WO2005041344A1 - 導波管変換装置、導波管ロータリージョイント及びアンテナ装置 - Google Patents

導波管変換装置、導波管ロータリージョイント及びアンテナ装置 Download PDF

Info

Publication number
WO2005041344A1
WO2005041344A1 PCT/JP2004/015483 JP2004015483W WO2005041344A1 WO 2005041344 A1 WO2005041344 A1 WO 2005041344A1 JP 2004015483 W JP2004015483 W JP 2004015483W WO 2005041344 A1 WO2005041344 A1 WO 2005041344A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide
circular
mode
rectangular
unnecessary
Prior art date
Application number
PCT/JP2004/015483
Other languages
English (en)
French (fr)
Inventor
Takeshi Okano
Tomohiro Nagai
Toshiro Hiratsuka
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2005514956A priority Critical patent/JP4103917B2/ja
Priority to US10/575,498 priority patent/US20070075801A1/en
Priority to EP04792649A priority patent/EP1677381A4/en
Publication of WO2005041344A1 publication Critical patent/WO2005041344A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/082Transitions between hollow waveguides of different shape, e.g. between a rectangular and a circular waveguide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/06Waveguide mouths

Definitions

  • Waveguide conversion device waveguide rotary joint and antenna device
  • the present invention relates to a waveguide conversion device, a waveguide rotary joint, and an antenna device suitably used for connecting, for example, a rectangular waveguide for high frequency signals and a circular waveguide.
  • an antenna device having a configuration in which a rectangular waveguide having a rectangular cross-sectional shape and a circular waveguide having a circular cross-sectional shape are connected is known. (For example, see Patent Document 1).
  • Patent Document 1 JP-A-5-235603
  • a conical opening serving as a radiator is provided at one end of a circular waveguide, and the waveguide is provided at the other end of the circular waveguide. And a rectangular waveguide extending in the vertical direction are connected.
  • the electromagnetic wave of this signal is transmitted from the circular waveguide to the rectangular waveguide and output to peripheral circuits connected to the rectangular waveguide. Is done.
  • the inside of the circular waveguide is transmitted in a transmission mode such as a TM mode.
  • the transmitted electromagnetic wave is changed to another transmission mode (TE mode, etc.) at the connection with the rectangular waveguide.
  • TE mode transmission mode, etc.
  • the rectangular waveguide At the connection with the rectangular waveguide, it is converted to TE mode, etc., and propagates through the rectangular waveguide.
  • the present invention has been made in view of the above-described problems of the related art, and an object of the present invention is to suppress generation of an unnecessary transmission mode at a connection portion between a rectangular waveguide and a circular waveguide.
  • an object of the present invention is to suppress generation of an unnecessary transmission mode at a connection portion between a rectangular waveguide and a circular waveguide.
  • the present invention provides a rectangular waveguide that extends in a fixed length direction with a rectangular cross-sectional shape and transmits a TE mode high-frequency signal, and a circular cross-sectional shape.
  • a mode converter between the rectangular waveguide and the circular waveguide includes a high-frequency signal between the respective waveguides.
  • a characteristic feature is that an unnecessary wave suppressing groove is provided in the circular waveguide for suppressing unnecessary transmission modes from being excited when transmitting.
  • the mode converter for converting the transmission mode between the rectangular waveguide and the circular waveguide is provided with the unnecessary wave suppression groove functioning as a reactance element.
  • the unnecessary wave suppression groove functioning as a reactance element.
  • this unnecessary transmission mode can be selectively suppressed by the unnecessary wave suppression groove, and only the necessary transmission mode can be transmitted stably.
  • the mode conversion unit indicates a portion in a range where a rectangular waveguide and a circular waveguide intersect and a transmission mode is converted.
  • the mode converter includes, in addition to the connection portion between the rectangular waveguide and the circular waveguide, a portion where the transmission mode is converted, for example, the connection portion force in the axial direction of each waveguide (signal transmission direction). And the like.
  • the unnecessary wave suppressing groove is formed in at least one of a rectangular waveguide and a circular waveguide. And the electric field generation of the TE mode of the circular waveguide, which is an unnecessary transmission mode.
  • the unnecessary wave suppressing groove can be disposed over one or both of the rectangular waveguide and the circular waveguide, and the arrangement of the unnecessary wave suppressing groove is appropriately set.
  • unnecessary transmission modes can be reliably suppressed.
  • an unnecessary wave suppression groove is formed extending in the direction orthogonal to the electric field component of the unnecessary TE mode, and its length is set to the high frequency signal.
  • a high suppression effect can be obtained for the transmission mode.
  • the unnecessary wave suppressing groove may be formed in the rectangular waveguide at a position corresponding to the axis of the circular waveguide.
  • the unnecessary wave suppressing groove can be arranged in a component or the like constituting the rectangular waveguide. For this reason, it is possible to simplify the shape and structure of parts on the circular waveguide side where no unnecessary wave suppressing groove is arranged, to easily form a circular waveguide, and to provide unnecessary wave suppressing grooves in both waveguides. As compared with the case, productivity can be increased.
  • the unnecessary wave suppressing groove may be formed in a circular waveguide.
  • the unnecessary wave suppressing groove can be arranged in a part or the like constituting the circular waveguide. Therefore, the shape, structure, and the like of the rectangular waveguide on which the unnecessary wave suppressing groove is not disposed can be simplified, and the rectangular waveguide can be easily formed, and the productivity can be increased.
  • the rectangular waveguide is inserted into a part of the unnecessary wave suppressing groove. It is also possible to provide a positioning part for positioning the circular waveguide.
  • a part of the unnecessary wave suppressing groove provided in the rectangular waveguide is provided with an alignment unit provided in the circular waveguide.
  • these waveguides can be accurately aligned and connected. Therefore
  • a waveguide conversion device having high dimensional accuracy can be easily formed by utilizing a part of the unnecessary wave suppressing groove, and the effect of suppressing unnecessary transmission modes can be further enhanced.
  • a configuration in which an alignment portion is provided in a rectangular waveguide and an unnecessary wave suppression groove is provided in a circular waveguide, or a configuration in which the alignment portion is formed as a separate component and the rectangular waveguide and the circular waveguide are provided. Even in the case of a configuration in which the waveguide conversion device is inserted into both of the tubes, it is possible to obtain operational effects such as easy formation of a waveguide conversion device having high dimensional accuracy as described above.
  • two waveguide converters according to the present invention are provided, and the circular waveguides of the respective waveguide converters are arranged coaxially and rotatably connected to form a waveguide rotary joint. Make it up.
  • the waveguide rotary joint is configured to rotatably connect two waveguide conversion devices
  • the circular waveguides of each waveguide conversion device are arranged coaxially. These circular waveguides can be rotatably connected, and these circular waveguides can satisfactorily convert the signal transmission mode between the individual rectangular waveguides and the spurious wave suppression grooves.
  • the electric field component is symmetric with respect to the axis (center of rotation) of the circular waveguide.
  • the rectangular waveguides can transmit a high-frequency signal smoothly between them while rotating relative to each other, and can realize a highly versatile rotary waveguide joint with less signal transmission loss.
  • the antenna device may be configured by providing a radiator for wireless communication in the conversion device.
  • the antenna device connects the two waveguide conversion devices rotatably, and for example, connects the radiator of one waveguide conversion device to the square waveguide of the other waveguide conversion device.
  • one radiator and the other rectangular waveguide can be stably connected by a circular waveguide, an unnecessary wave suppressing groove, or the like. Therefore, for example, while changing the directivity of the radiator in the rotation direction, the radio transmission by the rectangular waveguide of the other device Therefore, it is possible to realize a rotary antenna device with high versatility that can smoothly perform reception and reduce signal transmission loss.
  • FIG. 1 is a perspective view showing a waveguide conversion device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the waveguide conversion device, also viewing the ⁇ - ⁇ direction forces shown in FIG. 1.
  • FIG. 3 is a cross-sectional view of the waveguide conversion device as viewed in the direction of arrows III and III in FIG.
  • FIG. 4 is a perspective view showing, as a comparative example, a signal transmission state in a case where the unnecessary wave suppression groove is not provided.
  • FIG. 5 is a perspective view showing a waveguide conversion device according to a second embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of the waveguide conversion device as viewed from a direction indicated by arrows VI-VI in FIG. 5.
  • FIG. 7 is a perspective view showing a waveguide conversion device according to a third embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of the waveguide conversion device as viewed in the direction of arrows VIII-VIII in FIG. 7;
  • FIG. 9 is an exploded perspective view showing a state before a rectangular waveguide and a circular waveguide are erected.
  • FIG. 10 is a plan view showing a rectangular waveguide alone.
  • FIG. 11 is a characteristic diagram showing conversion loss and reflection loss at the time of mode conversion by the waveguide converter.
  • FIG. 12 is a perspective view showing a waveguide conversion device according to a fourth embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of the waveguide conversion device as viewed in a direction indicated by arrows XIII-XIII in FIG.
  • FIG. 14 is an exploded perspective view showing a state before assembling a waveguide conversion device according to a fifth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of a state where the rectangular waveguide and the circular waveguide in FIG. 14 are assembled, as viewed from the same position as in FIG.
  • FIG. 16 is a sectional view showing a waveguide rotary joint according to a sixth embodiment of the present invention.
  • FIG. 17 is a sectional view showing an antenna device according to a seventh embodiment of the present invention.
  • FIG. 18 is a sectional view showing a waveguide conversion device according to a first modification of the present invention.
  • FIG. 19 is a sectional view showing a waveguide conversion device according to a second modification of the present invention.
  • FIG. 20 is a sectional view showing a waveguide conversion device according to a third modification of the present invention. Explanation of symbols
  • FIGS. 1 to 3 show a first embodiment.
  • reference numeral 1 denotes a waveguide conversion device, and the waveguide conversion device 1 includes a rectangular waveguide 2 and a circular It is composed of a waveguide 4, an unnecessary wave suppressing groove 5, and the like, and transmits a high frequency signal such as a microwave and a millimeter wave.
  • [0029] 2 is formed of, for example, a square metal tube or the like, and transmits a TE mode high frequency signal.
  • the rectangular waveguide 2 extends linearly along, for example, the X-axis direction among the X-axis, Y-axis, and Z-axis orthogonal to each other, and has a cross-sectional shape in the Y-axis direction. Slender !, rectangular shape.
  • the rectangular waveguide 2 has upper and lower tube walls 2A and 2B opposed in the Z-axis direction, left and right tube walls 2C and 2D opposed in the Y-axis direction, and these tube walls.
  • 2A jointed to the end of 2D, and is constituted by another tube wall 2E that closes the rectangular waveguide tube 2 on the end side.
  • the upper and lower tube walls 2A and 2B constitute an H plane for the TE mode. Also
  • a circular opening 3 for connecting the circular waveguide 4 is formed on the end side of the upper tube wall 2A.
  • Reference numeral 4 denotes a circle which is connected to the opening 3 of the rectangular waveguide 2 and transmits a TM mode high frequency signal.
  • the circular waveguide 4 also has a force such as a metal tube having a circular cross-sectional shape as shown in FIGS. 2 and 3, and the tube wall 4A has an axis 0-0 (center O). have.
  • the circular waveguide 4 extends perpendicularly to the H plane (tube wall 2A) of the rectangular waveguide 2 along the Z-axis direction.
  • Reference numeral 5 denotes an unnecessary wave suppressing groove provided in a mode converter between the rectangular waveguide 2 and the circular waveguide 4 using, for example, a metal material.
  • the unnecessary wave suppressing groove 5 has a rectangular shape as described later.
  • the unnecessary wave suppressing groove 5 is formed as a long groove extending in a substantially U shape so as to surround the rectangular waveguide 2 from the outside, for example, and has a rectangular cross section.
  • the spurious wave suppression groove 5 extends along three of the four sides of the rectangular waveguide 2 along the tube walls 2B, 2C, and 2D. It is also provided on the tube wall 4A of the circular waveguide 4.
  • the unnecessary-wave suppressing groove 5 has a lateral groove 6 extending in the Y-axis direction along the lower tube wall 2 B of the rectangular waveguide 2, and both ends of the lateral groove 6 are bent into an L-shape. It comprises left and right vertical grooves 7, 7 extending in the Z-axis direction over the respective tube walls 2C, 2D of the rectangular waveguide 2 and the tube wall 4A of the circular waveguide 4.
  • the lateral groove 6 has a bottom surface 6 A that is depressed with respect to the tube wall 2 B of the rectangular waveguide 2.
  • the left vertical groove 7 has a bottom surface 7A that is depressed with respect to the left tube wall 2C (the tube wall 4A of the circular waveguide 4) of the rectangular waveguide 2, and the right vertical groove 7 similarly. And has a bottom surface 7A that is depressed with respect to the tube walls 2D and 4A.
  • the unnecessary wave suppressing groove 5 is located at a position corresponding to the axis O—O of the circular waveguide 4 as shown in FIGS. 2 and 3 (in the present embodiment, for example, a position on the axis O—O ), And a direction orthogonal to the direction of the electric field component such as an unnecessary TE mode excited in the circular waveguide 4 (for example,
  • the length L of the unwanted wave suppressing groove 5 in the Y-axis direction (the interval between the bottom surfaces 7A of the vertical grooves 7) L is expressed by the following equation (1).
  • One wavelength of the high-frequency signal transmitted in between is set to, for example, 1Z2 or more of the wavelength.
  • the bottom surface 6A of the lateral groove 6 of the wave suppression groove 5 is a short-circuit end.
  • the unnecessary wave suppressing groove 5 functioning as a reactance element is provided in the mode converter for converting the transmission mode between the rectangular waveguide 2 and the circular waveguide 4.
  • the installation, its dimensions, shape, arrangement, etc. are set appropriately.
  • the waveguide conversion device 1 generates the electric field component of the TE mode propagating in the rectangular waveguide 2 into the circular waveguide 4.
  • Unnecessary TE mode electric field components are mismatched, and the TM mode electric field components to be transmitted are not matched.
  • the waveguide conversion device 1 according to the present embodiment has the above-described configuration. Next, the operation thereof will be described.
  • the TE mode electromagnetic wave propagating in the rectangular waveguide 2 is transmitted in the circular waveguide 4.
  • the transmission mode is converted by the mode converter where the rectangular waveguide 2 and the circular waveguide 4 intersect.
  • the TE mode which is an unnecessary transmission mode
  • the lowest-order transmission mode is set, and the TM mode, which is the normal
  • the rectangular waveguide ⁇ and the circular waveguide ⁇ of the waveguide converter are simply connected without using the unnecessary wave suppressing groove 5.
  • the electromagnetic wave in the TM mode is efficiently transmitted in the circular waveguide 4 by the electromagnetic wave in the TE mode transmitted through the rectangular waveguide 2.
  • the mode conversion portion between the rectangular waveguide 2 and the circular waveguide 4 is provided with the unnecessary wave suppressing groove 5.
  • unnecessary transmission such as TE mode together with the necessary TM mode
  • Excitation of the transmission mode can be suppressed, and only necessary transmission modes can be transmitted stably.
  • the unnecessary wave suppressing groove 5 is provided over both the rectangular waveguide 2 and the circular waveguide 4, and is extended in the Y-axis direction orthogonal to the electric field component of the unnecessary TE mode. Long
  • the unnecessary wave suppression groove 5 can be arranged over a sufficient range, and the arrangement is appropriately set and unnecessary. Transmission modes can be reliably suppressed.
  • the transmission mode ( ⁇ mode) of the electromagnetic wave propagating in the rectangular waveguide 2 of the conversion source is
  • each guide is formed with reference to this axis ⁇ — ⁇ .
  • the spurious wave suppression groove 5 can be accurately arranged in the mode conversion section of the waveguides 2 and 4.
  • FIGS. 5 and 6 show a second embodiment according to the present invention, and the feature of this embodiment is that a plurality of unnecessary wave suppressing grooves are provided.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • Reference numeral 11 denotes a waveguide conversion device.
  • the waveguide conversion device 11 includes a rectangular waveguide 2, a circular waveguide 4, an unnecessary-wave suppressing groove 5, and the like, similarly to the first embodiment. It consists of. However, the mode conversion section where the rectangular waveguide 2 and the circular waveguide 4 intersect each other is provided with another unnecessary wave suppressing groove 12 described later.
  • Reference numeral 12 denotes another unnecessary wave suppressing groove provided in the waveguides 2 and 4 together with the unnecessary wave suppressing groove 5.
  • the unnecessary wave suppressing groove 12 is formed, for example, in the extending direction of the rectangular waveguide 2 (X-axis direction). Direction), which suppresses the ⁇ mode excited along a different direction.
  • the unnecessary wave suppressing groove 12 intersects (orthogonally) with the unnecessary wave suppressing groove 5 at a position corresponding to the center ⁇ of the circular waveguide 4 and extends in the X-axis direction.
  • the tube wall 2B, 2E of the second and the tube wall 4A of the circular waveguide 4 are formed in an L shape.
  • the unnecessary wave suppressing groove 12 has a lateral groove 13 extending in the X-axis direction along the lower tube wall 2 B of the rectangular waveguide 2, and an end force L of the lateral groove 13 is bent into an L-shape. It comprises a vertical groove 14 extending in the Z-axis direction over the tube wall 2E of the rectangular waveguide 2 and the tube wall 4A of the circular waveguide 4. Further, the horizontal groove 13 has a bottom surface 13A recessed with respect to the tube wall 2B of the rectangular waveguide 2, and the vertical groove 14 has a bottom surface 14A recessed with respect to the tube walls 2E and 4A.
  • the present embodiment configured as described above, substantially the same operation and effect as in the first embodiment can be obtained.
  • two unnecessary wave suppressing grooves 5, 12 orthogonal to each other are provided, so that the TE mode (along the X-axis direction) shown in FIG. Besides the TE mode), for example, the electric field along the Y-axis
  • the transmission can be stably suppressed, and the transmission efficiency of the required transmission mode can be further increased.
  • FIGS. 7 to 11 show a third embodiment according to the present invention, and the feature of this embodiment is that the waveguide conversion device is formed by a plurality of components. .
  • Reference numeral 21 denotes a waveguide conversion device.
  • the waveguide conversion device 21 includes a rectangular waveguide 22, a circular waveguide 26, and an unnecessary wave suppressing groove, which will be described later, in substantially the same manner as in the first embodiment. It consists of 27 mags. In this case, the waveguides 22, 26 are formed as separate components.
  • Reference numeral 22 denotes a rectangular waveguide formed to extend in the X-axis direction. As shown in Figs. 8 and 9, the rectangular waveguide 22 has, for example, an elongated rectangular metal material and the like. It is formed by assembling a component 23 and a lid 25 described later.
  • a long groove 24 extending linearly in the X-axis direction with a rectangular cross section is formed in the waveguide component 23, and the long groove 24 abuts with the circular waveguide 26. It is open on the abutment surface (upper surface in FIG. 7) of the waveguide component 23.
  • the long groove 24 has a bottom surface 24A, left and right side surfaces 24B, and an end surface 24C that closes one end of the long groove 24 in the longitudinal direction.
  • Reference numeral 25 denotes a lid formed of, for example, a metal plate or the like.
  • the lid 25 covers the long groove 24 of the waveguide component 23 together with the circular waveguide 26, thereby forming a rectangular shape.
  • the waveguide 22 is formed.
  • the lid 25 is not limited to a plate material, and may be formed integrally with the circular waveguide 26.
  • Reference numeral 26 denotes a circular waveguide formed of, for example, a metal material or the like.
  • the circular waveguide 26 has a circular hole 26A extending linearly in the Z-axis direction with a circular cross section.
  • the circular hole 26A has an axis OO.
  • the circular waveguide 26 is assembled with the lid 25 in abutment with the upper surface of the waveguide component 23, and a predetermined position where the circular hole 26 A and an unnecessary wave suppressing groove 27 described later face each other. It is fixed to. In this state, the circular waveguide 26 is connected to the end of the rectangular waveguide 22 (the long groove 24), and extends perpendicularly to the rectangular waveguide 22.
  • Reference numeral 27 denotes an unnecessary wave suppressing groove provided in a mode converter where the rectangular waveguide 22 and the circular waveguide 26 intersect each other.
  • the unnecessary wave suppressing groove 27 is provided as shown in FIGS.
  • a long groove force extending in a substantially U-shape extends along the bottom surface 24A of the long groove 24 of the waveguide component 23 and the left and right side surfaces 24B. I have.
  • the unnecessary wave suppressing groove 27 is disposed only in the rectangular waveguide 22 of the waveguides 22 and 26.
  • the unnecessary-wave suppressing groove 27 is formed to extend in the Y-axis direction at a position corresponding to the axis O—O of the circular waveguide 26, and the length L thereof is equal to that of the first embodiment.
  • the value is set so as to satisfy the above equation (1).
  • the unnecessary wave suppressing groove 27 includes a lateral groove 28 extending in the Y-axis direction along the bottom surface 24A on the end side of the long groove 24, and the force at both ends of the lateral groove 28 also bends in an L-shape.
  • Left and right vertical grooves 29, 29 are formed along the left and right side surfaces 24B in the Z-axis direction.
  • the lateral groove 28 is formed, for example, with a rectangular cross-sectional shape, and has a bottom surface 28A that is recessed with respect to the bottom surface 24A of the long groove 24.
  • the left and right vertical grooves 29 are formed, for example, with a substantially U-shaped cross-sectional shape, and the bottom surface is a concave curved surface portion 29A recessed with respect to the side surface 24B of the long groove 24. .
  • the end of the vertical groove 29 in the Z-axis direction is closed by the circular waveguide 26 at the abutting surface of the waveguide component 23.
  • the characteristic line shown by a virtual line in FIG. 11 is a result of performing the same simulation calculation for the waveguide conversion device (see FIG. 4) described as a comparative example in the first embodiment. It is a fruit.
  • the reflection loss is kept at a low level substantially equal to that of the comparative example,
  • the conversion loss to the required TE mode can be kept small.
  • the unnecessary wave suppression groove 27 can sufficiently reduce the conversion loss to the TE mode.
  • the electromagnetic wave of the TE mode propagating in the shaped waveguide 22 is transmitted through the circular waveguide 26 to the TM mode.
  • the waveguide conversion device 21 is , The waveguide part 23, the lid 25, the circular waveguide 26, etc. are assembled, so that even if the waveguides 22, 26, the unnecessary wave suppression groove 27
  • the waveguide conversion device 21 can be efficiently manufactured by assembling the components easily.
  • the waveguide component 23 has, for example, a range that does not affect the effect of suppressing unnecessary TE modes.
  • the productivity can be improved.
  • FIGS. 12 and 13 show a fourth embodiment according to the present invention.
  • the feature of the present embodiment is that only a circular waveguide which does not have an unnecessary wave suppressing groove provided in a rectangular waveguide is used. This is a configuration that is provided in Note that, in the present embodiment, the same components as those in the third embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • Reference numeral 31 denotes a waveguide conversion device.
  • the waveguide conversion device 31 includes a rectangular waveguide 32, a circular waveguide 35, and an unnecessary-wave suppressing groove, which will be described later, similarly to the third embodiment.
  • the waveguides 32 and 35 are formed as separate components.
  • Reference numeral 32 denotes a rectangular waveguide.
  • the rectangular waveguide 32 includes a waveguide component 33 and a lid 25 in substantially the same manner as in the third embodiment as shown in FIGS.
  • the waveguide component 33 is provided with a long groove 34 having a bottom surface 34A, left and right side surfaces 34B, an end surface 34C, and the like.
  • Reference numeral 35 denotes a circular waveguide formed of, for example, a metal material.
  • the circular waveguide 35 has a circular shape along the axis OO extending in the Z-axis direction, similarly to the third embodiment.
  • unnecessary wave suppressing grooves 36 described later are provided on the peripheral walls on both sides in the radial direction.
  • Reference numeral 36 denotes, for example, two unnecessary wave suppressing grooves provided in a mode converter where the rectangular waveguide 32 and the circular waveguide 35 intersect each other. It has a U-shaped cross section and extends in the Z-axis direction.
  • the unwanted wave suppression groove 36 is Of the waveguides 32 and 35, only the circular waveguide 35 is formed, and the end side is closed by the waveguide component 33 at the abutting surface of the circular waveguide 35.
  • the present embodiment configured as described above can obtain almost the same operation and effects as those of the first and third embodiments.
  • the unnecessary wave suppressing groove 36 is provided only in the circular waveguide 35, the shape and structure of the rectangular waveguide 32 (waveguide component 33) can be simplified. This can be easily formed.
  • FIGS. 14 and 15 show a fifth embodiment according to the present invention, which is characterized in that an alignment portion is provided between a rectangular waveguide and a circular waveguide. This is the structure. Note that, in the present embodiment, the same components as those in the third embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • Reference numeral 41 denotes a waveguide conversion device.
  • the waveguide conversion device 41 includes a rectangular waveguide 22, a circular waveguide 42, an unnecessary-wave suppressing groove 27, and the like, similarly to the third embodiment.
  • Waveguide 22 includes a rectangular waveguide 22, a circular waveguide 42, an unnecessary-wave suppressing groove 27, and the like, similarly to the third embodiment.
  • the circular waveguide 42 is made of, for example, a square metal material, and has a circular hole 42A having an axis O-O extending in the Z-axis direction.
  • a fitting projection 43 described later is provided on the abutting surface of the circular waveguide 42 that abuts on the waveguide component 23.
  • Reference numeral 43 denotes, for example, two fitting projections as positioning portions provided on the circular waveguide 42.
  • the fitting projections 43 are, for example, radially opposite sides of the circular hole 42A of the circular waveguide 42. And protrudes in the Z-axis direction toward each longitudinal groove 29 of the waveguide component 23.
  • the fitting projection 43 has, for example, a substantially U-shaped cross-sectional shape substantially equal to the vertical groove 29.
  • the present embodiment configured as described above can obtain almost the same operation and effects as those of the first and third embodiments.
  • the fitting projection 43 is provided on the circular waveguide 42, the rectangular waveguide 22 and the circular waveguide 42 are connected. At times, the fitting projection 43 of the circular waveguide 42 can be inserted into a part of the vertical groove 29 of the waveguide component 23. For this reason, the waveguides 22 and 42 can be accurately positioned using the fitting projection 43.
  • the waveguide conversion device 41 having high dimensional accuracy can be easily formed by utilizing a part of the unnecessary wave suppressing groove 27, and the effect of suppressing unnecessary transmission modes can be further enhanced.
  • FIG. 16 shows a sixth embodiment according to the present invention, and the feature of this embodiment is that the present embodiment is applied to a waveguide rotary joint.
  • Reference numeral 51 denotes a waveguide rotary joint, and the waveguide rotary joint 51 includes joint components 52 and 57, waveguide conversion devices 53 and 58 described later, and the like.
  • the waveguide rotary joint 51 connects the waveguide converters 53 and 58 so as to be relatively rotatable, and satisfactorily transmits a high-frequency signal between them.
  • Reference numeral 52 denotes one joint component of the waveguide rotary joint 51.
  • the joint component 52 is made of, for example, a metal material or the like, and a waveguide conversion device 53 is provided therein.
  • the waveguide conversion device 53 includes a rectangular waveguide 54, a circular waveguide 55, an unnecessary-wave suppressing groove 56, and the like, in substantially the same manner as in the third embodiment.
  • Reference numeral 57 denotes the other joint part of the waveguide rotary joint 51.
  • the joint part 57 is made of, for example, a metal material, and a waveguide conversion device 58 is provided therein.
  • the waveguide conversion device 58 includes a rectangular waveguide 59, a circular waveguide 60, an unnecessary wave suppressing groove 61, and the like, similarly to the one waveguide conversion device 53.
  • the joint parts 52, 57 are abutted with a small gap in a state where the circular waveguides 55, 60 are coaxially arranged, and the joint parts 52, 57 are centered on the axis O- It is rotatably connected.
  • the joint component 52 is provided with an annular gap surrounding the circular waveguide 55 from the radial outside, and this gap is configured as a choke 62 for preventing leakage of electromagnetic waves.
  • the waveguide rotary joint 51 is configured using the waveguide converters 53 and 58, the circular waveguides 55 and 60 of the respective waveguide converters 53 and 58 are coaxial. These circles can be placed on top and rotatably connected The waveguides 55 and 60 can satisfactorily convert a signal transmission mode between each of the rectangular waveguides 54 and 59 by the unnecessary wave suppressing grooves 56 and 61.
  • the TM mode propagating in the circular waveguides 55 and 60 has an
  • the TM mode is set between the waveguides 55 and 60. stable
  • the rectangular waveguides 54, 59 of the respective waveguide conversion devices 53, 58 rotate relatively to each other, and can transmit a high-frequency signal smoothly between them, and signal transmission loss is reduced.
  • a highly versatile waveguide rotary joint 51 can be realized.
  • FIG. 17 shows a seventh embodiment according to the present invention, and the feature of this embodiment lies in that the present invention is applied to a mouthpiece type antenna device.
  • the same components as those in the sixth embodiment are denoted by the same reference numerals, and description thereof will be omitted.
  • Reference numeral 71 denotes a rotary-type antenna device.
  • the antenna device 71 is composed of joint parts 52 ⁇ and 57, waveguide converters 53 and 58, and the like, almost in the same manner as in the sixth embodiment.
  • the joint part 52 ⁇ is provided with a waveguide converter 53 having a rectangular waveguide 54 ⁇ , a circular waveguide 55, an unnecessary wave suppressing groove 56 and the like.
  • a radiator 72 described later is connected to the rectangular waveguide 54 'at the end opposite to the circular waveguide 55.
  • Reference numeral 72 denotes a radiator for wireless communication provided in the joint part 52 ⁇ .
  • the radiator 72 has a substantially conical or pyramid shape from the end of the rectangular waveguide 54 'to the outside space.
  • the opening is formed as an opening.
  • the radiator 72 transmits an electromagnetic wave (radio wave) transmitted through the rectangular waveguide 54 ′ to the outside or receives a radio wave from the outside into the rectangular waveguide 54 ′.
  • the present embodiment configured as described above can provide substantially the same operation and effect as those of the first, third, and sixth embodiments.
  • the antenna device 71 is configured using the waveguide conversion devices 53 and 58, for example, the radiator is fixed by fixing one joint part 57 and rotating the other joint part 52. 72 for the other In this state, one radiator 72 and the other rectangular waveguide 59 are connected to the circular waveguides 55 and 60, the unnecessary wave suppressing grooves 56 and 61, etc. This allows a stable connection.
  • the other rectangular waveguide 59 can smoothly transmit and receive radio waves, and the signal transmission loss is reduced.
  • a high-rotational antenna device 71 can be realized.
  • the unnecessary wave suppressing groove 5 is arranged along the tube walls 2B, 2C, 2D of the rectangular waveguide 2 and the tube wall 4A of the circular waveguide 4.
  • the present invention is not limited to this, and may be configured, for example, as a first modified example shown in FIG.
  • the unnecessary wave suppressing groove is formed using only a part of the longitudinal groove 7 of the first embodiment, and extends along the left and right tube walls 2C and 2D of the rectangular waveguide 2 .
  • a mode converter is provided at a lower portion of the rectangular waveguide 2 extending the axis of the circular waveguide 4.
  • the unwanted wave suppressing groove 5 "may be formed using only the transverse groove 6 formed in this case.
  • the unwanted wave suppressing groove 5" is formed using only the transverse groove 6 of the first embodiment, and has a rectangular shape. It extends along the lower tube wall 2B of the wave tube 2.
  • the concave curved surface portions 24 D and 29 A are provided in the long groove 24 and the vertical groove 29 of the waveguide component 23.
  • a configuration like a third modification shown in FIG. 20 may be employed.
  • the vertical groove 82 opening on the abutting surface of the waveguide component 81 is formed so that the groove width is smaller on the bottom surface 82A side than on the opening side, and the side surfaces 82B of the vertical groove 82 are angled with each other. It faces in a state inclined by ⁇ .
  • a chamfered portion 82C having a convex curved shape or a flat shape is formed at the opening end of the vertical groove 82.
  • the circular waveguide 42 is provided with the fitting projection 43 as a positioning part of the waveguide conversion device 41.
  • the positioning part of the present invention may be, for example, a waveguide component and a circular waveguide, and a positioning pin which can be formed by using a positioning pin of another component. To be inserted into the tube Therefore, the two may be aligned.
  • the configuration is such that the waveguide converters 53 and 58 are substantially the same as those in the third embodiment.
  • the present invention is not limited to this.
  • waveguide rotary joints and antennas can be formed using the waveguide converters 1, 11, 31, 41 according to the first, second, fourth, and fifth embodiments. It is of course possible to configure the device and the like! /.

Landscapes

  • Waveguide Connection Structure (AREA)
  • Waveguides (AREA)

Abstract

 方形導波管と円形導波管とのモード変換部に不要な伝送モードの励起を抑える不要波抑制溝を設けることにより、必要な伝送モードの伝送効率を高める。  方形導波管2と円形導波管4とを垂直に接続し、これらのモード変換部には、方形導波管2の管壁2B,2C,2Dと円形導波管4の管壁4Aとにわたって延びる不要波抑制溝5を設ける。これにより、不要波抑制溝5は、方形導波管2内を伝わるTE10モードの電磁波によって円形導波管4内で不要なTE11モードが励起されるのを抑制でき、TE11モードへの変換損失を小さくすることができる。そして、円形導波管4内でTM01モードの電磁波を効率よく励起でき、導波管2,4の間で信号を安定的に伝送することができる。

Description

明 細 書
導波管変換装置、導波管ロータリージョイント及びアンテナ装置 技術分野
[0001] 本発明は、例えば高周波信号用の方形導波管と円形導波管とを接続するのに好 適に用いられる導波管変換装置、導波管ロータリージョイント及びアンテナ装置に関 する。
背景技術
[0002] 一般に、導波管変換装置としては、四角形の横断面形状を有する方形導波管と、 円形の断面形状を有する円形導波管とを接続する構成としたアンテナ装置が知られ ている(例えば、特許文献 1参照)。
[0003] 特許文献 1:特開平 5— 235603号公報
[0004] この種の従来技術によるアンテナ装置は、例えば円形導波管の一端側に放射器と なる円錐状の開口部が設けられ、円形導波管の他端側には、この導波管と垂直方向 に延びる方形導波管が接続されている。そして、円形導波管の開口部で無線信号が 受信されると、この信号の電磁波は、円形導波管から方形導波管に伝送され、方形 導波管に接続された周辺回路等に出力される。
[0005] この場合、従来技術では、例えば TM モード等の伝送モードで円形導波管内を
01
伝わる電磁波を、方形導波管との接続部位で他の伝送モード (TE モード等)に変
01
換し、これを方形導波管内で伝送する構成としている。
[0006] ところで、上述した従来技術では、円形導波管内を伝わる TM モード等の電磁波
01
力 方形導波管との接続部位で TE モード等に変換され、方形導波管内を伝播す
01
る構成となっている。
[0007] しかし、この場合には、変換先の導波管内で所望の伝送モードが励起されるだけで なぐ他の不要な伝送モードも一緒に励起されることが多い。このため、従来技術で は、方形導波管と円形導波管との間で高周波信号を伝送するときに、不要な伝送モ ードによって余分な共振が生じ、信号の損失が増大して伝送効率が低下したり、信 号特性の劣化を招くと 、う問題がある。 発明の開示
[0008] 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、方形 導波管と円形導波管との接続部位において、不要な伝送モードの発生を抑えること ができ、所望の伝送モードで信号を安定的に伝送できると共に、伝送時の効率や信 号特性を向上できるようにした導波管変換装置、導波管ロータリージョイント及びアン テナ装置を提供することにある。
[0009] 上述した課題を解決するために本発明は、四角形の横断面形状をもって一定の長 さ方向に延び TE モードの高周波信号を伝送する方形導波管と、円形の横断面形
10
状をもって形成され該方形導波管の H面に垂直に接続されると共に TM モードの
01 高周波信号を伝送する円形導波管とを備えてなる導波管変換装置において、前記 方形導波管と円形導波管とのモード変換部には、該各導波管の間で高周波信号を 伝送するときに円形導波管に不要な伝送モードが励起されるのを抑制する不要波抑 制溝を設ける構成としたことを特徴として 、る。
[0010] 本発明によれば、方形導波管と円形導波管との間で伝送モードの変換を行うモー ド変換部には、リアクタンス素子として機能する不要波抑制溝を設ける構成としたの で、方形導波管と円形導波管との間で高周波信号を伝送するときには、円形導波管 の所望の TM モードと一緒に他の不要な伝送モード(例えば、 TE モード)が励起
01 11
されたとしても、この不要な伝送モードを不要波抑制溝によって選択的に抑えること ができ、必要な伝送モードだけを安定的に伝送することができる。
[0011] 従って、例えば不要波抑制溝の寸法、形状、配置等を予め適切に設定しておくこと により、変換先の円形導波管内で不要な伝送モードによって共振が生じるのを防止 することができる。この結果、信号の変換損失を低減できると共に、伝送効率や信号 特性を向上させることができる。
[0012] なお、モード変換部は、方形導波管と円形導波管とが交差して伝送モードが変換さ れる範囲の部位を示している。このため、モード変換部は、方形導波管と円形導波管 との接続部位に加えて、伝送モードが変換される部位として例えば接続部位力 各 導波管の軸方向(信号の伝送方向)に延長した部位等も含むものである。
[0013] また、本発明では、不要波抑制溝は、方形導波管と円形導波管のうち少なくとも一 方または両方に配設し、不要な伝送モードとなる円形導波管の TE モードの電界成
11
分と直交する方向に高周波信号の 1波長の 1Z2以上の長さをもって延びる構成とす るのが好ましい。
[0014] このように構成したことにより、例えば不要波抑制溝を方形導波管と円形導波管と のいずれか一方または両方にわたって配設でき、不要波抑制溝の配置を適切に設 定して不要な伝送モードを確実に抑制することができる。また、不要波抑制溝を不要 な TE モードの電界成分と直交する方向に延ばして形成し、その長さを高周波信号
11
の 1波長の 1Z2以上に設定したから、例えば変換元の方形導波管内を伝わる電磁 波の TE モードに対して、変換先の円形導波管内で必要な TM モードのみが整合
10 01 し、不要な TE モードが不整合となるような伝送状態を実現することができ、不要な
11
伝送モードに対して高い抑制効果を得ることができる。
[0015] また、本発明では、不要波抑制溝は円形導波管の軸線に対応する位置で方形導 波管に形成する構成としてもよい。
[0016] これにより、例えば方形導波管を構成する部品等に対して不要波抑制溝を配置す ることができる。このため、不要波抑制溝を配置しない円形導波管側の部品形状、構 造等を簡略化でき、円形導波管を容易に形成できると共に、両方の導波管に不要波 抑制溝を設ける場合と比較して、生産性を高めることができる。
[0017] また、本発明では、不要波抑制溝は円形導波管に形成する構成としてもよい。
[0018] これにより、例えば円形導波管を構成する部品等に対して不要波抑制溝を配置す ることができる。このため、不要波抑制溝を配置しない方形導波管側の部品形状、構 造等を簡略化でき、方形導波管を容易に形成できると共に、生産性を高めることがで きる。
[0019] また、本発明では、方形導波管と円形導波管との間には、該各導波管を接続すると きに不要波抑制溝の一部に挿嵌され方形導波管と円形導波管とを位置合わせする 位置合わせ部を設ける構成としてもょ ヽ。
[0020] これにより、方形導波管と円形導波管とを接続するときには、例えば方形導波管に 設けた不要波抑制溝の一部に対して、円形導波管に設けた位置合わせ部を揷嵌す ることにより、これらの導波管を正確に位置合わせして接続することができる。従って 、不要波抑制溝の一部を利用して高い寸法精度の導波管変換装置を容易に形成で き、不要な伝送モードに対する抑制効果をより高めることができる。また、例えば方形 導波管に位置合わせ部を設け、円形導波管に不要波抑制溝を設ける構成とした場 合や、位置合わせ部を別部品により形成して方形導波管と円形導波管の両方に挿 嵌する構成とした場合にも、上述と同様に高い寸法精度の導波管変換装置を容易に 形成できる等の作用効果を得ることができる。
[0021] また、本発明による導波管変換装置を 2個備え、該各導波管変換装置の円形導波 管を同軸上に配置して回転可能に接続することによって導波管ロータリージョイントを 構成してちょい。
[0022] この場合、導波管ロータリージョイントは、 2個の導波管変換装置を回転可能に接続 する構成としたので、各導波管変換装置の円形導波管を同軸上に配置して回転可 能に接続でき、これらの円形導波管は不要波抑制溝によって個々の方形導波管との 間で信号の伝送モードを良好に変換することができる。このとき、円形導波管内を伝 播する TM モードは、その電界成分が円形導波管の軸線(回転中心)に対して対称
01
となっているので、 2個の円形導波管が軸線を中心として相対回転したとしても、これ らの間で TM モードを安定的に伝送することができる。従って、各導波管変換装置
01
の方形導波管は互いに相対回転しつつ、両者間で高周波信号を円滑に伝送でき、 信号の伝送損失が少なぐ汎用性の高い回転型の導波管ジョイントを実現することが できる。
[0023] さらに、本発明による導波管変換装置を 2個備え、該各導波管変換装置の円形導 波管を同軸上に配置して回転可能に接続すると共にいずれか一方の導波管変換装 置に無線通信用の放射器を設けることによってアンテナ装置を構成してもよいもので ある。
[0024] これにより、アンテナ装置は、 2個の導波管変換装置を回転可能に接続し、例えば 一方の導波管変換装置の放射器を他方の導波管変換装置の方形導波管に対して 回転させることができ、この状態で一方の放射器と他方の方形導波管とを円形導波 管、不要波抑制溝等によって安定的に接続することができる。従って、例えば放射器 の指向性を回転方向に変化させつつ、他方の装置の方形導波管により無線の送信 ,受信を円滑に行うことができ、信号の伝送損失が少なぐ汎用性の高い回転型のァ ンテナ装置を実現することができる。
図面の簡単な説明
[図 1]図 1は本発明の第 1の実施の形態による導波管変換装置を示す斜視図である。
[図 2]図 2は導波管変換装置を図 1中の矢示 Π-Π方向力もみた断面図である。
[図 3]図 3は導波管変換装置を図 1中の矢示 III III方向力もみた断面図である。
[図 4]図 4は不要波抑制溝を設けない場合の信号の伝送状態を比較例として示す斜 視図である。
[図 5]図 5は本発明の第 2の実施の形態による導波管変換装置を示す斜視図である。
[図 6]図 6は導波管変換装置を図 5中の矢示 VI-VI方向からみた断面図である。
[図 7]図 7は本発明の第 3の実施の形態による導波管変換装置を示す斜視図である。
[図 8]図 8は導波管変換装置を図 7中の矢示 VIII— VIII方向力もみた断面図である。
[図 9]図 9は方形導波管と円形導波管とを ffi^立てる前の状態で示す分解斜視図であ る。
[図 10]図 10は方形導波管を単体で示す平面図である。
[図 11]図 11は導波管変換装置によるモード変換時の変換損失と反射損失とを示す 特性線図である。
[図 12]図 12は本発明の第 4の実施の形態による導波管変換装置を示す斜視図であ る。
[図 13]図 13は導波管変換装置を図 12中の矢示 XIII— XIII方向からみた断面図である
[図 14]図 14は本発明の第 5の実施の形態による導波管変換装置を組立てる前の状 態で示す分解斜視図である。
[図 15]図 15は図 14中の方形導波管と円形導波管とを組立てた状態を図 8と同様位 置からみた断面図である。
[図 16]図 16は本発明の第 6の実施の形態による導波管ロータリージョイントを示す断 面図である。
[図 17]図 17は本発明の第 7の実施の形態によるアンテナ装置を示す断面図である。 [図 18]図 18は本発明の第 1の変形例による導波管変換装置を示す断面図である。
[図 19]図 19は本発明の第 2の変形例による導波管変換装置を示す断面図である。
[図 20]図 20は本発明の第 3の変形例による導波管変換装置を示す断面図である。 符号の説明
[0026] 1, 11, 21, 31, 41, 53, 58 導波管変換装置
2, 22, 32, 54, 54' , 59 方形導波管
2A, 2B, 2C, 2D, 2E, 4A 管壁
3 開口部
4, 26, 35, 42, 55, 60 円形導波管
5, 5' , 5〃 , 12, 27, 36, 56, 61 不要波抑制溝
6. 13, 28 横溝
7. 14, 29 縦溝
6A, 7A, 13A, 14A, 24A, 28A, 34A 底面
23, 33 導波管部品
24, 34 長溝
24B, 34B 側面
24C, 34C 端面
24D, 29A 凹湾曲面部
25 蓋体
26A, 35A, 42A 円形孔
43 嵌合突起 (位置合わせ部)
51 導波管ロータリージョイント
52, 52' , 57 ジ 3イン卜部品
62 チョーク
71 アンテナ装置
72 放射器
発明を実施するための最良の形態
[0027] 以下、本発明の実施の形態による導波管変換装置、導波管ロータリージョイント及 びアンテナ装置を、添付図面を参照して詳細に説明する。
[0028] まず、図 1ないし図 3は第 1の実施の形態を示し、図中、 1は導波管変換装置で、該 導波管変換装置 1は、後述の方形導波管 2、円形導波管 4、不要波抑制溝 5等により 構成され、例えばマイクロ波、ミリ波等の高周波信号を伝送するものである。
[0029] 2は例えば四角形状の金属管等により形成され、 TE モードの高周波信号を伝送
10
する方形導波管で、該方形導波管 2は、互いに直交する X軸, Y軸及び Z軸のうち、 例えば X軸方向に沿って直線状に延び、その横断面形状は Y軸方向に細長!、長方 形状をなしている。
[0030] そして、方形導波管 2は、 Z軸方向で対向する上,下の管壁 2A, 2Bと、 Y軸方向で 対向する左,右の管壁 2C, 2Dと、これらの管壁 2A— 2Dの端部に接合され、方形導 波管 2を端部側で閉塞する他の管壁 2Eとにより構成されている。
[0031] この場合、上,下の管壁 2A, 2Bは、 TE モードに対する H面を構成している。また
10
、上側の管壁 2Aの端部側には、円形導波管 4を接続する円形状の開口部 3が形成 されている。
[0032] 4は方形導波管 2の開口部 3に接続され、 TM モードの高周波信号を伝送する円
01
形導波管で、該円形導波管 4は、図 2、図 3に示す如ぐ例えば円形の横断面形状を もつ金属管等力もなり、その管壁 4Aは軸線 0-0 (中心 O)を有している。そして、円 形導波管 4は、 Z軸方向に沿って方形導波管 2の H面 (管壁 2A)と垂直に延びて 、る
[0033] 5は例えば金属材料等を用いて方形導波管 2と円形導波管 4とのモード変換部に 設けられた不要波抑制溝で、該不要波抑制溝 5は、後述の如く方形導波管 2から円 形導波管 4に高周波信号を伝送するときに、例えば円形 TE モード等の不要な伝送
11
モードが円形導波管 4内に励起されるのを抑制し、方形導波管 2内を伝わる方形 TE モードの電界成分を、円形導波管 4内を伝わる円形 TM モードの電界成分に効率
0 01
よく変換するものである。
[0034] ここで、不要波抑制溝 5は、例えば方形導波管 2を外側から取囲むように略コ字状 に延びる長溝として形成され、その横断面は四角形状をなしている。また、不要波抑 制溝 5は、方形導波管 2の横断面の四辺のうち三辺の管壁 2B, 2C, 2Dに沿って延 設され、円形導波管 4の管壁 4Aにも配設されている。
[0035] 即ち、不要波抑制溝 5は、方形導波管 2の下側の管壁 2Bに沿って Y軸方向に延び る横溝 6と、該横溝 6の両端部力 L状に屈曲し、方形導波管 2の各管壁 2C, 2Dと円 形導波管 4の管壁 4Aとにわたって Z軸方向に延びて設けられた左,右の縦溝 7, 7と により構成されている。
[0036] この場合、横溝 6は、方形導波管 2の管壁 2Bに対して窪んだ底面 6Aを有している 。また、左側の縦溝 7は、方形導波管 2の左側の管壁 2C (円形導波管 4の管壁 4A) に対して窪んだ底面 7Aを有し、右側の縦溝 7も同様に、管壁 2D, 4Aに対して窪ん だ底面 7Aを有している。
[0037] また、不要波抑制溝 5は、図 2、図 3に示す如ぐ円形導波管 4の軸線 O— Oに対応 する位置 (本実施の形態では、例えば軸線 O— O上の位置)に配置され、円形導波管 4内で励起される不要な TE モード等の電界成分の方向と直交する方向(例えば、
11
Y軸方向)に延びて形成されている。
[0038] そして、不要波抑制溝 5の Y軸方向の長さ(各縦溝 7の底面 7A間の間隔) Lは、下 記数 1の式に示すように、導波管 2, 4の間に伝送される高周波信号の 1波長をえとし て、例えば波長えの 1Z2以上の大きさに設定されている。
[0039] [数 1]
L≥l /2
[0040] この場合、方形導波管 2から円形導波管 4に信号を伝送するときに、不要な伝送モ ードである TE モードは、後述の図 4に示す如ぐ方形導波管 2 (導波管 ^ )の伸長
11
方向に沿って X軸方向に励起され易くなり、この方向で励起される TE モードは、不
11
要波抑制溝 5の横溝 6の底面 6A等が短絡端となる。
[0041] このように、本実施の形態では、方形導波管 2と円形導波管 4との間で伝送モード の変換を行うモード変換部にはリアクタンス素子として機能する不要波抑制溝 5を設 け、その寸法、形状、配置等を適切に設定している。これにより、導波管変換装置 1 は、方形導波管 2内を伝わる TE モードの電界成分に対して、円形導波管 4内に生
10
じる不要な TE モードの電界成分が不整合となり、伝送すべき TM モードの電界成
11 01
分が整合するように構成して 、るものである。 [0042] 本実施の形態による導波管変換装置 1は上述の如き構成を有するもので、次に、 その作動について説明する。
[0043] まず、方形導波管 2内を伝わる TE モードの電磁波が円形導波管 4内に伝送され
10
るときには、方形導波管 2と円形導波管 4とが交差するモード変換部で伝送モードが 変換される。この場合、円形導波管 4内では、不要な伝送モードである TE モードが
11 最低次の伝送モードとなり、伝送すべき正規の伝送モードである TM モードが第 2
01
番目の伝送モードとなって!/、る。
[0044] このため、例えば図 4に示す比較例のように、不要波抑制溝 5を用いずに、導波管 変換装置 の方形導波管 ^ と円形導波管^ を単に接続しただけの構成では、 方形導波管 ^ 内を伝わる TE モードの電磁波によって円形導波管^ 内に不要な
10
TE モードが励起され易くなる。この結果、比較例の構成では、正規の TM モード
11 01 における信号の変換損失が増大し、伝送効率が低下したり、信号特性が劣化する虞 れがある。
[0045] これに対し、本実施の形態では、方形導波管 2と円形導波管 4とのモード変換部に 不要波抑制溝 5を設けているので、円形導波管 4内に不要な TE モードが励起され
11
るのを不要波抑制溝 5によって抑制することができる。これにより、方形導波管 2内を 伝わる TE モードの電磁波によって円形導波管 4内で TM モードの電磁波を効率
10 01
よく励起でき、 TE モードと TM モードとの間でモード変換を低損失な状態で安定
10 01
的に行うことができる。
[0046] 力べして、本実施の形態によれば、方形導波管 2と円形導波管 4とのモード変換部 には、不要波抑制溝 5を設ける構成としたので、これらの導波管 2, 4の間で高周波信 号を伝送するときには、例えば必要な TM モードと一緒に TE モード等の不要な伝
01 11
送モードが励起されるのを抑制し、必要な伝送モードだけを安定的に伝送することが できる。
[0047] 従って、例えば不要波抑制溝 5の寸法、形状、配置等を予め適切に設定しておくこ とにより、変換先の円形導波管 4内で不要な伝送モードによって共振が生じるのを防 止でき、信号の損失を低減できると共に、伝送効率や信号特性を向上させることがで きる。 [0048] この場合、不要波抑制溝 5を方形導波管 2と円形導波管 4の両方にわたって配設し 、これを不要な TE モードの電界成分と直交する Y軸方向に延ばすと共に、その長
11
さ Lは高周波信号の 1波長 λの 1Z2以上の寸法値 (L≥ λ /2)として形成したので 、不要波抑制溝 5を十分な範囲にわたって配置でき、その配置を適切に設定して不 要な伝送モードを確実に抑制することができる。
[0049] そして、変換元の方形導波管 2内を伝わる電磁波の伝送モード (ΤΕ モード)に対
10
して、変換先の円形導波管 4内で必要な ΤΜ モードのみが整合し、不要な ΤΕ モ
01 11 ードが不整合となるような伝送状態を実現することができ、不要な伝送モードに対し て高 、抑制効果を得ることができる。
[0050] また、不要波抑制溝 5を、円形導波管 4の軸線 Ο— Οに対応する位置で方形導波管 2に形成する構成としたので、この軸線 Ο— Οを基準として各導波管 2, 4のモード変 換部に不要波抑制溝 5を正確に配置することができる。そして、不要波抑制溝 5を配 置しない円形導波管 4側の部品形状、構造等を簡略化でき、これを容易に形成でき ると共に、両方の導波管 2, 4に不要波抑制溝を設ける場合と比較して、生産性を高 めることができる。
[0051] 次に、図 5及び図 6は本発明による第 2の実施の形態を示し、本実施の形態の特徴 は、複数の不要波抑制溝を設ける構成としたことにある。なお、本実施の形態では、 前記第 1の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略する ものとする。
[0052] 11は導波管変換装置で、該導波管変換装置 11は、第 1の実施の形態とほぼ同様 に、方形導波管 2、円形導波管 4、不要波抑制溝 5等により構成されている。しかし、 方形導波管 2と円形導波管 4とが互いに交差するモード変換部には、後述する他の 不要波抑制溝 12が設けられている。
[0053] 12は不要波抑制溝 5と共に導波管 2, 4に設けられた他の不要波抑制溝で、該不 要波抑制溝 12は、例えば方形導波管 2の伸長方向 (X軸方向)と異なる方向に沿つ て励起される ΤΕ モードを抑制するものである。
11
[0054] ここで、不要波抑制溝 12は、図 6に示す如ぐ例えば円形導波管 4の中心 Οに対応 する位置で不要波抑制溝 5と交差 (直交)して X軸方向に延びると共に、方形導波管 2の管壁 2B, 2Eと円形導波管 4の管壁 4Aとにわたって L字状に形成されている。
[0055] この場合、不要波抑制溝 12は、方形導波管 2の下側の管壁 2Bに沿って X軸方向 に延びる横溝 13と、該横溝 13の端部力 L状に屈曲し、方形導波管 2の管壁 2Eと円 形導波管 4の管壁 4Aとにわたって Z軸方向に延びて設けられた縦溝 14とにより構成 されている。また、横溝 13は、方形導波管 2の管壁 2Bに対して窪んだ底面 13Aを有 し、縦溝 14は、管壁 2E, 4Aに対して窪んだ底面 14Aを有している。
[0056] カゝくして、このように構成される本実施の形態でも、前記第 1の実施の形態とほぼ同 様の作用効果を得ることができる。特に、本実施の形態では、互いに直交する 2個の 不要波抑制溝 5, 12を設ける構成としたので、第 1の実施の形態で図 4中に矢示した TE モード (X軸方向に沿った TE モード)の他に、例えば Y軸方向に沿った電界
11 11
成分をもつ TE モードが励起される場合でも、これらの TE モードを不要波抑制溝
11 11
5, 12によって安定的に抑制でき、必要な伝送モードの伝送効率をより高めることが できる。
[0057] 次に、図 7ないし図 11は本発明による第 3の実施の形態を示し、本実施の形態の 特徴は、導波管変換装置を複数の部品によって形成する構成としたことにある。
[0058] 21は導波管変換装置で、該導波管変換装置 21は、第 1の実施の形態とほぼ同様 に、後述の方形導波管 22、円形導波管 26、不要波抑制溝 27等により構成されてい る。この場合、導波管 22, 26はそれぞれ別部品として形成されている。
[0059] 22は X軸方向に延びて形成された方形導波管で、該方形導波管 22は、図 8、図 9 に示す如ぐ例えば細長い四角形状の金属材料等力もなる導波管部品 23と、後述 の蓋体 25とを組立てることにより形成されている。
[0060] ここで、導波管部品 23には、四角形の横断面形状をもって X軸方向に直線状に延 びる長溝 24が形成され、該長溝 24は、円形導波管 26と衝合される導波管部品 23の 衝合面(図 7中の上面)に開口している。そして、長溝 24は、底面 24Aと、左,右の側 面 24Bと、長溝 24の長さ方向の一端側を閉塞する端面 24Cとを有している。
[0061] また、長溝 24の端面 24C側の角隅は、図 10に示す如ぐ例えば導波管部品 23の 加工性等を高めるために丸みをもって形成された凹湾曲面部 24Dとなっている。さら に、導波管部品 23には、後述の不要波抑制溝 27が形成されている。 [0062] 25は例えば金属板等により形成された蓋体で、該蓋体 25は、円形導波管 26と一 緒に導波管部品 23の長溝 24を施蓋し、これによつて方形導波管 22を形成するもの である。この場合、蓋体 25は板材に限らず、また円形導波管 26と一体に形成しても よい。
[0063] 26は例えば金属材料等により形成された円形導波管で、該円形導波管 26には、 円形の横断面形状をもって Z軸方向に直線状に延びる円形孔 26Aが形成され、この 円形孔 26 Aは軸線 O-Oを有して 、る。
[0064] そして、円形導波管 26は、蓋体 25と共に導波管部品 23の上面に衝合して組付け られ、円形孔 26Aと後述の不要波抑制溝 27とが対面する所定の位置に固定されて いる。この状態で、円形導波管 26は、方形導波管 22 (長溝 24)の端部側に接続され 、方形導波管 22と垂直に延びている。
[0065] 27は方形導波管 22と円形導波管 26とが互いに交差するモード変換部に設けられ た不要波抑制溝で、該不要波抑制溝 27は、図 8、図 10に示す如ぐ第 1の実施の形 態とほぼ同様に、例えば略コ字状に延びる長溝力 なり、導波管部品 23の長溝 24 の底面 24Aと左,右の側面 24Bとに沿って延設されている。この場合、不要波抑制 溝 27は、導波管 22, 26のうち方形導波管 22のみに配置されているものである。
[0066] そして、不要波抑制溝 27は、円形導波管 26の軸線 O— Oに対応する位置で Y軸方 向に延びて形成され、その長さ Lは、第 1の実施の形態で示した前記数 1の式を満た すように設定されている。
[0067] また、不要波抑制溝 27は、長溝 24の端部側で底面 24Aに沿って Y軸方向に延び る横溝 28と、該横溝 28の両端部力も L状に屈曲し、長溝 24の左,右の側面 24Bに 沿って Z軸方向に延びる左,右の縦溝 29, 29とが形成されている。そして、横溝 28 は、例えば四角形の横断面形状をもって形成され、長溝 24の底面 24Aに対して窪 んだ底面 28Aを有して!/、る。
[0068] また、左,右の縦溝 29は、例えば略 U字状の横断面形状をもって形成され、その底 面は、長溝 24の側面 24Bに対して窪んだ凹湾曲面部 29Aとなっている。この場合、 縦溝 29の Z軸方向の端部側は、導波管部品 23の衝合面で円形導波管 26によって 閉塞されている。 [0069] そして、不要波抑制溝 27は、第 1の実施の形態とほぼ同様に、方形導波管 22から 円形導波管 26に高周波信号を伝送するときに、例えば TE モード等の不要な伝送
11
モードに対して横溝 28の底面 28Aが短絡端となることにより、この不要な伝送モード が円形導波管 26内に励起されるのを抑制するものである。
[0070] 次に、図 11を参照しつつ、導波管変換装置 21による高周波信号の伝送特性につ いて説明する。ここで、図 11中に実線で示す特性線は、伝送特性をシミュレーション 演算した結果であり、この演算時の設定条件としては、図 8、図 10に示す如ぐ例え ば方形導波管 22の幅 W= 2. 54mm,高さ H= l. 27mm,長溝 24の凹湾曲面部 2 4Dの曲率半径 R=0. 5mm、円形導波管 26の直径 D = 3. 5mm、円形導波管 26の 中心 Oと方形導波管 22の短絡面 (長溝 24の端面 24C)との間の距離 d= l. 55mm として設定している。また、不要波抑制溝 27としては、その長さ L = 5. 14mm,溝幅 A= l. OOmm,横溝 28の深さ h=0. 4mmとして設定している。
[0071] 一方、図 11中に仮想線で示す特性線は、第 1の実施の形態で比較例として記載し た導波管変換装置 (図 4参照)について、同様のシミュレーション演算を行った結 果である。
[0072] この比較例の特性線力 判るように、導波管変換装置 による伝送モードの変換 時には、不要な TE モードが励起されることにより、例えば 10dB程度の高いレべ
11
ルの変換損失が広い周波数帯域にわたって生じる。また、変換部における反射損失 も、ある程度生じている。
[0073] これに対し、本実施の形態では、不要波抑制溝 27の寸法、形状、配置等を適切に 設定することにより、反射損失を比較例とほぼ同程度の低いレベルに留めつつ、不 要な TE モードへの変換損失を小さく抑えることができる。
11
[0074] 特に、導波管変換装置 21で使用する例えば 75— 78GHz程度の周波数では、不 要波抑制溝 27によって TE モードへの変換損失を十分に小さくすることができ、方
11
形導波管 22内を伝わる TE モードの電磁波を、円形導波管 26内で TM モードの
10 01 電磁波へと効率よく変換することができる。
[0075] カゝくして、このように構成される本実施の形態でも、前記第 1の実施の形態とほぼ同 様の作用効果を得ることができる。特に、本実施の形態では、導波管変換装置 21を 、導波管部品 23、蓋体 25、円形導波管 26等を組立てることにより構成したので、導 波管 22, 26、不要波抑制溝 27等が複雑な形状をもつ場合でも、これらを複数の部 品に分割して容易に形成でき、各部品を組立てることにより導波管変換装置 21を効 率よく製造することができる。
[0076] この場合、不要波抑制溝 27の横溝 28と縦溝 29とを方形導波管 22 (導波管部品 23 M則のみに設けたので、円形導波管 26側の形状、構造を簡略ィ匕でき、これを容易に 形成することができる。
[0077] また、導波管部品 23には、例えば不要な TE モードの抑制効果に影響のない範
11
囲で長溝 24や縦溝 29に凹湾曲面部 24D, 29A等を形成したので、生産性を高める ことができる。
[0078] 次に、図 12及び図 13は本発明による第 4の実施の形態を示し、本実施の形態の 特徴は、不要波抑制溝を方形導波管に設けることなぐ円形導波管のみに設ける構 成としたことにある。なお、本実施の形態では、前記第 3の実施の形態と同一の構成 要素に同一の符号を付し、その説明を省略するものとする。
[0079] 31は導波管変換装置で、該導波管変換装置 31は、第 3の実施の形態とほぼ同様 に、後述の方形導波管 32、円形導波管 35、不要波抑制溝 36等により構成され、導 波管 32, 35はそれぞれ別部品として形成されている。
[0080] 32は方形導波管で、該方形導波管 32は、図 12、図 13に示す如ぐ第 3の実施の 形態とほぼ同様に、導波管部品 33と、蓋体 25とを組立てることにより形成され、導波 管部品 33には、底面 34A、左,右の側面 34B、端面 34C等を有する長溝 34が設け られている。
[0081] 35は例えば金属材料等により形成された円形導波管で、該円形導波管 35には、 第 3の実施の形態とほぼ同様に、 Z軸方向に延びる軸線 O-Oに沿って円形孔 35A が形成されているものの、その径方向両側の周壁には、後述の不要波抑制溝 36が 設けられている。
[0082] 36は方形導波管 32と円形導波管 35とが互いに交差するモード変換部に設けられ た例えば 2個の不要波抑制溝で、該各不要波抑制溝 36は、例えば略 U字状の横断 面形状をもって形成され、 Z軸方向に延びている。この場合、不要波抑制溝 36は、導 波管 32, 35のうち円形導波管 35のみに形成され、その端部側は、円形導波管 35の 衝合面で導波管部品 33によって閉塞されている。
[0083] 力べして、このように構成される本実施の形態でも、前記第 1,第 3の実施の形態とほ ぼ同様の作用効果を得ることができる。特に、本実施の形態では、不要波抑制溝 36 を円形導波管 35のみに設ける構成としたので、方形導波管 32 (導波管部品 33)側 の形状、構造を簡略ィ匕でき、これを容易に形成することができる。
[0084] 次に、図 14及び図 15は本発明による第 5の実施の形態を示し、本実施の形態の 特徴は、方形導波管と円形導波管との間に位置合わせ部を設ける構成としたことに ある。なお、本実施の形態では、前記第 3の実施の形態と同一の構成要素に同一の 符号を付し、その説明を省略するものとする。
[0085] 41は導波管変換装置で、該導波管変換装置 41は、第 3の実施の形態とほぼ同様 に、方形導波管 22、円形導波管 42、不要波抑制溝 27等により構成され、導波管 22
, 42はそれぞれ別部品として形成されている。
[0086] ここで、円形導波管 42は、例えば四角形状の金属材料等からなり、その内部には、 軸線 O— Oを有する円形孔 42Aが Z軸方向に延びて形成されている。また、導波管部 品 23と衝合される円形導波管 42の衝合面には、後述の嵌合突起 43が設けられてい る。
[0087] 43は円形導波管 42に設けられた位置合わせ部としての例えば 2箇所の嵌合突起 で、該各嵌合突起 43は、例えば円形導波管 42の円形孔 42Aの径方向両側に配置 され、導波管部品 23の各縦溝 29に向けて Z軸方向に突出している。この場合、嵌合 突起 43は、例えば縦溝 29とほぼ等しい略 U字状の横断面形状を有している。
[0088] そして、嵌合突起 43は、図 15に示す如ぐ導波管部品 23と円形導波管 42とを衝 合して導波管 22, 42を接続するときに、不要波抑制溝 27の縦溝 29の一部に揷嵌さ れる。これにより、嵌合突起 43は、方形導波管 22と円形導波管 42とを位置合わせす るものである。
[0089] 力べして、このように構成される本実施の形態でも、前記第 1,第 3の実施の形態とほ ぼ同様の作用効果を得ることができる。特に、本実施の形態では、円形導波管 42に 嵌合突起 43を設ける構成としたので、方形導波管 22と円形導波管 42とを接続する ときには、導波管部品 23の縦溝 29の一部に対して円形導波管 42の嵌合突起 43を 挿嵌することができる。このため、嵌合突起 43を用いて導波管 22, 42を正確に位置 合わせすることができる。
[0090] 従って、不要波抑制溝 27の一部を利用して高い寸法精度の導波管変換装置 41を 容易に形成でき、不要な伝送モードに対する抑制効果をより高めることができる。
[0091] 次に、図 16は本発明による第 6の実施の形態を示し、本実施の形態の特徴は、導 波管ロータリージョイントに適用したことにある。
[0092] 51は導波管ロータリージョイントで、該導波管ロータリージョイント 51は、後述のジョ イント部品 52, 57、導波管変換装置 53, 58等により構成されている。そして、導波管 ロータリージョイント 51は、導波管変換装置 53, 58を相対回転可能に接続しつつ、こ れらの間で高周波信号を良好に伝送するものである。
[0093] 52は導波管ロータリージョイント 51を構成する一方のジョイント部品で、該ジョイント 部品 52は、例えば金属材料等力 なり、その内部には導波管変換装置 53が設けら れている。この場合、導波管変換装置 53は、前記第 3の実施の形態とほぼ同様に、 方形導波管 54、円形導波管 55、不要波抑制溝 56等により構成されている。
[0094] 57は導波管ロータリージョイント 51を構成する他方のジョイント部品で、該ジョイント 部品 57は、例えば金属材料等力 なり、その内部には導波管変換装置 58が設けら れている。この場合、導波管変換装置 58は、一方の導波管変換装置 53とほぼ同様 に、方形導波管 59、円形導波管 60、不要波抑制溝 61等により構成されている。
[0095] そして、ジョイント部品 52, 57は、円形導波管 55, 60を同軸上に配置した状態で 微小なギャップをもって衝合され、円形導波管 55, 60の軸線 O— Oを中心として回転 可能に接続されている。この場合、例えばジョイント部品 52には、円形導波管 55を径 方向外側から取囲む環状の隙間が設けられ、この隙間は電磁波の漏れを防ぐチョー ク 62として構成されている。
[0096] 力べして、このように構成される本実施の形態でも、前記第 1,第 3の実施の形態とほ ぼ同様の作用効果を得ることができる。特に、本実施の形態では、導波管変換装置 5 3, 58を用いて導波管ロータリージョイント 51を構成したので、各導波管変換装置 53 , 58の円形導波管 55, 60を同軸上に配置して回転可能に接続でき、これらの円形 導波管 55, 60は、不要波抑制溝 56, 61によって個々の方形導波管 54, 59との間 で信号の伝送モードを良好に変換することができる。
[0097] この場合、円形導波管 55, 60内を伝播する TM モードは、その電界成分が該各
01
導波管 55, 60の軸線(回転中心)に対して対称となっているので、これらが軸線 O— Oを中心として相対回転したとしても、各導波管 55, 60の間で TM モードを安定的
01
に伝送することができる。
[0098] 従って、各導波管変換装置 53, 58の方形導波管 54, 59は互いに相対回転しつ つ、両者間で高周波信号を円滑に伝送することができ、信号の伝送損失が少なぐ 汎用性の高い導波管ロータリージョイント 51を実現することができる。
[0099] 次に、図 17は本発明による第 7の実施の形態を示し、本実施の形態の特徴は、口 一タリー型のアンテナ装置に適用したことにある。なお、本実施の形態では、前記第 6の実施の形態と同一の構成要素に同一の符号を付し、その説明を省略するものと する。
[0100] 71はロータリー型のアンテナ装置で、該アンテナ装置 71は、第 6の実施の形態とほ ぼ同様に、ジョイント部品 52^ , 57、導波管変換装置 53, 58等により構成されてい る。そして、ジョイント部品 52^ には、方形導波管 54^ 、円形導波管 55、不要波抑 制溝 56等力もなる導波管変換装置 53が設けられている。しかし、方形導波管 54' には、円形導波管 55と反対側に位置する端部に後述の放射器 72が接続されている
[0101] 72はジョイント部品 52^ に設けられた無線通信用の放射器で、該放射器 72は、方 形導波管 54' の端部から外部の空間に向けて略円錐状または角錐状に開口する 開口部として形成されている。そして、放射器 72は、方形導波管 54' 内を伝わる電 磁波 (電波)を外部に送信したり、外部から方形導波管 54' 内に電波を受信するも のである。
[0102] 力べして、このように構成される本実施の形態でも、前記第 1,第 3,第 6の実施の形 態とほぼ同様の作用効果を得ることができる。特に、本実施の形態では、導波管変換 装置 53, 58を用いてアンテナ装置 71を構成したので、例えば一方のジョイント部品 57を固定し、他方のジョイント部品 52を回転させることにより、放射器 72を他方の方 形導波管 59に対して回転させることができ、この状態で一方の放射器 72と他方の方 形導波管 59とを、円形導波管 55, 60、不要波抑制溝 56, 61等によって安定的に接 続することができる。
[0103] 従って、例えば放射器 72の指向性を回転方向に変化させつつ、他方の方形導波 管 59によって無線の送信,受信を円滑に行うことができ、信号の伝送損失が少なぐ 汎用性の高い回転型のアンテナ装置 71を実現することができる。
[0104] なお、前記第 1の実施の形態では、不要波抑制溝 5を方形導波管 2の管壁 2B, 2C , 2Dと円形導波管 4の管壁 4Aとに沿って配置する構成とした。しかし、本発明はこれ に限らず、例えば図 18に示す第 1の変形例のように構成してもよい。この場合、不要 波抑制溝 は、第 1の実施の形態の縦溝 7の一部のみを用いて形成され、方形導 波管 2の左,右の管壁 2C, 2Dに沿って延びている。
[0105] また、本発明は、例えば図 19に示す第 2の変形例のように、モード変換部として円 形導波管 4の軸線を延長した方形導波管 2の下側部位に設けられた横溝 6のみを用 いて不要波抑制溝 5"を構成してもよい。この場合、不要波抑制溝 5" は、第 1の実 施の形態の横溝 6のみを用いて形成され、方形導波管 2の下側の管壁 2Bに沿って 延びている。
[0106] また、第 3の実施の形態では、導波管部品 23の長溝 24と縦溝 29に凹湾曲面部 24 D, 29Aを設ける構成とした。しかし、本発明では、導波管部品の生産性等を高める ために、例えば図 20に示す第 3の変形例のように構成してもよい。この場合、導波管 部品 81の衝合面に開口する縦溝 82は、その開口側よりも底面 82A側で溝幅が狭く なるように形成され、縦溝 82の各側面 82Bは、互いに角度 αだけ傾斜した状態で対 向している。また、縦溝 82の開口端には、例えば凸湾曲状または平面状の面取り部 82Cが形成されている。これにより、例えば導波管部品 81をプレス力卩ェ、铸造等によ つて成形するときには、成形型力もの抜け性を良くすることができる。
[0107] また、第 5の実施の形態では、導波管変換装置 41の位置合わせ部として円形導波 管 42に嵌合突起 43を設ける構成とした。しかし、本発明の位置合わせ部としては、 例えば導波管部品及び円形導波管と別部品の位置合わせピン等を用いてもよぐこ の位置合わせピンを、例えば導波管部品と円形導波管とにそれぞれ挿嵌することに よって両者を位置合わせする構成としてもょ 、。
さらに、第 6,第 7の実施の形態では、第 3の実施の形態とほぼ同様の導波管変換 装置 53, 58を用いる構成とした。しかし、本発明はこれに限らず、例えば第 1,第 2, 第 4,第 5の実施の形態による導波管変換装置 1, 11, 31, 41を用いて導波管ロータ リージョイント、アンテナ装置等を構成してもよ!/、のは勿論である。

Claims

請求の範囲
[1] 四角形の横断面形状をもって一定の長さ方向に延び TE モードの高周波信号を
10
伝送する方形導波管と、円形の横断面形状をもって形成され該方形導波管の H面 に垂直に接続されると共に TM モードの高周波信号を伝送する円形導波管とを備
01
えてなる導波管変換装置において、
前記方形導波管と円形導波管とのモード変換部には、該各導波管の間で高周波 信号を伝送するときに前記円形導波管に不要な伝送モードが励起されるのを抑制す る不要波抑制溝を設ける構成としたことを特徴とする導波管変換装置。
[2] 前記不要波抑制溝は、前記方形導波管と円形導波管のうち少なくとも一方または 両方に配設し、前記不要な伝送モードとなる前記円形導波管の TE モードの電界
11
成分と直交する方向に前記高周波信号の 1波長の 1Z2以上の長さをもって延びる 構成としてなる請求項 1に記載の導波管変換装置。
[3] 前記不要波抑制溝は前記円形導波管の軸線に対応する位置で前記方形導波管 に形成してなる請求項 1または 2に記載の導波管変換装置。
[4] 前記不要波抑制溝は前記円形導波管に形成してなる請求項 1または 2に記載の導 波管変換装置。
[5] 前記方形導波管と円形導波管との間には、該各導波管を接続するときに前記不要 波抑制溝の一部に挿嵌され前記方形導波管と円形導波管とを位置合わせする位置 合わせ部を設けてなる請求項 1, 2, 3または 4に記載の導波管変換装置。
[6] 請求項 1な!、し 5の 、ずれかに記載の導波管変換装置を 2個備え、該各導波管変 換装置の円形導波管を同軸上に配置して回転可能に接続する構成とした導波管口 一タリージョイント。
[7] 請求項 1な!、し 5の 、ずれかに記載の導波管変換装置を 2個備え、該各導波管変 換装置の円形導波管を同軸上に配置して回転可能に接続すると共にいずれか一方 の導波管変換装置に無線通信用の放射器を設ける構成としたアンテナ装置。
PCT/JP2004/015483 2003-10-24 2004-10-20 導波管変換装置、導波管ロータリージョイント及びアンテナ装置 WO2005041344A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005514956A JP4103917B2 (ja) 2003-10-24 2004-10-20 導波管変換装置、導波管ロータリージョイント及びアンテナ装置
US10/575,498 US20070075801A1 (en) 2003-10-24 2004-10-20 Waveguide conversion devie, waveguide rotary joint, and antenna device
EP04792649A EP1677381A4 (en) 2003-10-24 2004-10-20 WAVEGUIDE CONVERTING DEVICE, WAVEGUIDE ROTATING GASKET, AND ANTENNA DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003364962 2003-10-24
JP2003-364962 2003-10-24

Publications (1)

Publication Number Publication Date
WO2005041344A1 true WO2005041344A1 (ja) 2005-05-06

Family

ID=34510141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015483 WO2005041344A1 (ja) 2003-10-24 2004-10-20 導波管変換装置、導波管ロータリージョイント及びアンテナ装置

Country Status (5)

Country Link
US (1) US20070075801A1 (ja)
EP (1) EP1677381A4 (ja)
JP (1) JP4103917B2 (ja)
CN (1) CN1871741A (ja)
WO (1) WO2005041344A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446623B2 (en) 2005-07-14 2008-11-04 X-Ether, Inc. Mode transducer structure
CN114583426A (zh) * 2022-03-15 2022-06-03 电子科技大学 一种h面剖分的太赫兹弯折波导结构
JP7105521B1 (ja) * 2021-07-05 2022-07-25 マイクロ波化学株式会社 導波管装置、マイクロ波照射装置、及びマイクロ波の伝送方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092954B1 (ko) * 2009-12-11 2011-12-12 국방과학연구소 도파관의 수직결합 편파변환기 및 그 설계방법
US9419322B2 (en) * 2013-03-15 2016-08-16 The Borad Of Trustees Of The Leland Stanford Junior University Compact waveguide circular polarizer
CN103326089A (zh) * 2013-07-02 2013-09-25 北京维创时通科技有限公司 超小型波导旋转关节
US9281550B2 (en) 2013-07-16 2016-03-08 L&J Engineering, Inc. Wave mode converter
US9755290B2 (en) * 2014-06-13 2017-09-05 City University Of Hong Kong Electromagnetic wave mode transducer
KR101858867B1 (ko) * 2016-12-23 2018-05-16 한국기초과학지원연구원 챔버 내부에서 전자파를 방출하여 플라즈마를 생성하는 플라즈마 처리 장치
CN108039541B (zh) * 2017-11-21 2020-11-17 电子科技大学 一种紧凑矩形te10-圆波导tm01模式转换装置
CN108682961B (zh) * 2018-05-10 2024-02-23 昆山九华电子设备厂 一种基于tm01模的圆波导漏波缝隙天线
CN108923107B (zh) * 2018-08-27 2024-01-30 江苏贝孚德通讯科技股份有限公司 波导转弯过渡结构及正交模耦合器
CN111682290A (zh) * 2020-06-30 2020-09-18 四川三三零半导体有限公司 一种大功率te-tem微波模式转换器
CN113745774A (zh) * 2021-08-27 2021-12-03 西安交通大学 一种工作于x波段的圆波导te11-tm01混合模式激励器及设计方法
CN113745772A (zh) * 2021-08-27 2021-12-03 西安交通大学 一种工作于c波段的矩形波导te10-圆波导tm01模式转换器及转换方法
CN114284670A (zh) * 2021-11-23 2022-04-05 西安电子工程研究所 一种易于加工的w波段水平-垂直波导转换结构及加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4724904Y1 (ja) * 1968-12-30 1972-08-04
JPS5216679Y1 (ja) * 1976-04-01 1977-04-14
JPS52156535A (en) * 1976-06-23 1977-12-27 Nippon Telegr & Teleph Corp <Ntt> Rotary coupler
JPH05235603A (ja) * 1992-02-24 1993-09-10 Fujitsu General Ltd 水平及び垂直偏波切換フィードホーン

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2519750A (en) * 1945-04-07 1950-08-22 Francis E Ehlers Rectangular to circular wave guide junction
US2719271A (en) * 1945-08-02 1955-09-27 William M Preston Wave guide mode transformer
US2632806A (en) * 1945-09-18 1953-03-24 William M Preston Mode filter
US3087127A (en) * 1960-07-15 1963-04-23 Microwave Dev Lab Inc Waveguide to coaxial "l" transition
US3205498A (en) * 1960-11-30 1965-09-07 North American Aviation Inc Dual mode radar beacon antenna
US3715688A (en) * 1970-09-04 1973-02-06 Rca Corp Tm01 mode exciter and a multimode exciter using same
US3646481A (en) * 1971-03-12 1972-02-29 Bell Telephone Labor Inc Waveguide mode transducer
GB2274549B (en) * 1992-12-04 1997-01-22 Sg Microwaves Inc Waveguide rotary joint
US6087908A (en) * 1998-09-11 2000-07-11 Channel Master Llc Planar ortho-mode transducer
CA2292064C (en) * 1998-12-25 2003-08-19 Murata Manufacturing Co., Ltd. Line transition device between dielectric waveguide and waveguide, and oscillator and transmitter using the same
US6724277B2 (en) * 2001-01-24 2004-04-20 Raytheon Company Radio frequency antenna feed structures having a coaxial waveguide and asymmetric septum

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4724904Y1 (ja) * 1968-12-30 1972-08-04
JPS5216679Y1 (ja) * 1976-04-01 1977-04-14
JPS52156535A (en) * 1976-06-23 1977-12-27 Nippon Telegr & Teleph Corp <Ntt> Rotary coupler
JPH05235603A (ja) * 1992-02-24 1993-09-10 Fujitsu General Ltd 水平及び垂直偏波切換フィードホーン

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446623B2 (en) 2005-07-14 2008-11-04 X-Ether, Inc. Mode transducer structure
JP7105521B1 (ja) * 2021-07-05 2022-07-25 マイクロ波化学株式会社 導波管装置、マイクロ波照射装置、及びマイクロ波の伝送方法
CN114583426A (zh) * 2022-03-15 2022-06-03 电子科技大学 一种h面剖分的太赫兹弯折波导结构

Also Published As

Publication number Publication date
EP1677381A1 (en) 2006-07-05
JP4103917B2 (ja) 2008-06-18
US20070075801A1 (en) 2007-04-05
CN1871741A (zh) 2006-11-29
JPWO2005041344A1 (ja) 2007-11-29
EP1677381A4 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
WO2005041344A1 (ja) 導波管変換装置、導波管ロータリージョイント及びアンテナ装置
JP4111237B2 (ja) 導波管コーナおよび無線装置
JP4884532B2 (ja) 伝送線路変換器
CN101383343B (zh) 无线通信装置
JP4453696B2 (ja) 導波管−高周波線路変換器及び無線通信装置
CA2256283C (en) Non radiative dielectric waveguide having a portion for line conversion between different types of non radiative dielectric waveguides
JP5600359B2 (ja) 二帯域マイクロ波放射エレメント
US6717553B2 (en) Primary radiator having excellent assembly workability
US6580400B2 (en) Primary radiator having improved receiving efficiency by reducing side lobes
JP2009253369A (ja) コーナ導波管
JP2010087651A (ja) 導波管・ストリップ線路変換器
WO2019142314A1 (ja) 変換器およびアンテナ装置
US7446623B2 (en) Mode transducer structure
JP4178265B2 (ja) 導波管ホーンアンテナ、アンテナ装置、および、レーダ装置
US6445355B2 (en) Non-radiative hybrid dielectric line transition and apparatus incorporating the same
US8390199B2 (en) Mode-selective interactive structure for gyrotrons
JP2008079085A (ja) 伝送線路導波管変換器
JP6391560B2 (ja) 導波管変換回路及びアンテナ装置
WO2021144828A1 (ja) 変換器、及びアンテナ装置
JP2001068922A (ja) 一次放射器
JP2010118857A (ja) 集積導波管を用いた伝送線路
JP2005175612A (ja) 変換アダプタおよび測定装置
KR101839888B1 (ko) 폭이 넓은 회로의 패키징을 위한 도파관 변환 장치
JP2002135013A (ja) モード変換器、非可逆回路素子、モード変換器付アンテナ、および回路モジュール
CN116646741A (zh) 一种八木天线及通信设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480030947.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514956

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004792649

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004792649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007075801

Country of ref document: US

Ref document number: 10575498

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10575498

Country of ref document: US