WO2005036538A1 - ホログラフィックメモリー再生装置、ホログラフィック記録再生装置、ホログラフィック記録再生方法及びホログラフィック記録媒体 - Google Patents

ホログラフィックメモリー再生装置、ホログラフィック記録再生装置、ホログラフィック記録再生方法及びホログラフィック記録媒体 Download PDF

Info

Publication number
WO2005036538A1
WO2005036538A1 PCT/JP2004/014237 JP2004014237W WO2005036538A1 WO 2005036538 A1 WO2005036538 A1 WO 2005036538A1 JP 2004014237 W JP2004014237 W JP 2004014237W WO 2005036538 A1 WO2005036538 A1 WO 2005036538A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
information
recording
reproducing
holographic
Prior art date
Application number
PCT/JP2004/014237
Other languages
English (en)
French (fr)
Inventor
Tetsuro Mizushima
Takuya Tsukagoshi
Hideaki Miura
Jiro Yoshinari
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to US10/573,802 priority Critical patent/US7446916B2/en
Publication of WO2005036538A1 publication Critical patent/WO2005036538A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13925Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means
    • G11B7/13927Means for controlling the beam wavefront, e.g. for correction of aberration active, e.g. controlled by electrical or mechanical means during transducing, e.g. to correct for variation of the spherical aberration due to disc tilt or irregularities in the cover layer thickness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0212Light sources or light beam properties

Definitions

  • Holographic memory reproducing device holographic recording / reproducing device, holographic recording / reproducing method, and holographic recording medium
  • the present invention relates to a holographic recording / reproducing apparatus for holographically recording and reproducing information on a recording medium, a holographic memory reproducing apparatus for reproducing recorded hologram force information, and a holographic recording / reproducing method. And holographic recording media.
  • a holographic recording / reproducing method has been proposed as a recording technique which has a large recording capacity and enables high-speed transfer of information.
  • a gas laser or a solid-state laser is usually used as a light source to maintain wavelength stability and coherence (uniform coherency). There is a problem that it is large and the manufacturing cost is high.
  • the semiconductor laser has wavelength stability and coherency as compared with the gas laser and the solid-state laser. There is a problem that one is inferior.
  • a recording layer on which a hologram is formed has a thickness of several tens m or more, preferably 100 m or more, in order to increase the recording density.
  • Such a thick hologram has angle selectivity and wavelength selectivity of a reproduction laser beam, and can reproduce information only when a reference beam is incident at an angle and a wavelength under recording conditions.
  • multiplexed information is recorded in the same volume by appropriately changing the angle condition of the reference light and the like.
  • the reproduction light intensity (diffraction light intensity) is When two-dimensional data is recorded on the hologram, there is a problem that the two-dimensional data is reproduced in a distorted state.
  • the decrease or distortion of the reproduction light intensity as described above can be corrected by the design and modulation pattern of an element such as a CCD or a CMOS that captures two-dimensional data. Large and difficult to correct.
  • Japanese Patent Application Laid-Open No. 2002-216359 discloses an optical waveguide type wavelength conversion device because an optimal reproduction light wavelength changes due to thermal expansion and contraction of a recording medium during reproduction of holographic recording.
  • the wavelength of the reproducing laser beam is changed according to the thermal expansion and contraction of the recording medium by using a wavelength-variable semiconductor laser including the laser as a light source.
  • Japanese Patent Application Laid-Open No. 8-202246 proposes a hologram recording apparatus using a temperature control element and a Fabry-Perot etalon in order to maintain the wavelength stability of a semiconductor laser during recording.
  • this hologram recording apparatus the temperature of the semiconductor laser and the injection current are stabilized to stabilize the wavelength of the laser beam during recording.
  • a tunable semiconductor laser as a tunable coherent light source and an optical waveguide type wavelength conversion device are controlled based on the state of a reproduced signal light. Since the wavelength of the reproduction light is optimized, there is a problem that it takes a long time from the start of the reproduction apparatus until the laser light actually has the optimum wavelength.
  • the semiconductor laser in the reproduction apparatus is If the ambient temperature is too high or too low and the oscillation peak wavelength deviates from the wavelength power of the laser beam during recording, it will be difficult to reproduce. There is a title.
  • the present invention has been made in view of the above-mentioned conventional problems, and has a structure in which a laser beam having an optimum wavelength is reproduced at a fast speed at the time of reproduction. It is an object of the present invention to provide a holographic recording / reproducing device, a holographic recording / reproducing method, a holographic memory reproducing device, and a holographic recording medium used for these devices.
  • the present inventor previously records the wavelength information of the laser beam at the time of recording as a wavelength address hologram in a holographic manner, and controls the temperature of the semiconductor laser during information reproduction based on this recording. This has made it possible to use a reproduction laser beam having an optimum wavelength.
  • a holographic recording medium in which wavelength information of a recording laser beam is recorded as a wavelength address hologram is irradiated with a reproducing laser beam from a semiconductor laser to reproduce the information recorded in the holographic head.
  • a holographic memory reproducing device for controlling the temperature of the semiconductor laser; and reproducing the information recorded on the holographic recording medium by the reproducing laser beam. Based on the wavelength information reproduced from the wavelength address hologram by the reproduction laser light, the temperature of the reproduction laser light is adjusted via the temperature controller so that the wavelength of the reproduction laser light substantially matches the wavelength of the recording laser light.
  • a holographic memory reproducing device comprising: a wavelength controller that controls the wavelength by adjusting the temperature of the semiconductor laser.
  • the wavelength control device is configured to adjust the intensity of the diffracted signal light from the wavelength address hologram at the time of irradiation with the reproduction laser light so as to reach a constant value, or to detect the signal light.
  • the wavelength control device has information on an oscillation peak wavelength corresponding to the temperature of the semiconductor laser, and controls the semiconductor laser so that the oscillation peak wavelength coincides with the wavelength of the recording laser light.
  • a device for reproducing a memory is provided.
  • a reproducing apparatus comprising: a semiconductor laser that generates the recording laser light and the reproducing laser light; a temperature control device capable of controlling a temperature of the semiconductor laser; and a recording apparatus that controls a temperature of the holographic recording medium by the recording laser light.
  • the wavelength information recording apparatus records the wavelength information of the recording laser light as a wavelength address hologram on the holographic recording medium, and the wavelength information recording apparatus records the wavelength information of the recording laser light on the holographic recording medium using the reproducing laser light.
  • a wavelength controller that adjusts the temperature of the semiconductor laser via the temperature controller to control the wavelength such that the wavelength of the reproduction laser light substantially matches the wavelength of the recording laser light.
  • a holographic recording / reproducing apparatus comprising:
  • the wavelength control device may be configured such that the intensity of the signal light diffracted by the wavelength address hologram at the time of irradiation with the reproduction laser light reaches a constant value, or the signal light is detected.
  • the wavelength control device has information on an oscillation peak wavelength corresponding to the temperature of the semiconductor laser, and controls the semiconductor laser so that the oscillation peak wavelength coincides with the wavelength of the recording laser light.
  • Holographic recording for recording information on a holographic recording medium using a recording laser beam and reproducing information recorded on the holographic recording medium using a reproducing laser beam.
  • a reproducing method wherein, when information is recorded on the holographic recording medium by the recording laser light, the wavelength information of the recording laser light is recorded as a wavelength address hologram on the holographic recording medium. Before reproducing the information recorded on the holographic recording medium by the reproducing laser light, irradiating the wavelength address hologram and diffracting the wavelength from the diffracted signal light.
  • the step of reproducing the information and the temperature of the semiconductor laser that emits the laser beam for reproduction are set based on the reproduced wavelength information such that the wavelength of the laser beam for reproduction substantially matches the wavelength according to the wavelength information. Adjusting the holographic recording and reproducing method.
  • the intensity of the signal light diffracted from the wavelength address hologram at the time of irradiation with the reproduction laser light is set so as to reach a predetermined value, or the detection position of the signal light is set at a predetermined position.
  • Holographic recording characterized in that information is recorded in the data area as a hologram, and the wavelength information of the recording laser beam at the time of information recording is recorded as a wavelength address hologram. Medium.
  • an increase in temperature causes a decrease in an energy gap, a change in a refractive index, and an expansion of a resonator length, and the oscillation wavelength shifts to a longer wavelength side.
  • the amount of this shift depends on the material and structure of the semiconductor laser, but is 0.05-0.3 nmZ ° C.
  • wavelength control of about 7 nm can be performed by adjusting the temperature to 30 ° C.
  • FIG. 1 is an optical system diagram showing a holographic memory reproducing device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view schematically showing a holo-drama recording medium on which information to be reproduced by the holographic memory reproducing device is recorded.
  • FIG. 3 is an optical system diagram showing a holographic recording / reproducing apparatus according to Embodiment 2 of the present invention.
  • the wavelength information of the laser beam at the time of recording the hologram is recorded in advance in the holographic recording medium as a wavelength address hologram, and the reproducing semiconductor laser is provided with a temperature controller for controlling the temperature.
  • the wavelength address hologram portion is irradiated while changing the oscillation peak wavelength by increasing or decreasing the temperature of the semiconductor laser via the temperature controller by the wavelength controller. Until the signal light (diffraction light) from the wavelength address hologram reaches a predetermined intensity or detection position.
  • Example 1 of the present invention will be described in detail with reference to the drawings.
  • the holographic memory reproducing device 10 includes a semiconductor laser 12 that oscillates a laser beam for reproduction, and a laser beam for reproduction emitted from the semiconductor laser 12.
  • a beam expander 14 for expanding the beam diameter, a lens 18 for guiding the reproduction laser beam whose beam diameter has been expanded by the beam expander 14 to a holographic recording medium 16, and a laser beam 18 are irradiated through the lens 18.
  • a spatial imaging element 22 for receiving, via a lens 20, a signal light obtained by diffracting the reproduced laser light by the holographic recording medium 16, and a wavelength control device 24 to which a signal detected by the spatial imaging element 22 is input.
  • a temperature control device 26 attached to the semiconductor laser 12 and configured to control the temperature of the semiconductor laser 12 based on a control signal from the wavelength control device 24. It has been done.
  • the temperature control device 26 is capable of controlling the temperature of the semiconductor laser 12 within a certain range, for example, by using a Peltier element alone, a combination of a thermocouple and a heater, or a combination of a Peltier element and another element. Being done.
  • a wavelength address hologram 28 is recorded at a position where the holographic memory reproducing device 10 first accesses the holographic memory during reproduction.
  • a wavelength address hologram 28 is recorded in a lead-in area 16 A of an inner peripheral portion thereof.
  • the wavelength information of the reference light when hologram recording is performed on the holographic recording medium 16 is recorded as a two-dimensional signal pattern having a fixed detection position.
  • modulation of a specific pattern is produced by a spatial light modulator (not shown), and this specific pattern is irradiated on the lead-in area 16A.
  • reference numeral 16B indicates a data area
  • 16C indicates a clamping area
  • 16D indicates a center hole.
  • the wavelength address hologram 28 is sequentially read during reproduction in addition to the lead-in area 16A.
  • the wavelength address hologram 28 may be included in a part of the two-dimensional data.
  • the wavelength address hologram 28 is a force volume phase hologram that can be recorded on a substrate as a relief hologram having a concavo-convex pattern, and has a form similar to data in the recording layer of the holographic recording medium 16. It can also be recorded with. In this case, the same optical path and detector as the reproduction laser beam at the time of reproduction can be used, which is more preferable.
  • the power of irradiating the wavelength address hologram 28 Since the detection position of the signal pattern of the wavelength address hologram 28 is determined in advance, the recorded wavelength address hologram 30 and the semiconductor laser 12 are reproduced. When there is a wavelength shift between the laser beams, the detection position also deviates from a predetermined position force, and the signal intensity obtained by the spatial imaging element 22 decreases. The case where the displacement is too large and the signal strength obtained by the spatial imaging element 22 is zero will be described later.
  • the wavelength control device 24 detects a shift of the wavelength of the laser beam for reproduction from the wavelength of the laser beam for recording at the time of hologram recording based on the position shift, and the temperature controller 26 controls the temperature of the semiconductor laser 12. Perform control.
  • This temperature control is repeated until the force at which the detection position of the wavelength address hologram 28 becomes a predetermined position or the signal intensity exceeds a certain value, and the laser light for reproduction from the semiconductor laser 12 and the hologram recording
  • the temperature controller 26 is controlled so that the wavelengths of the laser beams coincide with each other, and the temperature of the semiconductor laser 12 is maintained at that time.
  • the signal position detected by the spatial image sensor 22 is shifted from a predetermined position, and when the amount of this position shift is detected, the laser beam and the laser beam for recording are read from the position shift amount.
  • the wavelength shift amount of the single light is calculated, the drive current of the temperature adjusting device 26 is controlled according to the wavelength shift amount, and the temperature of the temperature adjusting device 26 is set by the control signal. space When the signal strength obtained by the image sensor 22 is zero, the drive current is changed in the increasing or decreasing direction until some signal strength is obtained, and the above-described control is performed from there.
  • signals recorded at a plurality of recording wavelengths other than those described above can be used.
  • a signal pattern corresponding to a recording wavelength, a recording wavelength ⁇ nm ( ⁇ ), and a recording wavelength + ⁇ nm (+) is adopted, and the recording wavelengths of ( ⁇ ) and (+) are used. From the signal intensity difference, the wavelength of the semiconductor laser 12 is detected, and the temperature of the semiconductor laser 12 is controlled by the temperature controller 26 to change the oscillation peak wavelength.
  • the above operation is repeated until the signal intensity difference between the recording wavelengths of (1) and (+) disappears or the signal intensity of the recording wavelength exceeds a certain value, and the reproduction laser beam and the laser beam during hologram recording are repeated. What is necessary is just to control the temperature control device 26 so that the wavelengths of the wavelengths are matched and the temperature is maintained.
  • the temperature of the semiconductor laser 12 is changed by the temperature adjusting device 26 during reproduction of the wavelength address hologram 28, and the detection position of the wavelength address hologram 28 is changed to a predetermined position.
  • the temperature at the time when the signal strength exceeds or when the signal strength exceeds a certain value may be measured, and the temperature controller 26 may be controlled so as to maintain this temperature.
  • the temperature control for the wavelength shift amount can be easily performed.
  • the light sources of the laser light for recording on the holographic recording medium 16 and the laser light for reproduction can be different.
  • a Kr ion laser (wavelength 406.7 nm) is used as a recording laser beam to record information and a wavelength address hologram
  • a GaN semiconductor laser (oscillation peak wavelength 405 nm) is used as a reproduction laser beam. It comes out.
  • an initial temperature is set to the wavelength control device 26 so that the wavelength of the recording laser light and the wavelength of the reproduction laser light are close to each other. It is preferable to keep it.
  • the temperature width of the temperature control is narrowed, and the reproducing operation can be further shortened.
  • FIG. 3 Next, a second embodiment of the present invention shown in FIG. 3 will be described.
  • the same apparatus records information and a wavelength address hologram on a holographic recording medium and reproduces the recorded information on the holographic recording medium.
  • the holographic recording / reproducing apparatus 30 includes the holographic memory / reproducing apparatus 10 in which the laser beam from the semiconductor laser 12 is split by the beam splitter 34 and is converted into the holographic recording medium 16 as object light.
  • An object optical system 32 for guiding the object is provided.
  • the other configuration is the same as that of the holographic memory reproducing device 10, and therefore, the same configuration is denoted by the same reference numeral as in FIG. 1 and the description is omitted.
  • the object optical system 32 includes a mirror 36 for guiding the laser beam branched from the beam splitter 34, a spatial light modulator 38, and a Fourier lens 40.
  • the laser light emitted from the semiconductor laser 12 is branched, and one of the laser light is used as reference light to the holographic recording medium 16 via the beam expander 14 and the lens 18.
  • the other light is reflected by a mirror 36 as object light, is spatially modulated by a spatial light modulator 38 in accordance with information to be recorded, and is irradiated on a holographic recording medium 16 via a Fourier lens 40.
  • the wavelength address hologram 28 is recorded by irradiating the lead-in area 16A or the data area 18B with a specific pattern created by the spatial light modulator 38.
  • the present invention utilizes the wavelength information of the recording laser light at the time of recording, which is recorded in advance as a wavelength address hologram, so that the wavelength of the reproducing laser light at the time of reproduction matches the above-mentioned wavelength. It is possible to use a semiconductor laser having a variation in peak wavelength, to start up the reproducing operation quickly, and to use a reproducing laser beam having an optimal wavelength corresponding to each recording medium.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Abstract

 ホログラフィック記録媒体の情報再生時に、再生用レーザ光の波長を、ホログラム記録時のレーザ光の波長と一致させるようにしたホログラフィックメモリー再生装置。ホログラフィックメモリー再生装置10は、半導体レーザ12に温度調節装置26が取り付けられてなり、ホログラフィック記録媒体16には、記録時のレーザ光の波長情報が波長アドレスホログラム28として記録されていて、情報再生時に該波長アドレスホログラム28からの信号光に応じて、波長制御装置24により、温度調節装置26を制御して、半導体レーザ12の発振ピーク波長が、記録時のレーザ光の波長と一致するようにする。

Description

明 細 書
ホログラフィックメモリー再生装置、ホログラフィック記録再生装置、ホログ ラフィック記録再生方法及びホログラフィック記録媒体
技術分野
[0001] 本発明は、記録媒体に情報をホログラフィック記録し、且つ、再生するためのホログ ラフィック記録再生装置、記録されたホログラム力 情報を再生するホログラフィックメ モリー再生装置、ホログラフィック記録再生方法及びホログラフィック記録媒体に関す る。
背景技術
[0002] 記録容量が大きぐ且つ情報の高速転送を可能とする記録技術として、ホログラフィ ック記録再生方法が提案されて ヽる。
[0003] このホログラフィック記録再生には、通常、波長安定性及び可干渉性 (コヒーレンシ 一)を維持するためにガスレーザや固体レーザが光源として用いられて 、るが、これ らの光源は装置が大きぐ且つ製造コストが高くなるという問題点がある。
[0004] これに対して、半導体レーザを光源とすれば、装置の小型化及び製造コストの低減 が可能となるが、半導体レーザは、前記ガスレーザや固体レーザと比較して、波長安 定性とコヒーレンシ一が劣るという問題点がある。
[0005] 一般に、ホログラフィック記録媒体は、その記録密度を高めるために、ホログラムが 形成される記録層は数十 m以上、好ましくは 100 m以上の厚みを持つ。
[0006] このような厚いホログラムは、再生用レーザ光の角度選択性及び波長選択性を持ち 、参照光が記録条件の角度及び波長で入射された場合にのみ情報の再生が可能で ある。
[0007] 一般的には、この参照光の角度条件などを適宜変更することにより、同一体積中に 多重化された情報が記録されて 、る。
[0008] ここで、記録されたホログラムに対応した参照光波長と異なる波長のレーザ光により 情報を再生しょうとすると、ホログラムの波長選択性のために、一致した波長のレーザ 光で再生した場合と比較して、再生光強度 (回折光強度)が弱くなると共に、再生光 に角度的な歪みが生じ、ホログラムに二次元データが記録されている場合は、該ニ 次元データが歪んだ状態で再生されてしまうという問題点がある。
[0009] 又、上記のような再生光強度の低下や歪みは、二次元データを撮像する CCDや C MOS等の素子の設計及び変調パターンによって訂正することは可能である力 波 長のずれが大き 、と訂正は困難である。
[0010] このような波長選択性は、ホログラフィック記録媒体の記録層の厚みに比例して強く なるため、記録密度を高くするために記録層を厚くすると、再生光の僅かな波長ずれ によって情報の再生が困難となる。
[0011] これに対して、特開 2002— 216359号公報では、ホログラフィック記録の再生時の 記録媒体の熱膨張や収縮によって最適な再生光波長が変化することから、光導波路 型波長変換デバイスを含む波長可変半導体レーザを光源として用いて、記録媒体の 熱膨張や収縮に対応して再生用レーザ光の波長を変化させるようにしている。
[0012] なお、特開平 8— 202246号公報では、記録中の半導体レーザの波長安定性を維 持するために、温度調節素子とフアブリ一ペローエタロンを用いたホログラム記録装 置が提案されている。このホログラム記録装置では、半導体レーザの温度と注入電流 を安定ィ匕し、記録時のレーザ光の波長を安定させている。
[0013] 上記特開 2002— 216359号公報記載のホログラフィック光情報記録再生装置では 、再生信号光の状態から、波長可変コヒーレント光源である波長可変半導体レーザと 光導波路型波長変換デバイスを制御して、再生光の波長を最適なものにして!/ヽるの で、再生装置の立ち上がりから、レーザ光が実際に最適な波長となるまでに時間が 力かってしまうという問題点がある。
[0014] 又、波長可変半導体レーザでは高密度化に必要な短波長化が難しいという問題点 がある。又、一般的な半導体レーザは、同一設計においても製品個々に発振ピーク 波長のばらつきをもち、温度に対しても発振波長が変化するという問題点がある。
[0015] 更に、特開平 8— 202246号公報記載のホログラム記録装置では、記録再生時の再 生用半導体レーザのレーザ光の波長は何ら考慮されていないので、再生装置にお ける半導体レーザが、環境温度が高すぎたり、あるいは低すぎたりして、その発振ピ ーク波長が、記録時のレーザ光の波長力 ずれた場合は再生が困難となるという問 題点がある。
発明の開示
[0016] この発明は上記従来の問題点に鑑みてなされたものであって、再生時における立 ち上がりが早ぐ又、個々の記録媒体に対応して、最適な波長のレーザ光を再生光と して利用できるようにしたホログラフィック記録再生装置、ホログラフィック記録再生方 法、ホログラフィックメモリー再生装置及びこれらに用いるホログラフィック記録媒体を 提供することを目的とする。
[0017] 本発明者は、鋭意研究の結果、ホログラフィックに予め、記録時のレーザ光の波長 情報を波長アドレスホログラムとして記録しておき、この記録に基づき、情報再生時に 半導体レーザの温度を制御することにより、最適な波長の再生用レーザ光を利用で きることが分力つた。
[0018] 即ち、以上の本発明により上記目的を達成することができる。
[0019] (1)記録用レーザ光の波長情報が波長アドレスホログラムとして記録されているホロ グラフィック記録媒体に、半導体レーザからの再生用レーザ光を照射して、ホログラフ イツク記録されている情報を再生するためのホログラフィックメモリー再生装置であつ て、前記半導体レーザの温度を制御する温度調節装置と、前記再生用レーザ光によ る前記ホログラフィック記録媒体に記録された情報の再生の前に、前記再生用レー ザ光により前記波長アドレスホログラムから再生された波長情報に基づいて、前記再 生用レーザ光の波長が前記記録用レーザ光の波長に略一致するように、前記温度 調節装置を介して前記半導体レーザの温度を調節して、波長を制御する波長制御 装置と、を有してなるホログラフィックメモリー再生装置。
[0020] (2)前記波長制御装置は、前記再生用レーザ光の照射時の、前記波長アドレスホ ログラムからの回折された信号光の強度が一定値に達するように、又は、信号光の検 出位置が所定位置となるように、前記温度調節装置をフィードバック制御するようにさ れたことを特徴とする(1)のホログラフィックメモリー再生装置。
[0021] (3)前記波長制御装置は、前記半導体レーザの温度に対応する発振ピーク波長の 情報を有し、前記記録用レーザ光の波長と一致する発振ピーク波長となるように、前 記半導体レーザの温度を制御するようにされたことを特徴とする(1)又は(2)のホログ ラフィックメモリ一再生装置。
[0022] (4)記録用レーザ光を用いてホログラフィック記録媒体に情報をホログラフィック記 録すると共に、再生用レーザ光を用いて前記ホログラフィック記録媒体に記録された 情報を再生するホログラフィック記録再生装置であって、前記記録用レーザ光及び 再生用レーザ光を発生する半導体レーザと、この半導体レーザの温度調節が可能な 温度調節装置と、前記記録用レーザ光による前記ホログラフィック記録媒体への情報 の記録の際に、該記録用レーザ光の波長情報を、波長アドレスホログラムとして、該 ホログラフィック記録媒体に記録する波長情報記録装置と、前記再生用レーザ光によ る前記ホログラフィック記録媒体に記録された情報の再生の際に、該再生用レーザ 光により前記波長アドレスホログラムから回折された信号光に基づいて、前記再生用 レーザ光の波長が前記記録用レーザ光の波長に略一致するように、前記温度調節 装置を介して前記半導体レーザの温度を調節して、波長を制御する波長制御装置と 、を有してなるホログラフィック記録再生装置。
[0023] (5)前記波長制御装置は、前記再生用レーザ光の照射時の、前記波長アドレスホ ログラムにより回折された信号光の強度が一定値に達するように、又は、信号光の検 出位置が所定位置となるように、前記温度調節装置をフィードバック制御する回路を 有することを特徴とする(4)のホログラフィック記録再生装置。
[0024] (6)前記波長制御装置は、前記半導体レーザの温度に対応する発振ピーク波長の 情報を有し、前記記録用レーザ光の波長と一致する発振ピーク波長となるように、前 記半導体レーザの温度を制御するようにされたことを特徴とする (4)又は(5)のホログ ラフィック記録再生装置。
[0025] (7)記録用レーザ光を用いてホログラフィック記録媒体に情報をホログラフィック記 録すると共に、再生用レーザ光を用いて前記ホログラフィック記録媒体に記録された 情報を再生するホログラフィック記録再生方法であって、前記記録用レーザ光により 、前記ホログラフィック記録媒体に情報を記録する際に、該記録用レーザ光の波長情 報を前記ホログラフィック記録媒体に、波長アドレスホログラムとして記録する過程と、 前記再生用レーザ光により、前記ホログラフィック記録媒体に記録された情報を再生 する前に、前記波長アドレスホログラムを照射して、回折された信号光から前記波長 情報を再生する過程と、この再生された波長情報に基づき、前記再生用レーザ光を 出射する半導体レーザの温度を、該再生用レーザ光の波長が、前記波長情報による 波長と略一致するように調節する過程と、を含むホログラフィック記録再生方法。
[0026] (8)前記再生用レーザ光の照射時の、前記波長アドレスホログラムから回折された 信号光の強度が一定値に達するように、又は、信号光の検出位置が所定位置となる ように制御することを特徴とする(7)のホログラフィック記録再生方法。
[0027] (9)情報がホログラムとしてデータエリアに記録されていて、且つ、情報記録時の記 録用レーザ光の波長情報が波長アドレスホログラムとして記録されて 、ることを特徴と するホログラフィック記録媒体。
[0028] (10)前記波長アドレスホログラムは、前記情報の再生時に、前記データエリアよりも 先にアクセスされるリードインエリアに記録されていることを特徴とする(9)のホロダラ フィック記録媒体。
[0029] なお、半導体レーザは、温度上昇によりエネルギーギャップの低下、屈折率変化、 共振器長の膨張を引き起こし、発振波長が長波長側にシフトする。このシフト量は、 半導体レーザの材料や構造によるが、 0. 05-0. 3nmZ°Cになる。例えば、 GaAlA s半導体レーザでは、 30°Cの温度調整により、約 7nmもの波長制御が可能となる。 図面の簡単な説明
[0030] [図 1]本発明の実施例 1に係るホログラフィックメモリー再生装置を示す光学系統図
[図 2]同ホログラフィックメモリー再生装置によって再生する情報が記録されたホロダラ フィック記録媒体を模式的に示す平面図
[図 3]本発明の実施例 2に係るホログラフィック記録再生装置を示す光学系統図 発明を実施するための最良の形態
[0031] ホログラフィック記録媒体に、ホログラム記録時のレーザ光の波長情報を、波長アド レスホログラムとして予め記録しておき、又、再生用半導体レーザには、その温度を 制御するための温度調節装置を設け、ホログラフィック記録媒体の情報を再生する際 には、波長制御装置により温度調節装置を介して半導体レーザの温度を増減してそ の発振ピーク波長を変化させつつ波長アドレスホログラム部分を照射し、該波長アド レスホログラムからの信号光(回折光)が所定の強度若しくは検出位置に達するまで 半導体レーザの温度のフィードバック制御をすることによって、最適の再生光の波長 を得て上記目的を達成することができる。
実施例 1
[0032] 以下本発明の実施例 1について図面を参照して詳細に説明する。
[0033] 図 1に示されるように、この実施例 1に係るホログラフィックメモリー再生装置 10は、 再生用レーザ光を発振する半導体レーザ 12と、この半導体レーザ 12から出射された 再生用レーザ光のビーム径を拡大するためのビームエキスパンダ 14と、このビーム エキスパンダ 14によってビーム径が拡大された再生用レーザ光をホログラフィック記 録媒体 16に導くレンズ 18と、前記レンズ 18を介して照射された再生用レーザ光がホ ログラフィック記録媒体 16で回折される信号光をレンズ 20を介して受光する空間撮 像素子 22と、この空間撮像素子 22が検出した信号が入力される波長制御装置 24と 、前記半導体レーザ 12に取り付けられ、前記波長制御装置 24からの制御信号に基 づいて半導体レーザ 12の温度を調節する温度調節装置 26とを備えて構成されてい る。この温度調節装置 26は、例えばペルチェ素子単独、あるいは熱電対とヒータとの 組合せ、ペルチヱ素子と他の素子との組合せ等力もなり、半導体レーザ 12の温度を 一定範囲で制御することができるようにされて 、る。
[0034] 又、前記ホログラフィック記録媒体 16には、このホログラフィックメモリー再生装置 10 によって再生時に最初にアクセスされる箇所に、波長アドレスホログラム 28が記録さ れている。
[0035] 例えば、図 2に示されるように、ホログラフィック記録媒体 16がディスク状の場合、そ の内周部のリードインエリア 16Aに、波長アドレスホログラム 28が記録されている。
[0036] この波長アドレスホログラム 28は、ホログラフィック記録媒体 16にホログラム記録を 行なった時の参照光の波長情報が、検出位置の決まった二次元信号パターンとして 記録されている。波長アドレスホログラム 28の記録には、空間光変調器(図示省略) で特定パターンの変調を作製し、この特定パターンをリードインエリア 16Aに照射し て行う。図 2の符号 16Bはデータエリア、 16Cはクランビングエリア、 16Dは中心孔を それぞれ示す。
[0037] 又、波長アドレスホログラム 28はリードインエリア 16Aの他に、再生中に逐次読み出 しができるように、データエリア 16Bに記録してもよぐ二次元データ情報では二次元 データの一部に波長アドレスホログラム 28を含ませる形としてもよ 、。
[0038] なお、波長アドレスホログラム 28は、基板に凹凸パターンのレリーフ型ホログラムと して記録することができる力 体積位相型ホログラムとしてホログラフィック記録媒体 1 6の記録層中に、データと類似した形態で記録しておくこともできる。この場合、再生 時における再生用レーザ光と同一の光路、検出器を用いることができるのでより好ま しい。
[0039] 次に、上記ホログラフィックメモリー再生装置 10により、ホログラフィック記録媒体 16 に記録された情報を再生する過程にっ 、て説明する。
[0040] このホログラフィックメモリー再生装置 10により情報を再生する際には、まず、半導 体レーザ 12からの再生光はリードインエリア 16Aにアクセスする。
[0041] これにより、波長アドレスホログラム 28が照射される力 この波長アドレスホログラム 2 8の信号パターンは、検出位置が予め決められているので、記録された波長アドレス ホログラム 30と半導体レーザ 12の再生用レーザ光の間で波長ずれがある場合、検 出位置が予め決められた位置力もずれると共に、空間撮像素子 22によって得られる 信号強度が小さくなる。ずれが大き過ぎて空間撮像素子 22によって得られる信号強 度が零の場合にっ 、ては後述する。
[0042] 前記波長制御装置 24は、前記位置ずれからホログラム記録時における記録用レー ザ光の波長に対する、再生用のレーザ光の波長のずれを検出し、温度調節装置 26 により半導体レーザ 12の温度制御を行なう。
[0043] この温度制御を、波長アドレスホログラム 28の検出位置が所定の位置となる力、若 しくは信号強度が一定値を越えるまで繰り返し、半導体レーザ 12からの再生用レー ザ光とホログラム記録時のレーザ光の波長を一致させ、そのときの、半導体レーザ 12 の温度を保つように温度調節装置 26を制御する。
[0044] 更に詳細には、前記空間撮像素子 22で検出される信号位置が所定位置からずれ 、この位置ずれ量が検出されると、該位置ずれ量から、記録時のレーザ光と再生用レ 一ザ光の波長ずれ量を算出し、この波長ずれ量に応じた温度調節装置 26の駆動電 流の制御とし、更に、この制御信号により、温度調節装置 26の温度を設定する。空間 撮像素子 22によって得られる信号強度が零の場合は、いくらかの信号強度が得られ るまで駆動電流を増又は減の方向に変化させ、そこから上記の制御をする。
[0045] なお、前記波長アドレスホログラム 28の信号パターンとしては、上記の他に、複数 の記録波長により記録された信号を用いることができる。
[0046] 例えば、記録波長と、記録波長 δ nm (-)、記録波長 + δ nm ( + )の 3波長に対 応する信号パターンを採用し、前記 (-)と(+ )の記録波長の信号強度差から、半導 体レーザ 12の波長を検出し、温度調節装置 26による半導体レーザ 12の温度制御を 行なってその発振ピーク波長を変化させる。
[0047] 前記 (一)と( + )の記録波長の信号強度差が無くなり、若しくは記録波長の信号強 度が一定値を越えるまで上記操作を繰り返し、再生用レーザ光とホログラム記録時の レーザ光の波長を一致させて、その温度を保つように温度調節装置 26を制御すれ ばよい。
[0048] 又、前記温度調節装置 26のフィードバック方法として、波長アドレスホログラム 28の 再生中に、温度調節装置 26によって半導体レーザ 12の温度を変化させ、波長アド レスホログラム 28の検出位置が所定の位置となる若しくは信号強度が一定値を越え た時点の温度を測定し、この温度を保つように温度調節装置 26を制御するようにし てもよい。
[0049] この場合は、再生時の再生用レーザ光の波長が記録時のレーザ光の波長と大幅 にずれて、空間撮像素子 22において信号を検出できないような場合に用いることが できる。
[0050] 又、半導体レーザ 12の発振ピーク波長の温度に対する関係を、予め波長制御装 置 24に記憶させておけば、波長ずれ量に対する温度制御が容易に行なうことができ る。
[0051] この実施例 1の場合は、ホログラフィック記録媒体 16に対する記録用レーザ光と再 生用レーザ光の光源を異なるものとすることができる。例えば、記録時のレーザ光は Krイオンレーザ (波長 406. 7nm)を用いて情報と波長アドレスホログラムとを記録し 、再生用レーザ光としては、 GaN半導体レーザ (発振ピーク波長 405nm)を用いるこ とがでさる。 [0052] 前記記録用レーザ光の波長を固体レーザやガスレーザで固定としたシステムでは 、波長制御装置 26に、記録用レーザ光の波長と再生用レーザ光の波長が近づくよう に初期温度を設定しておくことが好ましい。又、半導体レーザ 12の発振ピーク波長の ばらつきにそれぞれ対応して、個々に初期温度を設定することがより好ましい。このよ うにすれば、記録用レーザ光の波長と再生用レーザ光の波長のずれがわず力となる ため、温度制御の温度幅が狭くなり、より再生動作を短くすることができる。
実施例 2
[0053] 次に、図 3に示される本発明の実施例 2について説明する。
[0054] この実施例 2は、同一の装置により、ホログラフィック記録媒体に情報及び波長アド レスホログラムを記録すると共に、記録されたホログラフィック記録媒体の情報を再生 するものである。
[0055] この実施例 2に係るホログラフィック記録再生装置 30は、前記ホログラフィックメモリ 一再生装置 10に、半導体レーザ 12からのレーザ光をビームスプリッタ 34により分岐 して物体光としてホログラフィック記録媒体 16に導く物体光学系 32を設けたものであ る。
[0056] 他の構成は、前記ホログラフィックメモリー再生装置 10と同一であるので、これと同 一の構成には図 1と同一の符号を付することにより説明を省略するものとする。
[0057] この物体光学系 32は、前記ビームスプリッタ 34から分岐されたレーザ光を導ぐミラ 一 36、空間光変調器 38、フーリエレンズ 40から構成されている。
[0058] この実施例 2において、記録時には、前記半導体レーザ 12から出射されたレーザ 光が分岐され、一方は参照光として、前記ビームエキスパンダ 14、レンズ 18、を介し てホログラフィック記録媒体 16に照射され、他方は物体光として、ミラー 36で反射さ れた後、空間光変調器 38によって、記録すべき情報に応じて空間変調され、フーリ ェレンズ 40を介してホログラフィック記録媒体 16に照射される。
[0059] 又、波長アドレスホログラム 28は、前記空間光変調器 38で作成された特定パター ンを、リードインエリア 16Aあるいはデータエリア 18Bに照射して記録される。
[0060] 記録された情報の再生過程は、前記ホログラフィックメモリー再生装置 10による再 生過程と同一であるので説明は省略する。 産業上の利用の可能性
本発明は、予め波長アドレスホログラムとして記録されている記録時の記録用レー ザ光の波長情報を利用して、再生時の再生用レーザ光の波長を前記波長と一致す るようにして、発振ピーク波長にばらつきがある半導体レーザを用いることを可能とし 、再生動作を早く立ち上げると共に、個々の記録媒体に対応した最適な波長の再生 用レーザ光を利用することができる。

Claims

請求の範囲
[1] 記録用レーザ光の波長情報が波長アドレスホログラムとして記録されて 、るホロダラ フィック記録媒体に、半導体レーザからの再生用レーザ光を照射して、ホログラフイツ ク記録されている情報を再生するためのホログラフィックメモリー再生装置であって、 前記半導体レーザの温度を制御する温度調節装置と、前記再生用レーザ光による 前記ホログラフィック記録媒体に記録された情報の再生の前に、前記再生用レーザ 光により前記波長アドレスホログラムから再生された波長情報に基づいて、前記再生 用レーザ光の波長が前記記録用レーザ光の波長に略一致するように、前記温度調 節装置を介して前記半導体レーザの温度を調節して、波長を制御する波長制御装 置と、
を有してなるホログラフィックメモリー再生装置。
[2] 請求項 1において、
前記波長制御装置は、前記再生用レーザ光の照射時の、前記波長アドレスホログ ラム力 の回折された信号光の強度が一定値に達するように、又は、信号光の検出 位置が所定位置となるように、前記温度調節装置をフィードバック制御するようにされ たことを特徴とするホログラフィックメモリー再生装置。
[3] 請求項 1又は 2において、
前記波長制御装置は、前記半導体レーザの温度に対応する発振ピーク波長の情 報を有し、前記記録用レーザ光の波長と一致する発振ピーク波長となるように、前記 半導体レーザの温度を制御するようにされたことを特徴とするホログラフィックメモリー 再生装置。
[4] 記録用レーザ光を用いてホログラフィック記録媒体に情報をホログラフィック記録す ると共に、再生用レーザ光を用いて前記ホログラフィック記録媒体に記録された情報 を再生するホログラフィック記録再生装置であって、
前記記録用レーザ光及び再生用レーザ光を発生する半導体レーザと、 この半導体レーザの温度調節が可能な温度調節装置と、
前記記録用レーザ光による前記ホログラフィック記録媒体への情報の記録の際に、 該記録用レーザ光の波長情報を、波長アドレスホログラムとして、該ホログラフィック 記録媒体に記録する波長情報記録装置と、
前記再生用レーザ光による前記ホログラフィック記録媒体に記録された情報の再生 の際に、該再生用レーザ光により前記波長アドレスホログラムから回折された信号光 に基づ!/、て、前記再生用レーザ光の波長が前記記録用レーザ光の波長に略一致す るように、前記温度調節装置を介して前記半導体レーザの温度を調節して、波長を 制御する波長制御装置と、
を有してなるホログラフィック記録再生装置。
[5] 請求項 4において、前記波長制御装置は、前記再生用レーザ光の照射時の、前記 波長アドレスホログラムにより回折された信号光の強度が一定値に達するように、又 は、信号光の検出位置が所定位置となるように、前記温度調節装置をフィードバック 制御する回路を有することを特徴とするホログラフィック記録再生装置。
[6] 請求項 4又は 5において、
前記波長制御装置は、前記半導体レーザの温度に対応する発振ピーク波長の情 報を有し、前記記録用レーザ光の波長と一致する発振ピーク波長となるように、前記 半導体レーザの温度を制御するようにされたことを特徴とするホログラフィック記録再 生装置。
[7] 記録用レーザ光を用いてホログラフィック記録媒体に情報をホログラフィック記録す ると共に、再生用レーザ光を用いて前記ホログラフィック記録媒体に記録された情報 を再生するホログラフィック記録再生方法であって、
前記記録用レーザ光により、前記ホログラフィック記録媒体に情報を記録する際に 、該記録用レーザ光の波長情報を前記ホログラフィック記録媒体に、波長アドレスホ ログラムとして記録する過程と、
前記再生用レーザ光により、前記ホログラフィック記録媒体に記録された情報を再 生する前に、前記波長アドレスホログラムを照射して、回折された信号光から前記波 長情報を再生する過程と、
この再生された波長情報に基づき、前記再生用レーザ光を出射する半導体レーザ の温度を、該再生用レーザ光の波長が、前記波長情報による波長と略一致するよう に調節する過程と、 を含むホログラフィック記録再生方法。
[8] 請求項 7において、前記再生用レーザ光の照射時の、前記波長アドレスホログラム 力 回折された信号光の強度が一定値に達するように、又は、信号光の検出位置が 所定位置となるように制御することを特徴とするホログラフィック記録再生方法。
[9] 情報がホログラムとしてデータエリアに記録されていて、且つ、情報記録時の記録 用レーザ光の波長情報が波長アドレスホログラムとして記録されて 、ることを特徴とす るホログラフィック記録媒体。
[10] 請求項 9において、前記波長アドレスホログラムは、前記情報の再生時に、前記デ 一タエリアよりも先にアクセスされるリードインエリアに記録されていることを特徴とする ホログラフィック記録媒体。
PCT/JP2004/014237 2003-10-08 2004-09-29 ホログラフィックメモリー再生装置、ホログラフィック記録再生装置、ホログラフィック記録再生方法及びホログラフィック記録媒体 WO2005036538A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/573,802 US7446916B2 (en) 2003-10-08 2004-09-29 Holographic recording and reproduction apparatus, and method with temperature adjustment device for semiconductor laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003348969A JP2005116063A (ja) 2003-10-08 2003-10-08 ホログラフィックメモリー再生装置、ホログラフィック記録再生装置、ホログラフィック記録再生方法及びホログラフィック記録媒体
JP2003-348969 2003-10-08

Publications (1)

Publication Number Publication Date
WO2005036538A1 true WO2005036538A1 (ja) 2005-04-21

Family

ID=34430989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014237 WO2005036538A1 (ja) 2003-10-08 2004-09-29 ホログラフィックメモリー再生装置、ホログラフィック記録再生装置、ホログラフィック記録再生方法及びホログラフィック記録媒体

Country Status (3)

Country Link
US (1) US7446916B2 (ja)
JP (1) JP2005116063A (ja)
WO (1) WO2005036538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845523A1 (en) * 2006-04-13 2007-10-17 Deutsche Thomson-Brandt Gmbh Method for wavelength mismatch compensation in a holographic storage system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349831A (ja) * 2005-06-14 2006-12-28 Sony Corp ホログラム記録再生媒体、ホログラム記録装置、ホログラム再生装置、ホログラム記録再生媒体の記録方法およびホログラム記録再生媒体の再生方法
JP4461387B2 (ja) 2005-12-12 2010-05-12 ソニー株式会社 ホログラフィック記録媒体、ホログラフィック記録システム及びホログラフィック再生システム
KR101199381B1 (ko) * 2006-01-24 2012-11-09 엘지전자 주식회사 홀로그래픽 정보 기록/재생 방법 및 장치
WO2008001434A1 (fr) * 2006-06-28 2008-01-03 Fujitsu Limited Dispositif et procédé d'enregistrement d'hologramme
JP4919790B2 (ja) 2006-12-15 2012-04-18 シャープ株式会社 波長制御方法、ホログラム情報処理装置およびホログラム記録媒体
KR20080078253A (ko) * 2007-02-22 2008-08-27 삼성전자주식회사 기록 재생 방법 및 장치
JP5238209B2 (ja) * 2007-09-28 2013-07-17 株式会社日立製作所 光情報記録再生装置とその方法および光情報記録媒体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189527A (ja) * 1984-10-08 1986-05-07 Nec Corp 波長検出装置
JPH0493881A (ja) * 1990-08-06 1992-03-26 Hitachi Maxell Ltd ホログラムメモリ
JP2002216359A (ja) * 2000-11-17 2002-08-02 Matsushita Electric Ind Co Ltd ホログラフィック光情報記録再生装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2609593B2 (ja) * 1986-10-24 1997-05-14 株式会社日立製作所 ディスク媒体の記録方法及びディスク装置
JPH08202246A (ja) 1995-01-23 1996-08-09 Olympus Optical Co Ltd ホログラム記録装置
US6958967B2 (en) 2000-11-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Holographic optical information recording/reproducing device
US6825960B2 (en) * 2002-01-15 2004-11-30 Inphase Technologies, Inc. System and method for bitwise readout holographic ROM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189527A (ja) * 1984-10-08 1986-05-07 Nec Corp 波長検出装置
JPH0493881A (ja) * 1990-08-06 1992-03-26 Hitachi Maxell Ltd ホログラムメモリ
JP2002216359A (ja) * 2000-11-17 2002-08-02 Matsushita Electric Ind Co Ltd ホログラフィック光情報記録再生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1845523A1 (en) * 2006-04-13 2007-10-17 Deutsche Thomson-Brandt Gmbh Method for wavelength mismatch compensation in a holographic storage system
US7876482B2 (en) 2006-04-13 2011-01-25 Thomson Licensing Method for wavelength mismatch compensation in a holographic storage system

Also Published As

Publication number Publication date
US7446916B2 (en) 2008-11-04
US20060280210A1 (en) 2006-12-14
JP2005116063A (ja) 2005-04-28

Similar Documents

Publication Publication Date Title
JP4561425B2 (ja) ホログラム記録再生装置およびホログラム記録再生方法
JP4309365B2 (ja) ホログラム記録再生方法、ホログラム記録媒体およびホログラム記録再生装置
US9170562B2 (en) Holographic memory device and reproduction/recording method
JP2009070475A (ja) 光情報記録再生装置
JP4919790B2 (ja) 波長制御方法、ホログラム情報処理装置およびホログラム記録媒体
JP5183667B2 (ja) 再生装置および再生方法
WO2005036538A1 (ja) ホログラフィックメモリー再生装置、ホログラフィック記録再生装置、ホログラフィック記録再生方法及びホログラフィック記録媒体
WO2005109113A1 (ja) ホログラフィック記録媒体、及びその記録再生方法、記録再生装置
JP5107028B2 (ja) 記録再生装置
JP4582229B2 (ja) ホログラム記録再生装置およびホログラム記録方法
EP1862870B1 (en) Hologram information recording medium and hologram information recording/reproducing device
US8391119B2 (en) Apparatus and method for recording/reproducing optical information, and data fetching by reference to optical information recording medium
US8787136B2 (en) Holographic memory apparatus and method for adjusting incident angle of reference beam
US9081364B2 (en) Optical information recording/reproducing apparatus, optical information recording/reproducing method, and optical information recording medium
JP2006267803A (ja) ホログラム情報記録再生装置
KR101199381B1 (ko) 홀로그래픽 정보 기록/재생 방법 및 장치
JP2006350258A (ja) ホログラム装置及びホログラム記録再生方法
JP2005084473A (ja) ホログラフィック記録再生方法、ホログラフィック再生装置及びホログラフィック記録再生装置
KR20080085958A (ko) 광 정보 재생 장치 및 이를 이용한 광정보 재생방법
US20050259305A1 (en) Hologram device
JP2015130215A (ja) 光情報記録装置および光情報記録方法
KR20070093727A (ko) 데이터 재생 방법 및 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006280210

Country of ref document: US

Ref document number: 10573802

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10573802

Country of ref document: US