WO2005036696A1 - Antennenarray mit dreitoren - Google Patents

Antennenarray mit dreitoren Download PDF

Info

Publication number
WO2005036696A1
WO2005036696A1 PCT/EP2004/011040 EP2004011040W WO2005036696A1 WO 2005036696 A1 WO2005036696 A1 WO 2005036696A1 EP 2004011040 W EP2004011040 W EP 2004011040W WO 2005036696 A1 WO2005036696 A1 WO 2005036696A1
Authority
WO
WIPO (PCT)
Prior art keywords
gates
antenna system
local oscillator
port
reference signal
Prior art date
Application number
PCT/EP2004/011040
Other languages
English (en)
French (fr)
Inventor
Johann-Friedrich Luy
Torsten Mack
Original Assignee
Daimlerchrysler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimlerchrysler Ag filed Critical Daimlerchrysler Ag
Publication of WO2005036696A1 publication Critical patent/WO2005036696A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/46Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/48Systems for determining direction or deviation from predetermined direction using antennas spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems the waves arriving at the antennas being continuous or intermittent and the phase difference of signals derived therefrom being measured
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction
    • G01S3/28Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived simultaneously from receiving antennas or antenna systems having differently-oriented directivity characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/42Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means using frequency-mixing

Definitions

  • the invention relates to antenna systems.
  • the invention relates to antenna systems comprising a plurality of individual antennas connected to one another, each individual antenna having reception amplifiers and information about the complex structure of the incident signal being calculated from the respective reception data of the cooperating antennas.
  • phase differences in the individual paths to and from the different antenna elements in the analog maximum frequency range must be set in a defined manner. Since losses occur in the electronic phase shifters required for this purpose Low-noise reception amplifiers for reception (or power amplifiers for transmission) can be inserted due to the various technical problems of the design (linearity, phase accuracy, noise figure, thermal stability), these "phased arrays" are very cost-intensive.
  • MEMS micro-electromechanical phase shifters
  • the phase control is shifted to the digital part of an antenna system ('Digi tal Beam Forming' - DBF)
  • the above-mentioned problems can be avoided in principle.
  • the signal function received by each antenna element must be known in terms of amount and phase, ie a complete (digital) receiver with in-phase and quadrature evaluation is required for each path.
  • the individual paths must also be coherent with one another, ie, be phase-locked. This in turn causes a lot of effort in the construction of such 'front-end' technology.
  • the invention is based on the described state of the art.
  • the object of the invention is to provide a substantially simplified reception technology suitable for the 'Digi tal Beam Forming' approach.
  • Figure 2 Typical structure of a six-port receiver
  • FIG. 5 embodiment of the antenna array according to the invention for determining the direction of signal incidence (Poynting vector)
  • FIG. 7 simulation of the output powers at gates 1 to 5 of the array according to FIG. 6 as a function of the phase shift between the antenna paths and the I / Q signal constellation
  • the complex signal structure is calculated from several scalar measurements.
  • the signal to be received is overlaid in a passive circuit with a signal of known amplitude and phase position (local oscillator, LO) and given with different phase positions at at least three outputs.
  • LO local oscillator
  • signal rectification and measurement of the power level at at least three outputs can be used to draw conclusive conclusions about the complex signal structure.
  • the accuracy increases - therefore four outputs are often used, which together with the signal and reference inputs result in the well-known six-port. If there are more than four gates, the losses increase sharply, so that in general there is no longer any gain in accuracy.
  • Figure 1 shows the basic structure of a passive six-gate circuit.
  • the six-port technology based on such or a similar passive circuit structure is state of the art [2] [4] [5] [6]. If the six-port components are assumed to be ideal, the outputs 3 to 6 for the superposition (addition) of the two signals (LO + RF) result in the forms of the sum signals entered in FIG. 1 at the respective outputs of the six-port.
  • the powers that are now measured at the outputs depend on the difference in amplitude, phase and frequency of the two signals.
  • the complex ratio of the LO and RF signals can thus be calculated from the linearly independent output powers (P 3 to P 6 ):
  • the A x and B ⁇ are calibration coefficients that must be determined using suitable methods. Solutions already exist for this [7].
  • Figure 2 shows a typical structure of a high-frequency (RF) input part with the components for calculating the I and Q components of the RF signal, consisting of the passive
  • TPF low pass filters
  • a / D analog-to-digital conversion
  • CPU processor unit
  • a first variant consists of, for each path or each antenna element Ai, Ai etc.
  • Multi-antenna systems each to provide one of the six-port receivers described above, including calculation components, as shown in FIG. 3 for a simple two-antenna system.
  • This arrangement scheme can in principle be extended to any number of antenna paths A ⁇ ... A n .
  • Each six-port Si, S 2 delivers corresponding I and Q data (I l Q ⁇ or I 2 , Q 2 ).
  • the angle of incidence ⁇ can be determined by comparing these data.
  • Crucial for the calculation of the kels ⁇ is the phase-locked synchronization of the six gates with each other via the common local oscillator LO.
  • the disadvantage of this structure is the relatively high effort involved per antenna path.
  • One embodiment of the antenna system according to the invention is not to provide a separate six-port receiver for each antenna path A ⁇ ... A n , but to reduce or minimize the total number of output gates used. This offers a decisive advantage, since one power detector, low-pass filter and A / D converter are eliminated for each reduced output gate. Two different exemplary embodiments are presented below.
  • FIG. 4 shows the structure of a simplified two-antenna system, in which a first antenna path Ai with a conventional six-port Si connected downstream is used to calculate the I and Q components of the received signal (RF), and the second antenna A 2 is only used to determine the Angle of incidence ⁇ of the incoming wavefront of the RF signal is used. It is sufficient to add the RF and the LO signal (superposition) in this antenna path A 2 only by means of a simple adder (ie a three-port, Di) and to measure the resulting power a. Assuming a common reference (LO) for six-port Si and three-port Di, the amplitude a changes at the output of the adder (three-port Du depending on the angle of incidence ⁇ .
  • LO common reference
  • the Poynting vector (P) of the incident waves can be three-dimensionally (Angular positions ⁇ and ⁇ to the antenna array) from the output signals.
  • FIG. 5 gives a schematic representation of the geometric relationships.
  • the antenna array A ⁇ ... A n is here planar (3x3 antennas in one plane).
  • the extension to other antenna paths with three ports is possible and serves to increase the accuracy of determining the solid angles ⁇ and cp, as well as the I and Q values.
  • FIG. 6 A further embodiment of the invention is shown schematically in FIG. 6.
  • the use of a six-port gate on a single antenna path is completely dispensed with, ie only one three-port link D ⁇ ... D n is connected to each antenna A ⁇ ... A n of an array.
  • LO common reference
  • the reference signal is given a phase shift of 2 ⁇ / n to the n three-port (adders).
  • both the I and Q components of the received signal (RF) and the solid angles ⁇ and cp of the Poynting vector (P) of the incident wave can be clearly determined from the n output data ai to a n of the three-port.
  • a possible spatial arrangement of the n antenna elements can again take place, for example, as shown in FIG. 5.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

Die Erfindung betrifft Antennensysteme, bei denen mehrere Einzelantennen (A1 ...An) , die jeweils als Mehrtore (S1, S2; D1...Dn) ausgelegt sind, als Antennenpfade miteinander verschaltet sind. Aus kombinierter Auswertung der jeweiligen Empfangsdaten können Informationen über die komplexe Struktur des einfallenden Signals errechnet werden. Erfindungsgemäss werden für Einzelantennen Dreitore (Addierer) eingesetzt. Dabei wird allen vorhandenen Antennenpfaden mittels eines lokalen Oszillators eine gemeinsame Referenz zur phasenstarren Synchronisation zugeführt. Damit sind die Ausgangsdaten der jeweiligen Antennenpfade dergestalt miteinander korreliert, dass sowohl die I/Q-Werte des Empfangssignals, als auch die Raumwinkel des Poynting-Vektors eindeutig bestimmt werden können.

Description

Antennenarray mit Dreitoren
Die Erfindung betrifft Antennensysteme. Insbesondere betrifft die Erfindung Antennensysteme aus mehreren miteinander verschalteten Einzelantennen, wobei jede Einzelantenne über Empfangsverstärker verfügt und aus den jeweiligen Empfangsdaten der kooperierenden Antennen Informationen über die komplexe Struktur des einfallenden Signals errechnet werden.
In herkömmlichen sog. „intelligenten" (d.h. steuerbaren) Antennen müssen die Phasenunterschiede in den einzelnen Pfaden zu und von den verschiedenen Antennenelementen (z.B. eines Antennen-Arrays) im analogen Höchstfrequenzbereich definiert eingestellt werden. Da in den hierzu erforderlichen elektronischen Phasenschiebern Verluste auftreten, müssen rauscharme Empfangsverstärker für den Empfang (bzw. Leistungsverstärker für den Sendefall) eingefügt werden. Aufgrund der verschiede- nen technischen Probleme der Konstruktion (Linearität, Phasentreue, Rauschzahlen, Thermische Stabilität) sind diese "Phased Arrays" sehr kostenintensiv.
Eine Verbesserung verspricht neuerdings der Einsatz mikro- elektromechanischer Phasenschieber (MEMS) , die aufgrund wesentlich geringerer Einfügungsverluste den Wegfall der rauscharmen Verstärker ermöglichen könnten. Die MEMS Technologie ist aber derzeit weder ausgereift, noch sind Lösungsansätze für die Lebensdauer- und Schaltzeitprobleme in Sicht. Bei einer Verlagerung der Phasensteuerung in den Digitalteil eines Antennensystems ( 'Digi tal Beam Forming' - DBF) können die o.g. Probleme prinzipiell umgangen werden. Um die entsprechenden Gewichtsfaktoren in einem derartigen 'Digital Beamformer' einstellen zu können, uss jedoch die von jedem Antennenelement empfangene Signalfunktion nach Betrag und Phase bekannt sein, d.h. pro Pfad ist ein vollständiger (digitaler) Empfänger mit In-Phase und Quadratur-Auswertung erforderlich. Die einzelnen Pfade müssen ferner zueinander ko- härent, d.h. phasenstarr sein. Dies verursacht wiederum einen hohen Aufwand bei der Konstruktion derartiger ' Front-End' - Technologie .
Die Erfindung geht aus von dem geschilderten Stand der Tech- nik. Gegenstand der Erfindung ist es, eine für den 'Digi tal Beam Forming' Ansatz geeignete, wesentlich vereinfachte Empfangstechnologie anzugeben.
Diese Aufgabe wird gelöst durch das Antennensystem gemäß An- spruch 1. Weitere Details unterschiedlicher Ausführungsformen und Vorzüge der Erfindung sind Gegenstand der Unteransprüche.
Die Erfindung wird im Folgenden anhand bevorzugter Ausführungsbeispiele näher erläutert unter Bezugnahme auf die Figu- ren und den darin angegebenen Bezugszeichen.
Es zeigen:
Figur 1 Übliche Ausführung einer passiven Sechstor- Schaltung
Figur 2 Typischer Aufbau eines Sechstor-Empfängers
Figur 3 Anordnung eines Multiantennensystems auf der Basis vollständiger Sechstore mit gemeinsamer Referenz
Figur 4 Sechstor in Kombination mit einem weiteren Antennenpfad mit nur einem Ausgang (Dreitor)
Figur 5 Ausführungsbeispiel des erfindungsgemäßen Antennen-Arrays zur Bestimmung der Signal- Einfallriehtung (Poynting-Vektor)
Figur 6 Ausführungsbeispiel einer Kombination von n Antennenpfaden mit jeweils einem Dreitor
Figur 7 Simulation der Ausgangsleistungen an den Toren 1 bis 5 des Arrays nach Fig. 6 in Abhängigkeit der Phasenverschiebung zwischen den Antennenpfaden und der I/Q-Signalkonstellation
Bei sogenannten Mehrtor-Empfängern (auch Sechstor bzw. Fünftor-Empfänger genannt) wird aus mehreren skalaren Messungen auf die komplexe Signalstruktur zurückgerechnet. Dazu wird das zu empfangende Signal in einer passiven Schaltung mit einem Signal bekannter Amplitude und Phasenlage überlagert (lokaler Oszillator, LO) und mit unterschiedlichen Phasenlagen an mindestens drei Ausgänge gegeben. Man kann zeigen, dass durch Signalgleichrichtung und Messung der Leistungspegel an mindestens drei Ausgängen eindeutig auf die komplexe Signalstruktur zurückgeschlossen werden kann. Bei mehr Ausgängen erhöht sich die Genauigkeit - daher werden häufig vier Ausgänge verwendet, woraus sich zusammen mit den Signal- und Re- ferenzeingängen das bekannte Sechstor ergibt. Bei mehr als vier Toren steigen die Verluste stark an, so dass im allgemeinen kein Genauigkeitsgewinn mehr erzielt wird. Der theoretische Hintergrund des Sechstor-Prinzips wurde von Engen in den 70er Jahren begründet [1] [2] . Er verwendete das Sechstor-Prinzip zum Bau eines Reflektometers, das komplexe Reflexionsfaktoren und damit gleichzeitig die Steuerparameter eines Zweitores messen kann. Seit Mitte der 90er Jahren wird dieses Prinzip auch zum Aufbau von Hochfrequenz- Eingangselementen von Empfängern untersucht, wobei das komplexe Verhältnis zwischen dem Empfangssignal (RF)
Figure imgf000006_0001
und dem Lokaloszillatorsignal (LO) a = a ,>(2'r-Λo-'+d) L,O„ LO bestimmt wird [3]
Figur 1 zeigt den prinzipiellen Aufbau einer passiven Sechs- tor-Schaltung. Die auf einem solchen oder ähnlichen passiven Schaltungsaufbau basierende Sechstor-Technologie ist Stand der Technik [2] [4] [5] [6] . Nimmt man die Sechstor-Komponenten als ideal an, dann ergibt sich an den Ausgängen 3 bis 6 für die Superposition (Addition) der beiden Signale (LO + RF) die in Figur 1 an die jeweiligen Ausgänge des Sechstors eingetragenen Formen der Summensignale. Die Leistungen, die nun an den Ausgängen gemessen werden, hängen vom Amplituden-, Phasen-, und Frequenzunterschied der beiden Signale ab. Von den linear unabhängigen Ausgangsleistungen ( P3 bis P6) kann somit das komplexe Verhältnis des LO- und RF-Signales berechnet werden :
Figure imgf000006_0002
Des weiteren kann gezeigt werden, dass bei unendlich hoher Isolation des RF- und LO-Tores folgender linearer Zusammen- hang der I und Q Komponente des RF-Signals mit den Leistungsverhaltnissen PJ./P3 (i = 4...6) vorliegt:
Figure imgf000007_0001
Dabei sind die Ax und B± Kalibrierungskoeffizienten, die durch geeignete Methoden bestimmt werden müssen. Auch hierzu existieren bereits Losungen [7] .
Figur 2 zeigt einen typischen Aufbau eines Hochfrequenz- (HF) -Eingangsteils mit den Komponenten zur Berechung der I und Q Komponente des RF-Signals, bestehend aus dem passiven
Sechstor und seinen vier Ausgangen P3...P6r den nachgeschalte- ten Leistungsdetektoren LD3-LD6 und Tiefpassfiltern (TPF) , der Analog-Digitalwandlung (A/D) und der Prozessoreinheit (CPU) .
Auf der Basis des Sechstor-Prinzips ist die Realisierung ei- nes kostengünstigen Multi-Antennensystems zur Berechnung des Einfallwinkels Φ der einfallenden Wellenfront (RF) möglich. Dabei gelten die im Folgenden für ein Sechstor beschriebenen Ausfuhrungen grundsatzlich auch für Funf-Tore, bzw. allgemein für „nM-Tore (mit n ≥ 5) . Eine erste Variante besteht darin, für jeden Pfad bzw. jedes Antennenelement Ai, Ai usw. des
Multi-Antennen-Systems jeweils einen der oben beschriebenen Sechstor-Empfanger inkl. Berechnungskomponenten vorzusehen, wie in Figur 3 für ein einfaches Zwei-Antennen-System dargestellt. Dieses Anordnungsschema lasst sich grundsatzlich auf beliebig viele Antennenpfade Aι...An erweitern. Jedes Sechstor Si, S2 liefert entsprechende I und Q-Daten (Il Q\ bzw. I2, Q2) . Aus Vergleich dieser Daten lasst sich der Einfallwinkel Φ bestimmen. Entscheidend für die Berechnung des Einfallwin- kels Φ ist die phasenstarre Synchronisation der Sechstore untereinander über den gemeinsamen lokalen Oszillator LO. Der Nachteil dieses Aufbaus besteht im relativ hohen Aufwand der pro Antennenpfad anfällt.
Eine Ausführungsform des erfindungsgemäßen Antennensystems besteht darin, nicht für jeden Antennenpfad Aχ...An einen eigenen vollständigen Sechstor-Empfänger vorzusehen, sondern die Anzahl der insgesamt eingesetzten Ausgangstore zu verringern bzw. zu minimieren. Dies bietet einen entscheidenden Vorteil, da pro reduziertes Ausgangstor je ein Leistungsdetektor, Tiefpassfilter und A/D-Wandler wegfallen. Dazu werden im Folgenden zwei unterschiedliche Ausführungsbeispiele vorgestellt.
Figur 4 zeigt den Aufbau eines vereinfachten Zwei-Antennen- Systems, bei dem ein erster Antennenpfad Ai mit nachgeschaltetem herkömmlichen Sechstor Si zur Berechnung der I und der Q Komponente des Empfangssignals (RF) dient, und die zweite Antenne A2 nur noch zur Bestimmung des Einfallwinkels Φ der eintreffenden Wellenfront des RF-Signals verwendet wird. Dabei genügt es, in diesem Antennenpfad A2 nur über einen einfachen Addierer (d.h. ein Dreitor, Di) das RF- und das LO- Signal zu addieren (Superposition) und die resultierende Leistung a zu messen. Unter der Voraussetzung einer wiederum gemeinsamen Referenz (LO) für Sechstor Si und Dreitor Di ändert sich die Amplitude a am Ausgang des Addierers (Dreitor Du in Abhängigkeit des Einfallwinkels Φ.
Unter Verwendung mindestens eines weiteren Antennenpfads mit Dreitor (Drei-Antennen-System) und einer geeigneten geometrischen Anordnung der vorhandenen Antennen (nicht als lineare Kette, sondern als 2-dimensionales Array) lässt sich der Poynting-Vektor (P) der einfallenden Wellen dreidimensional (Winkellagen Φ und φ zum Antennenarray) aus den Ausgangssignalen berechnen.
Figur 5 gibt eine schematische Darstellung der geometrischen Verhältnisse. Das Antennenarray Aι...An ist hier planar (3x3 Antennen in einer Ebene) angeordnet. Die Erweiterung auf weitere Antennenpfade mit Dreitoren ist möglich und dient zur Erhöhung der Genauigkeit der Bestimmung der Raumwinkel Φ und cp, sowie der I und Q Werte.
Eine weitergehende Ausführungsform der Erfindung ist in Figur 6 schematisch dargestellt. Bei dieser Anordnung wird vollständig auf die Verwendung eines Sechstors an einem einzelnen Antennenpfad verzichtet, d.h. jeder Antenne Aι...An eines Ar- rays ist nur ein Dreitor Dι...Dn nachgeschaltet. Auch hier ist wiederum Voraussetzung, dass jedes Dreitor eine gemeinsame Referenz (LO) verwendet. Das Referenzsignal wird bei dieser Ausführung um jeweils 2π/n phasenverschoben auf die n Dreitore (Addierer) gegeben. Mit n ≥ 5 lassen sich aus den n Aus- gangsdaten ai bis an der Dreitore sowohl die I und Q Komponenten des Empfangssignals (RF) , als auch die Raumwinkel Φ und cp des Poynting-Vektors (P) der einfallenden Welle eindeutig bestimmen. Eine mögliche räumliche Anordnung der n Antennenelemente kann dabei beispielsweise wieder wie in Figur 5 dargestellt erfolgen.
Figur 7 zeigt Simulationsergebnisse des in Fig. 6 dargestellten Aufbaus für n = 5 , wobei die Leistung a2 bis as an den Dreitoren Di bis D5 in Abhängigkeit von der Phasenverschie- bung zwischen den Antennenpfaden dargestellt ist. Die obere Bildhälfte zeigt die Ergebnisse für die RF-Signalkonstella- tion 1=1 und Q=0, das untere Bild analog für 1=0 und Q=l, d.h. ein um 90° phasenverschobenes Signal bei gleicher Frequenz. Man erkennt, dass sich unter Beibehaltung eines be- stimmten Arrays für jedes Tor die Kurven in Abhängigkeit von I und Q gegeneinander verschieben. Damit können aus den Signalen der Dreitore sowohl die I/Q-Werte des RF-Signals, als auch gleichzeitig - mit Hilfe der Phasenverschiebung zwischen den Antennenelementen - die Raumwinkel Φ und cp des Poynting- Vektors eindeutig bestimmt werden.
Literatur
[1] G.F. Engen, C.A. Hoer, Appl ica tion of an arbi trary 6- port j unction to power measurement problems, IEEE Trans . Instrum. Meas . , vol. IM-21, pp.470-474, Nov.1972 [2] US-Patent 4104583: Six-port measuring circui t
[3] Ji.Li, R. G. Bosisio, K. Wu, A Six-port Direct Digi tal Receiver, Digest of IEEE MTT Symposium, vol. 3, pp.1659- 1662, San Diego, May 1994
[4] US-Patent 5274333: Frequency balanced six-port reflecto- meter wi th a variable testport impedance
[5] US-Patent 5498969: Device for the vector measurement of ul tra -high frequency signals of the same angular frequency of the six-port j unction type [6] EPO, Offenlegungsschrift EP 1011204 AI, Empfänger mit Sechs-Tor-Schal tung
[7] WIPO, Offenlegungsschrift WO 9908393 AI, Cal ibra tion of n-port receiver

Claims

Patentansprüche
1. Antennensystem zur Erfassung einer Hochfrequenzwelle (RF) , bestehend aus mehreren Einzelantennen (Aι...An) , wobei jede Einzelantenne als Mehrtor (Si, S2; Dι...Dn) ausgebildet ist und einen Referenzeingang aufweist, welcher Referenzsignale von einem lokalen Oszillator (LO) auf- nimmt, d a d u r c h g e k e n n z e i c h n e t , dass Einzelantennen als Dreitore (Dι...Dn) ausgebildet sind.
2. Antennensystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass nur ein lokaler Oszillator (LO) vorhanden ist, dessen Referenzsignal den Referenzeingängen der Mehrtore zugeleitet wird.
3. Antennensystem nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass das Referenzsignal des lokalen Oszillators (LO) den Referenzeingängen der Mehrtore synchronisiert zugeleitet wird.
4. Antennensystem nach Anspruch 2 oder 3, d a d u r c h g e k e n n z e i c h n e t , dass das Referenzsignal den Referenzeingängen der Mehrtore sequentiell zugeleitet wird.
5. Antennensystem nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , dass das Referenzsignal den Referenzeingängen der Mehrtore sequentiell um den gleichen Betrag phasenversetzt zu- geleitet wird.
6. Antennensystem nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass bei n vorhandenen Mehrtoren der jeweilige Phasenver- satz 2π/n beträgt.
7. Antennensystem nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass alle Mehrtore als Dreitore ausgebildet sind.
8. Antennensystem nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Einzelantennen als geometrische Struktur, z.B. linear äquidistant oder als 2-dimensionales Array, ange- ordnet sind.
9. Antennensystem nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass Mittel zur Aufbereitung (LDl, LD2,..., Tiefpassfilter TPF) und Auswertung (A/D-Wandler, Prozessoreinheit CPU) der Ausgangssignale der Mehrtore vorhanden sind.
10. Verfahren zur Erfassung der komplexen Signalstruktur einer Hochfrequenzwelle (RF) mittels einer Anzahl von Einzelantennen (Aι...An) aus Mehrtoren (Si, S2; Dι...Dn) , d a d u r c h g e k e n n z e i c h n e t , dass den Mehrtoren (Si, S2; Dι„.Dn) das Referenzsignal eines lokalen Oszillators (LO) synchronisiert zugeführt wird.
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass den Mehrtoren (Si, S2; Dι...Dn) das Referenzsignal des lokalen Oszillators (LO) mit gleicher Phase zugeführt wird.
12. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t , dass den Mehrtoren (Si, S2; Dι...Dn) das Referenzsignal des lokalen Oszillators (LO) mit verschobener Phase zugeführt wird.
13. Verfahren nach Anspruch 12, d a d u r c h g e k e n n z e i c h n e t , dass den Mehrtoren (Si, S2; Dι„.Dn) das Referenzsignal des lokalen Oszillators (LO) sequentiell mit einer um 2π/n verschobenen Phase zugeführt wird, wobei n der Anzahl der vorhandenen Mehrtore entspricht.
14. Verfahren nach einem der Ansprüche 10 bis 13, d a d u r c h g e k e n n z e i c h n e t , dass aus den Phasen der I und Q-Daten der Mehrtore (Si, S2; Dι...Dn) die Raumwinkel Φ und cp der einfallenden Hochfrequenzwelle (RF) in Bezug auf die Positionen der Einzelantennen (Aι„.An) bestimmt werden.
PCT/EP2004/011040 2003-10-08 2004-10-04 Antennenarray mit dreitoren WO2005036696A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003147281 DE10347281A1 (de) 2003-10-08 2003-10-08 Antennenarray mit Dreitoren
DE10347281.9 2003-10-08

Publications (1)

Publication Number Publication Date
WO2005036696A1 true WO2005036696A1 (de) 2005-04-21

Family

ID=34428315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/011040 WO2005036696A1 (de) 2003-10-08 2004-10-04 Antennenarray mit dreitoren

Country Status (2)

Country Link
DE (1) DE10347281A1 (de)
WO (1) WO2005036696A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1344349A (fr) * 1962-10-02 1963-11-29 Csf Antenne rideau à balayage électronique
JP2003017928A (ja) * 2001-06-29 2003-01-17 Icom Inc アクティブ・フェーズド・アレー・アンテナ
US6549762B1 (en) * 1999-01-06 2003-04-15 Nec Corporation Method for estimating arrival direction of desired wave

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104583A (en) * 1977-08-31 1978-08-01 The United States Of America As Represented By The Secretary Of Commerce Six-port measuring circuit
US5274333A (en) * 1992-03-17 1993-12-28 La Corporation De L'ecole Polytechnique Frequency balanced six-port reflectometer with a variable test port impedance
FR2707398B1 (fr) * 1993-07-09 1995-08-11 France Telecom Dispositif de mesure vectorielle de signaux hyperfréquences de même pulsation, de type jonction à six accès.
WO1999008393A1 (en) * 1997-08-08 1999-02-18 Sony International (Europe) Gmbh Calibration of n-port receiver
DE19801552A1 (de) * 1998-01-16 1999-07-22 Walter Fisch Tracking-System
DE69829757T2 (de) * 1998-12-18 2006-01-12 Sony International (Europe) Gmbh Drei-Tor-Schaltung Empfänger
EP1089445B1 (de) * 1999-09-29 2005-07-06 Sony International (Europe) GmbH Drei-Tor Struktur mit modulierten Injektionssignal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1344349A (fr) * 1962-10-02 1963-11-29 Csf Antenne rideau à balayage électronique
US6549762B1 (en) * 1999-01-06 2003-04-15 Nec Corporation Method for estimating arrival direction of desired wave
JP2003017928A (ja) * 2001-06-29 2003-01-17 Icom Inc アクティブ・フェーズド・アレー・アンテナ

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LUY J-F ET AL: "Towards software configurable millimeter wave architectures", RADIO AND WIRELESS CONFERENCE RAWCON 2003 PROCEEDINGS, 10 August 2003 (2003-08-10), pages 9 - 12, XP010656685 *
MACK T ET AL: "An extremely broadband software configurable six-port receiver platform", 33RD EUROPEAN MICROWAVE CONFERENCE PROCEEDINGS, vol. 2, 7 October 2003 (2003-10-07), MUNICH, DEUTSCHLAND, pages 623 - 626, XP010681080 *
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 05 12 May 2003 (2003-05-12) *

Also Published As

Publication number Publication date
DE10347281A1 (de) 2005-05-25

Similar Documents

Publication Publication Date Title
DE102015115332B4 (de) System und Verfahren für ein Richtkopplermodul
DE69930384T2 (de) Adaptive gruppenantenne
DE102016111856B4 (de) System und Verfahren für einen Richtkoppler
DE69831723T2 (de) Kalibrierung einer phasengesteuerten Gruppenantenne durch orthogonale Phasenfolge
DE102018112092A1 (de) Integrierte mehrkanal-hf-schaltung mit phasenerfassung
CN101907703B (zh) 天波超视距雷达空时联合自适应抗干扰方法
DE102006029486A1 (de) Signalaufbereiter und Verfahren zum Verarbeiten eines Empfangssignals
DE2359465A1 (de) Diversity-empfangsanlage
DE102009038145B4 (de) Digitaler Signalprozessor
US10923813B2 (en) Antenna device and method for reducing grating lobe
DE102007008587A1 (de) Elektronische Abtastradarvorrichtung
DE102015108154B4 (de) Zweikanalige Polarisationskorrektur
CN108987948B (zh) 多端口次阵列及基频信号处理器所组成的天线架构
US6697017B1 (en) All digital apparatus for bearing measurement of electromagnetic sources
WO2005036696A1 (de) Antennenarray mit dreitoren
CN111327560B (zh) 相位补偿方法及装置、信号处理装置、cpe系统
DE60208149T2 (de) Fünfport-topologie für Direktmischung
DE60033205T2 (de) Verbesserte Vorrichtung zur direkten Digitalisiermatrix
DE3136625C1 (de) Großbasispeiler
DE69932705T2 (de) Empfänger mit N Toren
DE2625719C1 (de) Ortungssystem mit getrennt aufgestellten Sensoren zur Schnittbildung zwischen einer Hyperbel (Laufzeitdifferenz) und einer Geraden
DE10012080C1 (de) Antennenarray und Verfahren zum Betrieb eines Antennenarrays
DE3033841A1 (de) Peilsystem
DE202021100400U1 (de) Automatische Kalibriersysteme für Strahlformer
DE60215923T2 (de) I/Q Demodulator unter Verwendung einer Sechs-Tor-Schaltung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase