WO2005037983A1 - 核酸分離精製カートリッジおよびその製造方法 - Google Patents

核酸分離精製カートリッジおよびその製造方法 Download PDF

Info

Publication number
WO2005037983A1
WO2005037983A1 PCT/JP2004/013735 JP2004013735W WO2005037983A1 WO 2005037983 A1 WO2005037983 A1 WO 2005037983A1 JP 2004013735 W JP2004013735 W JP 2004013735W WO 2005037983 A1 WO2005037983 A1 WO 2005037983A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
porous membrane
adsorbing porous
cartridge
opening
Prior art date
Application number
PCT/JP2004/013735
Other languages
English (en)
French (fr)
Inventor
Keiji Shigesada
Morio Fujiwara
Toshihiro Mori
Original Assignee
Fuji Photo Film Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co., Ltd. filed Critical Fuji Photo Film Co., Ltd.
Priority to US10/576,756 priority Critical patent/US20070148649A1/en
Priority to EP04787918A priority patent/EP1676906A4/en
Priority to JP2005514724A priority patent/JP4478110B2/ja
Publication of WO2005037983A1 publication Critical patent/WO2005037983A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/081Manufacturing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5025Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures for parallel transport of multiple samples
    • B01L3/50255Multi-well filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14336Coating a portion of the article, e.g. the edge of the article
    • B29C45/14377Coating a portion of the article, e.g. the edge of the article using an additional insert, e.g. a fastening element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/26Further operations combined with membrane separation processes
    • B01D2311/2626Absorption or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/04Specific sealing means
    • B01D2313/042Adhesives or glues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0631Purification arrangements, e.g. solid phase extraction [SPE]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0829Multi-well plates; Microtitration plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • B29C2045/14319Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles bonding by a fusion bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14467Joining articles or parts of a single article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/14Filters

Definitions

  • the present invention relates to a cartridge for separating and purifying nucleic acids for separating nucleic acids. More specifically, a nucleic acid-adsorbing porous membrane is provided inside a cylindrical body having a first opening and a second opening, and a sample solution containing nucleic acids is supplied from a first opening side to a second opening side with a pressurized gas.
  • the present invention relates to a nucleic acid separation / purification cartridge for adsorbing nucleic acid to a nucleic acid-adsorbing porous membrane by allowing the nucleic acid to adsorb and separating and purifying the nucleic acid, a nucleic acid separation / purification cartridge manufactured by insert injection molding, and a method for manufacturing the same.
  • nucleic acids are used in various forms in various fields. In many cases, nucleic acids are extremely small and cannot be obtained, and isolation and purification operations are complicated and time-consuming.
  • a nucleic acid separation / purification unit in which a solid phase composed of an organic polymer having a hydroxyl group is accommodated in a container having at least two openings is used.
  • the method used is described in Japanese Patent Application Laid-Open No. 2003-128691 (hereinafter sometimes referred to as “Patent Document 1”) (see FIG. 19).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-128691
  • one opening Z of the nucleic acid separation / purification unit is immersed in a sample solution containing nucleic acids.
  • the inside of the nucleic acid separation / purification unit is depressurized, and the sample solution is sucked into the container.
  • the sample solution comes into contact with the solid phase, and the nucleic acid present in the sample solution is adsorbed on the solid phase.
  • the inside of the container of the unit is pressurized using a pressure difference generator, and the sucked sample solution is discharged.
  • the container is washed out by discharging it from the container.
  • This washing solution has a function of washing away the sample solution remaining in the container and washing away impurities in the sample solution adsorbed on the solid phase together with the nucleic acid.
  • the recovered liquid for releasing the nucleic acid adsorbed on the solid phase is sucked into the container by the same depressurization and pressure operation as described above, and the container is discharged. Since the discharged recovery liquid contains the target nucleic acid, the separation and purification are completed by recovering the recovered nucleic acid.
  • a nucleic acid-adsorbing porous membrane is generally used as a solid phase for adsorbing nucleic acids.
  • nucleic acid separation / purification unit generally has a structure in which a nucleic acid-adsorbing porous membrane is sandwiched and held between two cylindrical parts constituting a container of the unit. It is.
  • a method for fixing the two cylindrical components a method of fixing by ultrasonic welding, heat welding by laser, an adhesive, a screw, or the like is used.
  • the nucleic acid separation / purification unit is capable of pressing a sample solution through a nucleic acid-adsorbing porous membrane by pressurizing the sample solution.
  • it is necessary to hold down the periphery of the nucleic acid-adsorbing porous membrane tightly by the two parts constituting the container.
  • the washing solution is not left as much as possible in the container when washing and flowing with the washing solution.
  • the cleaning solution is mixed with the discharged recovery solution, and depending on the concentration of the mixed cleaning solution, it may be used in the next step, for example, PCR (Polymerase Chain Reaction). May have an adverse effect.
  • the attached foam is collected together with the nucleic acid purified in the subsequent collection step using a collection solution. Since the foam thus recovered is an unwashed solution, it becomes an impurity for the nucleic acid recovered by the recovery liquid. That is, there is a problem that the purification rate of the nucleic acid is deteriorated, and an enzymatic reaction may be inhibited when conducting an experiment or research using the nucleic acid recovered in the subsequent step.
  • the present invention has been made to solve these problems, and does not require a dedicated facility for fixing a container, and a nucleic acid separation and purification cartridge capable of simultaneously producing a large number of containers. It is a first object to provide a manufacturing method thereof.
  • the present invention provides a sample solution comprising a nucleic acid-adsorbing porous membrane inside a cylindrical body having a first opening and a second opening, and comprising a nucleic acid from the first opening side to the second opening side.
  • a sample solution comprising a nucleic acid-adsorbing porous membrane inside a cylindrical body having a first opening and a second opening, and comprising a nucleic acid from the first opening side to the second opening side.
  • a third object of the present invention is to provide a cartridge for purifying and isolating nucleic acid having a structure in which a solution or the like does not adhere to the outer wall surface of the discharge unit.
  • a nucleic acid separation and purification cartridge has a nucleus having an opening at the bottom of a cylindrical body having a bottom and a nucleic acid-adsorbing porous membrane supported at the bottom.
  • the nucleic acid-adsorbing porous membrane By disposing the nucleic acid-adsorbing porous membrane on a bottom member forming the bottom portion, inserting the same into a cavity of an injection mold, and further injecting a molding material into the cavity, the nucleic acid is removed.
  • the other part of the tubular main body which is the other part that sandwiches the adsorptive porous membrane, is formed integrally with the bottom member and molded, and simultaneously sandwiches the nucleic acid-adsorptive porous membrane. It is characterized by.
  • the nucleic acid-adsorbing porous membrane is placed on the bottom member forming the bottom, which is one of the parts holding the nucleic acid-adsorbing porous membrane.
  • the molding material By inserting the molding material into the cavity of the injection mold and injecting the molding material into the cavity, the other part of the tubular main body that holds the nucleic acid-adsorbing porous membrane is formed. Is molded integrally with the bottom member, and at the same time, sandwiches the nucleic acid-adsorptive porous membrane, so that special equipment for fixing such as an ultrasonic welding machine, which was conventionally required, becomes unnecessary, and injection is performed.
  • nucleic acid separation and purification cartridge it is possible to manufacture a nucleic acid separation and purification cartridge using only a molding device. Also, there is no possibility that the nucleic acid-adsorbing porous membrane is broken or the sealing is insufficient due to a difference in the pressing force of the nucleic acid-adsorbing porous membrane due to a manufacturing error of the component.
  • the bottom member further includes a cylindrical discharge portion (nozzle) communicating with an opening of the bottom portion.
  • nozzle communicating with an opening of the bottom portion.
  • a peripheral portion of the nucleic acid-adsorbing porous membrane is crushed and sandwiched by an injection pressure of a molding material forming a cylindrical portion of the cylindrical main body.
  • the voids (pores) innumerably existing inside the peripheral portion of the nucleic acid-adsorbing porous membrane are crushed, so that the sample solution and the washing solution do not remain on the peripheral portion, and the nucleic acid-adsorbing porous film is not damaged.
  • the sample solution does not flow around the side of the membrane.
  • the peripheral portion of the nucleic acid-adsorbing porous membrane is crushed until there is no internal void. As a result, it is possible to reliably prevent the sample solution or the like from remaining or wrapping around. Further, it is preferable that the peripheral portion of the nucleic acid-adsorbing porous membrane is crushed to a thickness of 10% to 70% of the original thickness. As a result, countless voids (holes) inside the peripheral portion of the nucleic acid-adsorbing porous membrane are not crushed, so that the sample solution or the like can be reliably prevented from remaining or wrapping around.
  • the injection mold includes a plurality of the cavities, and the plurality of cavities are provided. It is preferable that the nucleic acid-adsorptive porous membrane is arranged on the bottom member and inserted therein, and the plurality of cavities are connected to each other. .
  • the injection mold has a plurality of the cavities, and the nucleic acid-adsorbing porous membrane is disposed on the bottom member in the plurality of cavities. Each of these is inserted, and the plurality of cavities are in communication with each other, so that the resin injected at the same injection pressure is filled in each of the cavities.
  • a large number of nucleic acid separation / purification cartridges or a group of nucleic acid separation / purification cartridges connected with a large number of nucleic acid separation / purification cartridges can be simultaneously formed without causing insufficient sealing or breakage of the porous membrane. , Can be manufactured.
  • the “connected state” may be a state in which the cartridges are directly connected, or a state in which the cartridges are connected by a runner.
  • the method for producing a cartridge for nucleic acid separation and purification provides a nucleic acid separation and purification cartridge having an opening at the bottom of a cylindrical body having a bottom and supporting a nucleic acid-adsorbing porous membrane at the bottom.
  • the nucleic acid-adsorbing porous membrane is disposed on the bottom of the bottom member having the bottom of the tubular body and forming a part of the tubular body.
  • the cylindrical parts are fixed to each other using an ultrasonic welding machine or the like. Process is not required, and the core can be It is possible to manufacture the cartridge for separation and purification. Also, the difference in the pressing force of the nucleic acid-adsorbing porous membrane due to the manufacturing error (dimension error) of the parts does not cause the nucleic acid-adsorbing porous membrane to be broken or the seal to be insufficient.
  • the core pin may have a thickness of 10% to 70% of the original thickness of the nucleic acid-adsorbing porous membrane. It is preferable to hold it by crushing it. Thus, the nucleic acid-adsorbing porous membrane does not shift or wrinkle due to the injection pressure of the molding material.
  • a tip portion of the core pin is formed in a conical shape from a peripheral portion toward a center portion. Thereby, the core pin is self-centered.
  • the peripheral portion of the nucleic acid-adsorbing porous membrane protruding around the core pin may be internally pressurized by an injection pressure of a molding material injected into the cavity. Is preferably crushed until the voids disappear. As a result, it is possible to reliably prevent the sample solution or the like from remaining or wrapping around.
  • the periphery of the core pin may be provided.
  • the rim of the nucleic acid-adsorbing porous membrane that has protruded may be crushed by the injection pressure of the molding material injected into the cavity until the thickness becomes 10% to 70% of the original thickness. preferable.
  • countless voids (holes) inside the peripheral edge portion of the nucleic acid-adsorbing porous membrane are not crushed, so that it is possible to reliably prevent the sample solution or the like from remaining or wrapping around.
  • the injection mold includes a plurality of the cavities, and the plurality of cavities are provided.
  • the nucleic acid-adsorbing porous membrane is placed on the bottom member in the cavity, and these are inserted respectively, and the plurality of cavities are connected to each other.
  • the injection mold has a plurality of cavities, and the plurality of cavities have a nucleic acid-adsorbing porous material on the bottom member.
  • the membranes After the membranes are placed, they are inserted, and a plurality of cavities are in communication with each other, so that the resin injected at the same injection pressure is filled in each cavity.
  • the force for pressing the nucleic acid-adsorbing porous membrane becomes equal, and a large number of nucleic acid separation / purification cartridges or a large number of nucleic acid separation / purification cartridges are connected at the same time without insufficient sealing or tearing.
  • a group of refined cartridges can be manufactured.
  • the cartridge for nucleic acid separation and purification includes a nucleic acid-adsorbing porous membrane inside a cylindrical body having a first opening and a second opening, and extends from the first opening side to the second opening side.
  • a plurality of protrusions support the nucleic acid-adsorbing porous membrane at least at a part of the top thereof, and the nucleic acid-adsorbing porous membrane is used during use. So that it is displaced toward the discharge section as it approaches the bottom opening It is characterized by being formed.
  • the plurality of projections provided on the bottom surface support the nucleic acid-adsorbing porous membrane on at least a part of its top, and at the time of use, Since the nucleic acid-adsorbing porous membrane is formed so as to be displaced toward the discharge section as the nucleic acid-adsorbing porous membrane approaches the bottom opening, the nucleic acid-adsorbing porous membrane is made to flow when the cleaning solution is caused to flow by the pressurized gas in the washing step. The film is deformed in a convex shape along the protrusion toward the discharge portion. As a result, the cleaning liquid is quickly discharged from the discharge part without remaining at the bottom of the tubular main body.
  • the plurality of protrusions are preferably a plurality of ribs extending radially from the bottom opening.
  • the number of the ribs is preferably three or more.
  • the inclination angle of each of the ribs with respect to the radial direction of the cylindrical body is preferably 3 ° or more, more preferably 5 ° or more.
  • the bottom surface has a slope that is displaced toward the discharge portion as approaching the bottom opening. Thereby, the cleaning liquid is discharged more quickly.
  • the inclination angle of the bottom surface with respect to the radial direction of the cylindrical body is preferably 10 ° or more, more preferably 15 ° or more, and most preferably 20 ° or more.
  • the rib has a top formed in an arc shape. This makes it difficult for the cleaning liquid to stay between the top of the rib and the nucleic acid-adsorbing porous membrane, so that the cleaning liquid is discharged more quickly.
  • the nucleic acid separation / purification cartridge has the corners and the corners present on the inner surface formed in an arc shape. This makes it difficult for the cleaning liquid to stay at the corners and corners present on the inner surface, so that the cleaning liquid is discharged more quickly.
  • the radius of curvature at the top of the rib is preferably 1Z4 or more with respect to the rib width, more preferably 1Z3 or more, and most preferably 1Z2 or more.
  • the radius of curvature of the corner is preferably 0.1 mm or more, more preferably 0.2 mm or more, and most preferably 0.3 mm or more.
  • the radius of curvature at the corner is preferably 0.1 mm or more, more preferably 0.15 mm or more, and most preferably 0.2 mm or more.
  • the angle formed by the axis of the tubular body and the inner peripheral surface of the tubular body is preferably 10 ° or less, more preferably 5 ° or less. This makes it easier for the cleaning liquid to flow along the inner peripheral surface of the cylindrical body, so that the cleaning liquid is more quickly discharged.
  • the inner wall surface of the cartridge for nucleic acid separation and purification is made of a material having a contact angle force of ⁇ 0 ° or less or 90 ° or more, or a surface treatment so as to have such a contact angle. It is preferable to use a material subjected to the above.
  • the contact angle is 80 ° or less, the cleaning liquid is more quickly discharged because the cleaning liquid wettability to the inner wall surface of the nucleic acid separation / purification cartridge is improved, and the cleaning liquid is less likely to remain as droplets.
  • the contact angle is more preferably 60 ° or less, most preferably 50 ° or less.
  • the contact angle is 90 ° or more, even if the washing liquid remains as droplets on the inner wall surface of the nucleic acid separation and purification cartridge, the droplets become substantially spherical due to surface tension. It will be easier. Thereby, the cleaning liquid is discharged more quickly.
  • the nucleic acid-adsorbing porous membrane is held in a state where its peripheral edge is crushed. Since the nucleic acid-adsorbing porous membrane has pores, if the peripheral edge is held in a crushed state, the pores are crushed so as to close the pores, so that the liquid does not flow from that part. Thereby, it is possible to prevent a problem that a liquid (a sample solution or the like) that should pass through the nucleic acid-adsorbing porous membrane goes around the side of the nucleic acid-adsorbing porous membrane.
  • the nucleic acid separation and purification cartridge includes a nucleic acid-adsorbing porous membrane inside a cylindrical body having a first opening and a second opening, and extends from the first opening side to the second opening side.
  • the thickness of the portion forming the second opening be 0.5 mm or more.
  • the opening diameter of the second opening is not less than 1.0 mm, and the thickness of the portion forming the second opening is not less than 0.2 mm.
  • the outer diameter of the portion forming the second opening is 1.4 mm or more. It is more preferable that the outer diameter of the portion forming the second opening is not less than 2. Omm.
  • the angle formed between the end face of the discharge section and the outer wall surface of the discharge section is 105 ° or less. It is more preferable that the angle between the end face of the discharge portion and the outer wall surface is 100 ° or less, and it is more preferable that the force S is 95 ° or less. Further, as the shape of the end face of the discharge portion approaches the second opening, the opening diameter may be made to be a wide-angle funnel shape. In this case, it is preferable that the angle between the end face of the discharge section and the outer wall surface is 30 ° or more.
  • nucleic acid separation / purification cartridge in which bubbles of the sample solution hardly flow around the outer wall surface of the discharge section can be realized. Further, even if bubbles adhere to the outer wall surface, a nucleic acid separation / purification cartridge that can easily remove the bubbles with a washing liquid that easily returns to the vicinity of the second opening of the discharge portion can be realized. As a result, a nucleic acid separation / purification cartridge that can prevent the untreated sample solution from being mixed into the recovery liquid can be realized.
  • the shape of the end face of the discharge part is a funnel shape in which the opening diameter increases as approaching the second opening, it is difficult for the generated foam to reach the outer wall surface. Further, even if the angle between the end face of the discharge portion and the outer wall surface is formed to be 30 ° or more, the wraparound of bubbles can be prevented.
  • the material constituting the cartridge for separating and purifying nucleic acid be made easily wettable.
  • “wetability” refers to the ease with which a solution and an object (an end face or an outer wall surface) fit together, and is defined by the contact angle between the solution and the object. From the experiments, bubbles can be retained on the end surface in the dimensions described above, and the contact angle between the solution (washing solution) and the object for washing off impurities in the washing process is preferably 100 ° or less. Preferably it is 95 ° or less, more preferably 90 ° or less.
  • a claw member for inducing bubbles is provided on an end face of the discharge section. It is desirable to provide a plurality of these claw members. It is particularly desirable that the position inside the claw member be provided so as to coincide with the inner wall surface of the discharge portion. It is more preferable that the claw member is formed in a rod shape.
  • the foam that has reached the second opening propagates along the claw member extending on the inner wall surface and aggregates at the tip portion, that is, at a position below the second opening.
  • the coagulated foam easily falls into the waste liquid container, so that the foam hardly adheres to the outer wall surface. Also, even if bubbles are blown up by air, they will not reach the outer wall!
  • the washing solution is quickly discharged without remaining inside the cartridge for nucleic acid separation and purification in the washing step. Mixing of the cleaning liquid into the collected liquid can be suppressed. As a result, in the next step, problems caused by the cleaning solution can be prevented.
  • the nucleic acid separation and purification cartridge of the present invention it is possible to prevent bubbles of the sample solution from adhering to the outer wall surface of the discharge portion of the nucleic acid separation and purification cartridge. Further, since it is possible to prevent bubbles from being mixed in the untreated sample solution, it is possible to improve the nucleic acid purification rate. In experiments and research using the recovered nucleic acid, it is possible to prevent problems such as inhibition of the reaction by the enzyme.
  • FIG. 1 is an exploded perspective view of a nucleic acid separation and purification cartridge according to a first embodiment.
  • FIG. 2 is an enlarged sectional perspective view of an insert used in the first embodiment.
  • FIG. 3 is a cross-sectional view of a cartridge for nucleic acid separation and purification and an injection mold, wherein (a) shows a state when an insert material is installed, and (b) shows a state when the mold is closed.
  • FIG. 4 is a cross-sectional view of a nucleic acid separation / purification cartridge and an injection mold, wherein (a) shows a state at the time of resin injection, and (b) shows a state at the time of injection completion.
  • FIG. 5 is an enlarged cross-sectional view of a portion A in FIG. 4 (b), wherein (a) shows the state when the mold is closed, (b) shows the state when the mold is completely closed, (c) shows the state when the resin is injected, (D) shows the state when the injection is completed.
  • FIG. 6 is a cross-sectional view of the cartridge for separating and purifying nucleic acid according to the first embodiment.
  • FIG. 7 is a perspective view of a nucleic acid separation / purification cartridge group according to a second embodiment.
  • FIG. 8 is an exploded perspective view of a nucleic acid separation and purification cartridge according to a third embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of a cartridge for separating and purifying nucleic acid according to a third embodiment of the present invention.
  • FIG. 10 is an enlarged sectional perspective view of a cap used in a third embodiment of the present invention.
  • FIG. 11 is a sectional view taken along line XX of FIG. 10.
  • FIG. 12 is an enlarged view of a portion B in FIG. 9.
  • FIG. 13 is a cross-sectional view showing a washing step of the nucleic acid separation / purification cartridge according to the third embodiment of the present invention.
  • FIG. 14 is an exploded perspective view of a cartridge for separating and purifying nucleic acid according to a fourth embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of a cartridge for separating and purifying nucleic acid according to a fourth embodiment of the present invention.
  • FIG. 16 is an enlarged cross-sectional view of a cap of the cartridge for separating and purifying nucleic acid according to the fourth embodiment of the present invention.
  • FIG. 17 is an enlarged cross-sectional view of a cap of the cartridge for separating and purifying nucleic acid according to the fifth embodiment of the present invention.
  • FIG. 18 is an enlarged cross section of a cap of a nucleic acid separation and purification cartridge according to a sixth embodiment of the present invention.
  • FIG. 19 is a longitudinal sectional view of a nucleic acid separation and purification unit.
  • FIG. 20 is a view showing a nucleic acid separation / purification cartridge for discharging a solution by pressurization.
  • FIG. 1 to be referred to is an exploded perspective view of a nucleic acid separation and purification cartridge according to the first embodiment
  • FIG. 2 is an enlarged sectional perspective view of an insert material used in the first embodiment.
  • a nucleic acid separation / purification cartridge 100 includes an insert material 110 including a bottom member 120 and a nucleic acid-adsorbing porous membrane F, and an insert for the insert material 110.
  • the barrel 140 is formed by injection molding.
  • the barrel 140 of the cartridge 100 for nucleic acid separation and purification according to the first embodiment is formed integrally with the bottom member 120 and the nucleic acid-adsorbing porous membrane F by insert injection molding. , The barrel 140 is shown separately for convenience of explanation.
  • the barrel 140 is a “portion forming the tubular portion of the tubular main body”.
  • the insert material 110 is composed of a bottom member 120 constituting the bottom side of the cartridge 100 for nucleic acid separation and purification, and a nucleic acid-adsorbing porous membrane F for adsorbing and collecting nucleic acid.
  • the insert material 110 is previously set in an injection mold (bottom mold 150 and barrel mold 160) for molding the nucleic acid separation / purification cartridge 100 (see FIG. 3), and the cavity 151 is an example of a molding material. When a certain melted resin J is injected, it is fused with the barrel 140 formed by the resin J.
  • the bottom member 120 includes a bottom 121 having an opening 121a formed at the center, a lower surface of the bottom 121, a nozzle 122 (discharge portion) extending therefrom, and And a bottom-side fused portion 123 extending in a cylindrical shape along the circumference.
  • a second opening 122a is formed at the tip of the nozzle 122, and communicates with the opening 121a of the bottom 121.
  • the bottom-side fused portion 123 is a portion to be fused with the barrel-side fused portion 142 of the barrel 140 described later, and has an inner diameter substantially equal to the diameter of the nucleic acid-adsorbing porous membrane F.
  • the bottom 121 of the bottom member 120 has an annular holding surface 125 that is one step higher than the bottom 121b, along the outer periphery of the bottom 121b.
  • the sandwiching surface 125 is a surface that comes into contact with a peripheral edge Fa of the nucleic acid-adsorbing porous membrane F described later, and is formed flat.
  • the bottom surface 121b is inclined so as to become lower toward the opening 121a side from the holding surface 125 side (closer to the second opening 122a side), so that the sample solution is easily discharged.
  • six ribs 126 (only three ribs are shown in FIG. 2) are radially formed on the bottom surface 121b. The rib 126 protrudes from the bottom surface 121b, and is inclined at an angle smaller than the inclination angle of the bottom surface 121b so as to become lower toward the opening 121a side from the holding surface 125 side.
  • the nucleic acid-adsorbing porous membrane F is a circular membrane member having a diameter substantially the same as the inner diameter of the above-mentioned bottom-side fused portion 123.
  • the nucleic acid-adsorbing porous membrane F has a myriad of fine pores so that a nucleic acid can be extracted by filtering a sample solution. Further, the nucleic acid-adsorbing porous membrane F is placed on the holding surface 125 of the bottom member 120 to form the insert 110 (see FIG. 2).
  • the peripheral portion Fa of the nucleic acid-adsorbing porous membrane F is a portion that comes into contact with the holding surface 125, and is pressed and held against the holding surface 125 by injection pressure during injection molding of the barrel 140 described later.
  • the barrel 140 also has a cylindrical barrel body 141 and a cylindrical barrel-side fused portion 142 connected to the barrel body 141.
  • the barrel 140 is formed by injecting resin J into the cavity 151 after placing the insert material 110 in the bottom mold 150 (see FIG. 3).
  • the hollow portion 143 of the barrel 140 is a portion for temporarily storing a sample solution and the like, and is formed by a core pin 161 provided in a barrel-side mold 160 described later (see FIG. 4).
  • the upper end of the hollow portion 143 is open (first opening 143a), The lower end of the part 143 is closed by the nucleic acid-adsorbing porous membrane F.
  • the barrel-side fused portion 142 is formed by the resin J that has flowed into a gap (cavity 151a in FIG. 5B) formed between the core pin 161 and the bottom-side fused portion 123 of the bottom member 120. Therefore, in practice, the heat of the resin J flowing into the gap melts the inner peripheral surface 123a (see FIG. 2) of the bottom-side fused portion 123, and the barrel 140 and the insert material 110 are deformed. The Rukoto.
  • FIG. 3 is a cross-sectional view of a nucleic acid separation and purification cartridge and an injection mold, and (a) shows a state when an insert material is installed, and (b) shows a state when the mold is closed.
  • FIGS. 4A and 4B are cross-sectional views of the cartridge for nucleic acid separation and purification and the injection mold, respectively.
  • FIG. 4A shows a state at the time of resin injection
  • FIG. 4B shows a state at the time of resin injection
  • a known injection molding machine can be used for manufacturing the cartridge 100 for separating and purifying nucleic acid.
  • the injection molding machine is preferably a rigid injection molding machine because it is necessary to install the insert material 110 in the injection mold, but the insert material 110 (nucleic acid-adsorbing porous membrane F) is held at a predetermined position. If possible, it may be horizontal! / ⁇ .
  • an “injection mold” is configured by the bottom mold 150 and the barrel mold 160.
  • the nucleic acid-adsorbing porous membrane F is set so as to be supported by the clamping surface 125 and the rib 126 of the bottom 121 of the bottom member 120 manufactured in advance. Then, an insert material 110 is manufactured. Then, the insert material 110 is set in a cavity 151 formed in the bottom mold 150.
  • the insert material 110 may be prepared in advance. It is preferable that the production of the insert material 110 and the installation of the insert material 110 be performed using a known assembling robot or the like.
  • the barrel is placed in the bottom mold 150 where the insert material 110 is installed.
  • the mold is closed by combining the metal mold 160 on the side.
  • the barrel-side mold 160 has a columnar core pin 161 at a position corresponding to the hollow portion 143 of the nucleic acid separation / purification cartridge 100.
  • the tip 162 of the core pin 161 contacts the upper surface of the nucleic acid-adsorbing porous membrane F, and the core pin 161 adsorbs nucleic acid between the holding surface 125 of the bottom member 120 and the core pin 161.
  • the porous porous membrane F is sandwiched therebetween. At this time, the nucleic acid-adsorbing porous membrane F is compressed to a predetermined thickness so that the resin J injected in the next step does not leak.
  • the length of the core pin 161 is adjusted so as to compress the nucleic acid-adsorbing porous membrane F to a certain thickness such that the resin J injected in the next step does not leak.
  • the fixing (pressing) of the nucleic acid-adsorbing porous membrane F will be described in detail later.
  • the barrel-side mold 160 has a gate 163 for injecting the resin J, and the resin J is injected into the cavity 151. Injectable! /
  • the molten resin J is injected from the gate 163 into the cavity 151 formed by the bottom mold 150, the barrel mold 160, and the insert 110.
  • the peripheral portion Fa of the nucleic acid-adsorbing porous membrane F is crushed by the injection pressure of the resin J filled in the cavity 151.
  • the molten resin J is filled into the cavity 151 by applying an injection pressure to the extent that the peripheral edge Fa of the nucleic acid-adsorbing porous membrane F is suitably crushed. This will be described later in detail.
  • Fig. 4 (b) when filling of resin J is completed and resin J is cooled and hardened, the mold is opened by operating an injection molding machine (not shown) to separate and purify nucleic acid. Remove cartridge 100.
  • FIG. 5 is an enlarged cross-sectional view of a portion A in FIG. 4 (b), (a) when the mold is closed, (b) when the mold is completely closed, and (c) At the time of resin injection, (d) shows the state at the time of injection completion.
  • a bottom member 120 and a nucleic acid-adsorptive porous membrane F are provided in an insert 151 as an insert material 110.
  • the nucleic acid-adsorbing porous membrane F is placed on a sandwiching surface 125 formed on the bottom 121 of the bottom member 120 so that the peripheral edge Fa contacts.
  • the barrel-side mold 160 is lowered by operating an injection molding machine (not shown).
  • the diameter of the core pin 161 of the barrel-side mold 160 is formed to be smaller than the inner diameter of the bottom-side fused portion 123 of the bottom member 120 and larger than the inner diameter of the holding surface 125. Accordingly, when the mold closing is completed, the peripheral edge 162a of the tip 162 of the core pin 161 is located between the inner peripheral edge of the holding surface 125 and the nucleic acid, as shown in FIG. 5 (b). A part of the peripheral portion Fa of the adsorptive porous membrane F is sandwiched.
  • the tip 162 of the core pin 161 is formed so as to incline toward the center from the peripheral edge 162a in accordance with the inclination of the upper end surface of the rib 126. Therefore, when the mold closing is completed, the nucleic acid-adsorbing porous membrane F is placed between the upper end face of the rib 126 and the tip 162 of the core pin 161 as well as inside the holding face 125 as shown in FIG. 5 (b). It is sandwiched and held between the peripheral edge and the peripheral edge 162a of the tip 162 of the core pin 161.
  • the tip 162 of the core pin 161 is formed in a mountain shape (cone-shaped body) in accordance with the shape of the bottom 121, the core pin 161 is autonomously centered on the center of the bottom member 120. You. Therefore, a predetermined member thickness (width of the cavity of the cavity 151a) can be ensured so that the core pin 161 is not eccentric.
  • the degree of compression of the nucleic acid-adsorbing porous membrane F by the core pin 161 was such that the nucleic acid-adsorbing porous membrane F was displaced by the injection pressure of the resin J without breaking the nucleic acid-adsorbing porous membrane F. It is necessary to compress it so that it does not wrinkle or leak resin J. Specifically, it is preferable to compress to a thickness of about 10% to 70% of the film thickness.
  • the width W of the cavity 151a is preferably set to 0.2 mm or more, preferably 0.5 mm or more, in consideration of the occurrence of an error in the thickness of the member. Is more preferred
  • nucleic acid-adsorbing porous membrane F (80 ⁇ m in thickness) made of triacetyl cellulose that has been subjected to an oxidation treatment
  • the sample solution is compressed to 30 ⁇ m. It has been confirmed that sneaking around can be prevented.
  • a part of the peripheral portion Fa of the nucleic acid-adsorbing porous membrane F is sandwiched between the inner peripheral edge portion of the clamping surface 125 and the peripheral portion 162a of the core pin 161 in an annular shape, so that the cavity is removed. Resin J injected into 151a does not flow into the center of nucleic acid-adsorbing porous membrane F.
  • the sample solution wrapped around the side surface of the nucleic acid-adsorbing porous membrane F.
  • the injection pressure of resin J should be set within the range of greater than 14.7 MPa and less than 147 MPa.
  • the core pin 161 is pulled out from the hollow portion 143 of the barrel 140.
  • the peripheral portion Fa of the nucleic acid-adsorbing porous membrane F is sandwiched between the injection-molded barrel side fusion portion 142 and the sandwiching surface 125. It is sandwiched and held at the bottom 121 of the cartridge 100 for separating and purifying nucleic acid.
  • the inner peripheral surface 123a of the bottom-side fused portion 123 is melted by the heat of the resin J at the time of injection, and is integrated with the outer peripheral surface 142a of the barrel-side fused portion 142.
  • the nucleic acid-adsorbing porous membrane F is held at the same time that the barrel 140 is molded, and a dedicated device for fixing the two components constituting the cartridge as in the related art is unnecessary. Become. Further, since the nucleic acid-adsorbing porous membrane F is compressed and held by the injection pressure of the resin J, there is no need to worry about insufficient sealing or breakage of the nucleic acid-adsorbing porous membrane F due to dimensional errors of parts.
  • FIG. 6 to be referred to is a sectional view of the cartridge for separating and purifying nucleic acid according to the first embodiment.
  • the step of separating and purifying nucleic acid from a sample containing nucleic acid using the nucleic acid separation / purification cartridge 100 is preferably performed using an automatic device that automatically performs this step. This makes it possible to obtain a certain level of nucleic acid irrespective of the skill of the operator who not only simplifies and speeds up the operation.
  • the above-described automatic device uses the first opening 143a of the barrel 140 of the nucleic acid separation / purification cartridge 100 toward the second opening 122a of the nozzle 122 to transfer a sample solution containing nucleic acid,
  • pressurized air which is an example of a pressurized gas
  • the washing solution S is similarly passed through to remove impurities, and subsequently,
  • a nucleic acid separation / purification device that automatically performs a separation / purification operation in which a nucleic acid adsorbed on the nucleic acid-adsorbing porous membrane F is released by flowing the recovery liquid and recovered together with the recovered liquid.
  • a mounting mechanism for holding a container and a recovery container for storing a recovery solution containing nucleic acids, a pressurized air supply mechanism for introducing pressurized air into the nucleic acid separation and purification cartridge 100, and a washing solution S and A dispensing mechanism for dispensing the collected liquid is used.
  • the mounting mechanism includes a stand mounted on the main body of the apparatus, a cartridge holder that is vertically movably supported by the stand and holds the nucleic acid separation / purification cartridge 100, It is preferable to provide a container holder for holding the waste liquid container and the recovery container so that the position with respect to the nucleic acid separation / purification cartridge 100 can be exchanged below the cartridge holder.
  • the pressurized air supply mechanism raises and lowers the air nozzle with respect to a nucleic acid separation / purification cartridge 100 held by the cartridge holder while supporting the air nozzle for ejecting pressurized air from the lower end.
  • the apparatus includes a pressure head to be moved and positioning means for positioning the nucleic acid separation / purification cartridge 100 in the rack of the mounting mechanism, which is mounted on the pressure head.
  • the dispensing mechanism includes a cleaning liquid dispensing nozzle for dispensing the cleaning liquid S, and dispensing the recovered liquid.
  • a nozzle moving table that holds the cleaning liquid dispensing nozzle, the cleaning liquid dispensing nozzle, and the recovered liquid dispensing nozzle, and that can sequentially move on the nucleic acid separation and purification cartridge 100 held by the mounting mechanism;
  • the cleaning solution S is sucked from the cleaning solution bottle containing
  • a cleaning liquid supply pump for supplying a purified liquid dispensing nozzle and a recovered liquid supply pump for sucking the recovered liquid from a recovered liquid bottle containing the recovered liquid and supplying the recovered liquid to the recovered liquid dispensing nozzle are preferable. It is.
  • the sample that can be used in the present invention is not limited.
  • a body fluid such as whole blood, plasma, serum, urine, stool, semen, saliva, or a plant (or a sample thereof) collected as a sample is used. Solutions prepared from biological materials such as part), animals (or part thereof), etc., or their lysates and homogenates are covered.
  • these specimens are treated with an aqueous solution containing a reagent for dissolving the cell membrane and the nuclear membrane to dissolve the nucleic acid.
  • a reagent for dissolving the cell membrane and the nuclear membrane to dissolve the nucleic acid.
  • the cell membrane and the nuclear membrane are dissolved, the nucleic acid is dispersed in the aqueous solution, and a sample solution containing the nucleic acid is obtained.
  • the sample is whole blood
  • add guanidine hydrochloride, Tris, Triton-X100, and protease K manufactured by SIGMA
  • SIGMA protease K
  • the sample solution thus obtained is put into the hollow portion 143 of the barrel 140 (see FIG. 6), and is caused to flow toward the nozzle 122 by applying pressure. In this way, the nucleic acid in the sample solution is adsorbed on the nucleic acid-adsorbing porous membrane F. [0087] Next, as shown in FIG.
  • the cleaning solution S when pressurized, the nucleic acid-adsorbing porous membrane F is deformed in a convex shape along the inclined shape of the rib 126 toward the nozzle 122 as shown in FIG. As a result, the cleaning solution S
  • the washing liquid S is used for both the water-soluble organic solvent and the salt, or the water-soluble organic solvent or the salt.
  • the solution contains at least one of them.
  • a water-soluble organic solvent such as alcohol is suitable for releasing components other than nucleic acids while retaining the nucleic acids, since the nucleic acids are hardly soluble.
  • the addition of a salt enhances the nucleic acid adsorption effect.
  • Examples of the water-soluble organic solvent contained in the washing solution s include methanol, ethanol, and isopropanol.
  • the water-soluble organic solvent contained in the washing solution S is preferably 20 to 100% by volume.
  • the salt contained in the washing liquid S is preferably a salt of a halogenated product.
  • the salt has a monovalent or divalent cation and the salt thereof is contained in an amount of lOmM or more. More preferably, the salt power is sodium salt sodium chloride, and more preferably, the sodium salt sodium salt contains 20 mM or more! /.
  • a purified liquid such as purified distilled water or a TE buffer is passed from the first opening 143a of the barrel 140 toward the nozzle 122 while applying pressure, and the nucleic acid is released from the nucleic acid-adsorbing porous membrane F. And collects the recovered liquid (recovered liquid containing nucleic acids) discharged from the nozzle 122.
  • the recovered solution can be desorbed by adjusting the volume of the recovered solution with respect to the volume of the sample solution containing the nucleic acid prepared according to the sample size.
  • the amount of the recovery solution containing the separated and purified nucleic acid depends on the amount of the sample used at that time.
  • the amount of recovered solution that is commonly used is several tens to several hundred hundreds.However, when the sample volume is extremely small, or when a large amount of nucleic acid is to be separated and purified, the recovered solution volume is 1 ⁇ m. It can vary from one to several tens of ml.
  • the pH of the recovered solution is preferably pH 2-11. Furthermore, it may be pH5-9 preferable.
  • ionic strength and salt concentration have an effect on elution of the adsorbed nucleic acid.
  • the recovered solution preferably has an ionic strength of 290 mmol Zl or less, and more preferably a salt concentration of 90 mmol Zl or less. By doing so, the recovery rate of nucleic acids is improved, and more nucleic acids can be recovered.
  • the nucleic acid to be recovered may be deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), and may be single-stranded or double-stranded.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the nucleic acid to be collected is RNA
  • the water used to prepare the washing solution S and the recovery solution is DEPC (d
  • the nucleic acid contained in the recovered solution obtained as described above is measured with an ultraviolet-visible spectrophotometer (260 nm / 280 nm).
  • an ultraviolet-visible spectrophotometer 260 nm / 280 nm
  • DNA 1.6-2.0, 1 ⁇ ⁇
  • it has a purity of 1.8-2.2. That is, a high-purity nucleic acid with a small amount of impurities can be constantly obtained.
  • nucleic acids having a purity of about 1.8 when the measurement value (260 nm Z280 nm) with an ultraviolet-visible spectrophotometer is DNA and about 2.0 for RNA can be recovered.
  • the nucleic acid separation / purification cartridge 100 can be suitably used by an automatic apparatus as described above, but can be used even when operated manually.
  • a syringe and a pitter can be used as a means for pressurizing the sample solution or the like.
  • the syringe pipitter can be detachably connected to one opening (the first opening 143a side) of the nucleic acid separation / purification cartridge 100.
  • plastics such as polypropylene, polystyrene, polycarbonate, and polyvinyl chloride can be used. Further, biodegradable materials can also be suitably used. Further, the barrel 140 and the bottom member 120 may be transparent or colored.
  • the nucleic acid-adsorbing porous membrane F a porous membrane in which ionic bonds are not involved and nucleic acids are adsorbed by interaction is preferable. More preferably, the nucleic acid-adsorbing porous membrane F is a porous membrane having a hydrophilic group, and the material forming the porous membrane itself is a porous membrane having a hydrophilic group. It is a porous membrane into which a hydrophilic group has been introduced by treating or coating a film or a material forming the porous membrane. The material forming the porous film may be any of an organic substance and an inorganic substance.
  • the porous film itself is an organic material having a hydrophilic group
  • the porous film itself is an organic material having a hydrophilic group
  • a porous film obtained by treating a porous film of an organic material to introduce a hydrophilic group Does not have a hydrophilic group!
  • a porous film made of a porous film made of an organic material coated with a material having a hydrophilic group to introduce a hydrophilic group, or a material that forms a porous film itself has a hydrophilic group.
  • Examples of the porous film having a hydrophilic group include a porous film of an organic material having a hydroxyl group.
  • Examples of the organic material having a hydroxyl group include a surface acetate of acetyl cellulose described in Patent Document 1 described above.
  • the acetyl cellulose may be any of monoacetyl cellulose, diacetyl cellulose, and triacetyl cellulose, but is particularly preferably triacetyl cellulose.
  • the amount (density) of hydroxyl groups on the surface of the solid phase can be controlled by the degree of the zirid treatment (the zirid degree).
  • the amount (density) of hydroxyl groups is large.
  • the oxidation ratio is preferably 5% or more, more preferably 10% or more.
  • the amount (density) of hydroxyl groups in the solid phase can be controlled by a combination of the degree of the oxidizing treatment (the oxidizing degree) and the pore size of the porous film.
  • the porous membrane may be a front-back symmetric porous membrane, but a front-back asymmetric porous membrane can be suitably used.
  • a porous film of an organic material having a hydroxyl group a porous film of an organic polymer having a mixed power of acetyl-cellulose having different acetyl values can also be suitably used.
  • a mixture of acetyl cellulose having different acetyl values a mixture of triacetyl cellulose and diacetyl cellulose can be suitably used.
  • the mixing ratio of triacetyl cellulose and diacetyl cellulose is preferably 99: 1 to 1:99. Yo More preferably, the mixing ratio of triacetyl cellulose and diacetyl cellulose is 90: 10-50: 50.
  • Examples of a mixture of acetyl cellulose having different acetyl values include a mixture of triacetyl cellulose and monoacetyl cellulose, a mixture of triacetyl cellulose, diacetyl cellulose and monoacetyl cellulose, and a mixture of diacetyl cellulose and monoacetyl cellulose. Can also be used.
  • Examples of the porous film of an organic material having a hydroxyl group include a porous film having a strong organic material obtained by oxidizing a mixture of acetyl cellulose having different acetyl values.
  • a peroxide of a mixture of triacetyl cellulose and diacetyl cellulose can be suitably used.
  • the mixing ratio of triacetyl cellulose and diacetyl cellulose is preferably 99: 1 to 1:99. Further, the mixing ratio of triacetyl cellulose and diacetyl cellulose is preferably 90:10 to 50:50.
  • an organic material obtained by subjecting a mixture of acetyl cellulose having different acetyl values to oxidation treatment an oxidation product of a mixture of triacetyl cellulose and monoacetyl cellulose, and a mixture of a mixture of triacetyl cellulose and diacetyl cellulose and monoacetyl cellulose are used.
  • Oxide, an oxide of a mixture of diacetyl cellulose and monoacetyl cellulose can also be used.
  • a porous membrane having a thickness of 10 to 500 ⁇ m can be suitably used. More preferably, a porous membrane having a thickness of 50 to 250 m is used.
  • a porous membrane having a minimum pore size of 0.22 ⁇ m or more can be suitably used. More preferably, a porous membrane having a minimum pore size of 0.5 m or more can be used.
  • a porous membrane having a ratio of the maximum pore diameter to the minimum pore diameter of 2 or more can be suitably used. More preferably, a porous membrane having a ratio of the maximum pore size to the minimum pore size of 5 or more can be used.
  • a porous membrane having a porosity of 50 to 95% can be suitably used. More preferably, a porous membrane having a porosity of 65-80% is used. Can. Further, as the nucleic acid-adsorbing porous membrane F, a porous membrane having a bubble point of 9.8 to 980 kPa (0.1 lOkgfZcm 2 ) can be suitably used. More preferably, a porous membrane having a bubble point of 19.6 to 392 kPa (0.2 to 4 kgf / cm 2 ) can be used.
  • a porous membrane having a pressure loss of 0.1 lOOkPa can be suitably used. More preferably, a porous membrane having a pressure loss of 0.5 to 50 kPa can be used.
  • the pressure loss is the minimum pressure required to pass water per 100 m of membrane thickness.
  • nucleic acid-adsorbing porous membrane F a porous membrane in which the amount of nucleic acid adsorbed per 1 mg of the porous membrane is 0.1 ⁇ g or more can be suitably used. More preferably, a porous membrane having a nucleic acid adsorption amount of 0.9 g or more per 1 mg of the porous membrane can be used.
  • FIG. 7 is a perspective view of a cartridge group for nucleic acid separation and purification according to the second embodiment.
  • the nucleic acid separation / purification cartridge group 190 has a large number of nucleic acid separation / purification cartridges 192 formed continuously.
  • the nucleic acid separation / purification cartridge 192 constituting the nucleic acid separation / purification cartridge group 190 is similar to the nucleic acid separation / purification cartridge 100 described in the first embodiment in that its structure is almost the same. Part of the cartridge 192 (connection part 193) is continuous with each other.
  • the nucleic acid separation / purification cartridge group 190 is manufactured using an injection mold (not shown) in which a number of cavities 151 (see FIG. 3) communicating with each other are formed. Therefore, the pressure of the resin J pressing the peripheral portion Fa of the large number of nucleic acid-adsorbing porous membranes F set in the large number of cavities 151 becomes uniform. Therefore, a large number of nucleic acid separation / purification cartridges 192 (nucleic acid) can be used at a time without the nucleic acid-adsorbing porous membrane F being torn or being insufficiently sealed due to the variation in the force pressing the nucleic acid-adsorbing porous membrane F. Separation and purification cartridges 190) can be manufactured efficiently.
  • the cartridges for nucleic acid separation and purification according to the first and second embodiments of the present invention are described.
  • the present invention is not limited to the above embodiment.
  • the nucleic acid separation / purification cartridge group 190 according to the second embodiment is in a state where the nucleic acid separation / purification cartridges 192 are directly connected to each other, but the injection molding type in which the cavities communicate with each other by a runner is used.
  • the nucleic acid separation / purification cartridge 192 can be configured not to be directly connected.
  • the nucleic acid separation / purification cartridge 100 of the first embodiment may be manufactured by communicating with the runner and injection molding, and then cutting off the runner to produce a large number of nucleic acid separation / purification cartridges 100.
  • FIG. 8 to be referred to is an exploded perspective view of the cartridge for nucleic acid separation and purification according to the third embodiment of the present invention
  • FIG. 9 is a cross-sectional view of the cartridge for nucleic acid separation and purification according to the third embodiment of the present invention
  • 10 is an enlarged sectional perspective view of a cap used in the third embodiment of the present invention
  • FIG. 11 is an XX sectional view of FIG. 10
  • FIG. 12 is an enlarged view of a portion B in FIG.
  • FIG. 13 is a cross-sectional view showing a washing step of the cartridge for separating and purifying nucleic acid according to the third embodiment of the present invention.
  • the terms “up” and “down” are based on FIG.
  • the nucleic acid separation / purification cartridge 200 holds the nucleic acid-adsorbing porous membrane F, the nucleic acid-adsorbing porous membrane F, and allows liquid to pass through.
  • the barrel 210 and the cap 220 which are cylindrical bodies forming a flowing passage, also have a force.
  • the barrel 210 is formed by a cylindrical barrel body 212 and a cylindrical barrel-side fitting part 213 connected to the barrel body 212, and a first opening 211a is provided at the upper part of the barrel body 212.
  • An opening 21 lb is formed in the lower part of the fitting part 213. Therefore, the liquid can flow downward from above the barrel 210.
  • the outer diameter of the barrel-side fitting portion 213 is slightly smaller than the outer diameter of the barrel main body 212.
  • the cap 220 includes a cylindrical cap-side fitting portion 222 and a discharge portion 224 connected to an opening 223 provided at the bottom 222a of the cap-side fitting portion 222.
  • the opening 223, which is an example of the bottom opening has a smaller diameter than the first opening 211a provided above the barrel main body 212.
  • an opening 221a is formed at an upper portion of the cap-side fitting portion 222, and a second opening 221b is formed at a lower portion of the discharge portion 224. Therefore, the liquid can flow downward from above the cap 220.
  • the inner diameter of the cap-side fitting portion 222 is formed to a diameter that can be fitted to the outer diameter of the barrel-side fitting portion 213 of the barrel 210.
  • the barrel-side fitting portion 213 of the barrel 210 is attached to the bottom side 222a of the cap-side fitting portion 222 of the cap 220 with the nucleic acid-adsorbing porous membrane F arranged.
  • the nucleic acid-adsorbing porous membrane F can be sandwiched between the barrel 210 and the cap 220 by being fitted into the cap-side fitting portion 222 of the cap 220.
  • a “cylindrical main body” is constituted by the barrel 210 and the cap-side fitting portion 222.
  • the cap 220 has six (only three are shown in the figure) radial ribs 226 formed on the bottom surface 222b of the cap-side fitting portion 222.
  • the rib 226 has a top 226c of the outer peripheral end 226a abutting on the nucleic acid-adsorbing porous membrane F and supporting the nucleic acid-adsorbing porous membrane F. (See Figure 9).
  • the rib 226 is moved from the outer end 226a to the inner end so that, when the nucleic acid separation / purification cartridge 200 is used, the nucleic acid-adsorbing porous membrane F is displaced toward the outlet 224 as the nucleic acid-adsorbing porous membrane F approaches the opening 223. It is inclined toward the discharge section 224 toward the section 226b. Further, a clamping surface 225 that is one step higher than the bottom surface 222b is formed on the outer periphery of the bottom surface 222b so as to be continuous with the outer peripheral end 226a of the rib 226.
  • the sandwiching surface 225 is a surface that sandwiches the nucleic acid-adsorbing porous membrane F between the barrel 210 and an opening edge 214 (see FIG. 8) corresponding to the edge of the opening 21 lb. It is preferable that the width of the holding surface 225 is formed in accordance with the width of the opening edge portion 214.
  • the rib 226 is an example of a “projection”, and the “projection” may be formed by forming a plurality of mountain-shaped projections that are not necessarily in the form of a rib.
  • the ribs 226 are formed radially, when the liquid flows from above to below, the liquid smoothly flows into the discharge portion 224. Further, since the top 226c of the rib 226 is inclined toward the discharge part 224 from the outer end 226a to the inner end 226b, the cleaning liquid S (see FIG.
  • the inclination angle ⁇ 1 of the rib 226 with respect to the radial direction of the cap-side fitting portion 222 is preferably 3 ° or more, more preferably 5 ° or more.
  • the rib 226 has a top 226c formed in an arc shape when viewed in a cross section. This makes it difficult for the cleaning solution S to stay between the top portion 226c of the rib 226 and the nucleic acid-adsorbing porous membrane F, so that the cleaning solution S is discharged more quickly.
  • the rib 22
  • the radius of curvature of the top 226c of 6 is preferably 1Z4 or more, more preferably 1Z3 or more, most preferably 1Z2 or more with respect to the width of the rib 226.
  • the bottom surface 222b of the cap-side fitting portion 222 has a slope that is displaced toward the discharge portion 224 as approaching the opening 223.
  • the inclination angle 02 of the bottom surface 222b with respect to the radial direction of the cap-side fitting portion 222 is preferably 10 ° or more, more preferably 15 ° or more, and most preferably 20 ° or more.
  • the corners (eg, the edge 223a of the opening 223) and the corners (eg, the outer edge 222c of the bottom surface 222b) of the inner surface are circular. It is formed in an arc shape. This makes it difficult for the cleaning liquid S to stay at the corners and corners present on the inner surface, so that the cleaning liquid S is discharged more quickly.
  • the radius is preferably at least 0.1 mm, more preferably at least 0.2 mm, most preferably at least 0.3 mm.
  • the radius of curvature of the corner is preferably 0.1 mm or more, more preferably 0.15 mm or more, and most preferably 0.2 mm or more.
  • the angle 3 formed by the axis of the barrel 210 and the inner peripheral surface 210a of the barrel 210 is preferably 10 ° or less, more preferably 5 ° or less.
  • the nucleic acid-adsorbing porous membrane F is held between the opening edge 214 of the barrel 210 and the sandwiching surface 225 of the cap 220 with the peripheral edge Fa crushed.
  • a liquid a sample solution or the like
  • a nucleic acid-containing sample solution is caused to flow by pressurized air from the first opening 211a of the barrel 210 (see FIG. 9) to the second opening 221b of the discharge unit 224. Thereby, the nucleic acid in the sample solution is adsorbed on the nucleic acid-adsorbing porous membrane F.
  • the cleaning liquid S is discharged from the first opening 21 la of the barrel 210 to the discharge section 224.
  • the nucleic acid-adsorbing porous membrane F is deformed in a convex shape toward the discharge portion 224 along the inclined shape of the rib 226.
  • the washing solution S power bottom 222a
  • the liquid is quickly discharged from the discharge portion 224 without remaining at the corner 227 formed by the porous film F and the inner peripheral surface 210a of the barrel 210.
  • the contact angle of the droplet Wd of the washing liquid S to the inner wall surface (the inner peripheral surface 210a of the barrel 210, etc.) of the nucleic acid separation / purification cartridge 200 is 90 ° or more, for example, as shown in FIG.
  • the cleaning solution S As described above, even if the droplet Wd remains on the inner peripheral surface 210a of the barrel 210, the droplet Wd Since it becomes substantially spherical by force, it is easy to remove by pressurized air. As a result, the cleaning solution S
  • the droplet Wd of the cleaning solution S contacts the inner wall surface of the nucleic acid separation and purification cartridge 200.
  • the angle is not more than 80 °, the wettability of the cleaning solution S to the inner wall surface of the nucleic acid separation / purification cartridge 200 is improved, and the cleaning solution S is less likely to remain as droplets Wd.
  • the washing solution S is quickly discharged without remaining inside the nucleic acid separation / purification cartridge 200.
  • the cylindrical body is formed by fitting the barrel into the cap, but the present invention is not limited to this.
  • a barrel and a cap that are integrally formed may be used as a cylindrical body.
  • FIG. 14 is an exploded perspective view of the cartridge for nucleic acid separation and purification according to the fourth embodiment of the present invention
  • FIG. 15 is a cross-sectional view of the cartridge for nucleic acid separation and purification according to the fourth embodiment of the present invention. is there.
  • FIG. 16 is an enlarged sectional view of the discharge part of the cartridge for separating and purifying nucleic acid according to the fourth embodiment of the present invention.
  • FIG. 17 is an enlarged cross-sectional view of the discharge part of the cartridge for separating and purifying nucleic acid according to the fifth embodiment of the present invention.
  • FIG. 18 is an enlarged cross-sectional view of the discharge unit of the cartridge for separating and purifying nucleic acid according to the sixth embodiment of the present invention.
  • the expressions “up” and “down” are based on the state of use of the cartridge for separating and purifying nucleic acids, specifically, the state as shown in FIG. (Configuration of Cartridge 300 for Separation and Purification of Nucleic Acid)
  • the nucleic acid separation / purification cartridge 300 includes a nucleic acid-adsorbing porous membrane F, a barrel 310 and a cap 320 that hold the nucleic acid-adsorbing porous membrane F and form a passage through which a solution flows. It is composed of
  • the barrel 310 also has a cylindrical barrel body 312 and a cylindrical barrel-side fitting portion 313 connected to the barrel body 312, and the first opening 311 and the barrel-side fitting are formed at the top of the barrel body 312.
  • An opening 314 is formed at a lower portion of the joint 313. Therefore, a solution S (see FIG. 15) can flow downward from above the barrel 310.
  • the outer diameter of the barrel side fitting portion 313 is slightly smaller than the outer diameter of the barrel main body 312.
  • the cap 320 includes a cylindrical cap-side fitting portion 325 and a discharge portion 302 connected to a bottom opening 323 provided in the bottom portion 322 of the cap-side fitting portion 325.
  • the bottom opening 323 provided in the bottom 322 has a smaller diameter than the first opening 311 provided above the barrel main body 312.
  • an opening 327 is formed at an upper portion of the cap side fitting portion 325, and a second opening 321 is formed at a lower portion of the discharge portion 302. Therefore, the liquid can flow downward from above the cap 320.
  • the inner diameter of the cap-side fitting portion 325 is formed to be a diameter that can be fitted to the outer diameter of the barrel-side fitting portion 313 of the barrel 310.
  • the barrel-side fitting portion 313 of the barrel 310 is attached with the nucleic acid-adsorbing porous membrane F disposed on the bottom 322 of the cap-side fitting portion 325 of the cap 320.
  • the nucleic acid-adsorbing porous membrane F can be sandwiched between the barrel 310 and the cap 320 by being fitted into the cap-side fitting portion 325 of the cap 320.
  • at least three, preferably six, radially formed ribs 326 are formed on the bottom 322 of the cap 320.
  • the corner of the rib 326 is formed at the center of the bottom 322 of the cap-side fitting portion 325.
  • the opening 323 is formed so as to have a downwardly inclined shape toward the opening 323.
  • a discharge portion 302 configured as a tube communicating the bottom opening 323 and the second opening 321 of the cap 320 corresponds to a “discharge portion”, and the cylindrical body and the discharge portion are formed in a cylindrical shape. Corresponds to a “cylindrical body”.
  • FIGS. 16 and 17 will be described with reference to FIGS. 14 and 15 for preferred configurations of the discharge section 302 and the end face 304 of the discharge section 302 of the cartridge 300 for nucleic acid separation and purification according to the fourth embodiment of the present invention. This will be described in detail with reference to FIG.
  • the discharge section 302 of the cartridge 300 for nucleic acid separation and purification constitutes the lower half of the cap 320, and one end is formed at the bottom opening 323 of the bottom 322 of the cylindrical main body. The other end is configured as a cylinder forming a second opening 321 for discharging the waste liquid.
  • the waste liquid can be accurately guided toward the waste liquid container 400 (see FIG. 20) disposed below the nucleic acid separation / purification cartridge 300. This is effective, for example, in preventing contamination of another sample solution when the nucleic acid separation / purification cartridge 300 is used in multiple units by an automatic device described later.
  • the thickness T of the end face 324 of the portion of the cap 320 where the second opening 321 is formed is preferably set to 0.2 mm or more. If the thickness T of the portion forming the second opening 321 is formed to be 0.2 mm or more, the bubbles of the sample solution S (see FIG.
  • the thickness T is set to 0.5 mm or more.
  • the opening diameter r of the second opening 321 of the cap 320 in the nucleic acid separation / purification cartridge 300 is preferably formed to be equal to or greater than 1.0 mm.
  • the opening diameter r is set to 1. Omm or more, the waste liquid can be discharged well.
  • the outer diameter R of the end face 324 of the cap 320 is preferably formed to be 1.4 mm or more. If the outer diameter R of the end face 324 of the discharge portion 302 is set to 1.4 mm or more, the above-described thickness T can be secured to 0.2 mm or more, and the strength of the portion forming the second opening 321 is kept high. thing Can do. For the above reason, it is more preferable that the outer diameter R is equal to or greater than 2. Omm.
  • the output 302 of the cap 320 preferably has an angle ⁇ 4 between the end surface 324 and the outer wall surface 302a of 105 ° or less.
  • the angle ⁇ 4 between the discharge portion 302 and the outer wall surface 302a is more preferably 100 ° or less, more preferably 95 ° or less.
  • the opening diameter r becomes larger. It may be shaped. In this case, since the outer edge of the second opening 321 is formed at an acute angle with the outer wall surface 302a, even when the downward force and the air roll up, the foam passes over the outer edge portion to the outer wall surface 302a. It becomes difficult to adhere.
  • the angle ⁇ 5 between the end surface 324 of the discharge portion 302 and the outer wall surface 302a is preferably set to 30 ° or more (see FIG. 17). If the angle is less than 30 °, the sample solution S
  • the resin hydrophilicity of the end surface 324 and the outer wall surface 302a it is preferable that the material constituting the cartridge 300 for separating and purifying nucleic acid be easily wetted. By making the end surface 324 and the outer wall surface 302a hydrophilic, the water repellency of the cleaning solution S is suppressed.
  • bubbles can be drawn in by the cleaning liquid S.
  • the inner wall surface 302b is preferably made of a hydrophobic synthetic resin which is preferably water-repellent. It is preferable to make 300.
  • the following treatment is performed. It can be done by doing.
  • a cap 320 in which the second opening 321 side is sealed is manufactured by injection molding using polystyrene which is a hydrophobic synthetic resin.
  • the shape of the second opening 321 is preferably adjusted to the above-mentioned arbitrary shape.
  • the hydrophilicity of the end surface 324 and the outer wall surface 302a is improved by subjecting the end surface 324 of the cap 320 and the outer wall surface 302a (preferably the outer wall surface 302a near the second opening 321) to plasma treatment.
  • the inner wall surface 302b has high water repellency, and the outer wall surface 302a and the end surface 324 of the discharge portion 302 have high hydrophilicity, so that the cap 320 can be obtained.
  • the hydrophilicity of the end surface 324 and the outer wall surface 302a can be increased by performing the same treatment.
  • the cartridge for separating and purifying nucleic acid of the present invention it is preferable to form a claw member 328 for inducing bubbles on the end face 324 of the cap 320. Further, it is more preferable that the claw member 328 is formed in a rod shape. Further, it is preferable that the inner surface of the claw member 328 is formed to coincide with the inner wall surface 302b. With this configuration, the foam that has reached the second opening 321 travels along the rod-shaped claw member 328 extending on the inner wall surface 302b, and at the tip portion, that is, at a position further below the second opening 321. As a result, the foam easily aggregates and falls into the waste liquid container 400, so that the adhesion of the foam to the outer wall surface 302a can be prevented.
  • the number of the bar-shaped claw members 328 can be any number from one to a plurality as long as the above-described object can be achieved.
  • the rib 326 is formed so as to have a downwardly inclined shape on the side of the bottom opening 323, when the solution or the like S is pressurized from the first opening 311 side of the barrel 310, the nucleic acid-adsorbing porous membrane F Along the inclined shape of the S rib 326, the S rib 326 is deformed in a convex shape toward the bottom opening 323 side. As a result, the solution S or the like is quickly discharged from the bottom opening 323 without remaining in the bottom 322.
  • nucleic acid separation / purification cartridge containing one nucleic acid-adsorbing porous membrane is used.
  • a nucleic acid separation / purification cartridge containing a plurality of nucleic acid-adsorbing porous membranes may be used.
  • the plurality of nucleic acid-adsorptive porous membranes to be accommodated may be the same or different.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

 容器を固着するための専用設備が不要であり、多数個を同時に製造することができる核酸分離精製カートリッジおよびその製造方法、および、核酸の分離精製における洗浄工程において洗浄液が容器内に残留し難い核酸分離精製カートリッジ、並びに、排出部の外壁面に溶液等が付着しない核酸分離精製カートリッジ、を提供する。具体的には、底部材(120)と核酸吸着性多孔性膜(F)とからなるインサート材(110)と、このインサート材(110)に対してインサート射出成形されるバレル(140)とから核酸分離精製カートリッジ(100)を構成する。また、核酸分離精製カートリッジ(200)のリブ(226)を、その外周側端部(226a)から内部側端部(226b)に向けて、排出部(224)側に傾斜させる。また、核酸分離精製カートリッジ(300)のキャップ(320)の第2開口(321)を形成する部分の端面(324)の肉厚(T)を、0.2mm以上に構成する。

Description

明 細 書
核酸分離精製カートリッジおよびその製造方法
技術分野
[0001] 本発明は、核酸を分離するための核酸分離精製カートリッジに関する。より詳細に は、第 1開口と第 2開口を有する筒状体の内部に核酸吸着性多孔性膜を備え、第 1 開口側から第 2開口側へ向けて核酸を含む試料溶液を加圧ガスにより通流させるこ とで、核酸吸着性多孔性膜に核酸を吸着させ、分離精製する核酸分離精製カートリ ッジ、および、インサート射出成形により製造される核酸分離精製カートリッジおよび その製造方法に関する。
背景技術
[0002] 核酸は、様々な分野において種々の形態で使用されている力 多くの場合、核酸 は極めて少量でし力入手できず、単離および精製操作が煩雑で時間を要する。
[0003] この核酸を簡便かつ効率的に分離精製する方法として、少なくとも 2個の開口を有 する容器内に、表面に水酸基を有する有機高分子から成る固相を収容した核酸分 離精製ユニットを用いた方法が、特開 2003— 128691号公報 (以下、「特許文献 1」と いう場合がある。 )に記載されている(図 19参照)。この方法は、まず、核酸を含む試 料溶液中に、前記核酸分離精製ユニットの一の開口 Zを入没させる。次いで、他の一 の開口 Yに接続された圧力差発生装置を用いて、前記核酸分離精製ユニットの内部 を減圧状態にして、試料溶液を容器内に吸入する。この操作により、試料溶液が固 相と接触して試料溶液中に存在する核酸が固相に吸着する。続いて、圧力差発生 装置を用いてユニットの容器内を加圧して、吸引した試料溶液を排出する。
[0004] 次に、前記と同様の減圧 加圧操作で洗浄液を容器内に吸入した後、容器力ゝら排 出して容器内を洗浄する。この洗浄液は容器内に残留する試料溶液を洗い流すと共 に、核酸と一緒に固相に吸着した試料溶液中の不純物も洗い流す機能を有する。更 に、固相に吸着した核酸を離脱させるための回収液を、上記と同様の減圧 加圧操 作によって容器内に吸入し、容器力 排出する。この排出された回収液には目的と する核酸が含まれているので、これを回収することにより分離精製が完了する。 [0005] ここで、核酸を吸着させる固相としては、核酸吸着性多孔性膜が一般的に用いられ ている。
また、このような核酸分離精製ユニット (核酸分離精製カートリッジ)の構造としては、 当該ユニットの容器を構成する 2つの筒状の部品により核酸吸着性多孔性膜を挟み つけて保持する構造が一般的である。そして、この 2つの筒状の部品の固着方法とし ては、超音波溶着、レーザーによる熱溶着、接着剤、ネジなどによって固着する方法 が用いられている。
発明の開示
[0006] し力しながら、容器を構成する 2つの筒状の部品を射出成形により製造し、一方の 筒状の部品の内部に核酸吸着性多孔性膜を挿入し、組み立て加工機で 2つの筒状 の部品を組み合わせて核酸分離精製ユニットを製造する場合は、 2つの筒状の部品 を組み合わせた後に、超音波溶着やレーザーによる熱溶着等を行って筒状の部品 同士を固着する必要がある。そのため、 2つの筒状の部品を固着するための専用設 備 (例えば超音波溶着機等)が必要となる。
[0007] また、核酸分離精製ユニットは、試料溶液を加圧して核酸吸着性多孔性膜を通過 させること力ゝら、核酸吸着性多孔性膜の側面 (容器と核酸吸着性多孔性膜の接触部 )からの試料溶液の回り込みを防止するために、容器を構成する 2つの部品によって 核酸吸着性多孔性膜の周縁部をしつかりと押さえつけて挟持する必要がある。
し力しながら、多数個の筒状の部品を同時に押し付けて核酸吸着性多孔性膜を挟 持させて多数個の核酸分離精製カートリッジを同時に製造すると、製造誤差により部 品の高さにばらつきがあることから、核酸吸着性多孔性膜を押し潰す力に差が生じ、 押し潰す力が足りない場合にはシール不良となる。一方、押し潰す力が強すぎる場 合には核酸吸着性多孔性膜が破れてしまうおそれがある。そのため、この方法では、 同時に多数個の核酸分離精製カートリッジを製造することが困難と考えられる。
[0008] また、前記の核酸分離精製カートリッジでは、洗浄液にて洗!、流す際、出来るだけ 容器内に洗浄液が残留しないのが望ましい。洗浄液が残留した状態で、回収液にて 核酸を回収すると、排出された回収液に洗浄液が混入し、この混入した洗浄液の濃 度によっては、次工程、例えば、 PCR (Polymerase Chain Reaction)等におい て、悪影響を及ぼすおそれがある。
[0009] さらに、前記の核酸分離精製カートリッジでは、核酸分離精製カートリッジ内の溶液 等を排出し終わった後も加圧装置により継続して空気を圧送することとなる。このとき 、核酸を分離精製するための膜は多孔性であるためにこの溶液等が膜を通過した際 に細力ゝ 、泡を生じることがある。カゝかる現象は粘性の高 ヽ試料溶液にお!ヽて特に生 じ易い。そして、生じた細かい泡は加圧された空気によって、溶液等を排出するため の他の開口まで運ばれ、排出部 402の開口近傍に溜まる(図 20参照)。さらに、この 開口から吹き出したエアは、当該カートリッジの下部に配置されている廃液容器 400 の内部で巻き上がり、巻き上がったエアによってこの泡が排出部の外壁面にまで回り 込み、付着する。
[0010] 付着した泡は、その後の回収液による回収工程で精製された核酸と共に回収され てしまう。このようにして回収された泡は未洗浄の溶液であるので、回収液によって回 収された核酸に対しては不純物となる。すなわち、核酸の精製率を悪化させるという 問題や、後工程において回収された核酸を使用して実験'研究する際に、酵素反応 を阻害する虞がある。
[0011] 本発明は、これらの問題を解決するためになされたものであり、容器を固着するた めの専用設備が不要であり、多数個を同時に製造することができる核酸分離精製力 ートリッジおよびその製造方法を提供することを第一の課題とする。
[0012] また、本発明は、第 1開口と第 2開口を有する筒状体の内部に核酸吸着性多孔性 膜を備え、第 1開口側から第 2開口側へ向けて核酸を含む試料溶液を加圧ガスによ り通流させることで、核酸吸着性多孔性膜に核酸を吸着させ、分離精製する核酸分 離精製カートリッジを用いて核酸の分離精製を行う際に、洗浄工程において、洗浄液 が容器内に残留し難 、 (洗浄液が排出され易 ヽ)核酸分離精製カートリッジを提供す ることを第二の課題とする。
[0013] さらに、本発明は、排出部の外壁面に溶液等が付着しない構成とした核酸分離精 製カートリッジを提供することを第三の課題とする。
[0014] これらの課題を解決するため、本発明に係る核酸分離精製カートリッジは、有底筒 状の筒状本体の底部に開口を有し、前記底部に核酸吸着性多孔性膜を支持した核 酸分離精製カートリッジであって、前記核酸吸着性多孔性膜は、その周縁部が前記 筒状本体の筒部を形成する成形材料により挟持され、前記核酸吸着性多孔性膜を 挟持する一方の部分である前記底部を形成する底部材に前記核酸吸着性多孔性膜 を配置した上でこれらを射出成形型のキヤビティ内にインサートし、さらにこのキヤビ ティ内に成形材料を射出することで、前記核酸吸着性多孔性膜を挟持する他方の部 分である前記筒状本体の筒部を形成する部分が前記底部材と一体化されて成形さ れると同時に前記核酸吸着性多孔性膜を挟持したことを特徴とする。
[0015] 本発明に係る核酸分離精製カートリッジによれば、核酸吸着性多孔性膜を挟持す る一方の部分である底部を形成する底部材に核酸吸着性多孔性膜を配置した上で これらを射出成形型のキヤビティ内にインサートし、さらにこのキヤビティ内に成形材 料を射出することで、核酸吸着性多孔性膜を挟持する他方の部分である前記筒状本 体の筒部を形成する部分が前記底部材と一体化されて成形されると同時に核酸吸 着性多孔性膜を挟持することから、従来必要とされていた超音波溶着機等の固着の ための専用設備が不要となり、射出成形装置のみで核酸分離精製カートリッジを製 造することが可能となる。また、部品の製造誤差による核酸吸着性多孔性膜の押圧 力の差によって核酸吸着性多孔性膜が破れたりシール不足となったりすることがない
[0016] また、前記底部材は、前記底部の開口に連通する筒状の排出部(ノズル)をさらに 備えていることが好ましい。これにより、核酸吸着性多孔性膜を通過した液体が飛び 散ることなく排出部の先端力 流下する。
[0017] また、前記核酸吸着性多孔性膜の周縁部は、前記筒状本体の筒部を形成する成 形材料の射出圧力により押し潰されて挟持されていることが好ましい。これにより、核 酸吸着性多孔性膜の周縁部の内部に無数に存在する空隙 (孔)力潰されることとなり 、当該周縁部に試料溶液や洗浄液が残留することがなぐまた、核酸吸着性多孔性 膜の側面へ試料溶液が回り込むことがない。
[0018] また、前記核酸吸着性多孔性膜の周縁部は、内部の空隙がなくなるまで押し潰さ れていることが好ましい。これにより、試料溶液等の残留や回り込みを確実に防止す ることがでさる。 [0019] また、前記核酸吸着性多孔性膜の周縁部は、もとの膜厚の 10%から 70%の膜厚 になるまで押し潰されていることが好ましい。これにより、核酸吸着性多孔性膜の周縁 部の内部に無数に存在する空隙 (孔)が押し潰されてなくなることから、試料溶液等 の残留や回り込みを確実に防止することができる。
[0020] また、前記核酸分離精製カートリッジが複数個つながった状態で同時に成形されて なる核酸分離精製カートリッジ群においては、前記射出成形型は前記キヤビティを複 数個備えており、前記複数個のキヤビティ内には前記底部材に前記核酸吸着性多 孔性膜が配置された上でこれらがそれぞれインサートされ、さらに前記複数個のキヤ ビティは互 、に連通して 、ることが好まし!/、。
[0021] 力かる核酸分離精製カートリッジ群によれば、前記射出成形型は前記キヤビティを 複数個備えており、前記複数個のキヤビティ内には前記底部材に前記核酸吸着性 多孔性膜が配置された上でこれらがそれぞれインサートされ、さらに前記複数個のキ ャビティは互いに連通していることから、同じ射出圧力で射出される榭脂がそれぞれ のキヤビティに充填されることとなるため、核酸吸着性多孔性膜を押圧する力が等しく なり、シール不足や破れが発生することなぐ同時に多数の核酸分離精製カートリツ ジを、或いは、多数の核酸分離精製カートリッジが連結された核酸分離精製カートリ ッジ群を、製造することができる。
[0022] ここで、「つながった状態」とは、カートリッジ同士が直接つながった状態であっても よいし、ランナーによってつながっている状態でもよい。これにより、複数の核酸分離 精製カートリッジを同時に製造することが可能となるため、製造効率を飛躍的に向上 させることがでさる。
[0023] 本発明に係る核酸分離精製カートリッジの製造方法は、有底筒状の筒状本体の底 部に開口を有し、前記底部に核酸吸着性多孔性膜を支持した核酸分離精製カートリ ッジの製造方法であって、前記筒状本体の底部を有して前記筒状本体の一部を形 成する底部材の底部に、前記核酸吸着性多孔性膜を配置した状態で、前記底部材 および前記核酸吸着性多孔性膜を射出成形型のキヤビティ内に配置する工程と、前 記核酸吸着性多孔性膜にコアピンを押し当て、前記コアピンの周囲に前記核酸吸着 性多孔性膜の周縁部がはみ出した状態で前記核酸吸着性多孔性膜を保持するェ 程と、前記射出成形型を閉じる工程と、前記キヤビティ内に成形材料を射出し、前記 筒状本体の筒部を成形すると同時に前記核酸吸着性多孔性膜の周縁部を成形材 料と前記底部とで挟持する工程と、前記射出成形型から成形体を取り出す工程と、を 有することを特徴とする。
[0024] 本発明に係る核酸分離精製カートリッジの製造方法によれば、筒状本体の底部を 有して筒状本体の一部を形成する底部材の底部に、核酸吸着性多孔性膜を配置し た状態で、底部材および核酸吸着性多孔性膜を射出成形型のキヤビティ内に配置 する工程と、核酸吸着性多孔性膜にコアピンを押し当て、コアピンの周囲に核酸吸 着性多孔性膜の周縁部がはみ出した状態で核酸吸着性多孔性膜を保持する工程と 、射出成形型を閉じる工程と、キヤビティ内に成形材料を射出し、筒状本体の筒部を 成形すると同時に核酸吸着性多孔性膜の周縁部を成形材料と底部とで挟持するェ 程と、射出成形型から成形体を取り出す工程と、を有することから、超音波溶着機等 を用いて筒状の部品同士を固着する工程が不要となり、射出成形装置のみで核酸 分離精製カートリッジを製造することが可能となる。また、部品の製造誤差 (寸法誤差 )による核酸吸着性多孔性膜の押圧力の差によって核酸吸着性多孔性膜が破れたり シール不足となったりすることがな!、。
[0025] また、前記核酸分離精製カートリッジの製造方法にお!、ては、前記コアピンは、前 記核酸吸着性多孔性膜を、もとの膜厚の 10%から 70%の膜厚になるまで押し潰して 保持することが好ましい。これにより、成形材料の注入圧によって核酸吸着性多孔性 膜がずれたりしわがよったりすることがない。
[0026] また、前記核酸分離精製カートリッジの製造方法にお!、ては、前記コアピンの先端 部は、その周縁部から中心部に向力 て円錐形状に形成されていることが好ましい。 これにより、コアピンは自律的に調心される。
[0027] また、前記核酸分離精製カートリッジの製造方法においては、前記コアピンの周囲 にはみ出した前記核酸吸着性多孔性膜の周縁部を、前記キヤビティ内に射出された 成形材料の射出圧力により、内部の空隙がなくなるまで押し潰すことが好ましい。こ れにより、試料溶液等の残留や回り込みを確実に防止することができる。
[0028] また、前記核酸分離精製カートリッジの製造方法においては、前記コアピンの周囲 にはみ出した前記核酸吸着性多孔性膜の周縁部を、前記キヤビティ内に射出された 成形材料の射出圧力により、もとの膜厚の 10%から 70%の膜厚になるまで押し潰す ことが好ましい。これにより、核酸吸着性多孔性膜の周縁部の内部に無数に存在す る空隙 (孔)が押し潰されてなくなることから、試料溶液等の残留や回り込みを確実に 防止することができる。
[0029] また、前記核酸分離精製カートリッジの製造方法により多数の核酸分離精製カート リッジを同時に製造する方法にぉ 、ては、前記射出成形型は前記キヤビティを複数 個備えており、前記複数個のキヤビティ内には前記底部材に前記核酸吸着性多孔 性膜が配置された上でこれらがそれぞれインサートされ、さらに前記複数個のキヤビ ティは互いに連通して 、ることが好まし!/、。
[0030] このような、多数の核酸分離精製カートリッジを同時に製造する方法によれば、射 出成形型はキヤビティを複数個備えており、複数個のキヤビティ内には底部材に核酸 吸着性多孔性膜が配置された上でこれらがそれぞれインサートされ、さらに複数個の キヤビティは互いに連通していることから、同じ射出圧力で射出される榭脂がそれぞ れのキヤビティに充填されることとなるため、核酸吸着性多孔性膜を押圧する力が等 しくなり、シール不足や破れが発生することなぐ同時に多数の核酸分離精製カートリ ッジを、或いは、多数の核酸分離精製カートリッジが連結された核酸分離精製カート リッジ群を、製造することができる。
[0031] 本発明に係る核酸分離精製カートリッジは、第 1開口と第 2開口を有する筒状体の 内部に核酸吸着性多孔性膜を備え、前記第 1開口側から前記第 2開口側へ向けて 核酸を含む試料溶液を加圧ガスにより通流させることで、前記核酸吸着性多孔性膜 に核酸を吸着させ、分離精製する核酸分離精製カートリッジであって、前記筒状体は 、前記核酸吸着性多孔性膜を支持する底部を有する筒状本体と、前記底部に形成 された底部開口と前記第 2開口とを連通する排出部とを有し、前記底部は、底面と、 前記底面に形成された複数の突起とを有し、前記複数の突起は、その頂部の少なく とも一部で前記核酸吸着性多孔性膜を支持し、かつ、使用時において、前記核酸吸 着性多孔性膜が前記底部開口に近付くほど前記排出部の方へ変位するように形成 されていることを特徴とする。 [0032] 本発明の核酸分離精製カートリッジによれば、底面に設けられた複数の突起が、そ の頂部の少なくとも一部で前記核酸吸着性多孔性膜を支持し、かつ、使用時におい て、前記核酸吸着性多孔性膜が前記底部開口に近付くほど前記排出部の方へ変位 するように形成されているため、洗浄工程において、洗浄液を加圧ガスにより通流さ せる際、核酸吸着性多孔性膜が突起に沿って、排出部側に向力つて凸状に変形す る。これにより、洗浄液が筒状本体の底部に残留することなぐ速やかに排出部から 排出される。
[0033] また、前記複数の突起は、好ましくは前記底部開口から放射状に延びる複数のリブ である。この場合、前記リブは 3本以上であることが好ましい。なお、前記筒状体の径 方向に対するそれぞれの前記リブの傾斜角度は、好ましくは 3° 以上、より好ましくは 5° 以上である。
[0034] また、前記底面は、前記底部開口に近付くほど前記排出部の方へ変位する傾斜を 有することが好ましい。これにより、洗浄液がより速やかに排出される。また、前記筒 状体の径方向に対する前記底面の傾斜角度は、好ましくは 10° 以上、より好ましく は 15° 以上、最も好ましくは 20° 以上である。
[0035] また、前記リブは、頂部が円弧状に形成されているのが好ましい。これにより、リブの 頂部と核酸吸着性多孔性膜との間に洗浄液が滞留し難くなるので、洗浄液がより速 やかに排出される。また、前記核酸分離精製カートリッジは、内面に存在する角部お よび隅部が円弧状に形成されているのが好ましい。これにより、内面に存在する角部 および隅部に、洗浄液が滞留し難くなるので、洗浄液がより速やかに排出される。な お、リブの頂部の曲率半径はリブ幅に対して 1Z4以上が好ましぐより好ましくは 1Z 3以上、最も好ましくは 1Z2以上である。また、角部の曲率半径は 0. 1mm以上が好 ましぐより好ましくは 0. 2mm以上、最も好ましくは 0. 3mm以上である。また、隅部 の曲率半径は 0. 1mm以上が好ましぐより好ましくは 0. 15mm以上、最も好ましく は 0. 2mm以上である。
[0036] また、前記筒状体の軸と前記筒状体の内周面とがなす角度は、好ましくは 10° 以 下、より好ましくは 5° 以下である。これにより、洗浄液が筒状体の内周面を伝って流 れ易くなるので、洗浄液がより速やかに排出される。 [0037] また、前記核酸分離精製カートリッジの内壁面には、前記洗浄液の液滴の接触角 力 ¾0° 以下または 90° 以上となるような材質、あるいはそのような接触角となるよう に表面処理が行われた材質を用いるのが好ましい。接触角が 80° 以下の場合は、 核酸分離精製カートリッジの内壁面に対する洗浄液の濡れ性が向上し、洗浄液が液 滴として残留し難くなるため、洗浄液がより速やかに排出される。なお、濡れ性を更に 向上させるためには、接触角は 60° 以下がより好ましぐ 50° 以下が最も好ましい。 また、接触角が 90° 以上の場合は、核酸分離精製カートリッジの内壁面に洗浄液 が液滴として残留しても、その液滴は表面張力により略球状となるため、加圧ガスに より除去し易くなる。これにより、洗浄液がより速やかに排出される。
[0038] また、前記核酸吸着性多孔性膜は、その周縁部が潰れた状態で保持されるのが好 ましい。核酸吸着性多孔性膜は孔部を有するため、その周縁部が潰れた状態で保 持されると、孔部が塞がるようにして潰れるため、その部分からは液体が流れなくなる 。これにより、核酸吸着性多孔性膜を通るべき液体 (試料溶液等)が、核酸吸着性多 孔性膜の側部に回り込む不具合を防ぐことができる。
[0039] 本発明に係る核酸分離精製カートリッジは、第 1開口と第 2開口を有する筒状体の 内部に核酸吸着性多孔性膜を備え、前記第 1開口側から前記第 2開口側へ向けて 核酸を含む試料溶液を加圧ガスにより通流させることで、前記核酸吸着性多孔性膜 に核酸を吸着させ、分離精製する核酸分離精製カートリッジであって、前記筒状体は 、前記核酸吸着性多孔性膜を支持する底部を有する筒状本体と、前記底部に形成 された底部開口と前記第 2開口とを連通する排出部とを有し、前記排出部の前記第 2 開口を形成する部分の肉厚は、 0. 2mm以上であることを特徴とする。
なお、前記第 2開口を形成する部分の肉厚は、 0. 5mm以上であることがさらに好 ましい。
[0040] 排出部の第 2開口における肉厚がこのような厚みを有することにより、泡がエアで卷 き上げられた場合であっても、排出部の外壁面まで泡が回り込むことがなぐ外壁面 への泡の付着を防止することができる核酸分離精製カートリッジを具現することがで きる。特に、排出部が筒状に形成されている場合に、この排出部の外壁面に泡が回り 込むことを防止することができる。 [0041] 前記した核酸分離精製カートリッジにおいては、前記第 2開口の開口径が 1. Omm 以上であり、かつ、前記第 2開口を形成する部分の肉厚が 0. 2mm以上であり、さら に、前記第 2開口を形成する部分の外径が 1. 4mm以上であることが好ましい。 なお、前記第 2開口を形成する部分の外径は、 2. Omm以上であることがより好まし い。
[0042] このように第 2開口の開口径と、第 2開口を形成する部分の肉厚と、第 2開口を形成 する部分の外径とを規定したことにより、良好な排出性、排出部の外壁面への泡の付 着防止性を具備した核酸分離精製カートリッジを具現することができる。
[0043] また、前記した核酸分離精製カートリッジにおいては、前記排出部の端面と、前記 排出部の外壁面とのなす角度を、 105° 以下とするのが好ましい。なお、排出部の 端面と外壁面とのなす角度を 100° 以下とするのがより好ましぐ 95° 以下とするの 力 Sさらに好ましい。また、排出部の端面の形状を第 2開口へ近づくにつれ開口径が広 力 ¾漏斗形状としてもよい。この場合、前記排出部の端面と外壁面のなす角度を、 30 ° 以上とするのがよい。
[0044] 排出部の端面と、排出部の外壁面とのなす角度をこのように形成したので、排出部 の外壁面に試料溶液の泡が回り込み難い核酸分離精製カートリッジを具現すること ができる。また、外壁面に泡が付着した場合であっても、その泡は排出部の第 2開口 近傍に戻り易ぐ洗浄液によってこれを取り除くことが容易な核酸分離精製カートリツ ジを具現することができる。結果、回収液に未処理の試料溶液の混入を防止すること ができる核酸分離精製カートリッジを具現することができる。また、排出部の端面の形 状を第 2開口へ近づくにつれ開口径が広がる漏斗形状とすると、発生した泡が当該 外壁面にまで回り込み難くなる。さらに、排出部の端面と外壁面とのなす角度を、 30 ° 以上に形成してもよぐこのようにすると泡の回り込みを防止することができる。
[0045] さらに、前記した核酸分離精製カートリッジにおいては端面および外壁面の榭脂親 水性を高めるのが好ましい。すなわち、核酸分離精製カートリッジを構成する材質を 濡れ易いものとするのが好ま U、。
[0046] ここで、排出部の端面のみを考えた場合、撥水性を高めると溶液と端面との濡れ性 が悪くなつて溶液や泡をはじき易くなるので端面への泡の付着を防ぐことができ、ま た、端面力 外壁面へ泡を持ち上げる表面エネルギーも大きくなる結果、泡は外壁 面に付着し難くなる。しかし、前記寸法以下でテストした際に、外壁面へ回りこんだ泡 は、外壁面の撥水性により表面エネルギーが強ぐ重力で落下しなかった。また、洗 浄液も撥水してしまい、泡を引き込むことができな力 た。したがって、核酸分離精製 カートリッジの端面および外壁面の樹脂親水性を高めることが好ましい。 なお、本発明にお ヽて「濡れ性」とは溶液と対象物 (端面や外壁面)とのなじみ易さ をいい、溶液と対象物との接触角で規定される。実験から前記した寸法 '形状におい て端面に泡を保持することができ、かつ、洗浄工程で不純物を洗い落とすための溶 液 (洗浄液)と対象物との接触角としては、 100° 以下がよぐ好ましくは 95° 以下、 より好ましくは 90° 以下である。
[0047] また、前記した核酸分離精製カートリッジにおいては、前記排出部の端面に、泡を 誘導するための爪部材を設けるのがよい。この爪部材を 1本力 複数本設けるのが望 ましい。また、この爪部材の内側の位置を排出部の内壁面と一致するように設けるの が特に望ましい。なお、この爪部材は棒状に形成するのがさらに好ましい。
[0048] このように構成することで、第 2開口に到達した泡は、内壁面に延設された爪部材を 伝ってその先端部分、すなわち、第 2開口より下の位置で凝集する。その結果、凝集 した泡は廃液容器に落ち易くなるので、泡が外壁面に付着し難くなる。また、エアに よって泡が吹き上げられた場合であっても、これが外壁面まで到達することはな!/、。
[0049] 以上のように、本発明に係る核酸分離精製カートリッジおよびその製造方法によれ ば、容器を固着するための専用設備が不要となり、また、多数個を同時に製造するこ とが容易となる。したがって、製造設備費を大幅に削減することができるとともに、製 造効率を飛躍的に増大させることができる。
[0050] また、本発明に係る核酸分離精製カートリッジによれば、洗浄工程にお!ヽて、洗浄 液が核酸分離精製カートリッジの内部に残留せずに、速やかに排出されるので、排 出された回収液への洗浄液の混入を抑えることができる。これにより、次工程におい て、洗浄液に起因する不具合を未然に防ぐことができる。
[0051] また、本発明に係る核酸分離精製カートリッジによれば、試料溶液の泡が、核酸分 離精製カートリッジの排出部の外壁面に付着することを防止することができる。さらに 、未処理の試料溶液の泡の混入防止を図ることができるので、核酸の精製率を向上 することが可能である。また、回収した核酸を使用した実験や研究において、酵素に よる反応が阻害されるなどの問題の発生を未然に防ぐことが可能である。
図面の簡単な説明
[図 1]第 1実施形態に係る核酸分離精製カートリッジの分解斜視図である。
[図 2]第 1実施形態に用いるインサート材の拡大断面斜視図である。
[図 3]核酸分離精製カートリッジと射出成形型の断面図であり、 (a)はインサート材設 置時、(b)は型閉じ時の状態をそれぞれ示している。
圆 4]核酸分離精製カートリッジと射出成形型の断面図であり、(a)は榭脂注入時、 (b )は注入完了時の状態をそれぞれ示している。
[図 5]図 4 (b)の A部を拡大して示した断面図であり、(a)は型閉じ時、(b)は型閉じ完 了時、(c)は榭脂注入時、(d)は注入完了時の状態をそれぞれ示している。
[図 6]第 1実施形態に係る核酸分離精製カートリッジの断面図である。
[図 7]第 2実施形態に係る核酸分離精製カートリッジ群の斜視図である。
[図 8]本発明の第 3実施形態に係る核酸分離精製カートリッジの分解斜視図である。
[図 9]本発明の第 3実施形態に係る核酸分離精製カートリッジの断面図である。
[図 10]本発明の第 3実施形態に用いられるキャップの拡大断面斜視図である。
[図 11]図 10の X— X線断面図である。
[図 12]図 9の B部における拡大図である。
[図 13]本発明の第 3実施形態に係る核酸分離精製カートリッジの洗浄工程を示す断 面図である。
[図 14]本発明の第 4実施形態に係る核酸分離精製カートリッジの分解斜視図である。
[図 15]本発明の第 4実施形態に係る核酸分離精製カートリッジの断面図である。
[図 16]本発明の第 4実施形態に係る核酸分離精製カートリッジのキャップの拡大断面 図である。
[図 17]本発明の第 5実施形態に係る核酸分離精製カートリッジのキャップの拡大断面 図である。
[図 18]本発明の第 6実施形態に係る核酸分離精製カートリッジのキャップの拡大断面 図である。
[図 19]核酸分離精製ユニットの縦断面図である。
[図 20]加圧により溶液を排出する核酸分離精製カートリッジを示した図である。
発明を実施するための最良の形態
[0053] [第 1実施形態]
本発明の核酸分離精製カートリッジに係る第 1実施形態について、適宜図面を参 照しながら説明する。参照する図 1は、第 1実施形態に係る核酸分離精製カートリツ ジの分解斜視図であり、図 2は、第 1実施形態に用いるインサート材の拡大断面斜視 図である。
[0054] (核酸分離精製カートリッジの構造)
図 1に示すように、本発明の第 1実施形態に係る核酸分離精製カートリッジ 100は、 底部材 120と核酸吸着性多孔性膜 Fとからなるインサート材 110と、このインサート材 110に対してインサート射出成形されるバレル 140とから構成されて 、る。
なお、第 1実施形態に係る核酸分離精製カートリッジ 100のバレル 140は、インサ ート射出成形により、底部材 120および核酸吸着性多孔性膜 Fと一体的に形成され るものであるが、図 1においては、説明の便宜上、バレル 140を分離して示している。
[0055] なお、図 1に示すバレル 140と、底部 121と、底部側融着部 123とから、「筒状本体
」が構成される。また、バレル 140が、「筒状本体の筒部を形成する部分」である。
[0056] (インサート材 110)
インサート材 110は、核酸分離精製カートリッジ 100の底部側を構成する底部材 12 0と、核酸を吸着して採取するための核酸吸着性多孔性膜 Fとから構成される。イン サート材 110は、核酸分離精製カートリッジ 100を成形するための射出成形型 (底部 側金型 150およびバレル側金型 160)に予めセットされ(図 3参照)、キヤビティ 151に 成形材料の一例である溶融した榭脂 Jが注入されることにより、当該榭脂 Jにより成形 されるバレル 140と融着される。
[0057] (底部材 120)
底部材 120は、中央に開口部 121aが形成された底部 121と、この底部 121の下面 力 延出するノズル 122 (排出部)と、ノズル 122とは反対側に向力つて底部 121の外 周に沿って筒状に延出する底部側融着部 123とから構成されている。ノズル 122の 先端には第 2開口 122aが形成されており、底部 121の開口部 121aと連通している。 底部側融着部 123は、後記するバレル 140のバレル側融着部 142と融着する部分 であり、その内径は、核酸吸着性多孔性膜 Fの直径と略等しく形成されている。
[0058] 底部材 120の底部 121には、図 2に示すように、底面 121bの外周に沿って、底面 1 21bよりも 1段高くなつた挟持面 125が環状に形成されている。挟持面 125は、後記 する核酸吸着性多孔性膜 Fの周縁部 Faと当接する面であり、平坦に形成されている 。底面 121bは、挟持面 125側から開口部 121a側に向力 ほど低くなる(第 2開口 12 2a側に近づく)ように傾斜しており、試料溶液が排出され易くなつている。また、底面 121bには、 6本(図 2においては 3本のみ図示)のリブ 126が放射状に形成されてい る。リブ 126は、底面 121bから突出しており、底面 121bの傾斜角度よりゆるい角度 で、挟持面 125側から開口部 121a側に向力 ほど低くなるように傾斜している。
[0059] (核酸吸着性多孔性膜 F)
核酸吸着性多孔性膜 Fは、前記した底部側融着部 123の内径と略同一の直径をし た円形状の膜部材である。核酸吸着性多孔性膜 Fは、無数の微細な孔を有しており 、試料溶液を濾過して核酸を抽出できるようになつている。また、核酸吸着性多孔性 膜 Fは、前記した底部材 120の挟持面 125の上に載置されて、インサート材 110を構 成する(図 2参照)。核酸吸着性多孔性膜 Fの周縁部 Faは、挟持面 125に当接する 部分であり、後記するバレル 140の射出成形時の注入圧により挟持面 125に押し付 けられて保持される。
[0060] (バレル 140)
ノ レル 140は、図 1に示すように、円筒状のバレル本体部 141と、バレル本体部 14 1に連なる円筒状のバレル側融着部 142と力もなる。バレル 140は、インサート材 11 0を底部側金型 150に設置した後(図 3参照)、キヤビティ 151に榭脂 Jを射出すること により成形される。バレル 140の中空部 143は、試料溶液等を一時的に貯留する部 分であり、後記するバレル側金型 160に備えられたコアピン 161によって成形される( 図 4参照)。
また、図 1に示すように、中空部 143の上端は開口しており(第 1開口 143a)、中空 部 143の下端は核酸吸着性多孔性膜 Fによって塞がれることとなる。
バレル側融着部 142は、コアピン 161と底部材 120の底部側融着部 123との間に 形成された隙間(図 5 (b)のキヤビティ 151a)に流入した榭脂 Jにより成形される。その ため、実際には、当該隙間に流入した榭脂 Jの熱によって底部側融着部 123の内周 面 123a (図 2参照)が溶融し、バレル 140とインサート材 110がー体ィ匕されることとな る。
[0061] (核酸分離精製カートリッジの製造方法)
続いて、第 1実施形態における核酸分離精製カートリッジの製造方法について、図 面を参照して説明する。参照する図面において、図 3は、核酸分離精製カートリッジと 射出成形型の断面図であり、(a)はインサート材設置時、(b)は型閉じ時の状態をそ れぞれ示している。また、図 4は、同じく核酸分離精製カートリッジと射出成形型の断 面図であり、(a)は榭脂注入時、(b)は注入完了時の状態をそれぞれ示している。
[0062] なお、核酸分離精製カートリッジ 100の製造には、公知の射出成形機を用いること ができる。射出成形機は、射出成形型にインサート材 110を設置する必要があること から、堅型射出成形機を用いるのが好ましいが、インサート材 110 (核酸吸着性多孔 性膜 F)を所定位置に保持することが可能であれば横型であってもよ!/ヽ。本実施形態 においては、底部側金型 150と、バレル側金型 160とから、「射出成形型」が構成さ れている。
[0063] (インサート材 110の設置)
はじめに、図 3 (a)に示すように、予め製造しておいた底部材 120の底部 121の挟 持面 125およびリブ 126によって支持されるように、核酸吸着性多孔性膜 Fを設置し て、インサート材 110を作製する。そして、このインサート材 110を底部側金型 150に 形成されたキヤビティ 151内に設置する。
なお、予めインサート材 110を作製しておいてもよい。また、インサート材 110の作 製およびインサート材 110の設置は、公知の組み立てロボットなどを用いて行うのが 好ましい。
[0064] (型閉じおよび核酸吸着性多孔性膜 Fの保持)
次に、図 3 (b)に示すように、インサート材 110を設置した底部側金型 150に、バレ ル側金型 160を組み合わせて型閉じを行う。
[0065] バレル側金型 160は、核酸分離精製カートリッジ 100の中空部 143に相当する位 置に、円柱状のコアピン 161を備えている。コアピン 161は、両金型 150、 160を閉じ たときに、コアピン 161の先端部 162が核酸吸着性多孔性膜 Fの上面に当接して、底 部材 120の挟持面 125との間で核酸吸着性多孔性膜 Fを挟み込むようになつている 。このとき、核酸吸着性多孔性膜 Fは、次工程で注入する榭脂 Jが漏れない程度に、 所定の厚さまで圧縮される。換言すれば、コアピン 161は、次工程で注入する榭脂 J が漏れな 、程度の厚さまで核酸吸着性多孔性膜 Fを圧縮するように、その長さが調 節されている。核酸吸着性多孔性膜 Fの固定 (押圧)については後に詳しく説明する また、バレル側金型 160は、榭脂 Jを注入するためのゲート 163を備えており、キヤ ビティ 151に榭脂 Jを注入可能となって!/、る。
[0066] (榭脂注入)
次に、図 4 (a)に示すように、底部側金型 150とバレル側金型 160とインサート材 11 0によって形成されたキヤビティ 151に、溶融した榭脂 Jを、ゲート 163から射出する。 このとき、キヤビティ 151内に充填された榭脂 Jの射出圧力によって、核酸吸着性多孔 性膜 Fの周縁部 Faが押し潰される。換言すれば、核酸吸着性多孔性膜 Fの周縁部 F aが好適に押し潰される程度の射出圧力をかけて、溶融した榭脂 Jをキヤビティ 151に 充填する。これについては後に詳しく説明する。
[0067] (型開きおよび核酸分離精製カートリッジ 100の取り出し)
そして、図 4 (b)に示すように、榭脂 Jの充填が完了し、榭脂 Jが冷えて硬化したら、 射出成形機 (図示せず)を操作して型開きを行い、核酸分離精製カートリッジ 100を 取り出す。
[0068] ここで、核酸吸着性多孔性膜 Fの周縁部 Faが、注入された榭脂 Jによって圧縮され て保持される様子について、図 5を参照して詳しく説明する。参照する図面において 、図 5は、図 4 (b)の A部を拡大して示した断面図であり、(a)は型閉じ時、(b)は型閉 じ完了時、(c)は榭脂注入時、(d)は注入完了時の状態をそれぞれ示している。
[0069] はじめに、型閉じ時においては、図 5 (a)に示すように、底部側金型 150のキヤビテ ィ 151内にインサート材 110として底部材 120と核酸吸着性多孔性膜 Fが設置されて いる。核酸吸着性多孔性膜 Fは、底部材 120の底部 121に形成された挟持面 125上 に周縁部 Faが当接するように載置されている。この状態で、射出成形機(図示せず) を操作して、バレル側金型 160を降下させる。
[0070] バレル側金型 160のコアピン 161の直径は、底部材 120の底部側融着部 123の内 径よりも小さぐかつ、挟持面 125の内径よりも大きいように形成されている。したがつ て、型閉じが完了すると、コアピン 161の先端部 162の周縁部 162aは、図 5 (b)に示 すように、挟持面 125の内周側端縁部との間において、核酸吸着性多孔性膜 Fの周 縁部 Faの一部を挟み込むこととなる。
[0071] また、コアピン 161の先端部 162は、リブ 126の上端面の傾斜に合わせて、周縁部 162aから中心に向力つて傾斜するように形成されている。したがって、型閉じが完了 すると、核酸吸着性多孔性膜 Fは、図 5 (b)に示すように、リブ 126の上端面とコアピ ン 161の先端部 162との間、並びに挟持面 125の内周側端縁部とコアピン 161の先 端部 162の周縁部 162aとの間に挟まれて保持される。
なお、このようにコアピン 161の先端部 162が底部 121の形状に合わせて山形状( 錐状体形状)に形成されていることから、コアピン 161は底部材 120の中心へ自律的 に調心される。そのため、コアピン 161が偏心することがなぐ所定の部材厚さ(キヤビ ティ 151aの空隙の幅)を確保することができる。
[0072] コアピン 161による核酸吸着性多孔性膜 Fの圧縮の程度は、核酸吸着性多孔性膜 Fを破くことがなぐかつ、榭脂 Jの射出圧力によって核酸吸着性多孔性膜 Fがずれた りしわが寄ったり、榭脂 Jが漏れたりしない程度に圧縮する必要がある。具体的には、 膜厚の 10%から 70%程度の厚さに圧縮するのが好適である。
[0073] このようにして核酸吸着性多孔性膜 Fが圧縮 (保持)されると、この核酸吸着性多孔 性膜 Fの周縁部 Faと底部側融着部 123の内周面 123aとコァピン 161の外周面 161 aとによって、バレル 140のバレル側融着部 142 (図 1参照)を成形するためのキヤビ ティ 151aが形成される。このとき、コアピン 161の先端部 162からはみ出している核 酸吸着性多孔性膜 Fの周縁部 Faは圧縮されて 、な 、。
なお、コアピン 161が榭脂 Jの注入圧によって僅かに傾いたり、底部側融着部 123 の部材厚さに誤差が生じたりすることを考慮して、キヤビティ 151aの空隙の幅 W (図 5 (b)参照)は、 0. 2mm以上とするのが好ましぐ 0. 5mm以上とするのがより好ましい
[0074] そして、ゲート 163 (図 4 (a)参照)から榭脂 Jを注入すると、図 5 (c)に示すように、キ ャビティ 151aに溶融した榭脂 Jが充填される。このとき、溶融した榭脂 Jは、核酸吸着 性多孔性膜 Fに染み込まず、キヤビティ 151aに面した核酸吸着性多孔性膜 Fの周縁 部 Faを溶融した榭脂 Jの液圧によって押圧する。したがって、所定の射出圧力で榭脂 Jを射出することにより、核酸吸着性多孔性膜 Fの周縁部 Faを所定の厚さに圧縮する ことができる。具体的には、当該周縁部 Faの内部の空隙が無くなるまで圧縮する。例 えば、発明者による実験の結果、酸ィ匕処理を施したトリァセチルセルロース製の核酸 吸着性多孔性膜 F (膜厚 80 μ m)の場合、 30 μ mまで圧縮することにより、試料溶液 の回り込みを防止できることが確認されている。このとき、核酸吸着性多孔性膜 Fの周 縁部 Faの一部は、挟持面 125の内周側端縁部とコアピン 161の周縁部 162aとによ つて環状に挟み込まれているので、キヤビティ 151aに注入された榭脂 Jが核酸吸着 性多孔性膜 Fの中央側に流れ込むことがない。
[0075] また、酸ィ匕処理を施したトリァセチルセルロース製の核酸吸着性多孔性膜 F (膜厚 8 0 m)と、榭脂 Jとして榭脂温度 200°Cのポリプロピレンを用いて、榭脂 Jの射出圧力 について実験を行った結果、榭脂 Jの射出圧力が 14. 7MPa (150kgfZcm2)以下 の場合には、コアピン 161の周囲からはみ出した核酸吸着性多孔性膜 Fの周縁部 Fa を圧縮しきれず、その膜厚は 60 m程度であり、内部の空隙をつぶしきれていなか つた。また、このようにして製造された核酸分離精製カートリッジ 100を使用したところ 、試料溶液が核酸吸着性多孔性膜 Fの側面に回りこんでしまった。一方、射出圧力 が 147MPa (1500kg/cm2)以上の場合には、製造時に核酸吸着性多孔性膜 Fが 破れてしまった。したがって、榭脂 Jの射出圧力は 14. 7MPaより大きく 147MPaより 小さ 、範囲で設定するのがよ 、。
[0076] 図 5 (d)に示すように、榭脂 Jが硬化してバレル 140が成形された後に型開きを行う と、バレル 140の中空部 143からコアピン 161が抜き取られる。このとき、核酸吸着性 多孔性膜 Fの周縁部 Faは、射出成形されたバレル側融着部 142と挟持面 125に挟 まれて挟持されており、核酸分離精製カートリッジ 100の底部 121において支持され る。また、底部側融着部 123の内周面 123aは、注入時の榭脂 Jの熱により溶融し、バ レル側融着部 142の外周面 142aと一体ィヒする。
[0077] これにより、バレル 140が成形されると同時に核酸吸着性多孔性膜 Fが保持される こととなり、従来のようにカートリッジを構成する 2つの部品を固着するための専用装 置が不要となる。また、榭脂 Jの射出圧力により核酸吸着性多孔性膜 Fを圧縮して保 持するため、部品の寸法誤差による核酸吸着性多孔性膜 Fのシール不足や破れを 心配する必要がない。
[0078] (核酸分離精製カートリッジ 100の使用方法)
続いて、核酸分離精製カートリッジ 100の使用方法について説明する。参照する図 6は、第 1実施形態に係る核酸分離精製カートリッジの断面図である。
[0079] 核酸分離精製カートリッジ 100を用いて、核酸を含む検体から核酸を分離精製する 工程は、この工程を自動で行う自動装置を用いて行うことが好ましい。これにより、操 作が簡便化および迅速化するだけでなぐ作業者の技能によらず一定の水準の核酸 を得ることが可能になる。
[0080] 例えば、前記した自動装置(図示せず)は、核酸分離精製カートリッジ 100のバレル 140の第 1開口 143a力らノズル 122の第 2開口 122aへ向けて、核酸を含む試料溶 液を、加圧ガスの一例である加圧エアにより通流させることで、核酸吸着性多孔性膜 Fに核酸を吸着させた後、同様に洗浄液 Sを通流させて不純物を除去し、続いて、
2
同様に回収液を通流させて核酸吸着性多孔性膜 Fに吸着した核酸を離脱させ、回 収液と共に回収する分離精製動作を自動的に行う核酸分離精製装置であって、核 酸分離精製カートリッジ 100と試料溶液および洗浄液 Sの排出液を収容する廃液容
2
器と核酸を含む回収液を収容する回収容器とを保持する搭載機構と、核酸分離精製 カートリッジ 100に加圧エアを導入する加圧エア供給機構と、核酸分離精製カートリ ッジ 100に洗浄液 Sおよび回収液を分注する分注機構とを備えて 、るものを使用す
2
ることがでさる。
[0081] 前記搭載機構は、装置本体に搭載されるスタンドと、このスタンドに上下移動可能 に支持され核酸分離精製カートリッジ 100を保持するカートリッジホルダーと、この力 ートリッジホルダーの下方で核酸分離精製カートリッジ 100に対する位置を交換可能 に前記廃液容器および前記回収容器を保持する容器ホルダーとを備えてなるものが 好適である。
[0082] また、前記加圧エア供給機構は、下端部より加圧エアを噴出するエアノズルと、この エアノズルを支持して前記カートリッジホルダーに保持された核酸分離精製カートリツ ジ 100に対し前記エアノズルを昇降移動させる加圧ヘッドと、この加圧ヘッドに設置さ れ前記搭載機構のラックにおける核酸分離精製カートリッジ 100の位置決めをする位 置決め手段とを備えてなるものが好適である。
[0083] また、前記分注機構は、洗浄液 Sを分注する洗浄液分注ノズルと、回収液を分注
2
する回収液分注ノズルと、前記洗浄液分注ノズルおよび前記回収液分注ノズルを保 持し、前記搭載機構に保持された核酸分離精製カートリッジ 100上を順に移動可能 なノズル移動台と、洗浄液 Sを収容した洗浄液ボトルより洗浄液 Sを吸引し、前記洗
2 2
浄液分注ノズルに供給する洗浄液供給ポンプと、回収液を収容した回収液ボトルより 回収液を吸引し、前記回収液分注ノズルに供給する回収液供給ポンプとを備えてな るものが好適である。
[0084] 本発明において使用できる検体に制限はないが、例えば診断分野においては、検 体として採取された全血、血漿、血清、尿、便、精液、唾液等の体液、あるいは植物( またはその一部)、動物(またはその一部)等、あるいはそれらの溶解物およびホモジ ネート等の生物材料から調製された溶液が対象となる。
[0085] 最初にこれらの検体につ!、て細胞膜および核膜を溶解して核酸を可溶ィ匕する試薬 を含む水溶液で処理する。これにより細胞膜および核膜が溶解されて、核酸が水溶 液内に分散し、核酸を含む試料溶液を得る。例えば、検体が全血の場合、これに塩 酸グァ-ジン、 Tris、 Triton— X100、プロテアーゼ K (SIGMA製)を添カ卩し、 60°C で 10分インキュベートすることによって赤血球の除去、各種タンパク質の除去、白血 球の溶解および核膜の溶解がなされる。
[0086] このようにして得られた試料溶液を、バレル 140の中空部 143に投入し(図 6参照) 、ノズル 122へ向けて圧力をかけて通流させる。こうすると、試料溶液中の核酸が核 酸吸着性多孔性膜 Fに吸着される。 [0087] 次に、図 6に示すように、洗净液 Sをノ レノレ 140の第 1開口 143a力らノズノレ 122へ
2
向けて圧力をかけながら通流させる。この洗浄液 Sは、核酸吸着性多孔性膜 Fに吸
2
着した核酸を離脱させずに、不純物を離脱させる組成を有するものである。この洗浄 工程において、加圧した際、図 6に示すように、核酸吸着性多孔性膜 Fがリブ 126の 傾斜形状に沿って、ノズル 122側に向力つて凸状に変形する。これにより、洗浄液 S
2 力 底部 121に残留することなぐ速やかにノズル 122から排出される。
[0088] 洗浄液 Sは、水溶性有機溶媒および塩の双方、または水溶性有機溶媒もしくは塩
2
のうち 、ずれか 1つを含んで 、る溶液であることが好まし 、。アルコール等の水溶性 有機溶媒は、核酸が難溶性であるので、核酸を保持したまま核酸以外の成分を離脱 させるのに適している。また、塩を添加することにより、核酸の吸着効果が高まる。
[0089] 洗浄液 sに含まれる水溶性有機溶媒として、メタノール、エタノール、イソプロパノ
2
ール、ブタノール、アセトン等を用いることができる力 エタノールを用いることが好ま しい。また、洗浄液 S中に含まれる水溶性有機溶媒は、好ましくは 20— 100容量%
2
であり、より好ましくは 40— 80容量%である。
[0090] また、洗浄液 Sに含まれる塩は、ハロゲンィ匕物の塩であることが好ましい。さらには
2
、塩力 一価または二価のカチオンを有し、かつその塩が lOmM以上含まれているこ とが好ましい。より好ましくは、塩力 塩ィ匕ナトリウムであり、さらには、この塩ィ匕ナトリウ ムが 20mM以上含まれて!/、ることが好まし!/、。
[0091] 次に、精製蒸留水または TEバッファ等の回収液をバレル 140の第 1開口 143aから ノズル 122へ向けて圧力をかけながら通流させ、核酸を核酸吸着性多孔性膜 Fから 離脱させて流し出し、ノズル 122から排出された回収液 (核酸を含有する回収液)を 回収する。
[0092] なお、回収液は、検体カゝら調整した核酸を含む試料溶液の体積に対して、回収液 の体積を調整して核酸の脱離を行うことができる。分離精製された核酸を含む回収 液量は、そのとき使用する検体量による。一般的によく使われる回収液量は数 10か ら数 100 1であるが、検体量が極微量であるときや、逆に大量の核酸を分離精製し たい場合には回収液量は 1 μ 1から数 10mlの範囲で変えることができる。
[0093] 回収液の pHは、 pH2— 11であることが好ましい。さらには、 pH5— 9であることが 好ましい。また特にイオン強度と塩濃度は吸着核酸の溶出に効果を及ぼす。このた め、回収液は、 290mモル Z1以下のイオン強度であることが好ましぐさらには、 90m モル Zl以下の塩濃度であることが好ましい。こうすることで、核酸の回収率が向上し 、より多くの核酸を回収することができる。
また、回収される核酸は、デォキシリボ核酸 (DNA)あるいはリボ核酸 (RNA)であ つてもよく、さらに、これら核酸において 1本鎖あるいは 2本鎖のものであってもよい。
[0094] ここで特に、回収対象とされる核酸が RNAである場合、 RNA分解酵素 (RNase)を 不活性ィ匕させることが望ましい。特に、洗浄液 Sや回収液を作製する水は、 DEPC (
2
Diethyl Pyrocarbonate)処理したものを用いることが望まし!/、。
[0095] このようにして得られた回収液に含まれる核酸は、紫外可視分光光度計での測定 値(260nm/280nm)力 DNAの場合は 1. 6—2. 0、1^^\の場合は1. 8—2. 2と なる純度を有する。すなわち、不純物混入量の少ない高純度の核酸を定常的に得る ことができる。さらには、紫外可視分光光度計での測定値(260nmZ280nm)が DN Aの場合は 1. 8付近、 RNAの場合は 2. 0付近となる純度を持つ核酸を回収すること ができる。
[0096] なお、核酸分離精製カートリッジ 100は前記のように自動装置によって好適に使用 することができるが、手動で操作する場合であっても用いることができる。この場合、 試料溶液等を加圧する手段としては、注射器、ピぺッタを用いることができる。注射器 ゃピぺッタは、核酸分離精製カートリッジ 100の一の開口(第 1開口 143a側)に着脱 可能に結合することができる。
[0097] (各部材の材料等)
バレル 140および底部材 120の材料としては、ポリプロピレン、ポリスチレン、ポリ力 ーボネート、ポリ塩ィ匕ビュル等のプラスチックを使用することができる。また、生分解性 の材料も好適に使用することができる。また、バレル 140および底部材 120は透明で あっても、着色してあってもよい。
[0098] 核酸吸着性多孔性膜 Fとしては、イオン結合が関与しな 、弱 、相互作用で核酸が 吸着する多孔性膜が好適である。より好適には、核酸吸着性多孔性膜 Fは、親水基 を有する多孔性膜であり、多孔性膜を形成する材料自体が、親水基を有する多孔性 膜、または多孔性膜を形成する材料を処理もしくはコーティングすることによって親水 基を導入した多孔性膜である。多孔性膜を形成する材料は有機物、無機物のいず れでもよい。例えば、多孔性膜を形成する材料自体が親水基を有する有機材料であ る多孔性膜、親水基を持たな!、有機材料の多孔性膜を処理して親水基を導入した 多孔性膜、親水基を持たな!、有機材料の多孔性膜に対し親水基を有する材料でコ 一ティングして親水基を導入した多孔性膜、多孔性膜を形成する材料自体が親水基 を有する無機材料である多孔性膜、親水基を持たな 、無機材料の多孔性膜を処理 して親水基を導入した多孔性膜、親水基を持たな 、無機材料の多孔性膜に対し親 水基を有する材料でコーティングして親水基を導入した多孔性膜等を使用すること 力 Sできるが、加工の容易性から、多孔性膜を形成する材料は有機高分子等の有機 材料を用いることが好まし 、。
[0099] 親水基を有する多孔性膜としては、水酸基を有する有機材料の多孔性膜を挙げる ことができる。水酸基を有する有機材料としては、前記した特許文献 1に記載のァセ チルセルロースの表面鹼化物が挙げられる。ァセチルセルロースとしては、モノァセ チルセルロース、ジァセチルセルロース、トリァセチルセルロースのいずれでもよいが 、特にはトリアセチルセルロースが好ましい。この場合、鹼ィ匕処理の程度(鹼ィ匕度)で 固相表面の水酸基の量 (密度)をコントロールすることができる。核酸の分離効率を挙 げるためには、水酸基の量 (密度)が多い方が好ましい。例えば、トリァセチルセル口 ース等のァセチルセルロースの場合には、酸ィ匕率が 5%以上であることが好ましぐ 1 0%以上であることがより好ましい。また、酸ィ匕処理の程度(酸ィ匕度)と多孔性膜の孔 径との組合せにより、固相内部の水酸基の量 (密度)をコントロールすることができる。 この場合、多孔性膜は、表裏対称性の多孔性膜であってもよいが、表裏非対称性の 多孔性膜を好適に使用することができる。
[0100] また、水酸基を有する有機材料の多孔性膜として、ァセチル価の異なるァセチルセ ルロースの混合物力もなる有機高分子の多孔性膜も好適に使用することができる。 特にァセチル価の異なるァセチルセルロースの混合物としては、トリァセチルセル口 ースとジァセチルセルロースの混合物を好適に使用することができる。トリァセチルセ ルロースとジァセチルセルロースの混合比は、 99 : 1一 1 : 99であることが好ましい。よ り好ましくは、トリァセチルセルロースとジァセチルセルロースの混合比は、 90 : 10— 50 : 50である。
[0101] ァセチル価の異なるァセチルセルロースの混合物として、トリァセチルセルロースと モノァセチルセルロースの混合物、トリァセチルセルロースとジァセチルセルロースと モノァセチルセルロースの混合物、ジァセチルセルロースとモノァセチルセルロース の混合物も使用することができる。
[0102] また、水酸基を有する有機材料の多孔性膜としては、ァセチル価の異なるァセチル セルロースの混合物を酸ィ匕処理した有機材料力もなる多孔性膜を挙げることができ る。ァセチル価の異なるァセチルセルロースの混合物を鹼ィ匕処理した有機材料は、ト リアセチルセルロースとジァセチルセルロースの混合物の鹼化物を好適に使用する ことができる。トリァセチルセルロースとジァセチルセルロースの混合比は、 99 : 1一 1 : 99である事が好ましい。さらには、トリァセチルセルロースとジァセチルセルロースの 混合比は、 90 : 10— 50 : 50であることが好ましい。
[0103] ァセチル価の異なるァセチルセルロースの混合物を鹼化処理した有機材料として、 トリァセチルセルロースとモノァセチルセルロースの混合物の鹼化物、トリァセチルセ ルロースとジァセチルセルロースとモノァセチルセルロースの混合物の鹼化物、ジァ セチルセルロースとモノァセチルセルロースの混合物の鹼化物も使用することができ る。
[0104] また、核酸吸着性多孔性膜 Fには、厚さが 10— 500 μ mである多孔性膜を好適に 使用することができる。より好適には、厚さが 50— 250 mである多孔性膜を使用す ることがでさる。
[0105] また、核酸吸着性多孔性膜 Fには、最小孔径が 0. 22 μ m以上である多孔性膜を 好適に使用することができる。より好適には、最小孔径が 0. 5 m以上である多孔性 膜を使用することができる。また、核酸吸着性多孔性膜 Fには、最大孔径と最小孔径 の比が 2以上である多孔性膜を好適に使用することができる。より好適には、最大孔 径と最小孔径の比が 5以上である多孔性膜を使用することができる。
[0106] また、核酸吸着性多孔性膜 Fには、空隙率が 50— 95%である多孔性膜を好適に 使用することができる。より好適には、空隙率が 65— 80%である多孔性膜を使用す ることができる。また、核酸吸着性多孔性膜 Fには、バブルポイントが、 9. 8— 980kP a (0. 1一 lOkgfZcm2)である多孔性膜を好適に使用することができる。より好適に は、バブルポイントが、 19. 6— 392kPa (0. 2— 4kgf /cm2)である多孔性膜を使用 することができる。
[0107] また、核酸吸着性多孔性膜 Fには、圧力損失が、 0. 1一 lOOkPaである多孔性膜を 好適に使用することができる。より好適には、圧力損失が、 0. 5— 50kPaである多孔 性膜を使用することができる。ここで、圧力損失とは、膜の厚さ 100 mあたり、水を 通過させるのに必要な最低圧力である。
[0108] また、核酸吸着性多孔性膜 Fには、多孔性膜 lmgあたりの核酸の吸着量が 0. 1 μ g以上である多孔性膜を好適に使用することができる。より好適には、多孔性膜 lmg あたりの核酸の吸着量が 0. 9 g以上である多孔性膜を使用することができる。
[0109] [第 2実施形態]
続いて、本発明の第 2実施形態について説明する。参照する図面において、図 7は 、第 2実施形態に係る核酸分離精製カートリッジ群の斜視図である。
[0110] 核酸分離精製カートリッジ群 190は、図 7に示すように、多数個の核酸分離精製力 ートリッジ 192が連続して成形されたものである。
[0111] 核酸分離精製カートリッジ群 190を構成する核酸分離精製カートリッジ 192は、第 1 実施形態において説明した核酸分離精製カートリッジ 100と、その構造をほとんど同 じくするものである力 隣り合う核酸分離精製カートリッジ 192の一部 (接続部 193)で 互いに連続している。
[0112] 核酸分離精製カートリッジ群 190は、互いに連通した多数のキヤビティ 151 (図 3参 照)が形成された射出成形型(図示省略)を用いて作製される。そのため、多数のキ ャビティ 151にセットされた多数の核酸吸着性多孔性膜 Fの周縁部 Faを押圧する榭 脂 Jの圧力が均等となる。したがって、核酸吸着性多孔性膜 Fを押圧する力のばらつ きによって核酸吸着性多孔性膜 Fが破れたりシール不足となったりすることがなぐ一 度に多数個の核酸分離精製カートリッジ 192 (核酸分離精製カートリッジ群 190)を効 率よく製造することができる。
[0113] 以上、本発明に係る核酸分離精製カートリッジの第 1実施形態及び第 2実施形態に ついて説明したが、本発明は前記の実施形態には限定されない。例えば、第 2実施 形態にカゝかる核酸分離精製カートリッジ群 190は、核酸分離精製カートリッジ 192同 士が直接連結された状態となっているが、キヤビティ間をランナーで連通した射出成 形型で射出成形することにより、核酸分離精製カートリッジ 192が直接連結しない構 成とすることができる。また、第 1実施形態における核酸分離精製カートリッジ 100は 、前記ランナーで連通させて射出成形した後に、当該ランナーを切除して、多数の核 酸分離精製カートリッジ 100を製造するようにしてもょ ヽ。
[0114] [第 3実施形態]
次に、本発明の第 3実施形態について、適宜図面を参照しながら説明する。参照 する図 8は、本発明の第 3実施形態に係る核酸分離精製カートリッジの分解斜視図で あり、図 9は、本発明の第 3実施形態に係る核酸分離精製カートリッジの断面図であり 、図 10は、本発明の第 3実施形態に用いられるキャップの拡大断面斜視図であり、 図 11は、図 10の X— X線断面図であり、図 12は図 9の B部における拡大図であり、図 13は、本発明の第 3実施形態に係る核酸分離精製カートリッジの洗浄工程を示す断 面図である。なお、以下の説明において、「上」、「下」の表現は、図 9を基準とする。
[0115] 図 8に示すように、本発明の第 3実施形態に係る核酸分離精製カートリッジ 200は、 核酸吸着性多孔性膜 Fと、核酸吸着性多孔性膜 Fを保持するとともに、液体が通流 する通路を形成する筒状体であるバレル 210およびキャップ 220と力も構成されてい る。
[0116] (バレル 210)
ノ レル 210は、円筒状のバレル本体部 212と、バレル本体部 212に連なる円筒状 のバレル側嵌合部 213と力らなり、バレル本体部 212の上部には第 1開口 211a、 ノ レル側嵌合部 213の下部には開口 21 lbが形成されている。そのため、バレル 210 の上方から下方に向けて、液体が通流可能である。また、バレル側嵌合部 213の外 径は、バレル本体部 212の外径より一回り小さくなっている。
[0117] (キャップ 220)
キャップ 220は、円筒状のキャップ側嵌合部 222と、キャップ側嵌合部 222の底部 2 22aに設けられた開口 223に連なる排出部 224とからなる。底部 222aに設けられた 底部開口の一例である開口 223は、前記したバレル本体部 212の上部に設けられた 第 1開口 211aより小さい径を有している。また、キャップ側嵌合部 222の上部には開 口 221a、排出部 224の下部には第 2開口 221bが形成されている。そのため、キヤッ プ 220の上方から下方へ向けて、液体が通流可能である。また、キャップ側嵌合部 2 22の内径は、前記バレル 210のバレル側嵌合部 213の外径と嵌合可能な直径に形 成されている。
[0118] そして、図 9に示すように、キャップ 220のキャップ側嵌合部 222の底部 222aに、核 酸吸着性多孔性膜 Fを配置した状態で、バレル 210のバレル側嵌合部 213をキヤッ プ 220のキャップ側嵌合部 222へ嵌入することで、核酸吸着性多孔性膜 Fをバレル 2 10とキャップ 220との間で挟持することができる。なお、バレル 210とキャップ側嵌合 部 222とから「筒状本体」が構成される。
[0119] キャップ 220は、図 10に示すように、キャップ側嵌合部 222の底面 222bに、 6本( 図においては 3本のみ図示)の放射状のリブ 226が形成されている。このリブ 226は、 核酸分離精製カートリッジ 200が組み立てられた状態において、それぞれの外周側 端部 226aの頂部 226cが核酸吸着性多孔性膜 Fに当接し、核酸吸着性多孔性膜 F を支持している(図 9参照)。また、リブ 226は、核酸分離精製カートリッジ 200の使用 時において、核酸吸着性多孔性膜 Fが開口 223に近付くほど排出部 224の方へ変 位するように、外周側端部 226aから内部側端部 226bに向けて、排出部 224側に傾 斜している。また、底面 222bの外周縁には、リブ 226の外周側端部 226aに連なるよ うに、底面 222bから一段高くなつた挟持面 225が、全周にわたって形成されている。 この挟持面 225は、バレル 210の開口 21 lbの端縁にあたる開口縁部 214 (図 8参照 )との間で、核酸吸着性多孔性膜 Fを挟持する面である。この挟持面 225の幅は、開 口縁部 214の幅に合わせて形成するのが好ましい。なお、リブ 226は「突起」の一例 であり、「突起」は必ずしもリブ形状でなぐ山形の突起を複数散点的に形成してもよ い。
[0120] (リブ 226)
リブ 226は、放射状に形成されているため、液体を上方から下方へ流した際に、液 体が排出部 224ヘスムーズに流れ込むようになって 、る。 また、リブ 226は、外周側端部 226aから内部側端部 226bに向けて、その頂部 226 cが排出部 224側に傾斜しているため、洗浄工程において、後記する洗浄液 S (図 1
2
3参照)を加圧ガスにより通流させる際、核酸吸着性多孔性膜 Fがリブ 226の頂部 22 6cに沿って、排出部 224側に向かって凸状に変形する。これにより、洗浄液 S力 底
2 部 222aに残留することなぐ速やかに排出部 224から排出される。なお、キャップ側 嵌合部 222の径方向に対するリブ 226の傾斜角度 θ 1 (図 12参照)は、好ましくは 3 ° 以上、より好ましくは 5° 以上である。
[0121] また、図 11に示すように、リブ 226は、横断面で見たときに、頂部 226cが円弧状に 形成されている。これにより、リブ 226の頂部 226cと核酸吸着性多孔性膜 Fとの間に 洗浄液 Sが滞留し難くなるので、洗浄液 Sがより速やかに排出される。なお、リブ 22
2 2
6の頂部 226cの曲率半径はリブ 226の幅に対して 1Z4以上が好ましぐより好ましく は 1Z3以上、最も好ましくは 1Z2以上である。
[0122] (核酸分離精製カートリッジ 200の断面形状)
次に、核酸分離精製カートリッジ 200の断面形状について、図 12を参照して説明 する。図 12に示すように、キャップ側嵌合部 222の底面 222bは、開口 223に近付く ほど排出部 224の方へ変位する傾斜を有している。これにより、洗浄液 Sがより速や
2 かに排出される。また、キャップ側嵌合部 222の径方向に対する底面 222bの傾斜角 度 0 2は、好ましくは 10° 以上、より好ましくは 15° 以上、最も好ましくは 20° 以上 である。
[0123] また図 12に示すように、核酸分離精製カートリッジ 200は、内面に存在する角部( 例えば開口 223の縁部 223a等)および隅部(例えば底面 222bの外周縁部 222c等 )が円弧状に形成されている。これ〖こより、内面に存在する角部および隅部に、洗浄 液 Sが滞留し難くなるので、洗浄液 Sがより速やかに排出される。なお、角部の曲率
2 2
半径は 0. 1mm以上が好ましぐより好ましくは 0. 2mm以上、最も好ましくは 0. 3m m以上である。また、隅部の曲率半径は 0. 1mm以上が好ましぐより好ましくは 0. 1 5mm以上、最も好ましくは 0. 2mm以上である。
[0124] また、バレル 210の軸とバレル 210の内周面 210aとがなす角度 Θ 3は、好ましくは 10° 以下、より好ましくは 5° 以下である。これにより、洗浄液 Sがバレル 210の内周 面 210aを伝って流れ易くなるので、洗浄液 Sがより速やかに排出される。
2
[0125] また、核酸吸着性多孔性膜 Fは、バレル 210の開口縁部 214とキャップ 220の挟持 面 225との間に、その周縁部 Faが潰れた状態で保持されている。これにより、核酸吸 着性多孔性膜 Fを通るべき液体 (試料溶液等)が、核酸吸着性多孔性膜 Fの側部 Fb に回り込む不具合を防ぐことができる。この核酸吸着性多孔性膜 Fを安定して保持す るためには、開口縁部 214と挟持面 225とを超音波溶着等により固着するのが好まし い。
[0126] なお、ノ レル 210、キャップ 220および核酸吸着性多孔性膜 Fの材料については第 1実施形態で説明しているので、その説明を省略する。また、核酸分離精製カートリツ ジ 200を用いて核酸を含む検体から核酸を分離精製する工程や、この工程を自動で 行う自動装置などについても前記の第 1実施形態の説明の中で既に説明しているの で、その説明を省略する。
[0127] (核酸分離精製カートリッジ 200の作用および効果)
続いて、核酸分離精製カートリッジ 200の作用および効果について説明する。 まず、核酸を含む試料溶液を、バレル 210の第 1開口 211a (図 9参照)から排出部 224の第 2開口 221bへ向けて、加圧エアにより通流させる。これにより、試料溶液中 の核酸が核酸吸着性多孔性膜 Fに吸着される。
[0128] 次に、図 13に示すように、洗浄液 Sをバレル 210の第 1開口 21 laから排出部 224
2
の第 2開口 221bへ向けて加圧エアにより通流させる。この洗浄液 Sは、核酸吸着性
2
多孔性膜 Fに吸着した核酸を離脱させずに、不純物を離脱させる組成を有するもの である。この洗浄工程において、洗浄液 Sを加圧エアにより通流させる際、図 13に示
2
すように、核酸吸着性多孔性膜 Fがリブ 226の傾斜形状に沿って、排出部 224側に 向かって凸状に変形する。これにより、洗浄液 S力 底部 222a、特に核酸吸着性多
2
孔性膜 Fとバレル 210の内周面 210aとにより形成される隅部 227に残留することなく 、速やかに排出部 224から排出される。
[0129] この際、核酸分離精製カートリッジ 200の内壁面 (バレル 210の内周面 210a等)に 対する洗浄液 Sの液滴 Wdの接触角が 90° 以上の場合は、例えば、図 13に示すよ
2
うに、バレル 210の内周面 210aに液滴 Wdとして残留しても、その液滴 Wdは表面張 力により略球状となるため、加圧エアにより除去し易くなる。これにより、洗浄液 Sがよ
2 り速やかに排出される。
また、核酸分離精製カートリッジ 200の内壁面に対する洗浄液 Sの液滴 Wdの接触
2
角が 80° 以下である場合は、核酸分離精製カートリッジ 200の内壁面に対する洗浄 液 Sの濡れ性が向上し、洗浄液 Sが液滴 Wdとして残留し難くなるため、洗浄液 Sが
2 2 2 より速やかに排出される。
[0130] 一方、比較例として、キャップ側嵌合部 222の径方向に対するリブ 226の傾斜角度
0 1 (図 12参照)を 0° にして、前記したように分離精製した場合は、排出された回収 液中のエタノールの濃度は 4容量%を超えていた。この排出された回収液を用いて P
CRや逆転写酵素反応を行うと、収率の低下が見られた。
[0131] このように、本実施形態の核酸分離精製カートリッジ 200では、洗浄工程において、 洗浄液 Sが核酸分離精製カートリッジ 200の内部に残留せずに、速やかに排出され
2
るので、排出された回収液への洗浄液 Sの混入を抑えることができる。これにより、次
2
工程において、洗浄液 Sに起因する不具合を未然に防ぐことができる。
2
[0132] なお、前記第 3実施形態では、バレルをキャップへ嵌入することにより筒状体を形成 したが、本発明はこれに限定されない。例えば、キャップを金型に設置し、バレル部 分をインサート成形により形成することによって、バレルとキャップとが一体成形された ものを筒状体として用いてもょ 、。
[0133] [第 4実施形態]
次に、本発明の核酸分離精製カートリッジの第 4実施形態について適宜図面を参 照しつつ説明する。参照する図面において、図 14は、本発明の第 4実施形態に係る 核酸分離精製カートリッジの分解斜視図であり、図 15は、本発明の第 4実施形態に 係る核酸分離精製カートリッジの断面図である。また、図 16は、本発明の第 4実施形 態に係る核酸分離精製カートリッジの排出部を拡大した断面図である。図 17は、本 発明の第 5実施形態に係る核酸分離精製カートリッジの排出部を拡大した断面図で ある。図 18は、本発明の第 6実施形態に係る核酸分離精製カートリッジの排出部を 拡大した断面図である。なお、以下の説明において、「上」、「下」の表現は、核酸分 離精製カートリッジの使用状態、具体的には図 15に示すような状態を基準とする。 [0134] (核酸分離精製カートリッジ 300の構成)
まず、図 14および図 15を参照して、第 4実施形態に係る核酸分離精製カートリッジ 300の全体的な構成について説明する。
発明の第 4実施形態に係る核酸分離精製カートリッジ 300は、核酸吸着性多孔性 膜 Fと、核酸吸着性多孔性膜 Fを保持するとともに、溶液が通流する通路を形成する バレル 310およびキャップ 320とから構成されている。
[0135] 次に、図 14の分解斜視図を参照して各構成部品について、より詳細に説明する。
(バレル 310)
ノ レル 310は、円筒状のバレル本体部 312と、バレル本体部 312に連なる円筒状 のバレル側嵌合部 313と力もなり、バレル本体部 312の上部には第 1開口 311、バレ ル側嵌合部 313の下部には開口 314が形成されている。そのため、バレル 310の上 方から下方に向けて、溶液等 S (図 15参照)が通流可能である。また、バレル側嵌合 部 313の外径は、バレル本体部 312の外径より一回り小さくなっている。
[0136] (キャップ 320)
キャップ 320は、円筒状のキャップ側嵌合部 325と、キャップ側嵌合部 325の底部 3 22に設けられた底部開口 323に連なる排出部 302とからなる。底部 322に設けられ た底部開口 323は、前記したバレル本体部 312の上部に設けられた第 1開口 311よ り小さい径を有している。また、キャップ側嵌合部 325の上部には開口 327が形成さ れ、排出部 302の下部には第 2開口 321が形成されている。そのため、キャップ 320 の上方から下方へ向けて、液体が通流可能である。また、キャップ側嵌合部 325の内 径は、前記バレル 310のバレル側嵌合部 313の外径と嵌合可能な直径に形成され ている。
[0137] そして、図 15に示すように、キャップ 320のキャップ側嵌合部 325の底部 322に、核 酸吸着性多孔性膜 Fを配置した状態で、バレル 310のバレル側嵌合部 313をキヤッ プ 320のキャップ側嵌合部 325へ嵌入することで、核酸吸着性多孔性膜 Fをバレル 3 10とキャップ 320との間で挟持することができる。また、キャップ 320の底部 322には 少なくとも 3本、好ましくは 6本の放射状に形成されたリブ 326が形成されている。そし て、このリブ 326の角部は、キャップ側嵌合部 325の底部 322の中心に設けられた底 部開口 323に向力つて下り傾斜形状を呈するように形成されている。
なお、ノ レル 310と、キャップ側嵌合部 325と、底部 322とから「筒状本体」が構成さ れる。また、キャップ 320の底部開口 323と第 2開口 321とを連通する筒として構成さ れる排出部 302が「排出部」に相当し、この筒状本体と排出部とで筒状に構成される ものが「筒状体」に相当する。
[0138] (排出部 302および端面 324の構成)
次に、本発明の第 4実施形態に係る核酸分離精製カートリッジ 300の排出部 302 や排出部 302の端面 304の好適な構成について、図 14および図 15を参照しつつ、 図 16および図 17を参照して詳細に説明する。
[0139] 図 16の拡大断面図に示すように、核酸分離精製カートリッジ 300の排出部 302は、 キャップ 320の下半分を構成するものであり、筒状本体の底部 322の底部開口 323 に一端が連なり、他端が廃液を排出するための第 2開口 321を形成する筒として構 成されている。このように構成することにより、核酸分離精製カートリッジ 300の下部に 配置された廃液容器 400 (図 20参照)へ向力つて正確に廃液を導くことができる。こ れは、例えば、後記する自動装置によって当該核酸分離精製カートリッジ 300を多連 で使用した場合に、他サンプルの溶液へのコンタミネーシヨン防止に有効である。 なお、このキャップ 320の第 2開口 321を形成する部分の端面 324の肉厚 Tは、 0. 2mm以上に構成するのがよい。第 2開口 321を形成する部分の肉厚 Tを 0. 2mm以 上となるように形成すれば、試料溶液 S (図 15参照)の泡がエアの巻き上げによって
1
煽られた場合であっても、この第 2開口 321を形成する部分の肉厚 Tを乗り越えて排 出部 302の外壁面 302aに付着することはない。これは、肉厚 Tを厚くするほど確実な 効果がみられるので、肉厚 Tを 0. 5mm以上に形成することがさらに好ましい。
[0140] また、核酸分離精製カートリッジ 300におけるキャップ 320の第 2開口 321の開口径 rは 1. Omm以上に形成するのがよい。開口径 rを 1. Omm以上に形成すると、廃液 を良好に排出することができる。
[0141] さらに、キャップ 320の端面 324の外径 Rは、 1. 4mm以上に形成するのがよい。排 出部 302の端面 324の外径 Rを 1. 4mm以上とすれば、前記した肉厚 Tを 0. 2mm 以上確保することができるほか、第 2開口 321を形成する部分の強度を高く保つこと ができる。なお、前記理由により、この外径 Rは、 2. Omm以上であることがより好まし い。
[0142] 次に、同じく図 16および図 17を参照して、キャップ 320の排出部 302やキャップ 32 0の端面 324の形状にっ 、て説明する。
キャップ 320の 出咅 302は、端面 324と外壁面 302aとのなす角度 Θ 4を 105° 以下に構成するのがよい。このように構成することで、外壁面 302aに泡が付着した場 合であっても、泡は第 2開口 321の近傍に集まるので、洗浄液 Sによってこれを取り
2
除くことができる。なお、排出部 302の外壁面 302aとのなす角度 Θ 4を 100° 以下と するのがより好ましぐ 95° 以下とするのがさらに好ましい。
[0143] [第 5実施形態]
また、本発明の核酸分離精製カートリッジに係る第 4実施形態としては、図 17に示 すように、排出部 302の端面 324の形状を第 2開口 321へ近付くにつれ開口径 rが広 力 ¾漏斗形状としてもよい。このようにすると、第 2開口 321の外縁部は外壁面 302a と鋭角をもって形成されるので、下方力もエアが巻き上がつてきた場合であっても、泡 は外縁部を越えて外壁面 302aに付着し難くなる。
なお、この場合、排出部 302の端面 324と外壁面 302aとのなす角度 Θ 5を、 30° 以上とするのがよい(図 17参照)。 30° 未満とすると試料溶液 Sが端面 324の外縁
1
に集まり、前記した肉厚 τを確保した意味がなくなる。
[0144] また、端面 324および外壁面 302aの榭脂親水性を高めるのが好ましい。すなわち 、核酸分離精製カートリッジ 300を構成する材質を濡れ易 、ものとするのが好ま ヽ 。端面 324および外壁面 302aを親水性とすることにより、洗浄液 Sの撥水作用を抑
2
え、かつ、洗浄液 Sによる泡の引き込みを行うことができる。
2
なお、当該核酸分離精製カートリッジ 300のバレル 310およびキャップ 320の内壁 面 302bにおける排水性を考慮すると、この内壁面 302bは撥水性であることが好まし ぐ疎水性合成樹脂を用いて核酸分離精製カートリッジ 300を作製することが好まし い。
[0145] ここで、疎水性合成樹脂を用いて作製した核酸分離精製カートリッジ 300にお 、て 、キャップ 320の端面 324と外壁面 302aの親水性を高めるには、以下の処理を施す ことにより行うことができる。
まず、疎水性合成樹脂であるポリスチレンを用いて射出成形により第 2開口 321側 を封じた状態のキャップ 320を作製する。このとき、必要であれば、第 2開口 321の形 状を前記した任意の形状にカ卩ェするのがよい。そして、キャップ 320の端面 324と外 壁面 302a (好ましくは第 2開口 321となる近傍の外壁面 302a)をプラズマ処理するこ とによって、端面 324および外壁面 302aの親水性を向上させる。このようにすること で内壁面 302bは撥水性が高ぐ排出部 302の外壁面 302aおよび端面 324の親水 性が高!、キャップ 320を得ることができる。
なお、キャップ 320とバレル 310とを一体的に成形した核酸分離精製カートリッジ 30 0であっても同様の処理を行うことで端面 324と外壁面 302aの親水性を高くすること ができる。
[0146] その他、疎水性合成樹脂に親水性を付与する方法としては、前記したプラズマ処 理に限られることはなぐ疎水性合成樹脂の表面を修飾し、親水性を向上させること のできる薬品等を用いることもできる。すなわち、射出成形したキャップ 320の端面 3 24および外壁面 302aを当該薬品で処理することにより、外壁面 302aおよび端面 32 4の親水性を向上させたキャップ 320を得ることができる。
[0147] [第 6実施形態]
また、本発明の核酸分離精製カートリッジに係る第 6実施形態としては、図 18に示 すように、キャップ 320の端面 324に、泡を誘導するための爪部材 328を形成するの が好ましい。また、この爪部材 328を棒状に形成するのがより好ましい。さらには、こ の爪部材 328の内側の位置が内壁面 302bと一致するように形成するのが好ましい。 このように構成することで、第 2開口 321に到達した泡は、内壁面 302bに延設された 棒状の爪部材 328を伝ってその先端部分、すなわち、第 2開口 321よりさらに下方位 置で凝集し易くなり、廃液容器 400に落ち易くなる結果、泡の外壁面 302aへの付着 を防止することができる。
なお、この棒状の爪部材 328は前記した目的を達成することができればよぐ 1本か ら複数本の間で任意の数を設けることができる。
[0148] 次に、図 15へ戻って説明を続けると、リブ 326は、放射状に形成されているため、 液体を上方から下方へ流した際に、液体が排出部 302ヘスムーズに流れ込むように なっている。
また、リブ 326は、底部開口 323側に下り傾斜形状を呈するように形成されているた め、溶液等 Sをバレル 310の第 1開口 311側から加圧すると、核酸吸着性多孔性膜 F 力 Sリブ 326の傾斜形状に沿って、底部開口 323側に向かって凸状に変形する。これ により、溶液等 Sが、底部 322に残留することなぐ速やかに底部開口 323から排出さ れる。
[0149] なお、ノ レル 310、キャップ 320および核酸吸着性多孔性膜 Fの材料については第 1実施形態で説明しているので、その説明を省略する。また、核酸分離精製カートリツ ジ 300を用いて核酸を含む検体から核酸を分離精製する工程や、この工程を自動で 行う自動装置などについても前記の第 1実施形態の説明の中で既に説明しているの で、その説明を省略する。
[0150] 以上、本発明に係る核酸分離精製カートリッジを実施するための最良の形態につ いて説明したが、本発明は前記の実施形態には限定されない。例えば、前記した実 施形態では、核酸吸着性多孔性膜を 1枚収容した核酸分離精製カートリッジとしたが 、核酸吸着性多孔性膜を複数枚収容した核酸分離精製カートリッジとしてもよい。こ の場合、収容される複数枚の核酸吸着性多孔性膜は、同一のものであっても、異な るものであってもよい。

Claims

請求の範囲
[1] 有底筒状の筒状本体の底部に開口を有し、前記底部に核酸吸着性多孔性膜を支 持した核酸分離精製カートリッジであって、
前記核酸吸着性多孔性膜は、その周縁部が前記筒状本体の筒部を形成する成形 材料により挟持され、
前記核酸吸着性多孔性膜を挟持する一方の部分である前記底部を形成する底部 材に前記核酸吸着性多孔性膜を配置した上でこれらを射出成形型のキヤビティ内に インサートし、さらにこのキヤビティ内に成形材料を射出することで、前記核酸吸着性 多孔性膜を挟持する他方の部分である前記筒状本体の筒部を形成する部分が前記 底部材と一体化されて成形されると同時に、前記核酸吸着性多孔性膜を挟持したこ とを特徴とする核酸分離精製カートリッジ。
[2] 前記底部材は、前記底部の開口に連通する筒状の排出部をさらに備えていること を特徴とする請求の範囲第 1項に記載の核酸分離精製カートリッジ。
[3] 前記核酸吸着性多孔性膜の周縁部は、前記筒状本体の筒部を形成する成形材料 の射出圧力により押し潰されて挟持されていることを特徴とする請求の範囲第 1項に 記載の核酸分離精製カートリッジ。
[4] 前記核酸吸着性多孔性膜の周縁部は、内部の空隙がなくなるまで押し潰されて ヽ ることを特徴とする請求の範囲第 3項に記載の核酸分離精製カートリッジ。
[5] 前記核酸吸着性多孔性膜の周縁部は、もとの膜厚の 10%から 70%の膜厚になる まで押し潰されていることを特徴とする請求の範囲第 3項に記載の核酸分離精製力 ートリッジ。
[6] 有底筒状の筒状本体の底部に開口を有し、前記底部に核酸吸着性多孔性膜を支 持した核酸分離精製カートリッジの製造方法であって、
前記筒状本体の底部を有して前記筒状本体の一部を形成する底部材の該底部に 、前記核酸吸着性多孔性膜を配置した状態で、前記底部材および前記核酸吸着性 多孔性膜を射出成形型のキヤビティ内に配置する工程と、
前記核酸吸着性多孔性膜にコアピンを押し当て、前記コアピンの周囲に前記核酸 吸着性多孔性膜の周縁部がはみ出した状態で前記核酸吸着性多孔性膜を保持す るとともに射出成形型を閉じる工程と、
前記キヤビティ内に成形材料を射出し、前記筒状本体の筒部を成形すると同時に 前記核酸吸着性多孔性膜の周縁部を成形材料と前記底部とで挟持する工程と、 前記射出成形型から成形体を取り出す工程と、
を有することを特徴とする核酸分離精製カートリッジの製造方法。
[7] 前記コアピンは、前記核酸吸着性多孔性膜を、もとの膜厚の 10%から 70%の膜厚 になるまで押し潰して保持することを特徴とする請求の範囲第 6項に記載の核酸分離 精製カートリッジの製造方法。
[8] 前記コアピンの先端部は、その周縁部から中心部に向力つて円錐形状に形成され ていることを特徴とする請求の範囲第 6項に記載の核酸分離精製カートリッジの製造 方法。
[9] 前記コアピンの周囲にはみ出した前記核酸吸着性多孔性膜の周縁部を、前記キヤ ビティ内に射出された成形材料の射出圧力により、内部の空隙がなくなるまで押し潰 すことを特徴とする請求の範囲第 6項に記載の核酸分離精製カートリッジの製造方法
[10] 前記コアピンの周囲にはみ出した前記核酸吸着性多孔性膜の周縁部を、前記キヤ ビティ内に射出された成形材料の射出圧力により、もとの膜厚の 10%から 70%の膜 厚になるまで押し潰すことを特徴とする請求の範囲第 6項に記載の核酸分離精製力 ートリッジの製造方法。
[11] 請求の範囲第 6項に記載された核酸分離精製カートリッジの製造方法であって、 前記射出成形型は前記キヤビティを複数個備えており、
前記複数個のキヤビティ内には前記底部材に前記核酸吸着性多孔性膜が配置さ れた上でこれらがそれぞれインサートされ、
前記複数個のキヤビティは互いに連通しており、
多数の前記核酸分離精製カートリッジを同時に製造可能なことを特徴とする核酸分 離精製カートリッジの製造方法。
[12] 第 1開口と第 2開口を有する筒状体の内部に核酸吸着性多孔性膜を備え、前記第 1開口側から前記第 2開口側へ向けて核酸を含む試料溶液を加圧ガスにより通流さ せることで、前記核酸吸着性多孔性膜に核酸を吸着させ、分離精製する核酸分離精 製カートリッジであって、
前記筒状体は、前記核酸吸着性多孔性膜を支持する底部を有する筒状本体と、前 記底部に形成された底部開口と前記第 2開口とを連通する排出部とを有し、 前記底部は、底面と、前記底面に形成された複数の突起とを有し、
前記複数の突起は、その頂部の少なくとも一部で前記核酸吸着性多孔性膜を支持 し、かつ、使用時において、前記核酸吸着性多孔性膜が前記底部開口に近付くほど 前記排出部の方へ変位するように形成されて!ヽることを特徴とする核酸分離精製力 ートリッジ。
[13] 前記複数の突起は、前記底部開口力 放射状に延びる複数のリブであることを特 徴とする請求の範囲第 12項に記載の核酸分離精製カートリッジ。
[14] 前記リブは、頂部が円弧状に形成されていることを特徴とする請求の範囲第 13項 に記載の核酸分離精製カートリッジ。
[15] 前記底面は、前記底部開口に近付くほど前記排出部の方へ変位する傾斜を有す ることを特徴とする請求の範囲第 12項に記載の核酸分離精製カートリッジ。
[16] 前記核酸分離精製カートリッジは、内面に存在する角部および隅部が円弧状に形 成されていることを特徴とする請求の範囲第 12項に記載の核酸分離精製カートリツ ジ。
[17] 前記核酸吸着性多孔性膜は、その周縁部が潰れた状態で保持されて 、ることを特 徴とする請求の範囲第 12項に記載の核酸分離精製カートリッジ。
[18] 第 1開口と第 2開口を有する筒状体の内部に核酸吸着性多孔性膜を備え、前記第 1開口側から前記第 2開口側へ向けて核酸を含む試料溶液を加圧ガスにより通流さ せることで、前記核酸吸着性多孔性膜に核酸を吸着させ、分離精製する核酸分離精 製カートリッジであって、
前記筒状体は、前記核酸吸着性多孔性膜を支持する底部を有する筒状本体と、前 記底部に形成された底部開口と前記第 2開口とを連通する排出部とを有し、 前記排出部の前記第 2開口を形成する部分の肉厚は、 0. 2mm以上であることを 特徴とする核酸分離精製カートリッジ。
[19] 記第 2開口の開口径が 1. Omm以上であり、かつ、前記第 2開口を形成する部分の 外径が 1. 4mm以上であることを特徴とする請求の範囲第 18項に記載の核酸分離 精製カートリッジ。
[20] 前記排出部の端面と、前記排出部の外壁面とのなす角度が、 105° 以下であるこ とを特徴とする請求の範囲第 18項に記載の核酸分離精製カートリッジ。
[21] 前記排出部の端面の形状は、前記第 2開口へ近づくにつれ開口径が広がる漏斗 形状を呈することを特徴とする請求の範囲第 18項に記載の核酸分離精製カートリツ ジ。
[22] 前記排出部は、その端面および外壁面の榭脂親水性が高められていることを特徴 とする請求の範囲第 18項に記載の核酸分離精製カートリッジ。
[23] 前記排出部の端面に、泡を誘導するための爪部材を備えることを特徴とする請求 の範囲第 18に記載の核酸分離精製カートリッジ。
PCT/JP2004/013735 2003-10-21 2004-09-21 核酸分離精製カートリッジおよびその製造方法 WO2005037983A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/576,756 US20070148649A1 (en) 2003-10-21 2004-09-21 Cartridge for nucleic acid separation and purification and method for producing the same
EP04787918A EP1676906A4 (en) 2003-10-21 2004-09-21 NUCLEIC ACID CLEANING CARTRIDGE AND METHOD FOR THE PRODUCTION THEREOF
JP2005514724A JP4478110B2 (ja) 2003-10-21 2004-09-21 核酸分離精製カートリッジの製造方法

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-361019 2003-10-21
JP2003-360550 2003-10-21
JP2003361183 2003-10-21
JP2003361019 2003-10-21
JP2003360550 2003-10-21
JP2003-361183 2003-10-21
JP2004051811 2004-02-26
JP2004-051811 2004-02-26

Publications (1)

Publication Number Publication Date
WO2005037983A1 true WO2005037983A1 (ja) 2005-04-28

Family

ID=34468469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013735 WO2005037983A1 (ja) 2003-10-21 2004-09-21 核酸分離精製カートリッジおよびその製造方法

Country Status (4)

Country Link
US (1) US20070148649A1 (ja)
EP (1) EP1676906A4 (ja)
JP (2) JP4478110B2 (ja)
WO (1) WO2005037983A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015694A1 (en) * 2008-07-18 2010-01-21 Carlo Acosta Filtered petri dish
JP2010228206A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 液体流路ユニットの製造方法、液体流路ユニット、液体噴射ヘッドユニット及び液体噴射装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878977B2 (ja) * 2006-09-29 2012-02-15 富士フイルム株式会社 インサート部材、及びこれを備えた多孔質フィルターカートリッジの製造方法
US8298763B2 (en) * 2007-03-02 2012-10-30 Lawrence Livermore National Security, Llc Automated high-throughput flow-through real-time diagnostic system
DE102007043614B3 (de) * 2007-09-13 2008-11-20 Biocrates Life Sciences Gmbh Halterung für ein Trägermittel zum Einsetzen in eine zylinderförmige Öffnung
FR2921490B1 (fr) * 2007-09-21 2010-09-10 Metagenex Procede et dispositif pour recueillir du materiel cellulaire de cellules isolees sur filtre
US8664377B2 (en) * 2009-09-30 2014-03-04 Samsung Electronics Co., Ltd. Method and apparatus for isolating nucleic acids
US8685749B2 (en) 2009-12-02 2014-04-01 Whatman International Limited Methods and systems for processing samples on porous substrates
DE102010062064A1 (de) * 2010-11-26 2012-05-31 Hamilton Bonaduz Ag Probenbehälter zur Aufbewahrung und Verarbeitung von mit einem Probenentnahmewerkzeug entnommenen Proben
RU2602897C2 (ru) * 2011-10-17 2016-11-20 Зульцер Микспэк Аг Картридж, способ его изготовления, а также многокомпонентный картридж
JP6170154B2 (ja) * 2012-08-28 2017-07-26 バイオキューブシステム インコーポレイテッド 生物学的試料から核酸増幅反応用生物学的分子を迅速に分離するための多孔性固体相及びその用途
CN103753775B (zh) * 2013-12-30 2016-04-20 苏州恒辉科技有限公司 U形尼龙油滤网制件模具
WO2018165635A1 (en) * 2017-03-10 2018-09-13 Hitachi Chemical Co., Ltd. Filtering device, capturing device, and uses thereof
AU2018239436B2 (en) * 2017-03-22 2022-12-15 Unchained Labs Sample plates for buffer exchange and methods of manufacture
CN109207340B (zh) * 2017-06-30 2022-08-12 开启基因股份有限公司 核酸萃取组件
CN112567225A (zh) * 2018-08-31 2021-03-26 株式会社堀场先进技术 试样预处理机及分析系统
JP7172745B2 (ja) * 2019-03-06 2022-11-16 株式会社Jvcケンウッド 分析用ユニット、洗浄装置、及び洗浄方法
CN217526452U (zh) * 2022-02-25 2022-10-04 武汉医蒂生物科技有限公司 一种纯化柱
KR102473201B1 (ko) * 2022-05-10 2022-12-01 곽태문 감염병 진단 키트의 필터결합장치

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275109U (ja) * 1988-11-30 1990-06-08
JPH03230919A (ja) * 1990-02-03 1991-10-14 Japan Steel Works Ltd:The オイルストレーナの製造方法
JP2003128691A (ja) * 2001-08-01 2003-05-08 Fuji Photo Film Co Ltd 核酸の分離精製方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5108704A (en) * 1988-09-16 1992-04-28 W. R. Grace & Co.-Conn. Microfiltration apparatus with radially spaced nozzles
SE9400436D0 (sv) * 1994-02-10 1994-02-10 Pharmacia Lkb Biotech Sätt att tillverka filterbrunnar
US7014049B2 (en) * 1996-12-23 2006-03-21 Glycorex Transplantation Ab Device for bio-affinity material
US6391241B1 (en) * 1997-06-06 2002-05-21 Corning Incorporated Method of manufacture for a multiwell plate and/or filter plate
US6451260B1 (en) * 1997-08-26 2002-09-17 Dyax Corp. Method for producing microporous elements, the microporous elements thus produced and uses thereof
US6419827B1 (en) * 1998-10-29 2002-07-16 Applera Corporation Purification apparatus and method
US6159368A (en) * 1998-10-29 2000-12-12 The Perkin-Elmer Corporation Multi-well microfiltration apparatus
AU2002305712A1 (en) * 2001-05-31 2002-12-09 Pall Corporation Well for processing and filtering a fluid
US6896144B2 (en) * 2001-06-25 2005-05-24 Innovative Microplate Filtration and separation apparatus and method of assembly
US7429356B2 (en) * 2003-08-19 2008-09-30 Fujifilm Corporation Extracting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0275109U (ja) * 1988-11-30 1990-06-08
JPH03230919A (ja) * 1990-02-03 1991-10-14 Japan Steel Works Ltd:The オイルストレーナの製造方法
JP2003128691A (ja) * 2001-08-01 2003-05-08 Fuji Photo Film Co Ltd 核酸の分離精製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1676906A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100015694A1 (en) * 2008-07-18 2010-01-21 Carlo Acosta Filtered petri dish
US8163540B2 (en) * 2008-07-18 2012-04-24 Carlo Acosta Filtered petri dish
JP2010228206A (ja) * 2009-03-26 2010-10-14 Seiko Epson Corp 液体流路ユニットの製造方法、液体流路ユニット、液体噴射ヘッドユニット及び液体噴射装置

Also Published As

Publication number Publication date
EP1676906A1 (en) 2006-07-05
US20070148649A1 (en) 2007-06-28
JP2010094136A (ja) 2010-04-30
JP5087096B2 (ja) 2012-11-28
JP4478110B2 (ja) 2010-06-09
JPWO2005037983A1 (ja) 2007-11-22
EP1676906A4 (en) 2011-03-09

Similar Documents

Publication Publication Date Title
JP5087096B2 (ja) 核酸分離精製カートリッジ
JP4878977B2 (ja) インサート部材、及びこれを備えた多孔質フィルターカートリッジの製造方法
JP5215677B2 (ja) 多孔質フィルターカートリッジ
US8012349B2 (en) Small volume unitary molded filters and supports for adsorbent beds
JP5019835B2 (ja) 濾過モジュール
US8304186B2 (en) Reactor for performing biochemical processes
US20120071643A1 (en) System and methods for purifying biological materials
US8741136B2 (en) Device and method for treating or cleaning sample material, in particular nucleic acids
JP4406344B2 (ja) 多孔質膜カートリッジ及びその製造方法
KR102142479B1 (ko) 세포 압출기 및 세포 압출방법
AU2001262612B2 (en) Processing chamber
US20110072636A1 (en) Method of assembling a porous membrane cartridge
AU2001262612A1 (en) Processing Chamber
JP4551174B2 (ja) 多孔質膜カートリッジおよびその製造方法
JP7316276B2 (ja) 封入されたまたは一体型のフィルタを備えるピペットおよびピペットを成形するための方法および装置
CA2782461C (en) Methods for making a hollow fiber filtration apparatus enclosed by two thermoplastic parts
JP2007252338A (ja) 抽出カートリッジの加圧装置
JP2007252335A (ja) 抽出カートリッジ
JP2013081771A (ja) 中空糸拘束手段および浄化カラム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514724

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004787918

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007148649

Country of ref document: US

Ref document number: 10576756

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004787918

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10576756

Country of ref document: US