WO2005044773A1 - 水溶媒希土類金属化合物ゾル及びその製造方法、並びにそれを用いたセラミック粉末の製造方法 - Google Patents

水溶媒希土類金属化合物ゾル及びその製造方法、並びにそれを用いたセラミック粉末の製造方法 Download PDF

Info

Publication number
WO2005044773A1
WO2005044773A1 PCT/JP2004/014100 JP2004014100W WO2005044773A1 WO 2005044773 A1 WO2005044773 A1 WO 2005044773A1 JP 2004014100 W JP2004014100 W JP 2004014100W WO 2005044773 A1 WO2005044773 A1 WO 2005044773A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
earth metal
metal compound
carboxylic acid
producing
Prior art date
Application number
PCT/JP2004/014100
Other languages
English (en)
French (fr)
Inventor
Takashi Hasegawa
Yasunari Nakamura
Kazunari Okada
Original Assignee
Murata Manufacturing Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co.,Ltd. filed Critical Murata Manufacturing Co.,Ltd.
Priority to US10/569,275 priority Critical patent/US20070010587A1/en
Priority to JP2005515238A priority patent/JP4548340B2/ja
Publication of WO2005044773A1 publication Critical patent/WO2005044773A1/ja
Priority to US12/559,738 priority patent/US8592491B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/265Citric acid
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/449Organic acids, e.g. EDTA, citrate, acetate, oxalate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm

Definitions

  • the present invention relates to an aqueous solvent rare earth metal compound sol, a method for producing the same, and a method for producing a ceramic powder using the same.
  • BaTiO has been used as a high dielectric constant dielectric porcelain composition constituting a capacitor.
  • Multilayer capacitors are becoming thinner year by year in order to increase their capacitance.
  • products with a thickness of several micrometers or less per layer have been commercialized.
  • Such multilayer capacitors with increasingly thinner layers require more uniform material than ever before. For that purpose, it is necessary to make the fine particles of the auxiliary component.
  • the secondary component be present as a sol (colloidal solution).
  • Patent Document 1 proposes a method for producing an organic sol containing a rare earth metal which is one of the subcomponents!
  • Patent Document 1 Japanese Patent Publication No. 11-501609
  • Patent Document 1 Since the conventional rare earth metal compound sol disclosed in Patent Document 1 is an organic sol, an explosion-proof device is required for its production and use, and it is difficult to keep production costs low. There was a problem.
  • the present invention has been made in view of such circumstances, and is a water-solvent rare earth that does not require an explosion-proof device without agglomeration of fine particles of a rare earth metal compound and is easy to handle. It is an object of the present invention to provide a metal-like compound sol and a method for producing the same. Another object of the present invention is to provide a method for producing a ceramic powder capable of producing a ceramic powder in which a rare earth metal element is uniformly dispersed in the ceramic powder. Means for solving the problem
  • the aqueous solvent rare earth metal compound sol according to claim 1 of the present invention is an aqueous solvent rare earth metal compound sol obtained by dispersing a rare earth metal compound in water, wherein the rare earth metal compound is: Selected from Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu with a carboxylic acid or carboxylate having at least a carboxylic group
  • the carboxylic acid or the carboxylate salt of the carboxylic acid or the carboxylate salt has a molar ratio (carbyl group Z rare earth metal) of at least one kind of rare earth metal in the range of 1.2 to 13; Is characterized in that:
  • the aqueous solvent rare earth metal compound sol according to claim 2 of the present invention is characterized in that, in the invention of claim 1, the carboxylic acid or the carboxylate is citric acid or citrate. It is assumed that.
  • the method for producing a sol of a rare earth metal compound in an aqueous solvent according to claim 3 of the present invention includes the steps of: Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Preparing an aqueous or acidic aqueous solution of at least one rare earth metal selected from Er, Tm, Yb, and Lu, or an aqueous dispersion in which a hydroxide of the rare earth metal is dispersed; In the above solution, a carboxylic acid or a carboxylate having three or more carboxy groups is prepared, and the molar ratio of the carbonyl group to the rare earth metal (carbonyl group Z rare earth metal) is in the range of 1.2 to 3. And a step of adding as described above.
  • the method for producing a water-solvent rare earth metal compound sol according to claim 4 of the present invention the method according to claim 3, wherein the carboxylic acid or the carboxylate is citric acid or It is a citrate.
  • a method for producing a ceramic powder according to claim 5 of the present invention is characterized in that the aqueous solvent rare earth metal compound sol according to claim 1 or claim 2 is used as an auxiliary component raw material. It is.
  • a method for producing a ceramic powder capable of producing a ceramic powder in which a rare earth metal element is uniformly dispersed in the ceramic powder is also provided. be able to.
  • a rare earth metal compound as a raw material is prepared as a liquid.
  • This liquid may be an acidic aqueous solution or an alkaline aqueous solution.
  • an aqueous dispersion in which a hydroxide is dispersed in water may be used.
  • the carboxylic acid or carboxylate having three or more carboxy groups is converted to a carboxylic acid or a carboxylate having a molar ratio of the carboxy group to the rare earth metal (carbonyl group Z rare earth metal) of 1 or more. Add so that it is in the range of 2-3. Heating may be used to accelerate the reaction.
  • a polymer is formed in which the rare earth metal ion and the carboxylic acid are combined. If the size of this multimer is appropriate, it becomes a water-solvent rare earth metal compound sol (hereinafter simply referred to as “sol”), but if it is too large, precipitation occurs and the liquid becomes cloudy. If the solution becomes cloudy, adjust the pH of the solution by adding ammonia water. By increasing the pH of the solution, the binding of the multimer is appropriately cleaved and no precipitation occurs! That is, the liquid becomes a sol. In order to form a sol without forming a precipitate, the average particle size must be approximately 150 nm or less. At this point, the viscosity of the solution may increase (gelation). In such a case, dilute with pure water.
  • sol water-solvent rare earth metal compound sol
  • the carboxylic acid or carboxylate salt to be added has only one or two carboxylic groups, the stability of the complex consisting of the rare earth metal ion and the carboxylic acid is insufficient. Therefore, the sol, which is a multimer thereof, is also unstable and precipitates hydroxide.
  • carboxylic acid or a carboxylic acid salt having three or more carboxylic groups When a carboxylic acid or a carboxylic acid salt having three or more carboxylic groups is used, the stability of the complex is good, that is, the sol is also stable, and precipitation of the hydroxylated product does not occur.
  • carboxylic acids or carboxylate salts citric acid or citrate salts are preferred because they have high solubility in water and can produce sols with high yield.
  • the molar ratio of the carboxylic acid group or carboxylate having three or more carboxylic acid groups to the rare earth metal is less than 1.2, the water of the rare earth metal If the molar ratio exceeds 3, a sol will not be formed by the solution and the sol will not be formed, and there is a fear that the sol will be precipitated.
  • a main component such as BaTiO and a sol as a sub-component material are mixed.
  • BaTiO or the like is placed in a container with a propeller inside.
  • the method for producing a ceramic powder of the present invention can also be used for producing a ceramic powder used as a material for an electronic component other than the multilayer capacitor.
  • the surface of the green compact of the ceramic powder is analyzed for rare earth metals with a wavelength dispersive X-ray microanalyzer.
  • the measurement area is a square with a side of 81.92 / zm. This area is divided into 65536 (256 X 256), and the characteristic X-ray intensity at each point is measured.
  • the intensity distribution becomes a normal distribution, and the average value and the median value should match. However, if there is a bias, the number of measurement points with higher intensity than the average value increases, and the median value becomes higher than the average value. If the intensity ratio is defined as the median Z-average value, the closer this value is to 1, the more uniformly the analytical elements are distributed.
  • Example number 2 The same operation as in Example 1 was performed using an yttrium nitrate aqueous solution, and a colorless and transparent sol was obtained (sample number 2).
  • Aqueous ammonia was added to the aqueous solution of dysprosium nitrate, and the resulting precipitate was filtered and washed with water, to thereby obtain a hydroxide dispersion powder, which was dispersed in pure water to obtain an aqueous dispersion. While this solution was well stirred at room temperature, 0.75 mol of triammonium catenate was added to 1 mol of disposable system. Since a part of the unreacted hydroxylated distillate remained, it was filtered through a No. 5C quantitative filter paper to obtain a pale yellow sol (Sample No. 5).
  • the amount of triammonium citrate to be added is 0.40 mol (1.20 mol as a carboxyl group) or 0.45 mol (carboyl group) per mol of holmium. 1.35 mol), 0.50 mol (1.50 mol for the carboyl group), 0.80 mol (2.40 mol for the carboyl group), or 1.00 mol (carboyl
  • the same operation as in Example 1 was performed to obtain a pale red transparent sol (Sample Nos. 7-11).
  • the sol had almost no fluidity (gelation) and required dilution with pure water.
  • the amount of carbonyl groups per mole of rare earth metal is preferably 1.5 moles or more.
  • the amount of triammonium citrate to be added is 0.20 mol (0.60 mol as a carbon group) or 1.10 mol (carbon) per mol of holmium.
  • Table 1 summarizes the above results.
  • the average particle size was measured by an ultrasonic attenuation method using DT-1200 manufactured by Otsuka Electronics. Also manufactured by mixing liquids of sample numbers 10, 26 and 27 with BaTiO
  • Table 2 shows the deviation ratio, intensity ratio, and uniform region calculated by measuring the distribution of rare earth metal elements of the obtained ceramic powder with a wavelength dispersive X-ray microanalyzer.

Abstract

【課題】従来の希土類金属化合物ゾルは有機ゾルであるため、その製造や使用にあたって防爆装置が必要となり、製造コストを低く抑えることが困難である。 【解決手段】本発明の請求項1に記載の水溶媒希土類金属化合物ゾルは、3基以上のカルボニル基を有するカルボン酸とSc、Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luより選ばれる少なくとも一種類の希土類金属とのモル比(カルボニル基/希土類金属)で1.2~3の関係を満足する希土類金属化合物が水中に分散している。

Description

明 細 書
水溶媒希土類金属化合物ゾル及びその製造方法、並びにそれを用いた セラミック粉末の製造方法
技術分野
[0001] 本発明は、水溶媒希土類金属化合物ゾル及びその製造方法、並びにそれを用い たセラミック粉末の製造方法に関する。
背景技術
[0002] 従来より、コンデンサを構成する高誘電率系誘電体磁器組成物としては、 BaTiO
3 系磁器が広く実用化されてきた。そして誘電率の温度特性の調整や焼結性の向上な どを目的として種々の副成分が添加されることが通例であった。積層コンデンサはそ の静電容量を大きくするために年々薄層化が進み、近年では 1層当たりの厚さが数 μ m以下の製品も商品化されている。そのような薄層化の進んだ積層コンデンサで は材料の均一性が従来にも増して要求される。そのためには副成分の微粒ィ匕が必 要となる。
[0003] 微粒ィ匕された副成分と BaTiOなどの主成分とを均一に混合するためには副成分
3
微粒子の凝集を防がねばならず、そのためには BaTiOなどの主成分と混合する前
3
に副成分がゾル (コロイド溶液)として存在することが望まし 、。
[0004] そこで、特許文献 1には、副成分のひとつである希土類金属を含有する有機ゾルを 製造する方法が提案されて!ヽる。
特許文献 1:特表平 11—501609号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 1において開示された従来の希土類金属化合物ゾルは有 機ゾルであるため、その製造や使用にあたって防爆装置が必要となり、製造コストを 低く抑えることが困難であるという問題があった。
[0006] 本発明は、このような事情に鑑みなされたものであって、希土類金属化合物の微粒 子を凝集させることなく且つ取り扱いが容易で防爆装置を必要としない水溶媒希土 類金属化合物ゾル及びその製造方法を提供することを目的としている。また、本発明 は、セラミック粉末中に希土類金属元素が均一に分散したセラミック粉末を製造する ことができるセラミック粉末の製造方法を併せて提供することを目的として!/、る。 課題を解決するための手段
[0007] 本発明の請求項 1に記載の水溶媒希土類金属化合物ゾルは、希土類金属化合物 が水中に分散して 、る水溶媒希土類金属化合物ゾルであって、前記希土類金属化 合物は、 3基以上のカルボ-ル基を有するカルボン酸またはカルボン酸塩と Sc、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Luより選ばれる少な くとも一種類の希土類金属とを含み、且つ、前記カルボン酸または前記カルボン酸塩 のカルボニル基と前記希土類金属とのモル比(カルボ-ル基 Z希土類金属)が 1. 2 一 3の範囲にあることを特徴とするものである。
[0008] また、本発明の請求項 2に記載の水溶媒希土類金属化合物ゾルは、請求項 1の発 明において、前記カルボン酸または前記カルボン酸塩力 クェン酸またはクェン酸塩 であることを特徴とするものである。
[0009] また、本発明の請求項 3に記載の水溶媒希土類金属化合物ゾルの製造方法は、 S c、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Luより選ばれ る少なくとも一種類の希土類金属の酸性水溶液若しくはアルカリ性水溶液、または前 記希土類金属の水酸化物を分散させた水性分散液を準備する工程と、前記 、ずれ かの液に、 3基以上のカルボ-ル基を有するカルボン酸またはカルボン酸塩を、前記 カルボニル基と前記希土類金属とのモル比 (カルボニル基 Z希土類金属)が 1. 2— 3の範囲になるように添加する工程と、を備えたことを特徴とするものである。
[0010] また、本発明の請求項 4に記載の水溶媒希土類金属化合物ゾルの製造方法は、請 求項 3に記載の発明にお 、て、前記カルボン酸または前記カルボン酸塩がクェン酸 またはクェン酸塩であることを特徴とするものである。
[0011] また、本発明の請求項 5に記載のセラミック粉末の製造方法は、請求項 1または請 求項 2に記載の水溶媒希土類金属化合物ゾルを副成分原料として用いることを特徴 とするちのである。
発明の効果 [0012] 本発明の請求項 1一請求項 4に記載の発明によれば、希土類金属化合物の微粒 子を凝集させることなく且つ取り扱いが容易で防爆装置を必要としない水溶媒希土 類金属化合物ゾル及びその製造方法を提供することができる。
[0013] また、本発明の請求項 5に記載の発明によれば、セラミック粉末中に希土類金属元 素が均一に分散したセラミック粉末を製造することができるセラミック粉末の製造方法 を併せて提供することができる。
発明を実施するための最良の形態
[0014] 次に、本発明の水溶媒希土類金属化合物ゾルの製造方法について説明する。
まず、原料とする希土類金属化合物を液体として準備する。この液体は酸性の水溶 液でも良いし、アルカリ性水溶液でも良い。また水酸化物を水中に分散させた水性分 散液でも良い。この水溶液または水性分散液をよく撹拌しながら、 3基以上のカルボ -ル基を有するカルボン酸またはカルボン酸塩を、カルボ-ル基と希土類金属との モル比 (カルボニル基 Z希土類金属)が 1. 2— 3の範囲になるように添加する。反応 を促進させるために加熱しても良 、。この時点で希土類金属イオンとカルボン酸が結 合した多量体ができる。この多量体の大きさが適当であれば水溶媒希土類金属化合 物ゾル (以下、単に「ゾル」と称す。)となるが、大きすぎると沈殿が生じ、液は白濁す る。白濁した場合はアンモニア水を加える等の操作をして液の pHを調整する。液の p Hを上げることによって多量体の結合が適度に切断され、沈殿を生じな!/、程度の大き さになる。つまり液はゾルとなる。沈殿が生成せず、ゾルとなるためには平均粒子径が 略 150nm以下である必要がある。この時点で液の粘性が高くなることがあるが(ゲル 化)、その場合は純水にて希釈する。
[0015] 添加するカルボン酸またはカルボン酸塩力 1基または 2基のカルボ-ル基しか有 さな ヽ場合は、希土類金属イオンとカルボン酸カゝらなる錯体の安定性が不十分であ るため、その多量体であるゾルも不安定で、水酸化物の沈殿が生じる。
[0016] 3基以上のカルボ-ル基を有するカルボン酸またはカルボン酸塩を用いた場合は 錯体の安定性が良ぐ即ちゾルも安定で、水酸ィ匕物の沈殿が生じない。カルボン酸 またはカルボン酸塩の中でもクェン酸またはクェン酸塩は水への溶解度が高く、収率 よくゾルを製造することができるため好ま 、。 [0017] 3基以上のカルボ-ル基を有するカルボン酸またはカルボン酸塩のカルボ-ル基と 希土類金属とのモル比 (カルボ-ル基 Z希土類金属)が 1. 2未満では希土類金属の 水酸ィ匕物の沈殿を生じ、そのモル比が 3を超えると溶液ィ匕してゾルを生成しな 、虞が める。
[0018] 得られたゾルを副成分原料として例えば積層コンデンサの材料としてのセラミック粉 末を製造するためには、 BaTiO等の主成分と副成分原料としてのゾルとを混合する
3
必要がある。混合するためには、例えば内部にプロペラを備えた容器に BaTiO等の
3 主成分と純水を混合したスラリーを用意しておき、このスラリーをプロペラで撹拌しな 力 sらそこにゾルを滴下する方法を用いる。尚、本発明のセラミック粉末の製造方法は 、積層コンデンサ以外の電子部品の材料として使用されるセラミック粉末を製造する 場合にも用いることができる。
[0019] 得られたセラミック粉末中で希土類金属が均一に分布しているかどうかを示す指標 として偏差比、強度比の二つを用いた。これらの指標の算出方法について説明する
[0020] まず、セラミック粉末の圧粉体の表面を波長分散型 X線マイクロアナライザで希土類 金属について分析する。測定領域は一辺が 81. 92 /z mの正方形であり、この領域を 65536 (256 X 256)に分割し、各点における特性 X線強度を測定することとする。
[0021] 測定領域内において分析元素が完全に均一に分布していたとしても各測定点にお ける X線強度は等しくならず、理論的にその標準偏差は平均 X線強度の平方根とな る。測定結果から求めた実際の標準偏差 (測定標準偏差)は理論標準偏差より小さく なることはあり得ず、分析元素の偏祈の度合いが大きいほど大きくなる。ここで偏差比 を理論標準偏差 Z測定標準偏差で定義するとこの値が 1に近 ヽほど (大き ヽほど)分 析元素が均一に分布して 、ると 、うことになる。
[0022] 測定領域内において分析元素が完全に均一に分布しているとすると強度分布は正 規分布となるのでその平均値と中央値は一致するはずである。しかし、偏祈があると 平均値より強度が高くなる測定点が多くなり、中央値は平均値より大きくなる。ここで 強度比を中央値 Z平均値で定義するとこの値が 1に近いほど分析元素が均一に分 布しているということになる。 [0023] 次に、この発明をより具体的な実施例に基づき説明する。尚、言うまでもないが、こ の発明の範囲内における実施可能な形態は、次のような実施例のみに限定されるも のではない。
実施例 1
[0024] 硝酸ホルミウム水溶液を常温でよく撹拌しながら、ホルミウム 1モルに対して 0. 75モ ルのクェン酸三アンモ-ゥム(カルボ-ル基として 2. 25モル)を添加した。液は白濁 した。液にホルミウム 1モルに対して 3モルのアンモニア水をカ卩えながら十分撹拌する と、液が透明になり、淡赤色のゾルが得られた (試料番号 1)。
比較例 1
[0025] 硝酸ホルミウム水溶液を常温でよく撹拌しながら、ホルミウム 1モルに対して 1. 10モ ルの酒石酸ナトリウム(カルボ-ル基として 2. 20モル)、 1. 10モルのシユウ酸(カル ボ-ル基として 2. 20モル)、または 1. 10モルのコハク酸ナトリウム(カルボ-ル基とし て 2. 20モル)を添加した。液は白濁した。液にホルミウム 1モルに対して 3モルのアン モ-ァ水を加えながら十分撹拌したが水酸ィ匕ホルミウムの沈殿が生じた (試料番号 2 1一 23)。
比較例 2
[0026] 硝酸ホルミウム水溶液を常温でよく撹拌しながら、ホルミウム 1モルに対して 2. 20モ ルの酢酸アンモ-ゥム(カルボ-ル基として 2. 20モル)、または 2. 20モルの乳酸(力 ルポ-ル基として 2. 20モル)を添カ卩した。液は白濁した。液にホルミウム 1モルに対 して 3モルのアンモニア水をカ卩えながら十分撹拌したところ、一部ゾルが生成したが、 不安定で時間の経過とともに水酸ィ匕ホルミウムの沈殿が生じた (試料番号 24— 25)。 実施例 2
[0027] 硝酸イットリウム水溶液を用いて実施例 1と同様の操作をしたところ無色透明のゾル が得られた (試料番号 2)。
実施例 3
[0028] 硝酸ディスプロシゥム水溶液を常温でよく撹拌しながら、デイスプロシゥム 1モルに 対して 0. 75モルのクェン酸を添カ卩した。液は白濁した。液にディスプロシゥム 1モル に対して 3モルのアンモニア水をカ卩えながら十分撹拌すると、液が透明になり、淡黄 色のゾルが得られた (試料番号 3)。
実施例 4
[0029] 硝酸ディスプロシゥム水溶液を常温でよく撹拌しながら、デイスプロシゥム 1モルに 対して 0. 55モルのエチレンジァミン四酢酸(カルボ-ル基として 2. 20モル)を添カロ した。液は白濁した。液にディスプロシゥム 1モルに対して 3モルのアンモニア水をカロ えながら十分撹拌すると、液が透明になり、淡黄色のゾルが得られた (試料番号 4)。 実施例 5
[0030] 硝酸ディスプロシゥム水溶液にアンモニア水をカ卩え、生じた沈殿を濾過'水洗するこ とによって得た水酸ィ匕デイスプロシゥム粉末を、純水中に分散させ水性分散液とした 。この液を常温でよく撹拌しながら、デイスプロシゥム 1モルに対して 0. 75モルのタエ ン酸三アンモ-ゥムを添加した。一部未反応の水酸ィ匕デイスプロシゥムが残るため、 No. 5Cの定量濾紙にて濾過することにより、淡黄色のゾルが得られた (試料番号 5) 実施例 6
[0031] 塩ィ匕デイスプロシゥム水溶液にアンモニア水をカ卩えて水酸ィ匕デイスプロシゥムを生じ させた後、常温でよく撹拌しながら、デイスプロシゥム 1モルに対して 0. 75モルのタエ ン酸三アンモ-ゥムを添加した。 60°Cに加熱して撹拌を継続することにより反応を促 進した。一部未反応の水酸化デイスプロシゥムが残るため、 No. 5Cの定量濾紙にて 濾過することにより、淡黄色のゾルが得られた (試料番号 6)。
実施例 7
[0032] 添カ卩するクェン酸三アンモ-ゥムの量をホルミウム 1モルに対して 0. 40モル(カル ボ-ル基としては 1. 20モル)、 0. 45モル(カルボ-ル基としては 1. 35モル)、 0. 50 モル(カルボ-ル基としては 1. 50モル)、 0. 80モル(カルボ-ル基としては 2. 40モ ル)、または 1. 00モル (カルボ-ル基としては 3. 00モル)として、実施例 1と同様の 操作をしたところ淡赤色透明のゾルが得られた (試料番号 7— 11)。試料番号 7、 8で はゾルの流動性がほとんどなくなり(ゲル化)、純水による希釈が必要となったため、 希土類金属 1モルに対するカルボニル基の量は 1. 5モル以上が望ましい。
比較例 3
[0033] 添カ卩するクェン酸三アンモ-ゥムの量をホルミウム 1モルに対して 0. 20モル(カル ボ-ル基としては 0. 60モル)、あるいは 1. 10モル(カルボ-ル基としては 3. 30モル )として、実施例 1と同様の操作をしたところ (試料番号 26, 27)、試料 26では水酸ィ匕 ホルミウムの沈殿が生じ、試料 27ではゾルが生成せず完全に溶液ィ匕してしまった。
[0034] 表 1に以上の結果をまとめて示す。平均粒子径は大塚電子製 DT— 1200を用い、 超音波減衰法で測定した。また試料番号 10、 26、 27の液を BaTiOと混合して製造
3
したセラミックス粉末について希土類金属元素の分布を波長分散型 X線マイクロアナ ライザで測定し、測定結果力 算出した偏差比、強度比、均一領域を表 2に示す。
[0035] [表 1]
Figure imgf000008_0001
[0036] [表 2]
Figure imgf000008_0002
[0037] 表 1及び表 2において、試料番号に *を付したものは、本発明の範囲から外れた試 料である。
[0038] 表 1から明らかなように、用いるカルボン酸あるいはカルボン酸塩が 1基もしくは 2基 のカルボニル基しか有さな 、場合は、水酸ィ匕物の沈殿が生じるので好ましくな ヽ (試 料番号 21— 25参照)。
[0039] 用いるカルボン酸あるいはカルボン酸塩が 3基以上のカルボ-ル基を有する場合 でも、カルボニル基と希土類金属とのモル比 (カルボ-ル基 Z希土類金属)が 1. 2を 下回れば、やはり水酸ィ匕物の沈殿が生じるので好ましくない (試料番号 26参照)。逆 にモル比 (カルボ-ル基 Z希土類金属)が 3を上回れば、溶液化してしまうので好ま しくない (試料番号 27参照)。
[0040] 同じ酸性溶液から出発した場合の収率を比較すると、カルボン酸塩としてクェン酸 塩を用いた場合 (試料番号 1、 2)は、そうでないカルボン酸を用いた場合 (試料番号 4)より高くなることが分力つており、使用するカルボン酸またはカルボン酸塩はクェン 酸またはクェン酸塩であることがより好ま U、。
[0041] また表 2から明らかなように、副成分原料としてゾルを用いてセラミック粉末を製造し た場合は、沈殿を含むスラリーや溶液を用いた場合に比べて希土類金属が均一に 分布したセラミック粉末が得られる。

Claims

請求の範囲
[1] 希土類金属化合物が水中に分散して ヽる水溶媒希土類金属化合物ゾルであって 、前記希土類金属化合物は、 3基以上のカルボ二ル基を有するカルボン酸または力 ルボン酸塩と Sc、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Luより選ばれる少なくとも一種類の希土類金属とを含み、且つ、前記カルボン酸また は前記カルボン酸塩のカルボニル基と前記希土類金属とのモル比(カルボニル基 Z 希土類金属)が 1. 2— 3の範囲にあることを特徴とする水溶媒希土類金属化合物ゾ ル。
[2] 前記カルボン酸または前記カルボン酸塩力 クェン酸またはクェン酸塩であること を特徴とする請求項 1に記載の水溶媒希土類金属化合物ゾル。
[3] Sc、 Y、 La、 Ce、 Pr、 Nd、 Sm、 Eu、 Gd、 Tb、 Dy、 Ho、 Er、 Tm、 Yb、 Luより選ば れる少なくとも一種類の希土類金属の酸性水溶液若しくはアルカリ性水溶液、または 前記希土類金属の水酸化物を分散させた水性分散液を準備する工程と、前記 ヽず れかの液に、 3基以上のカルボ-ル基を有するカルボン酸またはカルボン酸塩を、前 記カルボニル基と前記希土類金属とのモル比(カルボニル基 Z希土類金属)が 1. 2 一 3の範囲になるように添加する工程と、を備えたことを特徴とする水溶媒希土類金 属化合物ゾルの製造方法。
[4] 前記カルボン酸または前記カルボン酸塩がクェン酸またはクェン酸塩であることを 特徴とする請求項 3記載の水溶媒希土類金属化合物ゾルの製造方法。
[5] 請求項 1または請求項 2に記載の水溶媒希土類金属化合物ゾルを副成分原料とし て用いることを特徴とするセラミック粉末の製造方法。
PCT/JP2004/014100 2003-10-09 2004-09-27 水溶媒希土類金属化合物ゾル及びその製造方法、並びにそれを用いたセラミック粉末の製造方法 WO2005044773A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/569,275 US20070010587A1 (en) 2003-10-09 2004-09-27 Rare earth metal compound in aqueous solvent, method for producing same, and method for producing ceramic powder using same
JP2005515238A JP4548340B2 (ja) 2003-10-09 2004-09-27 水溶媒希土類金属化合物ゾル及びその製造方法、並びにそれを用いたセラミック粉末の製造方法
US12/559,738 US8592491B2 (en) 2003-10-09 2009-09-15 Water-based rare earth metal compound sol, manufacturing method thereof, and method for manufacturing ceramic powder using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-351173 2003-10-09
JP2003351173 2003-10-09

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10569275 A-371-Of-International 2004-09-27
US12/559,738 Division US8592491B2 (en) 2003-10-09 2009-09-15 Water-based rare earth metal compound sol, manufacturing method thereof, and method for manufacturing ceramic powder using the same

Publications (1)

Publication Number Publication Date
WO2005044773A1 true WO2005044773A1 (ja) 2005-05-19

Family

ID=34567006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014100 WO2005044773A1 (ja) 2003-10-09 2004-09-27 水溶媒希土類金属化合物ゾル及びその製造方法、並びにそれを用いたセラミック粉末の製造方法

Country Status (6)

Country Link
US (2) US20070010587A1 (ja)
JP (1) JP4548340B2 (ja)
KR (1) KR100662201B1 (ja)
CN (1) CN100473637C (ja)
TW (1) TWI286994B (ja)
WO (1) WO2005044773A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051851A (ja) * 2009-09-03 2011-03-17 Hitachi Chem Co Ltd 希土類フッ化物微粒子分散液、この分散液の製造方法、この分散液を用いた希土類フッ化物薄膜の製造方法、この分散液を用いた高分子化合物/希土類フッ化物複合フィルムの製造方法、及び、この分散液を用いた希土類焼結磁石
JP2011246331A (ja) * 2010-05-31 2011-12-08 Gifu Univ 酸化イットリウム前駆体水系ゾルの製造方法及び酸化イットリウム前駆体水系ゾル

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100473637C (zh) * 2003-10-09 2009-04-01 株式会社村田制作所 水性溶剂中的稀土金属化合物溶胶、其生产方法以及使用该溶胶生产陶瓷粉末的方法
CN106830067B (zh) * 2017-04-25 2018-11-13 安徽中创电子信息材料有限公司 一种制取氢氧化钛溶胶的生产装置
CN106865603B (zh) * 2017-04-25 2018-11-20 安徽中创电子信息材料有限公司 一种用于制取氢氧化钛溶液的装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020132725A1 (en) * 2001-03-13 2002-09-19 Labarge William J. Alkaline earth / rare earth lean NOx catalyst

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4537865A (en) * 1984-07-11 1985-08-27 Murata Manufacturing Co., Ltd. Process for preparing a particulate ceramic material
GB2161472B (en) * 1984-07-12 1987-09-03 Murata Manufacturing Co Preparing particulate ceramic materials
US4814128A (en) * 1985-08-01 1989-03-21 Gte Laboratories Incorporated Process for making a homogeneous doped silicon nitride article
US5535811A (en) * 1987-01-28 1996-07-16 Remet Corporation Ceramic shell compositions for casting of reactive metals
US5407618A (en) * 1990-08-13 1995-04-18 The Boeing Company Method for producing ceramic oxide compounds
US5225126A (en) * 1991-10-03 1993-07-06 Alfred University Piezoresistive sensor
US5417887A (en) * 1993-05-18 1995-05-23 The Dow Chemical Company Reduced viscosity, organic liquid slurries of aluminum nitride powder
US5624604A (en) * 1994-05-09 1997-04-29 Yasrebi; Mehrdad Method for stabilizing ceramic suspensions
JPH07309622A (ja) * 1994-05-18 1995-11-28 Shin Etsu Chem Co Ltd 希土類元素酸化物微粉の製造方法
FR2734560B1 (fr) * 1995-05-24 1997-08-14 Rhone Poulenc Chimie Compose a base d'yttrium ou d'holmium redispersible sous forme d'un sol
FR2741281B1 (fr) 1995-11-22 1998-02-13 Rhone Poulenc Chimie Sol organique comportant au moins un compose oxygene de terre(s) rare(s), procede de synthese du dit sol et utilisation du dit sol pour la catalyse
CN1065560C (zh) 1996-04-18 2001-05-09 天津石油化工公司研究所 Co助燃剂及其制备方法
FR2801299B1 (fr) * 1999-11-23 2002-06-07 Rhodia Terres Rares Dispersion colloidale aqueuse a base d'au moins un compose d'un lanthanide et d'un complexant, procede de preparation et utilisation
US6761866B1 (en) * 2000-03-28 2004-07-13 Council Of Scientific And Industrial Research Single step process for the synthesis of nanoparticles of ceramic oxide powders
FR2817770B1 (fr) 2000-12-08 2003-11-28 Rhodia Terres Rares Dispersion colloidale aqueuse de phosphate de terre rare et procede de preparation
FR2819432B1 (fr) * 2001-01-18 2003-04-11 Rhodia Chimie Sa Catalyseur mesostructure integrant des particules de dimensions nanometriques
US20020146365A1 (en) * 2001-04-09 2002-10-10 Woo-Seok Cho Method for the preparation of oxide powders
JP3804474B2 (ja) * 2001-06-22 2006-08-02 株式会社村田製作所 セラミック原料粉末の製造方法
JP2003034526A (ja) * 2001-07-18 2003-02-07 Kinya Adachi 希土類酸化物ナノ粒子の製造方法
JP2003036526A (ja) * 2001-07-25 2003-02-07 Fuji Photo Film Co Ltd 磁気記録媒体
CN100473637C (zh) * 2003-10-09 2009-04-01 株式会社村田制作所 水性溶剂中的稀土金属化合物溶胶、其生产方法以及使用该溶胶生产陶瓷粉末的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020132725A1 (en) * 2001-03-13 2002-09-19 Labarge William J. Alkaline earth / rare earth lean NOx catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STOJANOVIC B.D. ET AL: "Hot-pressed 9.5/65/35 PLZT prepared by the polymeric precursor method", CERAMICS INTERNATIONAL, vol. 26, no. 6, 2000, pages 625 - 630, XP004222401 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011051851A (ja) * 2009-09-03 2011-03-17 Hitachi Chem Co Ltd 希土類フッ化物微粒子分散液、この分散液の製造方法、この分散液を用いた希土類フッ化物薄膜の製造方法、この分散液を用いた高分子化合物/希土類フッ化物複合フィルムの製造方法、及び、この分散液を用いた希土類焼結磁石
JP2011246331A (ja) * 2010-05-31 2011-12-08 Gifu Univ 酸化イットリウム前駆体水系ゾルの製造方法及び酸化イットリウム前駆体水系ゾル

Also Published As

Publication number Publication date
CN100473637C (zh) 2009-04-01
US8592491B2 (en) 2013-11-26
TW200530126A (en) 2005-09-16
KR100662201B1 (ko) 2006-12-27
JP4548340B2 (ja) 2010-09-22
CN1835905A (zh) 2006-09-20
TWI286994B (en) 2007-09-21
US20070010587A1 (en) 2007-01-11
US20100004116A1 (en) 2010-01-07
KR20060052981A (ko) 2006-05-19
JPWO2005044773A1 (ja) 2007-11-29

Similar Documents

Publication Publication Date Title
KR101186946B1 (ko) 플레이크 동분말 및 그 제조 방법 그리고 도전성 페이스트
JP4976642B2 (ja) 高結晶性銀粉及びその製造方法
US8618005B2 (en) Glass powder and method of manufacturing the same
CN103130500A (zh) 钙钛矿粉末及其制备方法以及多层陶瓷电子部件
JP2004517795A (ja) 被覆されたチタン酸バリウム系粒子および製法
SI20526A (sl) Disperzije barijevega titanata
CN103796956B (zh) 草酸氧钛钡的制造方法和钛酸钡的制造方法
JP2003137649A (ja) 誘電体組成物
US8592491B2 (en) Water-based rare earth metal compound sol, manufacturing method thereof, and method for manufacturing ceramic powder using the same
CN1800099B (zh) 草酸氧钛钡粉末和钛类钙钛矿型陶瓷原料粉末的制造方法
JP2006199578A (ja) ペロブスカイト型チタン含有複合酸化物およびその製造方法並びにコンデンサ
JP5410124B2 (ja) 誘電体材料の製造方法
WO2004007396A1 (en) Process for coating ceramic particles and compositions formed from the same
KR20100036999A (ko) 분체의 합성방법 및 전자부품의 제조방법
CN111377734A (zh) X9r型多层陶瓷电容器介质材料及其制备方法
JP3306614B2 (ja) セラミック材料粉末の製造方法
KR101802067B1 (ko) 페로브스카이트 구조를 갖는 산화물 분말의 제조 방법 및 이에 의해 제조된 산화물 분말
JP2014133688A (ja) 二酸化チタン溶液、二酸化チタン溶液の製造方法、ペロブスカイト型チタン複合酸化物前駆体溶液及びペロブスカイト型チタン複合酸化物の製造方法
JP4441306B2 (ja) カルシウムドープチタン酸バリウムの製造方法
WO2021010368A1 (ja) Me元素置換有機酸バリウムチタニル、その製造方法及びチタン系ペロブスカイト型セラミック原料粉末の製造方法
JP2021017441A (ja) Me元素置換有機酸バリウムチタニル、その製造方法及びチタン系ペロブスカイト型セラミック原料粉末の製造方法
CN117645538A (zh) 一种碱催化超细草酸氧钛钡制造方法和钛酸钡的制造方法
KR20070088497A (ko) 마그네슘 화합물 졸 및 그 제조방법, 및 그것을 사용한세라믹 원료의 제조방법
KR20110010182A (ko) 페로브스카이트 구조를 갖는 산화물 나노분말 제조방법
US20040052721A1 (en) Dielectric particles having passivated surfaces and methods of forming same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480023242.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005515238

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020067002953

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007010587

Country of ref document: US

Ref document number: 10569275

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020067002953

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWG Wipo information: grant in national office

Ref document number: 1020067002953

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10569275

Country of ref document: US