場合に、 α型と Θ型の混合物が得られる。)
次に、ここで得られた式 (I)に示される化合物の α型結晶及び Θ型結晶の混合物 2 . Olgをァセトニトリルージメチルホルムアミド(容積比 4 : 1) l lmLに加えて 60°Cで 3時 間撹拌した。この懸濁液の結晶を 60°Cで濾別し、 60°Cで減圧乾燥を行い、標題の 結晶を 1. 42g (71%)を得た。
(実施例 30)懸濁法( Θ型結晶)
式 (I)で示される化合物(主として ex型結晶からなる固体) 20. 04gをァセトニトリル 水(容量比 9 : l) 220mLにカ卩えて 61°Cで加熱撹拌した。これに Θ型結晶 lgをカ卩えて 、引き続き 60°Cで 24時間加熱した。この際に結晶形確認のために懸濁液の一部引 き抜きを 3回実施した (結晶として計 8. 71gの引き抜きを実施)。結晶を 60°Cで濾別 して、減圧乾燥後に標題の結晶を 5. 06g得た。
(実施例 31)懸濁法( Θ型結晶)
式 (I)で示される化合物(α型結晶 2. Olgと 0型結晶 1. 72g)をァセトニトリル一水( 容量比 1: 1) 100gにカ卩えて 40°Cで 95時間撹拌した。この際に結晶形確認のために 懸濁液の一部引き抜きを 2回実施した (結晶として計 1. 84gの引き抜きを実施)。結 晶を 40°Cで濾別して、減圧乾燥後に標題の結晶を 1. 46g得た。
[0030] (分析例 1)
粉末 X線回析パターン測定
(1)測定方法および条件 Target: Cu全自動モノクロメータ
Voltage :40kV
Current: 40mV
Slit :発散 1/2 °
:散乱 1/2 °
:受光 0. 15mm
bean Speed: 2° I mm
2 Θ range: 3一 30°
(2)測定結果
上記 α型結晶、 γ型結晶、 ε型結晶、 r?型結晶、 0型結晶の粉末 X線回折バタ ンをそれぞれ図 1一図 5に示す。
また、それぞれの主なピークの回折角(2 0 )および強度を表 1一表 5に示す。 表 1
Figure imgf000016_0001
表 2 0]
Figure imgf000017_0002
Figure imgf000017_0001
ε挲 [εεοο]
Figure imgf000017_0003
80LLl0/ 00Zd /lDd 91 SZ6TS0/S00Z OAV 2 θ 強度
9.7 強
12.2 強
12.8 中
14.9 中
15.6 中
16.9 中
18.5 強
20.4 強
[0035] 表 5
Figure imgf000018_0001
[0036] 比較例として、 WO02-16329 (特許文献 1)の実施例 196に記載されたィ匕合物を挙 げて説明する。
(比較例 1)
特許文献 1の実施例 196に記載されたィ匕合物は、特許文献 1の実施例 196に従つ て合成したもので、塩酸塩として取得したものを使用した。
図 6に記載する通り、粉末 X線回折の結果より、非晶質 (アモルファス)であることが ゎカゝる。
[0037] (分析例 2)
赤外吸収スペクトル沏 I定
(1)測定方法および条件 日本薬局方に基づく一般試験法で、赤外吸収スペクトルを錠剤法 (臭化カリウム)に 従って、 FT— IRにより測定した。
(2)測定結果
上記 a型結晶の赤外吸収スペクトルを図 7に示す。
[0038] (試験例)
本発明の効果について試験例で説明する。
試験例 1および試験例 2により、熱力学的に安定である結晶形を確認し、試験例 3 により、吸湿性が低い結晶形を確認した。
[0039] (試験例 1)
示差走杳熱量沏 I定(Differential scanning calorimetrv: DSC)
(1)測定方法、条件
上記で得られた各結晶形(α型、 γ型、 ε型、 r?型)の試料 1一 7mgを秤取し、アル ミパン内に密封して、下記の条件で示差走査熱量測定を行った。
Reference:空のアルミパン
Scan speed : 10 C/min
Sampling time : 0.2 sec
Range : 50— 350 °C
(2)測定結果
図 8に、上記 a型、 γ型、 ε型、 r?型結晶の DSCパターンを示す。
DSCにより、 a型、 γ型、 ε型、 r?型のいずれの結晶形も、 265°C付近に吸熱ピー クがあることを観測した。また、 目視による融点測定でも、 ひ型、 γ型、 ε型、 7?型の いずれの結晶形も 257— 264°Cに融点を認めた。
[0040] (試験例 2)
a型、 /型、 f 型、 7型の粉末 X線回析パターンの温度栾化測定
(1)測定方法、条件
上記粉末 X線回折パターン測定時における場合と同じ条件にて測定を行った。 なお、温度を変化させるため、温度コントロールユニットを用いて、所望の温度に設 し 7こ。 (2)測定結果
図 9に、上記 α型、 γ型、 ε型、 r?型結晶の粉末 X線回折パターンの温度変化を示 す。
温度変化させることにより、 α型、 γ型、 ε型、 r?型のいずれの結晶形も高温側で 新たな結晶形のパターンとなった (本明細書における Θ型結晶に相当)。いずれの結 晶形も試験例 1で 265°C付近に融点が認められたのは、この Θ型の融点と考えられ た。
α型から Θ型への転移温度は 230°C以上 250°C以下の温度に見られ、 γ型から Θ型への転移温度は 160°C以上 200°C以下に見られ、 ε型から Θ型への転移温度 は 150°C以上 200°C以下に見られ、 7?型から Θ型への転移温度は 210°C以上 230 °C以下に見られた。
上記結果から、 α型、 γ型、 ε型、 7?型、 0型結晶の Τ Gカーブ (Τ:温度 °C、 G : ギブスのフリーエネルギーの相対値)を描 、た(図 10を参照)。
図 10より、室温における熱力学的に安定な結晶形は α型で、 α型 > 7?型 > γ型 > ε型 > 0型の順と考えられる。なお、高温域で結晶転移が起こった場合には、 Θ 型が生成し、安定に存在するものと考えられる。
(試験例 3)
の 7k > の沏 I (7k ¾ の 5^
(1)結晶の水分吸着量の測定方法および条件
上記で得られた α型、 γ型、 ε型結晶各 lOOmgを秤取し、 50°Cで一晩真空乾燥 した後、 25°Cの恒温下に、全自動水蒸気吸着測定装置 (BELSORP - 18 :日本べ ル社)で結晶の水分吸着量を測定した(Mitsuiki et al., J. Agric. Food Chem., Vol. 46, No.9, Page 3528-34, 1998年)。
(2)測定結果
図 11に、 α型、 γ型、 ε型結晶の水蒸気吸着等温線を示す (横軸に相対湿度〔% 〕 /100;縦軸に水分吸着量〔%〕を表す)。
α型、 γ型、 ε型結晶のいずれも、相対湿度 100%下においてでも水分吸着量が 2%以下で、水分吸着量が少なぐ中でも ε型、 γ型結晶が特に少ないことがわかる 参考までに、図 12に、 r?型結晶の水蒸気吸着等温線を示す (横軸に相対湿度〔% 〕 /100;縦軸に水分吸着量〔%〕を表す)。
[0042] 本発明により、化合物 (I)の原薬若しくは製剤の保存安定性または耐湿性に優れる 結晶、または工業スケールでの製造に耐えうる結晶が提供される。本発明の結晶形 を有する化合物は ex 4インテグリン阻害作用を有し、 oc 4インテグリン依存性の接着過 程が病態に関与する炎症性疾患、リウマチ様関節炎、炎症性腸疾患、全身性エリテ マト一デス、多発性硬化症、シエーダレン症候群、喘息、乾せん、アレルギー、糖尿 病、心臓血管性疾患、動脈硬化症、再狭窄、腫瘍増殖、腫瘍転移、移植拒絶いずれ 力の治療剤または予防剤の有効成分として有用である。
図面の簡単な説明
[0043] [図 1]本発明の新規 α型結晶に関する粉末 X線回折パターン図を示す (横軸に回折 角 2 0〔度〕;縦軸に強度〔じ?3〕を表す)。
[図 2]本発明の新規 γ型結晶に関する粉末 X線回折パターン図を示す (横軸に回折 角 2 0〔度〕;縦軸に強度〔じ?3〕を表す)。
[図 3]本発明の新規 ε型結晶に関する粉末 X線回折パターン図を示す (横軸に回折 角 2 0〔度〕;縦軸に強度〔じ?3〕を表す)。
圆 4]本発明の新規 7?型結晶に関する粉末 X線回折パターン図を示す (横軸に回折 角 2 0〔度〕;縦軸に強度〔じ?3〕を表す)。
[図 5]本発明の新規 Θ型結晶に関する粉末 X線回折パターン図を示す (横軸に回折 角 2 0〔度〕;縦軸に強度〔じ?3〕を表す)。
[図 6]比較例 1に示される公知化合物 (式 (I)で示される化合物の塩酸塩)に関する粉 末 X線回折パターン図を示す (横軸に回折角 2 Θ〔度〕;縦軸に強度 ?3〕を表す)。
[図 7] α型結晶の赤外吸収スペクトルを示す。
[図 8] «型、 γ型、 ε型、 7?型結晶の DSCパターンを示す。
[図 9] α型、 γ型、 ε型、 r?型結晶の粉末 X線回折パターンの温度変化を示す。
[図 10] α型、 γ型、 ε型、 型、 0型結晶の Τ Gカーブ (Τ:温度 °C、 G :ギブスのフ リーエネルギーの相対値)を示す。 [図 11] α型、 γ型、 ε型結晶の水蒸気吸着等温線を示す (横軸に相対湿度〔%〕/1 00;縦軸に水分吸着量〔%〕を表す)。
[図 12] η結晶の水蒸気吸着等温線を示す (横軸に相対湿度〔%〕/100;縦軸に水分 吸着量〔%〕を表す)。

Claims

請求の範囲
式 (I)で示される化合物の結晶。
Figure imgf000023_0001
結晶が a型結晶である請求項 1記載の結晶。
粉末 X線回折ノターン【こお ヽて、 6. 2、 10. 2、 10. 7、 10. 8、 14. 0、 14. 4、 16.
0、 16. 2、 21. 7に示される回折角(2 Θ )にピークを示すことを特徴とする請求項 2記 載の結晶。
結晶が Ί型結晶である請求項 1記載の結晶。
粉末 X線回折ノ ターン【こお ヽて、 7. 2、 8. 1、 10. 3、 10. 9、 14. 5、 15. 1、 16. 4 、 17. 3、 18. 3、 19. 4、 23. 3に示される回折角(2 Θ )にピークを示すことを特徴と する請求項 4記載の結晶。
結晶が ε型結晶である請求項 1記載の結晶。
粉末 X線回折ノ ターン【こお ヽて、 5. 4、 6. 9、 8. 3、 10. 8、 11. 1、 12. 8、 16. 1、 17. 7、 21. 6、 23. 4、 24. 5、 25. 1に示される回折角 (2 Θ )にピークを示すことを 特徴とする請求項 6記載の結晶。
結晶が 7?型結晶である請求項 1記載の結晶。
粉末 X線回折ノターン【こお ヽて、 9. 7、 12. 2、 12. 8、 14. 9、 15. 6、 16. 9、 18.
5、 20. 4に示される回折角(2 Θ )にピークを示すことを特徴とする請求項 8記載の結 晶。
結晶が 0型結晶である請求項 1記載の結晶。
粉末 X線回折ノターン【こお ヽて、 5. 7、 10. 3、 11. 5、 13. 9、 16. 5、 18. 5、 20. 0、 21. 0に示される回折角(2 Θ )にピークを示すことを特徴とする請求項 10記載の ホ吉晶。
[12] 式 (I)で示される化合物をァセトニトリル、ジクロロメタン、テトラヒドロフラン、アセトン 、ジメチルスルホキシド、クロ口ホルムのいずれかの少なくとも 1種を含む良溶媒、また はァセトニトリル一水の混合溶媒、若しくはァセトニトリルージメチルホルムアミドの混合 溶媒に溶解した後、 0— 30°Cに冷却することで結晶化させることを特徴とする請求項 2又は 3記載の oc型結晶を製造する方法。
[13] 式 (I)で示される化合物を良溶媒に溶解した後、貧溶媒を加えることで結晶化させ るにあたり、上記良溶媒と上記貧溶媒との組み合わせ力 ジメチルスルホキシドートル ェン、ジメチルホルムアミドージェチルエーテル、ジメチルホルムアミドートルエン、クロ ロホノレム エタノーノレ、クロロホノレムートノレェン、クロロホノレムージェチノレエーテノレ、ジク ロロメタンージェチルエーテル、テトラヒドロフラン一水、テトラヒドロフランーシクロへキサ ン、アセトン一水、ァセトニトリル一水、ジメチルホルムアミドーァセトニトリルのいずれか であることを特徴とする請求項 2又は 3記載の oc型結晶を製造する方法。
[14] 式 (I)で示される化合物をァセトニトリル、ァセトニトリル一水の混合溶媒、もしくはァ セトニトリルージメチルホルムアミドの混合溶媒の 、ずれかに懸濁させ、 0— 40°Cで撹 拌することで結晶化させることを特徴とする請求項 2又は 3記載の oc型結晶を製造す る方法。
[15] 式 (I)で示される化合物をジメチルホルムアミドに溶解した後、 0— 30°Cに冷却する ことで結晶化させることを特徴とする請求項 4又は 5記載の γ型結晶を製造する方法
[16] 式 (I)で示される化合物を良溶媒に溶解した後、貧溶媒を加えることで結晶化させ るにあたり、上記良溶媒と上記貧溶媒との組み合わせ力 ジメチルホルムアミドー水で あることを特徴とする請求項 4又は 5記載の γ型結晶を製造する方法。
[17] 式 (I)で示される化合物を良溶媒に溶解した後、貧溶媒を加えることで結晶化させ るにあたり、上記良溶媒と上記貧溶媒との組み合わせ力 ジクロロメタン エタノール 、ジメチルスルホキシドージェチルエーテルの 、ずれかであることを特徴とする請求項 6又は 7記載の ε型結晶を製造する方法。 [18] 式 (I)で示される化合物または式 (I)で示される化合物の塩酸塩を、塩化水素を含 む炭素数 1一 6のアルコール溶液に溶解させ、これを塩基で中和することで結晶化さ せることを特徴とする請求項 8又は 9記載の 7?型結晶を製造する方法。
[19] 式 (I)で示される化合物を、ジメチルホルムアミドーァセトニトリルの混合溶媒、ァセト 二トリル一水の混合溶媒の ヽずれかに懸濁させ、 40°C以上で撹拌することで結晶化 させることを特徴とする請求項 10又は 11記載の Θ型結晶を製造する方法。
PCT/JP2004/017708 2003-11-27 2004-11-29 フェニルアラニン誘導体の結晶及びその製造方法 WO2005051925A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005515836A JP4748449B2 (ja) 2003-11-27 2004-11-29 フェニルアラニン誘導体の結晶及びその製造方法
ES04819474.0T ES2451140T3 (es) 2003-11-27 2004-11-29 Cristal de derivado de fenilalanina y método para su producción
CN2004800350531A CN1886385B (zh) 2003-11-27 2004-11-29 苯丙氨酸衍生物的结晶及其制造方法
CA2547625A CA2547625C (en) 2003-11-27 2004-11-29 Crystals of phenylalanine derivatives and production methods thereof
KR1020067010493A KR101123606B1 (ko) 2003-11-27 2004-11-29 페닐알라닌 유도체의 결정 및 이의 제조방법
EP04819474.0A EP1688410B1 (en) 2003-11-27 2004-11-29 Crystal of phenylalanine derivative and process for producing the same
US11/441,106 US7683169B2 (en) 2003-11-27 2006-05-26 Crystals of phenylalanine derivatives and production methods thereof
US12/697,816 US7951942B2 (en) 2003-11-27 2010-02-01 Crystals of phenylalanine derivatives and production methods thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003397347 2003-11-27
JP2003-397347 2003-11-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/441,106 Continuation US7683169B2 (en) 2003-11-27 2006-05-26 Crystals of phenylalanine derivatives and production methods thereof

Publications (1)

Publication Number Publication Date
WO2005051925A1 true WO2005051925A1 (ja) 2005-06-09

Family

ID=34631536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017708 WO2005051925A1 (ja) 2003-11-27 2004-11-29 フェニルアラニン誘導体の結晶及びその製造方法

Country Status (8)

Country Link
US (2) US7683169B2 (ja)
EP (1) EP1688410B1 (ja)
JP (1) JP4748449B2 (ja)
KR (1) KR101123606B1 (ja)
CN (1) CN1886385B (ja)
CA (1) CA2547625C (ja)
ES (1) ES2451140T3 (ja)
WO (1) WO2005051925A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842700B2 (en) 2005-06-21 2010-11-30 Ajinomoto Co., Inc. Crystals of isopropyl ester of N-(2,6-dichlorobenzoyl)-4-[6-(methylamino)methyl-1-methyl-2,4-dioxo-1,4-dihydroquinazoline-3(2H)-yl]-L-phenylalanine hydrochloride, production method thereof and use thereof
WO2011122619A1 (ja) 2010-03-29 2011-10-06 味の素株式会社 フェニルアラニン誘導体の塩の結晶
WO2011122620A1 (ja) 2010-03-29 2011-10-06 味の素株式会社 フェニルアラニン誘導体を含有する医薬製剤
US8058432B2 (en) 2006-11-22 2011-11-15 Ajinomoto Co., Inc. Method for preparing phenylalanine derivatives having quinazoline-dione skeleton and intermediates for use in the preparation of derivatives
US8518441B2 (en) 2003-11-14 2013-08-27 Ajinomoto Co., Inc. Solid dispersions or solid dispersion pharmaceutical preparations of phenylalanine derivatives
WO2016051828A1 (ja) * 2014-09-29 2016-04-07 味の素株式会社 潰瘍性大腸炎の治療用医薬組成物

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0113331B8 (pt) 2000-08-18 2021-05-25 Ajinomoto Kk derivados de fenilalanina ou seus sais parmaceuticamente aceitáveis, antagonista de integrina alfa 4, agente terapêutico ou agente preventivo para doenças inflamatórias, e, composição farmacêutica
WO2003053926A1 (fr) 2001-12-13 2003-07-03 Ajinomoto Co.,Inc. Nouveau derive de phenylalanine
JP4470219B2 (ja) * 2002-02-20 2010-06-02 味の素株式会社 新規フェニルアラニン誘導体
EP1595870B1 (en) * 2003-02-20 2015-09-23 Ajinomoto Co., Inc. Process for producing phenylalanine derivative having quinazolinedione skeleton and intermediate for the same
KR101194176B1 (ko) * 2003-12-22 2012-10-24 아지노모토 가부시키가이샤 신규한 페닐알라닌 유도체
WO2012041801A1 (en) * 2010-09-28 2012-04-05 Dsm Sinochem Pharmaceuticals Netherlands B.V. Method for isolating a cyclohexapeptide
FR3076127B1 (fr) * 2017-12-22 2020-01-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Pvt detection circuit
KR20240015737A (ko) 2018-10-30 2024-02-05 길리애드 사이언시즈, 인코포레이티드 알파4베타7 인테그린 억제제로서의 퀴놀린 유도체
WO2020092394A1 (en) 2018-10-30 2020-05-07 Gilead Sciences, Inc. Imidazopyridine derivatives as alpha4beta7 integrin inhibitors
AU2019373245C1 (en) 2018-10-30 2022-10-27 Gilead Sciences, Inc. Compounds for inhibition of alpha 4β7 integrin
CA3115820A1 (en) 2018-10-30 2020-05-07 Gilead Sciences, Inc. Compounds for inhibition of .alpha.4.beta.7 integrin
US11578069B2 (en) 2019-08-14 2023-02-14 Gilead Sciences, Inc. Compounds for inhibition of α4 β7 integrin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155821A (ja) * 1991-12-06 1993-06-22 Kissei Pharmaceut Co Ltd N−tert−ブチル−1−メチル−3,3−ジフェニルプロピルアミン塩酸塩の結晶多形およびその製造方法
WO1998039305A1 (en) * 1997-03-05 1998-09-11 Takeda Chemical Industries, Ltd. Crystalline form of a bis 1,2,4-triazole compound
WO2001002426A1 (en) * 1999-07-02 2001-01-11 Astrazeneca Ab A substantially crystalline form of melagatran
WO2001038330A1 (fr) * 1999-11-24 2001-05-31 Sumika Fine Chemicals Co., Ltd. Cristaux de mirtazapine anhydres et leur procede de fabrication
WO2001044231A1 (en) * 1999-12-15 2001-06-21 Merck & Co., Inc. Improved omeprazole process and compositions thereof
WO2002016329A1 (fr) * 2000-08-18 2002-02-28 Ajinomoto Co., Inc. Nouveaux derives de phenylalanine
WO2002026709A1 (fr) * 2000-09-25 2002-04-04 Eisai Co., Ltd. Procede servant a preparer un cristal multiforme d'hydrochlorure de donepezil
WO2003070709A1 (fr) * 2002-02-20 2003-08-28 Ajinomoto Co.,Inc. Nouveau derive de phenylalanine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001047868A1 (fr) 1999-12-28 2001-07-05 Ajinomoto Co., Inc. Nouveaux derives de phenylalanine
EP1270547A4 (en) 2000-03-23 2005-07-13 Ajinomoto Kk NEW PHENYL ALANIDE DERIVATIVES
AU2001290303A1 (en) 2000-09-29 2002-04-15 Ajinomoto Co., Inc. Novel phenylalanine derivatives
WO2003010135A1 (fr) 2001-07-26 2003-02-06 Ajinomoto Co., Inc. Nouveaux derives de l'acide phenylpropionique
WO2003053926A1 (fr) 2001-12-13 2003-07-03 Ajinomoto Co.,Inc. Nouveau derive de phenylalanine
EP1595870B1 (en) 2003-02-20 2015-09-23 Ajinomoto Co., Inc. Process for producing phenylalanine derivative having quinazolinedione skeleton and intermediate for the same
CN100563658C (zh) 2003-11-14 2009-12-02 味之素株式会社 苯丙氨酸衍生物的固体分散体或固体分散体医药制剂
WO2005046697A1 (ja) 2003-11-14 2005-05-26 Ajinomoto Co., Inc. フェニルアラニン誘導体の徐放性経口投与製剤
KR101194176B1 (ko) 2003-12-22 2012-10-24 아지노모토 가부시키가이샤 신규한 페닐알라닌 유도체
CN101243056B (zh) 2005-06-21 2013-03-27 味之素株式会社 苯基丙氨酸衍生物的结晶、其制备方法及其应用
MX297306B (es) 2006-11-22 2012-03-22 Ajinomoto Kk Procedimiento para la produccion de derivados de fenilalanina que tienen estructuras de base de quinazolinodiona e intermediarios para la produccion.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155821A (ja) * 1991-12-06 1993-06-22 Kissei Pharmaceut Co Ltd N−tert−ブチル−1−メチル−3,3−ジフェニルプロピルアミン塩酸塩の結晶多形およびその製造方法
WO1998039305A1 (en) * 1997-03-05 1998-09-11 Takeda Chemical Industries, Ltd. Crystalline form of a bis 1,2,4-triazole compound
WO2001002426A1 (en) * 1999-07-02 2001-01-11 Astrazeneca Ab A substantially crystalline form of melagatran
WO2001038330A1 (fr) * 1999-11-24 2001-05-31 Sumika Fine Chemicals Co., Ltd. Cristaux de mirtazapine anhydres et leur procede de fabrication
WO2001044231A1 (en) * 1999-12-15 2001-06-21 Merck & Co., Inc. Improved omeprazole process and compositions thereof
WO2002016329A1 (fr) * 2000-08-18 2002-02-28 Ajinomoto Co., Inc. Nouveaux derives de phenylalanine
WO2002026709A1 (fr) * 2000-09-25 2002-04-04 Eisai Co., Ltd. Procede servant a preparer un cristal multiforme d'hydrochlorure de donepezil
WO2003070709A1 (fr) * 2002-02-20 2003-08-28 Ajinomoto Co.,Inc. Nouveau derive de phenylalanine

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HALEBLIAN J.K. ET AL: "Characterization of Habits and Crystalline Modification of Solids and Their Pharmaceutical Applications", JOURNAL OF PHARMACEUTICAL SCIENCES, vol. 64, no. 8, August 1975 (1975-08-01), pages 1269 - 1288, XP002020520 *
MITSUO MATSUMOTO ET AL: "Yakuzaigaku Manual", 20 March 1989, NANZANDO, pages: 28 - 29, 76, XP002989358 *
MITSURU HASHIDA: "Keiko Toyo Seizai no Sekkei to Hyoka", 10 February 1995, YAKUGYO JIHOSHA, pages: 76/171 - 79/172, XP002989357 *
See also references of EP1688410A4 *
THE CHEMICAL SOCIETY OF JAPAN: "4th edition Jikken Kagaku Koza Kihon Sosa I", vol. 1, 5 November 1990, MARUZEN, pages: 184 - 186, XP002989356 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518441B2 (en) 2003-11-14 2013-08-27 Ajinomoto Co., Inc. Solid dispersions or solid dispersion pharmaceutical preparations of phenylalanine derivatives
US7842700B2 (en) 2005-06-21 2010-11-30 Ajinomoto Co., Inc. Crystals of isopropyl ester of N-(2,6-dichlorobenzoyl)-4-[6-(methylamino)methyl-1-methyl-2,4-dioxo-1,4-dihydroquinazoline-3(2H)-yl]-L-phenylalanine hydrochloride, production method thereof and use thereof
US8268844B2 (en) 2005-06-21 2012-09-18 Ajinomoto Co., Inc. Crystals of isopropyl ester of N-(2,6-dichlorobenzoyl)-4-[6-(methylamino)methyl-1-methyl-2,4-dioxo-1,4-dihydroquinazoline-3(2H)-yl]-l-phenylalanine hydrochloride, production method thereof and use thereof
US8546610B2 (en) 2006-11-22 2013-10-01 Ajinomoto Co., Inc. Method for preparing phenylalanine derivatives having quinazoline-dione skeleton and intermediates for use in the preparation of the derivatives
US8058432B2 (en) 2006-11-22 2011-11-15 Ajinomoto Co., Inc. Method for preparing phenylalanine derivatives having quinazoline-dione skeleton and intermediates for use in the preparation of derivatives
EP2853529A1 (en) 2010-03-29 2015-04-01 Ajinomoto Co., Inc. Crystals of salts of phenylalanine derivatives
EP2993173A1 (en) 2010-03-29 2016-03-09 Ajinomoto Co., Inc. Crystals of salts of phenylalanine derivatives
EP2554542A4 (en) * 2010-03-29 2014-05-21 Ajinomoto Kk Phenylalanine-SALT CRYSTAL
WO2011122619A1 (ja) 2010-03-29 2011-10-06 味の素株式会社 フェニルアラニン誘導体の塩の結晶
US9102630B2 (en) 2010-03-29 2015-08-11 Ajinomoto Co., Inc. Crystals of salts of phenylalanine derivatives
JP2015147780A (ja) * 2010-03-29 2015-08-20 味の素株式会社 フェニルアラニン誘導体の塩の結晶
US9181202B2 (en) 2010-03-29 2015-11-10 Ajinomoto Co., Inc. Crystals of salts of phenylalanine derivatives
WO2011122620A1 (ja) 2010-03-29 2011-10-06 味の素株式会社 フェニルアラニン誘導体を含有する医薬製剤
US10166234B2 (en) 2010-03-29 2019-01-01 Ea Pharma Co., Ltd. Pharmaceutical preparation comprising phenylalanine derivative
JP6109568B2 (ja) * 2010-03-29 2017-04-05 Eaファーマ株式会社 フェニルアラニン誘導体の塩の結晶
US10039763B2 (en) 2010-03-29 2018-08-07 Ea Pharma Co., Ltd. Pharmaceutical preparation comprising phenylalanine derivative
WO2016051828A1 (ja) * 2014-09-29 2016-04-07 味の素株式会社 潰瘍性大腸炎の治療用医薬組成物
EA034956B1 (ru) * 2014-09-29 2020-04-10 Эа Фарма Ко., Лтд. Способ для лечения язвенного колита
AU2015326196B2 (en) * 2014-09-29 2020-05-14 Ea Pharma Co., Ltd. Pharmaceutical composition for treating ulcerative colitis

Also Published As

Publication number Publication date
CN1886385B (zh) 2013-02-27
US20070018172A1 (en) 2007-01-25
JPWO2005051925A1 (ja) 2007-06-21
KR20060127391A (ko) 2006-12-12
US7683169B2 (en) 2010-03-23
CN1886385A (zh) 2006-12-27
US20100137593A1 (en) 2010-06-03
EP1688410A4 (en) 2009-06-24
CA2547625A1 (en) 2005-06-09
EP1688410B1 (en) 2014-03-05
US7951942B2 (en) 2011-05-31
JP4748449B2 (ja) 2011-08-17
EP1688410A1 (en) 2006-08-09
KR101123606B1 (ko) 2012-03-20
CA2547625C (en) 2012-07-24
ES2451140T3 (es) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2005051925A1 (ja) フェニルアラニン誘導体の結晶及びその製造方法
CA2595334C (en) Polymorphic forms of aripiprazole and processes for making
EP2093217A1 (en) Polymorph and solvates of aripiprazole
JP2008506784A (ja) 結晶形ミコフェノール酸・ナトリウム
KR102522895B1 (ko) Jak 키나아제 억제제 바이설페이트의 결정형 및 이의 제조방법
CN118525027A (zh) 还原型β‐烟酰胺单核苷酸二钠盐的多晶型及其制法和用途
JP2022060192A (ja) 塩酸メフパリブの多形体およびその製造方法と使用
EP1468997A2 (en) Polymorphous forms of rosiglitazone maleate
JP7068411B2 (ja) ヘキサデシルトレプロスチニル結晶及びその製造方法
KR20090044694A (ko) 모사프리드의 신규한 동질이상체 및 유사동질이상체
KR20200134928A (ko) 발사르탄/사쿠비트릴 3소듐염 수화물의 결정형 및 그 제조방법
CN110964017A (zh) 瑞博西尼单琥珀酸盐的多晶型物及其制备方法和用途
WO2013013594A1 (zh) 一种17α-乙酰氧基-11β-(4-N,N-二甲氨基苯基)-19-去甲孕甾-4,9-二烯-3,20-二酮的无定形物及其制备方法
JP7201262B2 (ja) 3’,3’-cGAMPの水和物結晶
WO2002030902A1 (en) Crystal forms of 1-[6-chloro-5-(trifluoromethyl)-2-pyridinyl]piperazine.hydrochloride
WO2014020553A1 (en) Salts of pralatrexate
JP6663232B2 (ja) 新規結晶構造を有するアジルサルタン及びその製造方法
KR20160095171A (ko) 피라지노[2,1-c][1,2,4]트리아진 화합물의 결정 (2)
WO2022081502A1 (en) Solid state forms of lorecivivint
WO2017032281A1 (zh) 帕比司他乳酸盐的新晶型
JP2006328055A (ja) 2’−(4’−エチルベンジル)フェニル5−チオ−β−D−グルコピラノシドのA型結晶及びその製造方法
WO2014189308A1 (ko) 세프디토렌 피복실의 신규 결정 형태 및 이의 제조 방법
WO2009014680A2 (en) Polymorphs of dolasetron base and process for preparation thereof
WO2006010653A1 (en) New polymorphous form of rosiglitazone maleate
WO2011016044A1 (en) Novel polymorphs of adefovir dipivoxil

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480035053.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515836

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11441106

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067010493

Country of ref document: KR

Ref document number: 2547625

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2004819474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2358/CHENP/2006

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2004819474

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067010493

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 11441106

Country of ref document: US