WO2005035578A1 - ガングリオシドgm2に特異的に結合する抗体組成物 - Google Patents

ガングリオシドgm2に特異的に結合する抗体組成物 Download PDF

Info

Publication number
WO2005035578A1
WO2005035578A1 PCT/JP2004/015317 JP2004015317W WO2005035578A1 WO 2005035578 A1 WO2005035578 A1 WO 2005035578A1 JP 2004015317 W JP2004015317 W JP 2004015317W WO 2005035578 A1 WO2005035578 A1 WO 2005035578A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
antibody
acid sequence
seq
chain
Prior art date
Application number
PCT/JP2004/015317
Other languages
English (en)
French (fr)
Inventor
Shigeru Iida
Mitsuo Satoh
Miho Inoue
Masako Wakitani
Kazuhisa Uchida
Rinpei Niwa
Kenya Shitara
Original Assignee
Kyowa Hakko Kogyo Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Hakko Kogyo Co., Ltd. filed Critical Kyowa Hakko Kogyo Co., Ltd.
Priority to EP04773768A priority Critical patent/EP1688433A4/en
Priority to JP2005514669A priority patent/JPWO2005035578A1/ja
Priority to AU2004279736A priority patent/AU2004279736A1/en
Priority to CA002548787A priority patent/CA2548787A1/en
Priority to US10/575,114 priority patent/US20090028877A1/en
Publication of WO2005035578A1 publication Critical patent/WO2005035578A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3076Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties
    • C07K16/3084Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells against structure-related tumour-associated moieties against tumour-associated gangliosides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/52Constant or Fc region; Isotype
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/73Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
    • C07K2317/732Antibody-dependent cellular cytotoxicity [ADCC]

Definitions

  • TECHNICAL FIELD An antibody composition that specifically binds to ganglioside GM2
  • the present invention relates to a product comprising a recombinant antibody molecule which specifically binds to ganglioside GM2 and has an N-glycoside bond complex in the Fc region, wherein the N-glycoside bond complex reduces the sugar chain.
  • An antibody composition that is a sugar chain in which fucose is not bound to the terminal N-acetyltyldarcosamine, a transformant producing the antibody composition, a method for producing the antibody composition, and the antibody composition.
  • Ganglioside a kind of glycolipid having sialic acid, constitutes the cell membrane of animals, and is a molecule composed of Fiber, a hydrophilic side chain, and sphingosine, a fatty acid, and a fatty acid. .
  • the type and expression level of gangliosides vary depending on the cell type, species, animal species, and the like. It is also known that the expression of gangliosides changes quantitatively and qualitatively in the process of canceration of cells [Cancer Res., 45, 2405, (1985)].
  • extraneural tumors such as neuroblastoma, small cell lung carcinoma and melanoma, which are said to be highly malignant, express gangliosides GD2, GD3, GM2, etc., which are rarely found in normal cells.
  • Such antibodies against gangliosides specific for tumor cells are considered to be useful for treating various human cancers. .,
  • Ganglioside G 2 A humanized human that reacts specifically and has cytotoxic activities such as antibody-dependent cytotoxic activity (hereinafter referred to as ADCC activity) and complement-dependent cytotoxic activity (hereinafter referred to as CDC activity).
  • ADCC activity antibody-dependent cytotoxic activity
  • CDC activity complement-dependent cytotoxic activity
  • human IgG chimeric human chimeric antibodies and human CDR-grafted antibodies have been obtained [TO00 / 61739, WO02 / 31140].
  • humanized antibodies can be prepared as molecules in various forms because they are prepared using genetic recombination technology.
  • a humanized antibody having a high effector function can be produced [Cancer Res., 56, 1118, (1996)].
  • An antibody of the human IgGl subclass expresses ADCC activity and CDC activity via its Fc region and antibody receptor (hereinafter referred to as FcaR) or various complement components.
  • FcaR Fc region and antibody receptor
  • C2 domain the sugar chain binding to the hinge region of the antibody and the second domain of the C region
  • antibody compositions used as pharmaceuticals are prepared using genetic recombination technology, and are produced using animal cells, such as CH0 cells derived from Chinese hamster ovary tissue, as host cells.
  • animal cells such as CH0 cells derived from Chinese hamster ovary tissue
  • the sugar chain structure of the expressed antibody composition differs depending on the host cell. Therefore, it is indispensable to appropriately prepare an antibody to which an antibody capable of exerting optimal pharmacological activity is added in order to provide high-quality medical care to patients.
  • An object of the present invention is to provide a recombinant antibody molecule that specifically binds to ganglioside GM2 and has an N-glycoside-linked complex type sugar chain in the Fc region, wherein the N-glycoside-linked complex type sugar chain is Antibody composition that is a sugar chain in which fucose is not bound to N-acetylglycosamine at the reducing end of the sugar chain, a transformant that produces the antibody composition, a method for producing the antibody composition, and the antibody composition
  • Another object of the present invention is to provide a drug or the like containing Since the anti-ganglioside GM2 antibody of the present invention has high cytotoxic activity, it is useful for the treatment of reducing the number of cells expressing ganglioside GM2 from the body of a patient.
  • the present invention relates to the following (1) to (48). -
  • the antibody molecule comprising the amino acid sequences represented by SEQ ID NOs: 14, 15, and 16, including the complementarity determining region (CDR) 1, CDR2, and CDR3 of the heavy chain ( ⁇ chain) variable region (V region);
  • CDR complementarity determining region
  • V region variable region
  • the heavy chain (H chain) variable region (V region) of the antibody molecule contains the amino acid sequence represented by SEQ ID NO: 20, and the light chain (L chain) V region of the antibody molecule is represented by SEQ ID NO: 21.
  • Complementarity determining region (CDR) of heavy chain (H chain) variable region (V region) and light chain (L chain) V region of monoclonal antibody that specifically binds ganglioside GM2 with human CDR-grafted antibody including,
  • the heavy chain (H chain) variable region (V region) and light chain (L chain) complementarity determining region (CDR) of the V region and the human anti-4 H chain of a monoclonal antibody that specifically binds to ganglioside GM2 The antibody product according to (16) or (17), comprising the framework region (FR) of the V region and the L chain V region, and the H chain constant region (C region) and the L chain C region of a human antibody.
  • the heavy chain (H chain) variable region (V region) of the antibody molecule has the amino acid sequence represented by SEQ ID NO: 22 or the amino acid sequence represented by SEQ ID NO: 22, Arg at position 38 and Ala at position 40.
  • (16) to (18) which comprises an amino acid sequence in which at least one amino acid residue of Gin at position 43 and Gly at position 44 is substituted with another amino acid residue.
  • Antibody pirates are the amino acid sequence represented by SEQ ID NO: 22 or the amino acid sequence represented by SEQ ID NO: 22, Arg at position 38 and Ala at position 40.
  • Antibody of I the amino acid sequence represented by SEQ ID NO: 23 or the amino acid sequence represented by SEQ ID NO: 23, the 67th Arg and the 72nd Ala according to any one of (16) to (18), wherein at least one amino acid residue of the 84th Ser and the 98th Arg is substituted with another amino acid residue and contains this amino acid sequence.
  • the light chain (L chain) variable region (V region) of the antibody molecule has the amino acid sequence represented by SEQ ID NO: 2, Alternatively, in the amino acid sequence represented by SEQ ID NO: 24, Val at position 15, Ty at position 35, Leu at position 46, Ser at position 59, Asp at position 69, Phe at position 70, Thr at position 71, and position 72
  • the light chain (L chain) variable region (V region) of the antibody molecule has the amino acid sequence represented by SEQ ID NO: 25, or the fourth Met and the eleventh amino acid Leu, 15 th Val, 35 th Tyr, 42 th Ala, 4'6 th Leu, 69 th Asp, 70 th Phe, 71 th - 'Thr s 77 th Leu, 103 th Val
  • the heavy chain (H chain) variable region (V region) of the antibody molecule has the amino acid sequence represented by SEQ ID NO: 22 or the amino acid sequence represented by SEQ ID NO: 22, Arg at position 38, and amino acid sequence at position 40.
  • Ala an amino acid sequence in which at least one amino acid residue selected from the 43rd Gin and the 44th Gly has been substituted with another amino acid residue
  • the light chain (L chain) V region of the antibody has The amino acid sequence represented by SEQ ID NO: 24, or the amino acid sequence represented by SEQ ID NO: 24, Val at position 15, Tyr at position 35, Leu at position 46, Ser at position 59, Ser at position 69, Asp at position 69, position 70 Including at least one amino acid residue selected from Phe, 71th Thr, 72nd Phe and 76th Ser, substituted with another amino acid residue, (16) to ( (19) or the antibody fiber according to (21)
  • the heavy chain (H chain) variable region (V region) of the antibody molecule has an amino acid sequence represented by SEQ ID NO: 23 or an amino acid sequence represented by SEQ ID NO: 23, wherein Arg at position 67 and amino acid 72 at position 72.
  • Ala, 84th Ser and 98th Ai, g include an amino acid sequence in which at least one amino acid residue is replaced with another amino acid residue, and the light chain (L
  • the V region is composed of the amino acid sequence represented by SEQ ID NO: 24 or the amino acid sequence represented by SEQ ID NO: 24, Val at position 15, Tyr at position 35, Leu at position 46, Ser at position 59, Ser at position 69, Asp, Phe at position 70, Tlir at position 71, Phe at position 72 and Ser at position 76, including an amino acid sequence in which at least one amino acid residue has been substituted with another amino acid residue; (6)
  • the heavy chain (H chain) variable region (V region) of the antibody molecule has the amino acid sequence represented by SEQ ID NO: 23, or the amino acid sequence represented by SEQ ID NO: 23, Arg at position 67 and Ala at position 72. And at least one amino acid residue selected from the 84th Ser and the 98th Arg contains an amino acid sequence in which another amino acid residue has been substituted, and the light chain (L chain) V region of the antibody molecule has In the amino acid sequence represented by SEQ ID NO: 25, or the amino acid sequence represented by SEQ ID NO: 25, Met at the fourth position, Leu at the 11th position, Val at the 15th position, Tyr at the 35th position, Ayr at the 42nd position, Leu at the 46th position An amino acid sequence in which at least one amino acid residue selected from Asp at position 69, Phe at position 70, Thr at position 71, Leu at position 77, and Val at position 103 has been replaced with another amino acid residue. (16) to (18), (20) or (22) Antibody product.
  • the heavy chain (H chain) variable region (V region) of the antibody molecule comprises an amino acid sequence selected from the amino acid sequences represented by SEQ ID NOs: 22, 23, 26, 27, 28, 29 and 30, respectively.
  • the light chain (L chain) variable region (V region) of the antibody molecule contains an amino acid sequence selected from the amino acid sequences represented by SEQ ID NOs: 24, 25, 31, 32, 33, 3, and 35, respectively ( (16) The antibody composition according to any one of (18) and (21) to (25).
  • the heavy chain (H chain) variable region (V region) of the antibody molecule comprises an amino acid sequence selected from the amino acid sequences selected from SEQ ID NOs: 22, 23, 26, 27, 28, 29, and 30.
  • the light chain (L chain) V region of the antibody molecule has at least one amino acid residue selected from the amino acid sequences represented by SEQ ID NOs: 24, 25, 31, 32, 33, 34, and 35 as another amino acid residue.
  • the heavy chain (H chain) variable region (V region) of the antibody molecule contains the amino acid sequence represented by SEQ ID NO: 26, and the light chain (L chain) V region of the antibody molecule is SEQ ID NO: 31 or 32
  • the heavy chain (H chain) variable region (V region) of the antibody molecule contains the amino acid sequence represented by SEQ ID NO: 22, and the light chain (L chain) V region of the antibody molecule has SEQ ID NO: 32 or 35.
  • the antibody composition according to any one of (16) to (19), (21) to (23), and (26) to (28), comprising the amino acid sequence represented by: ' (31) A form for producing the antibody according to any one of (1) to (30), which is obtained by introducing a DNA encoding an antibody molecule that specifically binds to ganglioside GM2 into a host cell. Conversion o
  • the host cell binds 1st position of fucose to 6th position of the enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, or N-acetylglucosamine which has not been reduced to N-glycoside-linked complex type sugar chain.
  • the transformant according to (31), wherein all of the alleles on the genome of the enzyme involved in the modification are cells in which the enzyme is nodulated.
  • GDP-4-keto-6-dexoxy-D-mannose-3,5-epimerase has the following (a) and The transformant according to (34), which is a protein encoded by a DNA selected from the group consisting of (b).
  • GDP- 4-keto-6-deoxy-D-mannose-3,5-epimerase is a protein selected from the group consisting of the following (a) to (c). The transformant as described above.
  • one or more amino acids are composed of an amino acid sequence in which one or more amino acids have been deleted, substituted, inserted, inserted, or added, and GDP-4-keto-6-dexoxy-D- A protein having mannose-3,5-epimerase activity;
  • 1,6-fucosyltransferase is an enzyme involved in glycosylation in which the 1-position of fucose is ⁇ -linked to the 6-position of N-acetylglucosamine at the reducing end of the N-glycoside-linked complex type sugar chain
  • the transformant according to (32) or (33), which is an enzyme which is an enzyme.
  • DM which hybridizes with a DNA consisting of the nucleotide sequence represented by SEQ ID NO: 6 under stringent conditions and encodes a protein having ⁇ 1,6-fucosyltransferase activity.
  • a protein consisting of the amino acid sequence represented by SEQ ID NO: 8;
  • an amino acid sequence represented by SEQ ID NO: 7 which comprises an amino acid sequence in which one or more amino acids have been deleted, substituted, inserted and / or added, and has an ⁇ 1,6-fucosyltransferase activity.
  • a protein having;
  • An antibody comprising the antibody composition according to any one of (1) to (30) and (45) as an active ingredient Pharmaceuticals containing as.
  • a therapeutic agent for a ganglioside GM2-related disease comprising the antibody composition according to any one of (1) to (30) and (45) as an active ingredient.
  • An antibody fiber comprising a recombinant antibody molecule which specifically binds to ganglioside GM2 of the present invention and has an N-glycoside-linked complex type sugar chain in an Fc region, wherein the glycoside-linked complex type sugar chain is a sugar chain of the sugar chain.
  • the N-glycoside-linked complex type sugar chain includes N-acetylglucosamine at the reducing end of the sugar chain.
  • Antibody that is not bound to position 1 of fucose at position 6 of the protein. 'Antibody molecules have Fc regions, to which N-glycoside-linked sugar chains are attached. Therefore, two are bound per antibody molecule.
  • the N-glycoside-linked sugar chain includes one or more side chains of galactose-N-acetylglucosamine (hereinafter, referred to as GaHHcNAc) on the non-reducing end side of the core structure in parallel with one another.
  • GaHHcNAc galactose-N-acetylglucosamine
  • Complex-type sugar chains having sialic acid, non-disecting N-acetylglucosamine, etc. on the non-reducing end side of the product.
  • N-darcoside-linked complex type sugar chain is represented by the following chemical formula 1.
  • the IS to which fucose is not bound may be any IS in which fucose is not bound to N-acetylglycosamine on the reducing end in the chemical formula shown above.
  • the structure of the sugar chain may be any. Therefore, the antibody IB ⁇ of the present invention may be composed of an antibody molecule having a single sugar chain structure as long as it has the above structure, or may have a plurality of different sugar chain structures. It may be composed of an antibody molecule having the same.
  • the expression that fucose is not bound to N-acetyldarcosamine at the reducing end of the sugar chain means that fucose is not substantially bound.
  • the antibody composition to which fucose is not substantially bound specifically refers to an antibody composition to which fucose cannot be substantially detected in the sugar chain analysis described in 4 below. Substantially undetectable means that it is below the detection limit of the measurement.
  • the antibody composition of the present invention in which fucose is not bound to N-acetylglycosamine at the reducing end of the sugar chain has high ADCC activity.
  • the percentage of antibody molecules having a sugar chain in which fucose is not bound to N-acetylglucosamine at the reducing end of the sugar chain contained in an antibody consisting of an antibody molecule having an N-glycoside-linked complex-type sugar chain in the Fc region is as follows: Using known methods such as hydrazinolysis and enzymatic digestion from antibody molecules [Biochemical Experimental Method 23H @ Protein Sugar Chain Research Method (Society Publishing Center), edited by Reiko Takahashi (1989)], the fiber is released and the released sugar is released.
  • Fluorescent or isotope-labeled chains are separated and the sugar chains are separated by chromatography You can do it by doing Further, it can be determined by analyzing the released US precious metal by the HPAED-PAD method [J. Liq. Chromatogr., 6, 1577 (1983)].
  • an antibody fiber having cytotoxic activity against ganglioside GM2-expressing cells is preferable.
  • the ganglioside GM2-expressing cells may be any cells that express ganglioside G2.
  • cytotoxic activity examples include complement-dependent cytotoxic activity (hereinafter, referred to as CDC activity) and antibody-dependent cytotoxic activity (hereinafter, referred to as ADCC activity).
  • CDC activity complement-dependent cytotoxic activity
  • ADCC activity antibody-dependent cytotoxic activity
  • the antibody composition of the present invention having cytotoxic activity against ganglioside GM2-expressing cells is characterized in that, by damaging ganglioside GM2-expressing cells by the cytotoxic activity possessed by the antibody, small cell lung cancer, melanoa, The disease such as neuroblastoma can be treated.
  • the antibody fibers of the present invention include human chimeric antibody fibers, human CDR-grafted antibody fibers and human antibodies, and antibody fragment threads thereof.
  • the human chimeric antibody refers to an antibody consisting of VH and V3 ⁇ 4 of non-human animal antibodies and CH and CL of human antibodies.
  • animals other than humans any mouse, rat, hamster, rabbit and the like can be used as long as hybridomas can be produced.
  • the human chimeric antibody composition of the present invention comprises a ganglioside (a cDNA encoding VH and VL of an antibody of a non-human animal specifically reacting with M2, and obtaining genes encoding CH and CL of a human antibody.
  • a human-type chimeric antibody expression vector can be constructed by inserting each into an animal cell expression vector, and can be expressed and produced by introducing it into animal cells.
  • Non-human animal antibodies used in the production of the human chimeric antibody composition of the present invention include, specifically, mouse monoclonal antibody M690, mouse monoclonal antibody KM750 and mouse monoclonal antibody described in JP-B-43-111385. KM796, Monoclonal antibody MoAb5-3 described in Cancer Res., 46, 4116, (1986), Monoclonal antibody 1-16 described in Cancer Res., 48. 6154, (1988) ⁇ 1-16, Monoclonal antibody dish 2-34, Monoclonal antibody DMAb-1 described in J. Biol. Cera., 264, 12122, (1989). Also, albeit in human antibodies, Proc an IgM class. Natl. Acad. Sci.
  • the CH of the human chimeric antibody may be any of human immunoglobulins (hereinafter, referred to as Mg) as long as it is M, but those of the MgG class are suitable, and further, gGl belonging to the hlgG class, Any of the subclasses hIgG2, MgG3, and MgG4 can be used.
  • Mg human immunoglobulins
  • CL the CL of the human chimeric antibody
  • any CL may be used as long as it belongs to hlg, and a class or class CL can be used.
  • the human chimeric antibody composition that specifically binds to the ganglioside GM2 of the present invention includes VH CDR1, CDR2, -CDR3 and / or CDR3 each having the amino acid sequence represented by SEQ ID NO: 14, '15 and '16.
  • An anti-ganglioside GM2 chimeric antibody composition comprising VL CDR1, CDR2 S CDR3 comprising the amino acid sequences represented by SEQ ID NOs: 17, 18 and 19, respectively, wherein the VH of the antibody is represented by the amino acid sequence represented by SEQ ID NO: 20 and Z or VL
  • An anti-ganglioside GM2 chimeric antibody composition comprising the amino acid sequence represented by SEQ ID NO: 1; the VH of the antibody comprises an amino acid sequence represented by SEQ ID NO: 20; and the human antibody CH comprises an amino acid sequence of the MgGl subclass.
  • An anti-ganglioside GM2 chimeric antibody composition comprising an amino acid sequence having VL of SEQ ID NO: 21 and an amino acid sequence of human antibody having CL of class It is.
  • Specific examples of the amino acid sequence of the human quinula antibody composition that specifically binds to ganglioside GM2 of the present invention include the amino acid sequence of KM966 described in WO00 / 61739.
  • the 7-type CDR-grafted antibody refers to an antibody obtained by grafting VH and CDR of an antibody of a non-human animal into an appropriate position of VH and VL of a human antibody. .
  • the human CDR-grafted antibody of the present invention comprises a V region obtained by grafting the VH and VL CDRs of a non-human animal antibody specifically reacting with ganglioside GM2 into the VH and VL FR of any human antibody.
  • a cDNA encoding the cDNA is constructed and inserted into an animal cell expression vector having DNA encoding the H chain C region (hereinafter, referred to as CH) and the L chain C region (hereinafter, referred to as CL) of a human antibody.
  • CH H chain C region
  • CL L chain C region
  • Non-human animal antibodies used for producing the human CDR-grafted antibody composition of the present invention include, specifically, mouse monoclonal antibody K690, mouse monoclonal antibody KM750, and mouse monoclonal antibody described in Japanese Patent Application Laid-Open No. 4-111385.
  • monoclonal antibody DMAb-1 Acad. Sci. USA 79, 7629, (1982), which is a human antibody but is of the IgM class, is also a human CDR-grafted antibody thread of the present invention! Used in the manufacture of goods.
  • amino acid sequence of FRs of H and VL of a human antibody any amino acid sequence derived from a human antibody can be used.
  • VH and VL FR amino acid sequences of human antibodies registered in databases such as the Protein Data Bank, or the common amino acid sequences of human antibody and VL FR subgroups (Sequences of Proteins of
  • the CH of the human-type CDR-grafted antibody may be any one as long as it belongs to human immunoglobulin (hereinafter, referred to as hlg ′), but is preferably of the MgG class, and further belongs to the gG class. Any of the subclasses hIgGl, WgG2, MgG3, MgG4 can be used.
  • the CL of the human-type CDR-grafted antibody may be any one as long as it belongs to hlg, and a class or class CL can be used.
  • Examples of the human CDR-grafted antibody composition of the present invention include a human CDR-grafted antibody composition containing CDRs of VH and VL of an antibody of an animal other than human that specifically reacts with ganglioside GM2.
  • the antibody VH CDR1, CDR2, CDR3 and / or the VL CDR1 consisting of the amino acid sequence represented by SEQ ID NO: 17, 18, 19, respectively, each comprising an armisonic acid sequence represented by SEQ ID NOS: 14, 15, 16.
  • Examples include a human CDR-grafted antibody containing CDR2 and CDR3 or a composition of the antibody fragment.
  • the VH of the antibody is the amino acid sequence represented by SEQ ID NO: 22 or the amino acid sequence represented by SEQ ID NO: 22, Arg at position 38, Ala at position 40, 43
  • a human CDR-grafted antibody composition comprising an amino acid sequence in which at least one amino acid residue of the Gin at position 44 and the Gly at position 44 is substituted with another amino acid residue; an amino acid whose VH of the antibody is represented by SEQ ID NO: 23 In the sequence or the amino acid sequence represented by SEQ ID NO: 23, at least one amino acid residue of Arg at position 67, Ala at position 72, Ser at position 84, and Arg at position 98 has been substituted with another amino acid residue.
  • Human-type CDR-grafted antibody containing the amino acid sequence Amino acid sequence represented by SEQ ID NO: 24, or amino acid sequence represented by SEQ ID NO: 24, Val at position 15, Tyr at position 35, Leu at position 46, Ser at position 59, Asp at position 69, Phe at position 70
  • a human CDR-grafted antibody extinct comprising an amino acid sequence in which at least one amino acid residue selected from the 71st 3 ⁇ 4r, the 72nd Phe and the 76th Ser is replaced with another amino acid residue
  • the antibody VL Is the amino acid sequence represented by SEQ ID NO: 25, or the amino acid sequence represented by SEQ ID NO: 25, 4th Met; 11th Leu, 15th Val, 35th Tyr, 42nd Ala, 46th Contains the amino acid sequence in which at least one amino acid residue selected from Leu, 69th Asp, 70th Phe, 71th Thr, 77th Leu and 103th Val has been replaced with another amino acid residue
  • a human CDR-grafted antibody is used.
  • An amino acid sequence in which one amino acid residue is substituted with another amino acid residue, and the VL of the antibody is the amino acid sequence represented by SEQ ID NO: 24 or the amino acid sequence represented by SEQ ID NO: 24; At least one selected from 15th Val, 35th Tyr, 46th Leu, 59th Ser, 69th Asp, 70th Phe, 71th Thr, 72nd Phe and 76th Ser Human CDR-grafted antibody thieves containing an amino acid sequence in which an amino acid residue has been substituted with another amino acid residue, an amino acid sequence in which the VH of the antibody is represented by SEQ ID NO: 23, or an amino acid sequence in which the VH of the antibody is represented by SEQ ID NO: 23 Of which, 67th Arg, 72nd A an amino acid sequence in which at least one amino acid residue among la, 84th Ser
  • amino acid sequence or the amino acid sequence represented by SEQ ID NO: 23 at least one amino acid residue of Arg at position 67, Ala at position 72, Ser at position 84, and Arg at position 98 is replaced with another amino acid residue.
  • Substituted amino acid sequence And the VL of the antibody is the amino acid sequence represented by SEQ ID NO: 25, or, in the amino acid sequence represented by SEQ ID NO: 25, the fourth Met, the eleventh Leu, the fifteenth Val, the thirty-five Tyr, 42nd Ala, 46th Leu, 69th Asp, 70th Phe, 71st Thr, More preferred is a human CDR-grafted antibody I monoclonal antibody comprising an amino acid sequence in which at least one amino acid residue selected from Leu at position 77 and Val at position 103 has been substituted with another amino acid residue.
  • a human CDR-grafted antibody comprising one amino acid sequence selected from the amino acid sequences represented by SEQ ID NOs: 22, 23, 26, 27, 28, 29, 30, respectively
  • a human CDR-grafted antibody composition comprising an amino acid sequence selected from the amino acid sequences represented by SEQ ID NOs: 24, 25, 31, 32, 33, 34, and 35; It contains a 1 'amino acid sequence selected from the amino acid sequences represented by 23, 26, 27, 28, 29, 30 and VL is represented by SEQ ID NO: 24, 25, 31, 333, 34, 35, respectively.
  • a human CDR-grafted antibody composition comprising an amino acid sequence selected from the following amino acid sequences; more specifically, VH comprises the amino acid sequence represented by SEQ ID NO: 26, and VL represents the amino acid represented by SEQ ID NO: 31 or 32.
  • VH represented by SEQ ID NO: 22 It comprises an amino acid sequence that, and human CDR-grafted antibody composition comprising an amino acid sequence VL is shown in SEQ ID NO: 32 or 35 and the like.
  • Examples of the human CDR-grafted antibody of the present invention include a human CDR-grafted antibody comprising VH containing the amino acid sequence represented by SEQ ID NO: 26, and VL containing the amino acid sequence represented by SEQ ID NO: 31; Is most preferably a human CDR-grafted antibody extinction product comprising the amino acid sequence represented by SEQ ID NO: 22 and VL comprising the amino acid sequence represented by SEQ ID NO: 32.
  • amino acid sequence contained in the human CDR-grafted antibody composition of the present invention include KM8966 produced by the transformant KM8966 (FERM BP-510-5) described in Japanese Patent Publication No. 10-257893.
  • the amino acid sequence of KM8967 produced by the transformant KM8967 (FERM BP-5106), KM8969 produced by the transformant KM8969 (FERM BP-5527), and the amino acid sequence of K8970 produced by the transformed Mtt KM8970 (FERM BP-5528) are included. can give.
  • antibodies or antibody fragments in which one or more amino acids have been deleted, added, substituted or inserted and which specifically bind to ganglioside GM2 are also encompassed in the antibody composition of the present invention.
  • the number of amino acids to be deleted, substituted, inserted, Z or added is one or more, and the number thereof is not particularly limited.
  • Molecular cloning 2nd edition Current protocol A. Molecular Biology, Nucleic Acids Research, 10, 6487 (1982), Proc. Natl. Acad. Sci., USA, 79, 6409 (1982), Gene, 34, 315 (1985), Nucleic Acids Research, 13, 4431 (1985), and Proc. Natl. Acad. Sci USA, 82, 488 (1985).
  • the number is such that substitution or addition is possible, for example, 1 to several tens, preferably 1 to 20, more preferably 1 to 10, and still more preferably 1 to 5.
  • Deletion, substitution, insertion, or addition of one or more amino acid residues in the amino acid sequence of the antibody product of the present invention means that one or more amino acid residues in one or more amino acid sequences in the same sequence Means that there is a deletion, substitution, insertion or addition of an amino acid residue of the amino acid residue, and the deletion, substitution, insertion or addition may occur simultaneously, and the amino acid residue to be substituted, inserted or added is a natural type. And non-natural types.
  • Examples of natural amino acid residues include L-alanine, L-asparagine, L-asparaginic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoguchiine, L-leucine, L-lysine, Examples include L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tributophane, L-tyrosine, L-valine, L-cysteine, and the like.
  • the following are preferred examples of amino acid residues which can be substituted with each other. Amino acid residues included in the same group can be substituted for each other. '
  • Group leucine, isoleucine, norleucine, norin, norvaline, alanine, 2-aminobutanoic acid, methionine, 0-methylserine, t-butylglycine, t-butylalanan, cyclohexylalanine
  • Group B aspartic acid, glutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid
  • Group D lysine, arginine, orditin, 2,4-diaminobonic acid, 2,3-diaminopropionic acid
  • Group E Proline, 3-hydroxyproline, 4-hydroxyproline
  • Group F serine, threonine, homoserine.
  • Group G phenylalanine, tyrosine
  • the gene antibody fragment composition of the present invention is a product comprising an antibody fragment of a recombinant antibody that specifically binds to ganglioside GM2, wherein ⁇ ⁇ -glycoside bond complex type is ⁇ at the reducing end of the sugar chain.
  • -Acetylglucosamine is a sugar chain in which fucose is not bound to one of the antibody Fc regions.
  • antibody fragment of the present invention examples include antibody fragment compositions such as Fab, Fab ′, F (ab ′) 2 , scFv, diabody, dsFv, and peptides including CDRs. If the Fc region does not include a part or all of the Fc region of the above, the antibody fragment and an antibody Fc region having a sugar chain in which fucose is not bound to N-acetylglucosamine at the reducing end of the complex N-glycoside-linked sugar chain A fusion protein with a part or all of the Fc region may be fused, or a fusion protein with a protein containing a part or all of the Fc region may be used.
  • Fab is a fragment obtained by treating IgG with proteolytic enzyme papain (which is cleaved at the 224th amino acid residue of the H chain). About half of the N-terminal side of the H chain and the entire L chain are disulfide bonded. This is an antibody fragment having a molecular weight of about 50,000 and a ⁇ 3 ⁇ 4 binding activity.
  • the Fab of the present invention can be obtained by treating the antibody composition of the present invention that specifically binds to the ganglioside (3 ⁇ 42) with papain, a protease.
  • the expression vector for eukaryotes can be inserted into an expression vector for eukaryotes, and the vector can be introduced into a prokaryote or eukaryote to express it, thereby producing a Fab.
  • F (ab ') 2 is a fragment obtained by treating IgG with proteolytic enzyme pepsin (which is cleaved at amino acid residue 234 of the H chain), and Fab binds via a disulfide bond in the hinge region. It is an antibody fragment having a molecular weight of about 100,000 and having antigen-binding activity, which is slightly larger than the bound one.
  • the F (ab ') 2 of the present invention can be obtained by treating the antibody composition that specifically binds to the ganglioside'G2 of the present invention with the protease pepsin. Alternatively, it can be prepared by making the following Fab ′ a thioether bond or a disulfide bond.
  • Fab ' is an antibody fragment having about 50,000 antigen-binding activity in which the disulfide bond in the hinge region of F (ab') 2 has been cleaved.
  • the Fab 'of the present invention can be obtained by treating the F (ab') 2 composition that specifically binds to the ganglioside GM2 of the present invention with a reducing agent dithiothreitol.
  • a DNA encoding the Fab ′ fragment of the antibody is inserted into a prokaryotic or eukaryotic expression vector, and the vector is expressed by introducing the vector into a prokaryotic or eukaryotic organism; Fab 'can be manufactured.
  • scFv is a VH-P-VL or VL-P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (hereinafter referred to as P) and binds to antigen. Active antibody fragment It is.
  • the scFv of the present invention is obtained by obtaining cDNAs encoding VH and VL of an antibody composition that specifically binds to the ganglioside GM2 of the present invention, constructing a DNA encoding the scFv, and using the DNA for prokaryotic expression.
  • the scFv can be produced by inserting it into a current vector or an eukaryotic expression vector and introducing the expression vector into a prokaryotic or eukaryotic organism.
  • a diabody is an antibody fragment obtained by dimerizing scFv and has a bivalent binding activity.
  • the divalent ⁇ 3 ⁇ 4 binding activities can be the same, or one can have a different binding activity.
  • the diabody of the present invention obtains a cDNA encoding VH and VL of an antibody composition that specifically binds to ganglioside GM2 of the present invention, and replaces the scFv-encoding DNA with a P amino acid sequence having a length of P. It is constructed so that it has 8 residues or less, the DNA is inserted into a prokaryotic expression vector or a eukaryotic expression vector, and the DNA is expressed by introducing the expression vector into a prokaryote or organism. Let the diabody be manufactured.
  • dsFv refers to a polypeptide in which one amino acid residue in each of VH and VL is substituted with a cysteine residue, and the polypeptide is linked via a disulfide bond between the cysteine residues.
  • the amino acid residue to be substituted for the cysteine residue can be selected based on the prediction of the three-dimensional structure of the antibody according to the method shown by Reiter et al. (Protein Engineering, .7, 697-704, 1994).
  • the dsFv of the present invention is obtained by obtaining cDNAs encoding VH and VL of an antibody composition that specifically binds to ganglioside GM2 of the present invention, constructing a DNA encoding dsFv, and converting the DNA into a prokaryotic organism.
  • DsFv can be produced by inserting the expression vector into a prokaryotic or eukaryotic expression vector and inserting it into a prokaryotic or eukaryotic expression vector.
  • a peptide containing a CDR is composed of at least one region of CDR of VH or VL. Peptides containing multiple CDRs can be linked either directly or via a suitable peptide linker.
  • the peptide containing the CDR of the present invention can be used to construct a DNA encoding the CDRs of VH and VL of an antibody composition that specifically binds to the ganglioside GM2 of the present invention, and the DNA is used as a prokaryotic expression vector.
  • One is inserted into a eukaryotic expression vector, and the expression vector is expressed by introducing it into a prokaryotic eukaryote to produce a peptide containing CDR. it can.
  • the peptide containing CDR can also be produced by a chemical synthesis method such as the Fmoc method (fluorenylmethyloxycarbonyl method) and the tBoc method (t-butyloxycarbonyl method).
  • the transformant of the present invention is a transformant obtained by introducing a DNA encoding an antibody molecule that specifically binds to ganglioside GM2 into a host cell, and producing the antibody or the product of the present invention. Any transformant is included as long as it is a transformant. Specific examples include a transformant obtained by introducing a DNA encoding an antibody molecule that specifically binds to ganglioside GM2 into a host cell such as the following (a) or (b). -'
  • GDP-enzymes involved in fucose synthesis include GDP-mannose 4,6-dehydrase (GMD) and GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase (Fx).
  • GMD GDP-mannose 4,6-dehydrase
  • Fx GDP-4-keto-6-deoxy-D-mannose-3,5-epimerase
  • amino acids are composed of an amino acid sequence in which deletion, substitution, insertion, and / or addition are performed, and GDP-4-keto-6-dexoxy-D- A protein having mannose-3,5-epimerase activity;
  • N-glycoside-linked complex type N-acetylglucosamine at the reducing end is linked to the 6-position of fucose at the 6-position, and 1,6-fucosyltransferase is involved in glycosylation.
  • the 1,6-fucosyl transferase includes the following (a), (b), (c) and (d) DNA-encoded proteins:
  • Intracellular sugar nucleotide DNA encoding the amino acid sequence of an enzyme involved in the synthesis of GDP-fucos is a DNA having the nucleotide sequence represented by SEQ ID NO: 1 or 3 , represented by SEQ ID NO: 1 or 3 Examples include a DNA that hybridizes with a DNA having a nucleotide sequence under stringent conditions and encodes a protein having an enzymatic activity involved in the synthesis of intracellular sugar nucleotide GDP-fucose. .
  • the DNA encoding the amino acid sequence of ⁇ , 6-fucosyltransferase has a nucleotide sequence represented by SEQ ID NO: 5 or 6, or has a nucleotide sequence represented by SEQ ID NO: 5 or 6 Examples include a DNA that hybridizes with DNA under stringent conditions and encodes a protein having ⁇ ⁇ , 6-fucosyltransferase activity.
  • DNA that hybridizes under stringent conditions refers to, for example, a DNA such as a DNA consisting of the nucleotide sequence represented by SEQ ID NO: 1, 3, 5, or 6, or a fragment thereof as a probe.
  • Hybridization method plaque.
  • MA obtained by using the method of Southern hybridization or Southern hybridization. Specifically, using a filter in which DNA derived from colony or plaque is immobilized, in the presence of 0.7 to 1 M sodium chloride After hybridization at 65 ° C, use a 0.1- to 2-fold concentration of SSC solution (a 1-fold concentration of SSC solution consists of 150 mM sodium chloride and 15 mM sodium citrate). DNA that can be identified by washing the filter at 65 ° C can be given.
  • DNA capable of hybridizing under stringent conditions DNA having at least 60% or more homology with the nucleotide sequence represented by SEQ ID NO: 1, 3, 5, or 6, preferably 70% or more, More preferably, it is a DNA having a homology of 80% or more, further preferably 90% or more, particularly preferably 95% or more, and most preferably 98% or more.
  • the amino acid sequence represented by SEQ ID NO: 2 or 4 has an amino acid sequence in which one or more amino acids are deleted, substituted, inserted and / or added, and is used for the synthesis of intracellular sugar nucleotide GDP-fucose.
  • a protein having an enzymatic activity involved, or an amino acid sequence represented by SEQ ID NO: 7 or 8, wherein one or more amino acids are composed of a deletion, substitution, insertion, Z or addition amino acid sequence, and ⁇ 1,6- Proteins with fucosyltrans-suferase activity are available from Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor
  • the number of amino acids to be deleted, substituted, inserted and / or added is one or more, and the number thereof is not particularly limited.
  • the amino acid sequence has an amino acid sequence having 80% or more homology with the amino acid sequence represented by SEQ ID NO: 2, 4, 7, or 8, and has a GDP-mannose 4,6-dehydrase activity, GDP-
  • proteins having 4-keto-6-dexoxy-D-mannose-3,5-epimerase activity or 1,6-fucosyltransferase activity include, but are not limited to, SEQ ID NOs: 2, 4, and 7, respectively.
  • Or calculated using an amino acid sequence represented by 8 and analysis software such as BLAST (J. Mol. Biol., 215, 403 (1990)) or FASTA Qfethods in Enzmology, 183, 63 (1990).
  • BLAST J. Mol. Biol., 215, 403 (1990)
  • FASTA Qfethods in Enzmology 183, 63 (1990).
  • At least 80% or more, preferably 85% or more, more preferably 90% or more; 'More preferably, 95% or
  • the host cell used in the present invention that is, an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, or N-glycol-linked complex type sugar chain reducing terminal N-acetylglucosamine at position 6 of fucose at position 1
  • Any method can be used to obtain a host cell in which the activity of the enzyme involved in the modification is deleted, as long as it can inactivate the enzyme of interest. .
  • a method of inactivating the above-mentioned enzyme As a method of inactivating the above-mentioned enzyme,
  • any lectin that can recognize the sugar chain structure can be used.
  • Lectins can also be used.
  • lentil lectin LCA Lissicle Agglutinin from Lens Culinaris
  • enduma lectin PSA Pea Lectin from Pisum sativum
  • fava bean lectin VFA Agglutinin from Vicia faba
  • Japanese black lectin ML Lectin derived from Aleuria aurantia
  • other cells that are resistant to c- lectin are cells that do not inhibit growth even when an effective concentration of lectin is given.
  • the effective concentration is equal to or higher than the concentration at which cells before the genomic gene is modified (hereinafter also referred to as parent strain) cannot grow normally, and preferably the same concentration as the concentration at which the cells before the genomic gene modification cannot grow. It is more preferably 2-5 times, more preferably 10 times, most preferably 20 times or more.
  • the effective concentration of lectin that does not inhibit growth may be determined appropriately according to the cell line, and the effective concentration of normal lectin is 10 ⁇ g / mL to 10 mg / mL, preferably 0.5 mg / mL to 2 mg / mL. It is.
  • the host cell for producing the antibody composition of the present invention includes any of the above-mentioned host cells that can express the antibody composition of the present invention.
  • yeast, animal cells, insect cells, plant cells and the like can be mentioned. These cells include those described in 1 below.
  • a CH0 cell line derived from CH21-hams ovary tissue incorporating the anti-ganglioside GM2 antibody gene of the present invention a transformant Ms705 derived from CH0 / DG4 cells, / GM2.
  • the transformant Ms705 / GM2 derived from the CH0 cell line CH0 / DG4 cells was obtained from the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary on September 9, 2003 (1T, Tsukuba East, Ibaraki, Japan). It has been deposited as FERM BP-8470 at 1 No. 1 Central No. 6).
  • the cells producing the antibody composition of the present invention are prepared by preparing a host cell to be used for producing the antibody composition of the present invention by the method described below. It can be prepared by introducing a gene encoding an anti-ganglioside (2 antibody) into cells by the method described in 2 below.
  • a host cell used for producing a cell producing the antibody composition of the present invention (hereinafter, referred to as the cell of the present invention) is an enzyme or N-glycoside involved in the synthesis of intracellular sugar nucleotide GDP-fucose. It can be prepared by targeting the gene of an enzyme involved in glycosylation in which the position 1 of fucose is attached to position 6 of N-acetylglycosamine at the reducing end of the complex-type sugar chain, and using a gene disruption method. it can.
  • GDP-fucose examples include GDP-mannose 4,6-dehydrase (hereinafter referred to as GMD), GDP-4-keto-6-deoxy.
  • Ci-D-mannose-3,5-epimerase hereinafter referred to as Fx).
  • the N-glycoside-linked complex type sugar chain at the reducing end of N-acetylglucosamine is linked to position 6 of fucose at position 6.
  • enzymes involved in glycosylation include 1,6-fucosyl. Transferase and hy-L-fucosidase.
  • the gene referred to here includes DNA or dust.
  • the method for gene disruption includes any method capable of disrupting the gene of the target enzyme. Examples include the antisense method, ribozyme method, homologous recombination method, thigh-DNA oligonucleotide method (hereinafter referred to as RD0 method), RNA interference method (hereinafter referred to as RNAi method) And a method using a retrovirus, a method using a transposon, and the like. Hereinafter, these will be described specifically.
  • the host cell used for the production of the cell of the present invention may be an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or N-acetylglycosamine at the 6-position of the N-glycoside-linked complex type sugar chain reducing terminal.
  • Genes related to glycosylation at the 1-position of fucose, which are involved in glycosylation are designated as Cell Enzyme, 12, 239 (1993), BIO / TECHNOLOGY, 17, 1097 (1999), Hum. Mol. Genet., 5, 1083 (1995), Cell Engineering, 13, 255 (1994), Proc. Natl. Acad. Sci. USA, 96> 1886 (1999), etc., using the antisense method or the lipozyme method.
  • Intracellular sugar nucleotide An enzyme involved in the synthesis of GDP-fucose or an enzyme involved in sugar chain modification in which the 1-position of fucose is linked to the 6-position of N-acetylglycosamine in N-glycoside-linked complex-type sugar chain reduction Prepare the cDNA or genomic DNA to be encoded.
  • an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or N-glycoside-linked complex type sugar chain Design an antisense gene or ribozyme of an appropriate length, including a DNA portion encoding an enzyme involved in the modification of a fiber member in which the 1-position is ⁇ -linked, a portion of an untranslated region or an intron portion.
  • a recombinant DNA fragment is prepared by inserting the prepared DNA fragment or full length downstream of the promoter of an appropriate expression vector. I do.
  • a transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or ⁇ ⁇ -glycoside-linked complex type Enzyme involved in sugar chain modification in which position 1 of fucose is linked to position 6 of ⁇ ⁇ -acetylglycosamine at the reducing end of sugar chain
  • a host cell used for producing the antibody composition of the present invention By selecting a transformant using the activity of the transformant as an indicator, a host cell used for producing the antibody composition of the present invention can be obtained. Further, by selecting a transformant using the sugar chain structure of the glycoprotein on the cell membrane or the sugar chain structure of the produced antibody molecule as an index, a host cell for producing the antibody product of the present invention can be obtained. You can also. '
  • the host cells used for preparing the antibody composition of the present invention include yeast, animal infested cells, insect cells, plant cells, and other enzymes involved in the synthesis of the target intracellular sugar nucleotide, GDP-fucoose. Any compound that has a gene for an enzyme involved in sugar chain modification in which position 1 of fucose is attached to position 6 of ⁇ ⁇ -acetylglycosamine at the reducing end of ⁇ -glycoside-linked complex type sugar chain Can be used. Specific examples include the host cells described in 2 below.
  • the expression vector should be capable of autonomous replication in the above host cells, or be capable of integration into the chromosome, and contain a designed antisense gene or a promoter at a position capable of transcribing the lipozyme. Things are used. Specific examples include the expression vectors described in 2 below.
  • a method for introducing a gene into various host cells a method for introducing a recombinant vector suitable for various host cells described in 2 below can be used.
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or ⁇ -glycosidic bond complex type Enzyme involved in sugar chain modification in which position 1 of fucose is ⁇ -linked to position 6 of ⁇ ⁇ -acetylglycosamine at the reducing end of sugar chain
  • Examples of a method for selecting a transformant using the activity of the transformant as an index include the following methods. How to select transformants
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or N-glycoside-linked complex type Enzyme involved in sugar chain modification in which position 1 of fucose is attached to position 6 of N-acetylglucosamine at the reducing end of the sugar chain
  • Methods for selecting cells with inactivated cells are described in the literature [Experimental Chemistry Laboratory Course 3 ⁇ Quality I, Glycoproteins (Tokyo Kagaku Dojin), The Japanese Biochemical Society (1988)]
  • Cell Engineering, Separate Volume, Experimental Protocols] Leeds, Glycobiology Experimental Protocol, Glycoprotein 'Glycolipid ⁇ Proteoglycan (manufactured by Shujunsha) Taniguchi' Naoyuki ⁇ Suzuki Akemi ⁇ Furukawa Kiyoshi ⁇ Sugawara Kazuyuki (1996) ⁇ ', Molecular Cloning, A Laboratory Manual, Second Edition , Cold Spring Harbor Laboratory Press (1989), Current Protocol
  • Biochemical methods include, for example, a method of evaluating enzyme activity using an enzyme-specific substrate.
  • Examples of genetic engineering methods include Northern analysis for measuring the amount of mRNA of an enzyme gene and RT-PCR. '
  • a method for selecting a transformant using the sugar chain structure of the glycoprotein of the cell SI ⁇ as an index includes, for example, the method described in 1 (5) below.
  • Examples of a method for selecting a transformant using the sugar chain structure of the produced antibody molecule as an index include the methods described in 4 or 5 below.
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or N-glycoside-linked complex type Involved in sugar chain modification in which position 1 of fucose is attached to position 6 of N-acetylglycosamine, which has not been reduced to a sugar chain
  • Methods for preparing cDNA encoding the enzyme include, for example, the methods described below. -Preparation of cDNA
  • RNA or mRNA Prepare total RNA or mRNA from one tissue or cell of various host cells.
  • a cDNA library is prepared from the prepared thighs or mRNA.
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or N-glycoside-linked complex Involved in sugar chain modification in which position 1 of fucose is linked to position 6 of N-acetyltyl glucosamine at the reducing end of sugar chain
  • a PCR is performed to detect the intracellular sugar nucleotide, an enzyme involved in the synthesis of GDP-fucose, or an N-glycoside-linked complex type sugar chain.
  • the mRNA of human or non-human animal tissues or cells may be commercially available (for example, Clontech), or may be prepared from human or non-human animal tissues or cells as follows.
  • Methods for preparing total RA from tissues or cells of human or non-human animals include the guanidine thiocyanate-cesium trifluoroacetate method [Methods in Enzymology, 154, 3 (1987)], guanidine acid thiocyanate, phenol-clo Oral Holm (AGPC) method [Analytical Biochemistry, 162, 156 (1987); Experimental Medicine, 9, 1937 (1991)].
  • MRNA can be prepared by using a commercially available kit such as Purification Kit (Pharmacia).
  • a cDNA library is prepared from the prepared human or non-human animal tissue or cell mRNA.
  • Methods for preparing a cDNA library include Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989.), Current Protocols' in Molecular Biology, John Wiley & Sons (1987-1997), A Laboratory Manual, 2nd Ed. (1989) and the like, or a method using a commercially available kit, for example, Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (Life Technologies), ZAP-cDNA Synthesis Kit (STRATAGENE), etc. .
  • a phage vector or plasmid vector can be used as a closing vector for preparing a cDNA library as long as it can replicate autonomously in E. coli K12 strain.
  • Escherichia coli As a host organism for producing the cDNA library, any microorganism can be used, but Escherichia coli is preferably used. Specifically, Escherichia coli XLl-Blue MRF '[STRATAGENE, Strategies, 5, 81 (1992)], Escherichia coli C600 [Genetics 39, 440 (1954)], Escherichia coli Y1088 [Science, 222, 778 ( 1983)], Escherichia coli Y1090 [Science, 222, 778 (1983)], Escherichia coli 522 [J. Mol. Biol., Cliff, 1 (1983)], Escherichia coli K802 [J, Mol. Biol., 16, , 118 (1966)] and Escherichia coli JM105 [Gene, 38, 275 (1985)].
  • the cDNA library can be used as it is for subsequent analysis, but the oligocap method developed by Sugano et al. [Gene, to reduce the percentage of incomplete cDNA and to obtain full-length cDNA efficiently] [Gene , 138> 171 (1994), Gene, 200, 149 (1997), Protein nucleic acid enzyme, 41, 603 (1996); Experimental medicine, 11, 2491 (1993); cDNA cloning (Yodosha) (1996); Gene Library preparation method (Yodosha) (1994)].
  • An enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose Mako is involved in glycosylation in which N-glycoside-linked complex type N-acetylglucosamine at the reducing end of sugar chain is linked to position 6 of fucose at position 6
  • a dieneative primer specific to the salt ⁇ sequence at the 5 'end and 3' end of the nucleotide sequence predicted to encode the amino acid sequence is prepared, Enzyme or N-glycoside involved in the synthesis of intracellular sugar nucleotide GDP-fucose by amplifying T DNA using PCR method [PCR Protocols, Academic Press (1990)] using the prepared cDNA library as type I It is possible to obtain a gene fragment encoding an enzyme involved in sugar chain modification in which the 1-position of fucose is bonded to the 6-position of N-acetylglycosamine at the reducing end of the complex-type sugar chain.
  • the obtained gene fragment is the enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or N-glycidyl-linked complex type sugar chain
  • the 6th position of N-acetylglucosamine at the reducing end is 1 position of fucose.
  • the DNA encoding the enzyme involved in the binding modification can be determined by a commonly used nucleotide sequence analysis method, for example, the dideoxy method of Sanger et al. [Proc. Natl. Acad. Sci. US.A., 74] , 5463 (1977)] or by using a base sequence analyzer such as ABI PRISM377 DNA Sequencer (Applied Biosystems, N. +-.).
  • the enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or the sugar chain modification in which the 1st position of fucose is linked to the 6th position of ⁇ ⁇ -acetylglycosamine at the reducing end of ⁇ -glycoside-linked complex type glycan To obtain a gene fragment that encodes the enzyme to be used, a cDNA or cDNA library synthesized from mRNA contained in tissues or cells of a human or non-human animal is used by using a primer.
  • amplification by PCR is used to form an enzyme involved in the synthesis of intracellular sugar nucleotides GDP-fucose or a fucose at position 6 of N-acetylglucosamine at the reducing end of the N-glycoside-linked complex type sugar chain reducing end. It is also possible to obtain cDNA of an enzyme involved in sugar chain modification that binds to a position.
  • nucleotide sequence of the DNA encoding the enzyme can be determined by a commonly used nucleotide sequence analysis method, for example, the dideoxy method of Sanger et al. [Proc.
  • a homology search program such as BLAS is used to search the base sequence of Genbank, EMBL, DDBJ, and other base sequences, and the obtained DNA is searched for.
  • Enzyme or N-glycosidic bond complex that participates in the synthesis of GDP-fucose in the intracellular sugar nucleotide of the gene in the evening base
  • the sugar that binds position 1 of fucose to position 6 of N-acetylglucosamine at the reducing end It is also a gene that encodes an enzyme involved in chain modification.
  • the nucleotide sequence of the gene encoding the enzyme involved in the synthesis of the intracellular sugar nucleotide GDP-fucose obtained by the above method includes, for example, the nucleotide sequence of SEQ ID NO: 1 or 3. -'
  • nucleotide sequence of a gene encoding an enzyme involved in sugar chain modification in which fucose is attached to position 6 of N-acetylglucosamine at the reducing end of N-glycoside-linked complex type sugar chain obtained by the above method is as follows:
  • the base sequence described in SEQ ID NO: 5 or 6 can be mentioned.
  • DNA synthesizer model 392 manufactured by Perkin Elmer
  • phosphoramidite method to obtain the intracellular sugar nucleotide GDP-fucose.
  • cDNA for an enzyme involved in synthesis or an enzyme that is involved in sugar chain modification in which the 1-position of fucose is ⁇ -linked to the 6-position of N-acetylglycosamine at the reducing end of the complex N-glycoside-linked sugar chain You can also.
  • Intracellular sugar nucleotide Enzyme involved in GDP-fucose synthesis or N-glycoside-linked complex Enzyme involved in difficult-to-negative modification in which position 1 of fucose binds to position 6 of N-acetylglucosamine at the reducing end of sugar chain Examples of the method for preparing genomic DNA include the methods described below. Genomic DNA Preparation Methods ''
  • genomic DNA Known methods for preparing genomic DNA include those described in Molecular Cloning, A 'Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, John Wiley k Sons (1987-1997), etc. There is a method.
  • Genome DNA Library Screening System Gene Systems
  • Universal GenomeWalkerTM Kits CL0 TECH
  • enzymes involved in the synthesis of intracellular sugar nucleotides GDP-fucose or N-glycoside-linked complex sugars can be used. It is also possible to obtain genomic DNA of an enzyme involved in sugar chain modification in which position 1 of fucose is bonded to position 6 of N-acetylglucosamine at the chain reducing end.
  • the obtained intracellular sugar nucleotide GDP-enzyme involved in fucose synthesis or N-glycoside linkage Combination type The nucleotide sequence of the DNA encoding the enzyme involved in glycosylation in which position 1 of fucose is attached to position 6 of N-acetylglucosamine at the reducing end can be determined by a commonly used nucleotide sequence analysis method, for example, Sanger (Sanger) et al.
  • a base sequence database such as Genbank, EMBL and DDBJ was searched using a homology search program such as BLAST- Intracellular sugar nucleotide in gene Enzyme involved in the synthesis of GDP-fucose or sugar chain modification in which fucose position 1 is bonded to position 6 of N-acetylglucosamine at the reducing end of N-glycoside-linked complex type sugar chain It is also possible to confirm that the gene encodes an enzyme involved in the enzyme.
  • DNA synthesizer model 392 manufactured by Perkin Elmer
  • phosphoramidite method to obtain intracellular GDPnucleotide GDP-fucose.
  • nucleotide sequence of the genomic DNA of the enzyme involved in the synthesis of the intracellular sugar nucleotide GDP-F3S obtained by the above method include, for example, the nucleotide sequences of SEQ ID NOS: 9, 10, 11 and 12. It is possible.
  • Nucleotide sequence of genomic DNA of an enzyme involved in sugar chain modification in which the 1-position of fucose is ⁇ -linked to the 6-position of N-acetyldarcosamine at the reducing end of N-glycoside-linked complex type sugar chain obtained by the above method For example, the base sequence described in SEQ ID NO: 13 can be mentioned.
  • an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or ⁇ -glycoside-linked complex type A sugar chain in which position 1 of fucose is linked to position 6 of ⁇ ⁇ -acetylglycosamine at the reducing end By introducing an antisense oligonucleotide or a ribozyme designed based on the nucleotide sequence of an enzyme involved in the modification 'directly into a host cell, a host cell used for producing the antibody composition of the present invention can also be obtained. It can. 'Antisense oligonucleotides or ribozymes can be prepared by known methods or DNA synthesis.
  • position 1 of fucose binds to position 6 of N-acetyl glu jsamine at the reducing end of N-glycoside-linked complex type sugar chain, an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose.
  • Oligonucleotide sequence having a sequence corresponding to 5 to 150 consecutive nucleotides, preferably 5 to 60 salts, more preferably 10 to 40 nucleotides in the nucleotide sequence of cDNA and genomic DNA encoding the enzyme involved in sugar chain modification Based on the information, an oligonucleotide (antisense oligonucleotide) corresponding to a sequence complementary to the oligonucleotide and a ribozyme containing the sequence of the oligonucleotide can be synthesized and prepared.
  • Oligonucleotides include oligoRNA and derivatives of the oligonucleotide (hereinafter referred to as oligonucleotide derivatives). .
  • Oligonucleotide derivatives include oligonucleotide derivatives in which the phosphodiester bond in the oligonucleotide has been converted to a phosphorothioate bond, and phosphoric diester bonds in the oligonucleotide in which the N3′-P5 ′ phosphoramidate has been converted.
  • Oligonucleotide derivatives converted to date bonds oligonucleotide derivatives in which the ribose and phosphodiester bonds in the oligonucleotides have been converted to peptide nucleic acid bonds, and peracyl in the oligonucleotide replaced with C-5 propynyl peracyl
  • Oligonucleotide derivatives derivatives in which peracyl in oligonucleotides is substituted with C-5 thiazoleperacyl
  • oligonucleotides in which cytosines in oligonucleotides are substituted with C-5 propynylcytosine oligos Nucleotide in Oligonucleotide derivatives in which cytosine is replaced with phenoxazine-modified cytosine
  • the host cell used for preparing the antibody excretion of the present invention may be an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucoses or N-acetylcycloglucosamine at the N-glycoside-linked complex type sugar chain reducing terminal.
  • an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucoses or N-acetylcycloglucosamine at the N-glycoside-linked complex type sugar chain reducing terminal may be an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucoses or N-acetylcycloglucosamine at the N-glycoside-linked complex type sugar chain reducing terminal.
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or N-glycoside bond complex type Involves in sugar chain modification in which the 1'-position of fucose is linked to the 6-position of N-acetyldarcosamine at the reducing end of the sugar chain Prepare genomic DNA for the desired enzyme.
  • the target gene to be modified (for example, an enzyme involved in the synthesis of the intracellular sugar nucleotide GDP-fucose or an N-glycosidic complex «I-N-acetylglucosamine at the noble reducing end) Create a target vector for homologous translation of an enzyme structural gene or a promoter gene involved in sugar chain modification in which position 1 of fucose is ⁇ -linked.
  • the host used for preparing the cell of the present invention is prepared by introducing the prepared evening gate vector into a host cell and selecting a cell in which homologous recombination has occurred between the target gene on the chromosome and the evening vector. Cells can be made.
  • host cells examples include yeast, animal cells, insect cells, plant cells, and other enzymes involved in the synthesis of the target intracellular sugar nucleotide, GDP-fucose, or ⁇ -acetyl, a ⁇ -glycoside-linked complex type sugar chain reducing end.
  • Any glucosamine can be used as long as it has a gene for an enzyme involved in sugar chain modification in which position 1 of fucose binds to position 6 of glucosamine.
  • Specific examples include the host cells described in 2 below.
  • Intracellular sugar nucleotide GDP-enzyme involved in fucose synthesis or ⁇ -glycosidic bond complex type Involved in sugar chain modification in which fucose position 1 is bonded to position 6 of ⁇ ⁇ -acetyldarcosamine at the reducing end of sugar chain.
  • Examples of the method for preparing genomic DNA of the enzyme to be used include the method for preparing genomic DNA described in (a) of (1) above.
  • the nucleotide sequence of the genomic DNA of the enzyme involved in the synthesis of the intracellular sugar nucleotide GDP-fucose obtained by the above method includes, for example, the nucleotide sequences of SEQ ID NOS: 9, 10, 11 and 12.
  • the base sequence of the genomic DNA of the enzyme involved in sugar chain modification in which the fucose is attached to the 6-position of N-acetylglucosamine at the reducing end of N-glycoside-linked complex type sugar chain obtained by the above method The base sequence described in Examined Reference No. 13 is exemplified. .
  • target vector can be used in any of a substitution type and an insertion type.
  • the method for introducing a recombinant vector suitable for various host cells described in 3 below can be used.
  • Methods for efficiently selecting homologous recombinants include, for example, Gene Targeting, A Practical Approach, IRL Press at Oxford University Press (1993), Biomanual Series 8 Gene targeting, Mutant mice using ES cells. Methods such as positive selection, promoter selection, negative selection, and poly A selection described in Production (Yodosha) (1995) can be used.
  • a method for selecting a desired homologous recombinant from the separated cell lines a Southern hybridization method for genomic DNA [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press. (1989)] And the PC method [PCR Protocols, Academic Press (1990)].
  • the host cell used to produce the antibody product of the present invention is an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucos or N-glycidylamine at the 6-position of the N-glycoside-linked complex type sugar chain reducing terminal.
  • an enzyme involved in sugar chain modification at which position 1 of fucose binds it can be prepared as follows, for example, using the RD0 method.
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or N-glycoside-linked complex Involved in sugar chain modification in which position 1 of fucose is bonded to position 6 of N-acetylglucosamine at the reducing end of sugar chain The cDNA or genomic DNA of the enzyme is prepared using the method described in the above (1) (a) (1).
  • the synthesized RD0 is introduced into a host cell, and the target enzyme, that is, the enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, or N-acetylcycloglucosamine at the N-glycoside-linked complex type sugar chain reducing terminal at position 6
  • the host cell of the present invention can be prepared by selecting a transformant in which an enzyme involved in glycosylation at the 1-position of fucose is mutated.
  • host cells examples include yeast, animal cells, insect cells, plant cells, and other enzymes involved in the synthesis of the target intracellular sugar nucleotide, GDP-fucose, or N-acetyl, the N-glycoside-linked complex type sugar chain reducing end.
  • Any glucosamine can be used as long as it has a gene for an enzyme involved in sugar chain modification in which position 1 of fucose is bonded to position 6 of glucosamine.
  • Specific examples include the host cells described in 2 below.
  • RD0 For the introduction of RD0 into various host cells, the method for introducing a recombinant suitable for various host cells described in 2 below can be used.
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or N-glycoside-linked complex type Enzyme involved in sugar chain modification in which position 1 of fucose is attached to position 6 of N-acetylglucosamine at the reducing end of the sugar chain
  • Examples of the method for preparing the cDNA described in (1) above include the method for preparing the cDNA described in (1) (a) above. .
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or N-glycoside-linked complex type Enzyme involved in sugar chain modification in which position 1 of fucose is attached to position 6 of N-acetylglucosamine at the reducing end of the sugar chain
  • Examples of the method for preparing the genomic DNA include the method for preparing the genomic DNA described in (1) (b) above.
  • the DNA base sequence is digested with an appropriate restriction enzyme and the like, and then subcloned into a plasmid such as pBluescript SK (-) (manufactured by Stratagene), followed by a commonly used base sequence analysis method, for example, Sanger et al. Natl. Acad. Sci., US.A., 74, 5463 (1977)] and an automatic base sequence analyzer such as ABI PRISM377 DNA sequencer (Applied Biosystems Can be confirmed by analysis using a base sequence analyzer such as S)
  • a plasmid such as pBluescript SK (-) (manufactured by Stratagene)
  • a commonly used base sequence analysis method for example, Sanger et al. Natl. Acad. Sci., US.A., 74, 5463 (1977)] and an automatic base sequence analyzer such as ABI PRISM377 DNA sequencer (Applied Biosystems Can be confirmed by analysis using a base sequence analyzer such as S)
  • RDO can be prepared by a conventional method or by using DNA synthesis ⁇ .
  • RD0- is introduced into host cells, and the target enzyme, an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, or fucose at the 6-position of ⁇ -acetyldarcosamine at the reducing end of ⁇ -glycoside-linked complex-type sugar chains
  • the target enzyme an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose, or fucose at the 6-position of ⁇ -acetyldarcosamine at the reducing end of ⁇ -glycoside-linked complex-type sugar chains
  • the enzyme or N-acetylglucosamine at the reducing end of an N-glycoside-linked complex-type sugar chain described in the above (1) (a) (1) may be used.
  • a method for selecting a transformant based on the activity of an enzyme involved in sugar chain modification in which position 1 of fucose binds to position 6 of the fucose, the sugar chain structure of the glycoprotein on the cell membrane described in 1 (5) below A method of selecting a transformant by using as an index or a method of selecting a transformant by using the sugar chain structure of a produced antibody molecule as an index described in 4 or 5 described later can also be used.
  • RD0 is Science, 273, 1386 (1996); Nature Medicine, 4, 285 (1998); Hepatolgy, 25, 1462 (1997); Gene Therapy, 5, 1960 (1999); J. Mol. Med., 75 Natl. Acad. Sci. USA, 96, 8774 (1999); Proc. Natl. Acad. Sci. USA, 96, 8768 (1999); Nuc. Acids. Res.), 27, 1323 (1999); Invest.Dematol., 11 1172 (1998); Nature Biotech.), 16, 1343 (1998); Nature Biotech., 18, 43 (2000); Nature Biotech., 18, 555 (2000), etc. It can be designed according to the description of
  • the host cell used to produce the antibody of the present invention may be an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or N-glycidylamine at the N-glycoside-linked complex type sugar chain reducing terminal.
  • the RNAi method can be used, for example, as follows. '
  • the cDNA of the enzyme is prepared using the method described in (1) (a) above. Determine the nucleotide sequence of the prepared cDNA.
  • position 1 of fucose binds to position 6 of N-acetylglucosamine at the reducing end of the enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or N-glycoside-linked complex type sugar chain.
  • a recombinant vector is prepared by inserting the prepared cDNA fragment or full length downstream of the promoter of an appropriate expression vector.
  • a transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.
  • Intracellular sugar nucleotide Enzyme involved in the synthesis of GDP-fucose or N-glycoside bond complex Enzyme involved in sugar chain modification in which position 1 of fucose is ⁇ -linked to position 6 of N-acetylglucosamine at the reducing end of the sugar chain
  • a host cell used for producing the cell of the present invention can be obtained.
  • host cells include yeast, animal cells, insect cells, plant cells, etc., which are enzymes involved in the synthesis of the target intracellular sugar nucleotide GDP-fucose or ⁇ -glycoside-linked complex type sugar chain reducing ends. Any one can be used as long as it has a gene for an enzyme involved in sugar chain modification in which position 1 of fucose binds to position 6 of cetyldarcosamine. Specific examples include the host cells described in 2 below.
  • the expression vector those which can replicate autonomously in the above-mentioned host cells or can be integrated into a chromosome, and which contain a promoter at a position where the designed RAi gene can be transcribed are used. Specific examples include the expression vectors described in 2 below.
  • the method for introducing a recombinant vector suitable for various host cells described in 2 below can be used.
  • Intracellular sugar nucleotides Activity of enzymes involved in the synthesis of GDP-fucose or N-glycosidic bonds For glycosylation in which fucose is bonded to position 6 of N-acetylglucosamine at the reducing end of complex-type sugar chains
  • Examples of the method for selecting a transformant using the activity of the enzyme involved as an index include the method described in (a) of (1) of this section.
  • a method for selecting a transformant using the sugar chain structure of a glycoprotein on a cell membrane as an index for example, the method described in (5) of this section 1 can be mentioned.
  • Examples of a method for selecting a transformant using the sugar chain structure of the produced antibody molecule as an index include the methods described in 4 or 5 below.
  • an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or fucose at the 6-position of N-acetyldarcosamine at the reducing end of N-glycoside-linked complex type sugar chain is an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or fucose at the 6-position of N-acetyldarcosamine at the reducing end of N-glycoside-linked complex type sugar chain
  • Examples of a method for preparing cDNA of an enzyme involved in member modification at position 1 include a method for preparing cDNA described in (a) of (1) of this section 1, and the like.
  • an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or N-glycoside-linked complex type fucose at position 6 of N-acetylglucosamine at the reducing end is included.
  • the host cell used to produce the cells of the present invention can be obtained by directly introducing the RNAi gene designed based on the nucleotide sequence of the enzyme involved in ⁇ -modification that binds to position 1 into the host cell. You can also.
  • RNAi gene can be prepared by a conventional method or by using DNA synthesis.
  • the RNAi gene construct is described in [Nature, 391, 806 (1998); Proc. Natl. Acad. Sci. USA, 95, 15502 (1998); Nature, 395, 854 (1998); Proc. Natl. Acad. Sci. USA, 96, 5049 (1999); Cell, 95, 1017 (1998); Proc. Natl. Acad. Sci. USA, 96, 1451 (1999); Proc. Natl. Acad. Sci. USA, 95, 13959 (1998). ); Nature Cell Biol., 2, 70 (2000)].
  • the host cell used to prepare the antibody composition of the present invention may be a transposon system described in Nature Genet., 25, 35 (2000) or the like, using an enzyme or a protein involved in the synthesis of intracellular sugar nucleotide GDP-fucose.
  • N-glycoside-linked complex type sugar chain Activity of enzyme involved in sugar chain modification in which fucose is attached to position 6 of N-acetylglucosamine at the reducing end of N-acetylglucosamine, or production of antibody molecule or glycoprotein on cell membrane By selecting a mutant using the sugar chain structure as an index, a host cell used for producing the cell of the present invention can be produced.
  • the transposon system is a system in which a foreign gene is randomly introduced into a chromosome to suddenly induce mutation, and is usually suddenly changed to a foreign gene inserted in a transposon.
  • a transposase expression vector for randomly inserting this gene into the chromosome is used as a vector to induce mutations, and is simultaneously introduced into cells.
  • transposase Any transposase can be used as long as it is suitable for the sequence of the transposon to be used.
  • any gene can be used as long as it can induce mutation in the DNA of the host cell.
  • host cells examples include yeast, animal cells, insect cells, plant cells, and other enzymes involved in the synthesis of the target intracellular sugar nucleotide, GDP-fucose, or N-acetyl, the N-glycoside-linked complex type sugar chain reducing end.
  • Any glucosamine can be used as long as it has a gene of an enzyme involved in sugar chain modification in which position 1 of fucose binds to position 6 of glucosamine.
  • Specific examples include the host cells described in 2 below.
  • the method for introducing recombinant cells suitable for various host cells described in 2 below can be used.
  • Methods for selecting mutants using the activity of the enzyme as an index include, for example,
  • the host cell used to produce the antibody of the present invention is an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucoses or N-glycidylamine at the 6-position of the N-glycidyl-linked complex type sugar chain reducing terminal.
  • the enzyme can be prepared by targeting the gene of an enzyme involved in sugar chain modification at which position 1 of fucose binds, and introducing a dominant negative form of the enzyme.
  • Specific examples of enzymes involved in the synthesis of intracellular sugar nucleotide GDP-fucose include GM) and Fx.
  • Examples of enzymes involved in glycosylation in which the fucose position 1 is ⁇ -linked to the 6-position of N-acetyldarcosamine at the reducing end of N-glycoside-linked complex-type sugar chains are specifically 1,6-fucosyl.
  • Syltransferase, and H-L-fucosidase are enzymes that catalyze a specific reaction having substrate specificity, and by destroying the active center of such a catalytic enzyme having substrate specificity, the enzymes of these enzymes are deactivated.
  • Minant negative bodies can be produced.
  • GMD is used as an example, and its production in a dominant negative form is specifically described below.
  • a dominant negative body can be prepared by substituting these four amino acids that are responsible for the enzyme activity of GMD. Based on the results of the preparation of a dominant negative form of GMD derived from Escherichia coli, homology comparison and production prediction based on amino acid sequence information are performed, for example, to obtain (01) (SEQ ID NO: 2) ′ derived from 0 cells. Then, a dominant negative body can be prepared by substituting threonine at position 155, glutamic acid at position 157, tyrosine at position 179, and lysine at position 183 with another amino acid. Preparation of a gene into which such an amino acid substitution has been introduced is described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press. (1989), Current Protocols in Molecular Biology, John Wileyk Sons (1987-1997), etc. The site-directed mutagenesis method can be used.
  • the host cell used to produce the antibody of the present invention uses a gene encoding a dominant negative form of the target enzyme produced as described above (hereinafter, abbreviated as a dominant negative form gene), Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997), Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994), etc.
  • a dominant negative form gene Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, John Wiley & Sons (1987-1997), Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994), etc.
  • the gene transfer method described in (1) for example, it can be prepared as follows.
  • Intracellular sugar nucleotide GDP-enzyme involved in fucose synthesis or N-glycosidic complex Prepare a dominant-negative gene for an enzyme involved in sugar chain modification, in which position 1 of fucose binds to position 6 of N-acetylglycosamine at the reducing end of the sugar chain.
  • a DNA fragment of an appropriate length containing a portion encoding the protein is prepared, if necessary.
  • a recombinant vector is prepared by inserting the DNA fragment or full-length DNA downstream of the promoter of an appropriate expression vector.
  • a transformant is obtained by introducing the recombinant vector into a host cell suitable for the expression vector.
  • Intracellular sugar nucleotide GDP-Activity of enzymes involved in the synthesis of fucose or N-glycoside bond Involved in sugar chain modification in which position 1 of fucose is attached to position 6 of N-acetylglucosamine at the reducing end of complex sugar chains
  • the host cell used to prepare the cell of the present invention can be prepared. it can.
  • host cells examples include yeast, animal cells, insect cells, plant cells, and other enzymes involved in the synthesis of target intracellular nucleotide GDP-fucose, or N-glycans at the N-glycoside-linked complex type sugar chain reducing end. Any cetylglucosamine can be used as long as it has a gene for an enzyme involved in sugar chain modification in which position 1 of fucose is linked to position 6 of fucose.
  • Specific examples include the host cells described in 2 below.
  • -An expression vector that is capable of autonomous replication in the above-mentioned host cells or that can be integrated into a chromosome, and that contains a promoter at a position where it can transcribe DNA encoding the desired dominant negative body. Is used. Specifically, the expression vector described in 2 below can be mentioned.
  • Intracellular sugar nucleotide GDP-Activity of enzymes involved in the synthesis of fucose or N-glycoside bond Involved in sugar chain modification in which position 1 of fucose is attached to position 6 of N-acetylglucosamine at the reducing end of complex sugar chains
  • Examples of a method for selecting a transformant using the activity of the enzyme to be performed as an index include the method described in (a) of 1 (1) below.
  • a method for selecting a transformant using the sugar chain structure of a glycoprotein on a cell membrane as an index includes, for example, the method described in 1 (5) below.
  • Examples of a method for selecting a transformant using the sugar chain structure of the produced antibody molecule as an index include the methods described in 4 or 5 below.
  • the host cell used to produce the antibody ⁇ product of the present invention may be an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or 6-position of ⁇ ⁇ -glycidylcosamine at the reducing end of ⁇ -glycoside-linked complex-type sugar chain. It can be prepared by introducing a sudden-'mutation into a gene of an enzyme involved in sugar chain modification linked to fucose at position 1, and selecting a desired cell line in which the enzyme has been mutated.
  • enzymes involved in the synthesis of intracellular sugar nucleotide GDP-fucose include GMD and Fx.
  • enzymes involved in sugar chain modification in which fucose at position 6 is linked to position 6 of N-acetylglycosamine at the reducing end of N-glycoside-linked complex type sugar chains include, specifically, 1,6-fucosyl. Letransferase, hi-L-fucosidase and the like.
  • Methods for introducing mutations into enzymes include: 1) Involvement in the synthesis of intracellular sugar nucleotide GDP-fucose from a mutant or spontaneously generated mutant obtained by treating the parent strain by mutagenesis.
  • the desired cell line is selected based on the activity of the enzyme involved or the activity of the enzyme involved in the noble modification in which the position 1 of fucose binds to the position 6 of N-acetylglucosamine at the N-glycoside-linked complex type sugar chain reducing end.
  • any treatment can be used as long as it induces a point mutation, a deletion or a frame shift mutation in the DNA of the cells of the parent strain.
  • Spontaneously occurring mutants include those that occur spontaneously by continuing subculture under normal cell culture conditions without special mutagenesis treatments. it can.
  • Intracellular sugar nucleotide GDP-Activity of enzymes involved in the synthesis of fucose or N-glycoside bond Involved in sugar chain modification in which position 1 of fucose is attached to position 6 of N-acetylglucosamine at the reducing end of complex sugar chains
  • the method described in (a) of (1) of this section 1 can be mentioned.
  • the method for identifying the sugar chain structure of the produced antibody molecule include the methods described in 4 or 5 below.
  • Examples of a method for identifying the sugar chain structure of a glycoprotein on a cell membrane include the method described in 1 (5) of this section.
  • the host cell used to prepare the antibody of the present invention is an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or N-acetylglycosamine at the 6-position of the N-glycoside-linked complex type sugar chain reducing terminal.
  • Antisense RNA / DNA technology [Bioscience and Industry, 50, 322 (1992), Chemistry, 46, 681 (1991), Biotechnology] , _9, 358 (1992), Trends in Biotechnology, 10, 87 (1992), Trends in Biotechnology, 10, 152 (1992), Cell Engineering, 16, 1463 (1997)], Triple'Helix technology [Trends in Biotechnology , 10, 132 (1992)], and the like, by suppressing the transcription or translation of the target gene.
  • enzymes involved in the synthesis of intracellular sugar nucleotide GDP-fucose include GMD and Fx.
  • N-Glycoside-linked complex type Specific examples of enzymes involved in sugar chain modification in which position 1 of fucose is bonded to position 6 of N-acetyltylcolasamine at the reducing end of M are ⁇ ⁇ , ⁇ -fu Cosyltransferase, H-L-fucosidase and the like can be mentioned.
  • Intracellular sugar nucleotide GDP-Activity of enzymes involved in the synthesis of fucose or N-glycoside bond Involved in sugar chain modification in which position 1 of fucose is attached to position 6 of N-acetylglucosamine at the reducing end of complex sugar chains
  • the method described in (a) of (1) ′ of this section 1 can be mentioned.
  • Methods for identifying the sugar chain structure of the glycoprotein on the cell membrane are described, for example, in (5) of this section 1 Method.
  • Examples of the method for identifying the sugar chain structure of the produced antibody molecule include the methods described in 4 or 5 below. .
  • N-glycoside-linked sugar chain N-acetylglucosamine at the reducing end at position 6 and fucose at position 1 are ⁇ -linked
  • the host cell used to prepare the antibody composition of the present invention recognizes a difficult-to-negative structure in which the 6-position of ⁇ ⁇ -acetyltilcosamine at the reducing end of ⁇ -glycoside-linked sugar chain and the 1-position of fucose are linked. It can be prepared by using a technique for selecting a strain that is resistant to lectin.
  • a method for selecting a strain that is resistant to a lectin that recognizes a sugar chain structure in which the 6-position of ⁇ ⁇ -acetylglycosamine at the reducing end of ⁇ -glycoside-linked sugar chain is linked to the 1-position of fucose for example, Somatic Cell Mol. Genet., 12, 51 (1986) and the like using a lectin.
  • any lectin can be used as long as it recognizes a sugar chain structure in which the 6-position of N-acetylglycosamine at the reducing end of the N-glycoside-linked sugar chain and the 1-position of fucose are linked.
  • lentil lectin LCA Lig., Leaf Agglutinin from Lens Culinaris
  • Endo bean lectin PSA Pea Lectin from Pi sum sativum
  • Zebra bean lectin WA Alignawantake lectin AAL
  • the cells are cultured for 1 day to 2 weeks, preferably 1 day to 1 week, in a medium containing the above lectin at a concentration of l / g / mL to lmg / mL, and the surviving cells are subcultured.
  • a medium containing the above lectin at a concentration of l / g / mL to lmg / mL
  • the surviving cells are subcultured.
  • the 6th position of N-acetylethylglucosamine and the 1st position of fucose of the N-glycosidic bond-reducing terminal of the present invention are reduced.
  • Strains that are resistant to lectins that recognize the spliced structure can be selected.
  • Antibody composition of the present invention Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, John Wiley k Sons (1987-1997), Antibodies, A Laboratory manual, Cold Spring Harbor Laboratory, 1988, Monoclonal Antibodies: principles and practice, Third Edition, Acad, Press, 1993, Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press, 1996, etc. In the host cell It can be revealed and acquired.
  • a full-length cDNA of an anti-human ganglioside GM2 antibody molecule is prepared, and a DNA fragment of an appropriate length containing a portion encoding the antibody molecule is prepared.
  • an IB preparative vector is prepared.
  • a transformant producing an antibody composition By introducing the recombinant vector into a host cell suitable for the expression vector, a transformant producing an antibody composition can be obtained.
  • a host cell any yeast cell, animal cell, insect cell, plant cell, or the like can be used as long as it can express the antibody.
  • An enzyme involved in the modification of the N-glycoside-linked sugar chain binding to the Fc region of the anti-Japanese molecule that is, an enzyme involved in the synthesis of intracellular sugar nucleotide GDP-fucose or N-glycoside-linked complex type sugar chain reducing terminal N -Cells in which the enzyme involved in glycosylation in which ⁇ -position of fucose is linked to position 6 of fucose at position 6 of acetyldarcosamine were selected or obtained by various artificial methods described in 1 above Cells can also be used as host cells.
  • those which can replicate autonomously in the above host cells or can be integrated into the chromosome, and which contain a promoter at a position where the DNA encoding the antibody molecule of interest can be transcribed are used.
  • a cDNA or a probe specific to the cDNA encoding the antibody molecule of interest can be obtained from human or non-human animal tissues or cells. It can be prepared using a primer or the like.
  • yeast When yeast is used as a host cell, examples of expression vectors include YEP13 (ATCC37115), YEp2 (ATCC37051), and YCp50 (ATCC37419).
  • promoters for glycolytic genes such as hexose kinase, PH05 promoter, PGK promoter, etc. 1. GAP promoter overnight, ADH promoter, gal 1 promoter, gal 10 promoter, human shock protein promoter, MF hi promoter, CUP 1 promoter and the like. '
  • Host cells include the genera Saccharomyces, Schizosaccharomyces, Microorganisms belonging to the genus Trichosporon, the genus Schwanomyces, and the like, for example, Saccharomyces cerevisiae, Sc izosaccharomyces face, Kluyveromyces lactiSx Trichosporon pullulans ⁇ Sc warmthiomyces alluvius.
  • any method can be used as long as it is a method for introducing DNA into yeast.
  • the method include elect-portation method [Methods. Enz mol., 194, 182 (1990)] and spheroplast. Acad. Sci. US. A, 84, 1929 (1978)], lithium acetate method [J. Bacteriology, 153, 163 (1983 "), Proc. Natl. Acad. Sci. US A, 75 , 1929 (1978)].
  • examples of expression vectors include pcDNAI, pcDM8 (commercially available from Funakoshi), pAGE107 [Tokudokihei 3-22979; Cytotechnology, 3, 133, (1990)], PAS3- 3 [JP-A 2-227075], pCDM8 [Nature, 329, 840, (1987)], pcDNAI / Arap (Invitrogen), pREP4 (Invitrogen), pAGE103 [J. Biochemistry, 101, 1307 (1987)], pAGE210 and the like.
  • any promoter can be used as long as it can be expressed in animal cells.
  • the promoter of the IE (immediate early) gene of cytomegalovirus (CMV) the early promoter of SV40, the retrovirus Promoters, meta mouth chainone promoters, heat shock promoters, SRa promoters, etc.
  • the enhancer of the IE gene of human (MV) may be used together with the promoter.
  • Host cells include Namalwa cells, which are human cells, COS cells, which are monkey cells, CH0 cells, which are Chinese hamster cells, HBT5637 (Tokuwakisho 63-299), ratomieloma cells, and mice. Examples include myeloma cells, Syrian hamster kidney-derived cells, embryonic stem cells, fertilized egg cells, and the like.
  • any method can be used as long as it is a method for introducing DNA into animal cells.
  • elect-portion method [Cytotechnology, 3, 133 (1990)] calcium phosphate method [ Hei 2-227075], Lipofxion method [Proc Jatl. Acad. Sci. U.S.A., 84, 7413 (1987)], Injection method tManipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press ( 1994)]
  • a method using a notice gun (gene gun) [Patent No. 2606856, Patent No.
  • insect cells When insect cells are used as hosts, for example, current protocols, more, more, or less, Baculovirus Expression Vectors, A Laboratory Manual, WH Freeman and Company, New York (1992), Bio / Technology , 6, 47 (1988) and the like.
  • the recombinant virus can be further infected to the insect cells to express the protein.
  • Examples of the gene transfer vector used in the method include pVL1392, pVL1393, pBlueBacIII (all from Invitorogen) and the like.
  • baculovirus for example, Autographa californica nuclear poly edrosis virus, which is a virus that infects night roth moths, can be used.
  • Autographa californica nuclear poly edrosis virus which is a virus that infects night roth moths.
  • Insect cells include Spodopterafrugiperda ovary cells, Sf9 and Sf21 [current 'protocol-resin-in' molecular -no, 'diology Baculovims Expression Vectors, A Laboratory Manual, WH Freeman and Company, New Yor'k (1992 )], And Trichoplusiani ovary cells, High 5 (Invitrogen), and the like. ',
  • Methods for co-transferring the above-described expression-introducing vector and the above-mentioned baculovirus into insect cells for preparing recombinant viruses include, for example, the calcium phosphate method (Tokuwakihei 2-227075), the lipofection method [Proc Natl. Acad. Sci. USA, 84, 7413 (1987)].
  • the expression vector include Ti plasmid, tobacco mosaic virus vector and the like.
  • any promoter can be used as long as it can be expressed in plant cells, and examples thereof include the cauliflower mosaic virus (CaMV) 35S promoter and inactin-1 promoter. .
  • CaMV cauliflower mosaic virus
  • Host cells include evening saw, potato, tomato, carrot, soybean, oilseed rape, and alf Plant cells of alpha, rice, wheat, rye and the like can be mentioned.
  • any method for introducing DNA into plant cells can be used.
  • agrobacterium Agrobacterium
  • the electoral port method Japanese Patent Application Laid-Open No. 60-251887
  • a method using a part-gun gun (gene gun) Japanese Patent No. 2517813
  • Japanese Patent No. 2517813 Japanese Patent No. 2517813
  • the method for expressing the antibody composition is as follows.In addition to direct expression, secretion production, Fc, and the like can be performed according to the method described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989). Expression of a fusion protein between the region and another protein can be performed.
  • an antibody molecule having a sugar or a sugar chain added by the introduced gene can be obtained.
  • the transformant obtained as described above is cultured in a medium, and the antibody molecule is vigorously accumulated in the culture, and is collected from the culture, whereby an antibody product can be produced.
  • the method for culturing the transformant in a medium can be performed according to a usual method used for culturing host cells.
  • a culture medium for culturing a transformant obtained by using a eukaryote such as yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like that can be used by the organism to efficiently culture the transformant.
  • natural medium as long as the medium can perform, 1 may be either a synthetic medium.
  • Any carbon source may be used as long as the organism can assimilate it; glucose, fructose, sucrose, molasses containing these, carbohydrates such as starch or starch hydrolysate, organic acids such as acetic acid and propionic acid, Alcohols such as ethanol and propanol can be used.
  • Nitrogen sources include ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate and other inorganic or organic acid ammonium salts, other nitrogen-containing compounds, and peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal, soybean meal hydrolyzate, various fermented cells and digests thereof can be used.
  • Inorganic salts include potassium phosphate monobasic, potassium phosphate dibasic, magnesium phosphate, sulfuric acid Magnesium acid, sodium chloride, ferrous sulfate, man sulfate, copper sulfate, calcium carbonate, and the like can be used.
  • the culture is usually performed under aerobic conditions such as shaking culture or deep aeration stirring culture.
  • the culture temperature is preferably 15 to 40 ° C, and the culture time is usually 16 hours to 7 days.
  • the pH during the cultivation is maintained at 3-9.
  • the pH is adjusted using inorganic or organic acids, alkaline solutions, urea, calcium carbonate, ammonia and the like.
  • an antibiotic such as ampicillin-tetracycline may be added to the medium during the culture. .
  • an inducer may be added to the medium, if necessary.
  • an inducer may be added to the medium, if necessary.
  • isopropyl- ⁇ -D-thiogalactoviranoside and the like are transformed with a recombinant vector using the trp promoter.
  • indoleacrylic acid or the like may be added to the medium.
  • the cultivation is usually performed for 1 to 7 days under conditions such as pH 6 to 8, 30 to 40 ° C, and the presence of 5% C02.
  • antibiotics such as kanamycin and penicillin may be added to the medium during the culture.
  • T-band FH medium Pulsen
  • Sf-900II SFM medium Sf-900II SFM medium
  • ExQell400 ExCell405
  • GRH's Insect Medium [Nature, 195, 788 (1962)] and the like can be used.
  • the cultivation is usually performed under conditions of pH 6 to 7 and 25 to 30 ° C for 1 to 5 days. If necessary, an antibiotic such as genyumycin may be added to the medium during the culture.
  • a transformant obtained using a plant cell as a host can be cultured as a cell or after being differentiated into plant cells or organs. It is generally used as a medium for culturing the transformant! ) Murashige 'and' Skoog (MS) medium, White medium, or a medium to which plant hormones such as auxin and cytokinin are added, may be used.
  • MS Murashige 'and' Skoog
  • White medium or a medium to which plant hormones such as auxin and cytokinin are added, may be used.
  • Cultivation is usually performed at pH 5 to 9 and 20 to 40 ° C for 3 to 60 days. If necessary, antibiotics such as kanamycin and-'hygromycin may be added to the medium during the culture.
  • a transformant derived from an animal cell or a plant cell having an expression vector into which DNA encoding an antibody molecule has been incorporated is cultured according to a conventional culture method to produce and accumulate an antibody composition. By collecting more antibody composition, an antibody substance can be produced.
  • the antibody composition can be expressed by a method similar to that described in Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989). Etc. can be performed. .
  • Methods for producing an antibody include a method of producing the antibody in a host cell, a method of distributing it outside the host cell, and a method of producing it on the host cell outer membrane.
  • the host cell to be used and the structure of the antibody molecule to be produced The method can be selected by changing.
  • a DNA encoding an antibody molecule and a DNA encoding a signal peptide suitable for expression of an antibody molecule are introduced into an expression vector, and the expression vector is transferred to a host cell.
  • the target antibody molecule By expressing the antibody molecule after the introduction, the target antibody molecule can be actively secreted out of the host cell.
  • a dihydrofolate reductase gene, etc. was obtained according to the method described in The production can also be increased using the gene amplification system used.
  • transgenic animal or plant cells are redifferentiated to create an animal (transgenic non-human animal) or a transgenic animal (transgenic plant) into which the gene has been introduced.
  • Antibodies can also be produced using E. coli.
  • the animal or plant is bred or cultivated in accordance with a conventional method to produce and accumulate an antibody composition, and the antibody or substance is collected from the animal or plant individual.
  • Antibodies can be produced.
  • -'A a method for producing an antibody composition using an animal individual, for example, a known method [American Journal of Clinical Nutrition, 63,-639S (1996); American Journal of Clinical Nutrition), 63, 627S (1996); Bio / Technology, 9, 830 (1991)], and a method of producing a target antibody in an animal created by introducing a gene.
  • an antibody composition can be produced.
  • the production / accumulation field jj in the animal include milk (JP-A-63-309192) or eggs of the animal.
  • Any promoter can be used as long as it can be expressed in animals.
  • mammary gland cell-specific promoters such as Hicasein Promoter, 7-Power Zeinpromoer,? Globulin promoter overnight, whey acid raw protein promoter and the like are preferably used.
  • Methods for producing an antibody composition using a plant individual include, for example, DNA r encoding an antibody molecule.
  • Antibody exfoliants produced by transformants into which the DNA encoding the antibody molecule has been introduced for example, if the antibody composition is expressed in a lysed state in the cells, the cells are recovered by centrifugation after completion of the culture. After suspending in an aqueous buffer, the cells are disrupted using an ultrasonic crusher, French press, Mantongaulin homogenizer, Dynomill, etc., to obtain a cell-free extract.
  • FF Fracia
  • hydrophobic chromatography using a resin such as butyl sepharose and phenylsepharose gel filtration using a molecular sieve
  • affinity A purified sample of the antibody composition can be obtained using one or a combination of electrophoretic methods such as chromatographic method, chromatofocusing method and isoelectric focusing.
  • the cell when the antibody antibody is expressed by forming an insoluble substance in the cell, the cell is similarly collected, crushed, and centrifuged to collect the insoluble substance of the antibody antibody as a precipitate fraction.
  • the recovered insoluble form of the antibody is solubilized with a protein denaturant.
  • a purified sample of the antibody composition can be obtained by the same isolation and purification method as described above.
  • the antibody depleted substance or its derivative can be recovered in the culture supernatant. That is, a culture supernatant is obtained by treating the culture by a technique such as centrifugation as described above, and the antibody product is obtained from the culture supernatant by using the same isolation and purification method as described above. Can be obtained.
  • a humanized antibody expression vector is an expression vector for animal cells into which genes encoding human antibody CH and CL have been incorporated, and the human antibody CH and CL are encoded in the animal cell expression vector. By cloning each gene.
  • the C region of the human antibody can be CH and CL of any human antibody.
  • the C region of the IgGl subclass of the human antibody ⁇ chain hereinafter referred to as hC ⁇ 1
  • the human antibody C region of the L chain class hereinafter referred to as hC.
  • Genes encoding CH and CL of human antibody include exon and intron.
  • Body DNA can be used, and cDNA prepared by reverse transcription from mRNA can also be used.
  • Any expression vector for animal cells can be used as long as it can incorporate and express the gene encoding the C region of the human antibody.
  • AGE107 [Cytotechnology, 3, 133 (1990)]
  • pAGE103 [J. Biochem., 101, 1307 (1987)]
  • pHSG274 [Gene, 27, 223]
  • Promoters and enhancers used in expression vectors for animal cells include the early promoter and enhancer of SV40 [J. Biochem., 101, 1307 (1987)], LTR of Moroni mouse leukemia virus [Biochem. Biophys. Res. Commun., 149, 960 (1987)], Immunoglobulin ⁇ chain promoter [Cell, 1, 79
  • the vector for expressing a humanized antibody may be either a type in which the antibody H chain and the L chain are present on separate vectors or a type in which the antibody is present on the same vector (hereinafter referred to as a tandem type). Although it can be used, the ease of construction of a humanized antibody expression vector, the ease of introduction into animal cells, and the balance between the expression levels of antibody H and L chains in animal cells are balanced. A tandem type humanized antibody expression vector is preferred [J. Immunol. Methods, 167, 271 (1994)]. Examples of evening-type humanized antibody expression vectors include pKANTEX93 [Mol. I thigh unol., 37, 1035 (2000)] and pEE18 [Hybridoraa, 17, 559 (1998)].
  • the constructed humanized antibody expression vector can be used for expression of a human chimeric antibody and a human CDR-grafted antibody in animal cells.
  • CDNAs encoding non-human animal anti-H, for example, mouse antibody H and VL can be obtained as follows. '
  • CDNA is synthesized using mRNA extracted from a hybridoma cell producing an antibody that specifically binds to ganglioside GM2 as type III.
  • a cDNA library is prepared by inserting the synthesized cDNA into a vector such as a phage or a plasmid. From the library, using the DNA encoding the C region or V region of the existing mouse antibody as a probe, encodes the H chain V region-encodes a recombinant phage or plasmid having cDNA and an L chain V region cDNA The isolated recombinant phage or recombinant plasmid is isolated.
  • the entire nucleotide sequence of VH and VL of the target mouse antibody on the recombinant phage or recombinant plasmid is determined, and the entire amino acid sequence of VH and VL is deduced from the nucleotide sequence.
  • Hybridoma cells that produce antibodies from non-human animals that can specifically bind to ganglioside GM2 can be immunized with gandriside GM2 to non-human animals using well-known methods [Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 14]. , (1998)], a hybridoma was prepared from the antibody-producing cells of the immunized animal and myeloma cells, and then a single-cell hybridoma was selected, cultured, and purified from the culture supernatant. And can be obtained.
  • any animal can be used as long as hybridoma cells can be produced, such as mice, rats, hamsters, and egrets.
  • kits for preparing total RNA from nippridoma cells include the guanidine thiocyanate-cesium trifluoroacetate method [Methods in EnzyraoL, 154, 3 (1987)]. (DT) Immobilized cellulose column method [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)]. Kits for preparing mEA from hybridoma cells include Fast Track mRNA Isolation Kit (Invitroge), Quick Prep mRNA Purification Kit (Pharmacia) and the like.
  • Methods for synthesizing cDNA and preparing a cDNA library include a conventional method [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, Supplement 1-34] or a commercially available kit, for example, , Super ScriptTM Plasmid System for cDNA Synthesis and Plasraid Cloning (GIBCO BRL) and a method using ZAP-cMA Synthesis Kit (Stratagene).
  • any vector can be used as a vector for incorporating a cDNA synthesized as a type III mRNA extracted from a hybridoma cell as long as the cDNA can be incorporated.
  • ZAP Express [Strategies, 5, 58 (1992)]
  • pBluescript II SK (+) [Nucleic Acids Research, 17, 9494 (1989)]
  • human ZAP II (Stratagene 3 ⁇ 43 ⁇ 4)
  • et gtlO Agtll
  • DNA Cloning: A Practical Approach, I, 49 (1985) [DNA Cloning: A Practical Approach, I, 49 (1985)]
  • Lambda BlueMid (Clontech ExCelU pT7T3 18U (manufactured by Pharmacia)
  • pcD2 [Mol. Cell. Biol., 3, 280 (1983)]
  • pUC18 Gene, 33, 103 (1985)].
  • any Escherichia coli can be used as long as the cDNA library can be introduced, expressed and maintained.
  • XLl-Blue MRF ' [Strategies, 5, 81 (1992)], C600 [Genetics, 39, 440 (1954)], Y1088, Y1090 [Science, 222, 778 (1983)], 522522 [J. Mol Biol., 166r (1983)], the painting [J. Mol. Biol., 16, 118 (1966)] and JM105 [Gene, 38, 275 (1985)].
  • Methods for selecting cDNA clones encoding the VH and VL of non-human animal antibodies from cDNA libraries include colony hybridization using probes labeled with fluorescent isotopes or fluorescence. Alternatively, it can be selected by the plaque-hybridization method [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)]. In addition, primers are prepared, and the cDNA or cDNA library is used as a type II PCR (Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989), Current Protocols in Molecular Biology, Supplement 1-34). Can prepare cDNAs encoding VH and VL.
  • the cDNA selected by the above method is cleaved with an appropriate restriction enzyme or the like, cloned into a plasmid such as pBluescript SK (-) (manufactured by Stratagene), and subjected to a commonly used nucleotide sequence analysis method, for example, Sanger (Sanger). Natl. Acad. Sci., USA, 74, 5463 (1977)], etc., and a base sequence automatic analyzer such as ABI PRISM377 DNA Sequencer (Applied Biosystems).
  • the nucleotide sequence of the cDNA can be determined by analysis using a nucleotide sequence analyzer.
  • amino acid sequence of the antibody variable region or the base sequence of the DNA encoding the variable region is further reduced.
  • Amino acid sequence ⁇ If known, design a DNA sequence encoding the variable region in consideration of codon usage [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991]. DNA can be obtained by synthesizing several synthetic DNAs having a length of about 100 bases based on the obtained DNA sequence and performing PCR using them. If the nucleotide sequence is known, BNA can be obtained by synthesizing several synthetic DNAs having a length of about 100 bases based on the information and performing PCR using them. .
  • VH and VL amino acid sequences of the antibody including the secretory signal sequence
  • the amino acid sequences of known antibodies VH and VL '[Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 19.91]
  • the length of the secretory signal sequence and the N-terminal amino acid sequence can be determined, and the subgroup to which the antibody belongs can be known.
  • the amino acid sequences of the CDRs of H and VL can be found in the same manner.
  • a cDNA encoding VH and VL of a non-human animal antibody is inserted upstream of the genes encoding CH and CL of the human antibody in the humanized antibody expression vector described in (1) of this section 2.
  • a human chimeric antibody expression vector can be constructed.
  • the cDNA encoding the antibody and VL of a non-human animal antibody can be obtained by combining the nucleotide sequences at the 3 'end of the non-human animal antibodies VH and VL with the nucleotide sequences at the 5' end of the human antibody CH and CL.
  • a human-type chimeric antibody expression vector can be constructed by inserting a gene upstream of the gene encoding such that they are expressed in an appropriate form.
  • CDNA encoding VH and VL of the human CDR-grafted antibody can be constructed as follows. First, the amino acid sequences of FRs of VH and VL of a human antibody to be transplanted with CDRs of VH and VL of the antibody of the target non-human animal are selected.
  • the amino acid sequence of FRs of VH and VL of a human antibody any amino acid sequence can be used as long as it is derived from a human antibody.
  • human antibody VH and VL FR amino acids registered in the database such as Protein Data Bank.
  • the common amino acid sequence of each subgroup of FRs of VH and VL of human antibodies [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991], among which sufficient activity is shown.
  • the amino acid sequence of H and VL of the antibody of the target non-human animal should be as high as possible.
  • the amino acid sequences of the H and VL CDRs of the target non-human animal antibody are grafted into the VH and VL FR amino acid sequences of the selected human antibody, and the human CDR'-grafted antibody VH and VL
  • the amino acid sequence is designed. Convert the designed amino acid sequence into a DNA sequence in consideration of the frequency of codon usage found in the nucleotide sequence of the antibody gene [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991], and perform human CDR grafting Design the DNA sequence encoding the VH and VL amino acid sequences of the antibody. Based on the designed DNA sequence, several synthetic DNAs having a length of about 100 bases are synthesized, and PCR is performed using them.
  • the human CDR-grafted antibody can be obtained by grafting only the VH and VL CDRs of a non-human animal antibody to the human antibody VH and VL FRs. It is known that it will decrease compared to that [BIO / TECHNOLOGY, 9, 266 (1991)]. This is due to the fact that not only CDH but also some amino acid residues of FR are directly or indirectly involved in antigen binding activity in the original non-human antibody VH and VL. However, it is considered that these amino acid residues are changed to different amino acid residues of VH and VL of the human antibody with CDR transplantation.
  • human-type CDR-grafted antibodies use amino acid residues involved in direct binding or CDRs in the amino acid sequences of FRs of VH and VL of human antibodies. Identify amino acid residues that interact with amino acid residues or maintain antibody structure and indirectly participate in antigen binding, and derive them from the original non-human animal antibody [BIO / TECHNOLOGY, 9, 266 (1991)].
  • the modification of the FR amino acid residues of VH and VL of a human antibody can be achieved by performing the PCR method described in (5) of this section 2 using the synthetic DNA for modification.
  • the humanized CDR graft constructed in (5) and (6) of this section 2 upstream of the genes encoding CH and CL of the human antibody of the humanized antibody expression vector described in (1) of this section 2 CDNA encoding the VH and VL of the antibody can be inserted to construct a human CDR-grafted antibody expression vector.
  • a human CDR-grafted antibody expression vector For example, when constructing VH and VL of a human CDR-grafted antibody in (5) and (6) of section 2 of this section [of the synthetic DNA used, an appropriate restriction enzyme By introducing the recognition sequence, the humanized antibody expression vector described in (2) of this section can be expressed in an appropriate form upstream of the genes encoding CH and CL of the human antibody. By inserting the antibody, a human CDR-grafted antibody expression vector can be constructed.
  • any animal cell that can produce a humanized antibody can be used.
  • mouse myeloma cells such as NS0 cells, SP2 / 0 cells, Chinese hams ovary cells, CHO / dh-cells, CH0 / DG4 cells, radiomyeloma cells YB2 / 0 cells, IR983F cells and Syrian hamster kidney BHK cells, and Namalva cells, which are Hid'myeloma cells, and preferably, CH0 / DG44 cells, Chinese hamster ovary cells, and light myeloma YB2 / 0 cells.
  • NS0 cells such as NS0 cells, SP2 / 0 cells, Chinese hams ovary cells, CHO / dh-cells, CH0 / DG4 cells, radiomyeloma cells YB2 / 0 cells, IR983F cells and Syrian hamster kidney BHK cells, and Namalva cells, which are Hid'myeloma cells, and preferably, CH0
  • the transformant that stably produces the humanized antibody can be transformed into G418 sulfate (hereinafter referred to as G418; according to the method disclosed in JP-A-2-2577891).
  • the medium can be selected by using a medium for culturing animal cells containing a drug such as SI (manufactured by M), etc.
  • the culture medium for culturing animal cells is RPMI1640 medium (Nissui Pharmaceutical N ⁇ S), GIT medium (Nippon Pharmaceutical N: fc) , EX-CELL302 medium (manufactured by JRH), IMDM medium (GIBCO BRL Ne ⁇ S), Hybridoma-SFM medium (manufactured by GIBCO BRL), or a fetal calf serum (hereinafter referred to as FCS)
  • FCS fetal calf serum
  • the production amount and antigen-binding activity of humanized antibodies in humans are measured by enzyme-linked immunosorbent assay [hereinafter referred to as ELISA]; Antibodies : A Laboratory Manual, Cold 'Spring Harbor Laboratory, Chapter 14, 1998, Monoclonal Antibodies: Principles and Practice, Academic Press Limited, 1996], etc.
  • ELISA enzyme-linked immunosorbent assay
  • the transformed strain is disclosed in JP-A-2-257891. According to the method described above, the production of humanized antibodies can be increased using a DHFR gene amplification system or the like.
  • Humanized antibodies can be purified from the culture supernatant of the transformed strain using a protein A column [Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, Chapter 8, 1988, Monoclonal Antibodies: Principles and Practice, Academic Press Limited, 1996].
  • a purification method usually used for protein purification can be used.
  • purification can be performed by a combination of gel filtration, ion-exchange chromatography and ultrafiltration.
  • the host cell already has the ability to express the antibody
  • the cells are cultured, and the target antibody is expressed from the culture.
  • the antibody product of the present invention can be produced.
  • Methods for measuring the binding activity or cytotoxicity of the purified antibody to the protein include Monoclonal Antibodies: Principles and Practice, Academic Press Limited, 1996, or Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press , 1996 and the like can be used.
  • the binding activity to an antigen and the binding activity to a positive cultured cell line are determined by ELISA and immunofluorescence [Cancer Immunol. Immunometer., 36, 373]. (1993)]. Cytotoxic activity against antigen-positive cultured thighs can be evaluated by measuring CDC activity, ADCC activity and the like [Cancer Immunol. Immunother., 36. 373 (1993)].
  • the safety and therapeutic effect of the antibody composition in humans can be evaluated using an appropriate model of animal species relatively close to humans such as cynomolgus monkeys.
  • the sugar chain structure of the antibody composition expressed in various cells can be determined according to the analysis of the sugar chain structure of a normal glycoprotein composition.
  • the sugar chains bound to IgG molecules are composed of medium sugars such as galactose, mannose and fucose, amino sugars such as N-acetylglycosamine, and acid sugars such as sialic acid.
  • the analysis can be performed using techniques such as composition analysis and sugar chain structure analysis using a two-dimensional sugar chain mapping method.
  • composition analysis of the sugar chain of the antibody composition neutral sugar or amino sugar is released by performing acid hydrolysis of the sugar chain with trifluoroacetic acid or the like, and the composition ratio thereof can be analyzed.
  • BioLC is a device for analyzing sugars by the HPAEC-PAD (high performance anion-exchange chromatography-pulsed amperometric detection) method [J. Liq. Chromatogr., 6, 1577 (1983)]; '- The I ⁇ ratio can also be analyzed by fluorescent labeling with aminopyridine.
  • HPAEC-PAD high performance anion-exchange chromatography-pulsed amperometric detection
  • the acid-hydrolyzed sample is fluorescently labeled with 2-aminopyridylation, and the ratio is calculated by HPLC analysis. be able to.
  • Structural analysis of the sugar chain of the antibody is performed by the two-dimensional sugar chain mapping method [Anal. Biochem., 171, 73 (1988)], Biochemistry Experimental Method 23-Glycoprotein sugar chain research method (Society Press Center 1), edited by Reiko Takahashi (1989)].
  • the X-axis shows the sugar chain retention time or elution position by reverse-phase chromatography
  • the ⁇ axis shows normal-phase chromatography sugar chain retention time or elution position. This is a method for estimating the sugar chain structure by plotting each of these and comparing them with those results of known sugar chains.
  • hydrazinolysis of an antibody product is performed to release a sugar chain from the antibody product, and fluorescent labeling of a difficult person with 2-amino pyridine (hereinafter abbreviated as ⁇ ) [J. Biochem., 95, 197 (1984)], the sugar chains are separated from the excess PA-forming reagent and the like by gel filtration, and reversed-phase mouth chromatography is performed. Next, normal phase chromatography is performed for each peak of the separated sugar chain. Based on these results, a sugar chain was plotted on a two-dimensional sugar chain map, and a sugar chain was compared with a sugar chain standard (TaKaRa) and literature [Anal. Biochem. ', 171, 73 (1988)]. The chain structure can be estimated.
  • 2-amino pyridine
  • mass spectrometry such as MALDI-TOF-MS can be performed to confirm the structure estimated by the two-dimensional map method.
  • the antibody composition is composed of antibody molecules having different sugar chain structures binding to the Fc region of the antibody.
  • the antibody antibody of the present invention is characterized in that, among all N-glycoside-linked complex-type sugar chains binding to the Fc region, the proportion of sugar chains in which fucose is not bound to N-acetylglycosamine at the sugar chain reducing end is 100%. Yes, showing high ADCC activity.
  • Such an antibody can be identified by using the method for analyzing the structure of the antibody described in 4. above. It can also be identified by using an immunological quantification method using lectin.
  • Enzymoi leak assay Enzymoi leak assay
  • FIA Fluoroimmunoassay
  • MIA Metal loimmunoassay
  • other immunological quantification methods for example, the following can be performed.
  • the lectin that recognizes the sugar chain structure of the antibody molecule constituting the antibody is labeled, and the recognized lectin is reacted with the sample antibody composition. Next, the amount of the complex of the labeled lectin and the antibody molecule is measured.
  • Lectins used to identify the sugar chain structure of antibody molecules include, for example, WGA (from T. vulgaris.wheat-gera agglutinin) ⁇ ConA (concanavalin A from C. ensiformis), RIC (R. is-derived toxin), L-PHA (leukoagglutinin from P. vulgaris) LCA (lentil agglutinin from L.
  • PSA Pa, lectin from P, sativum
  • AAL Aleuria aurantia Lectin
  • ACL Amaranthus caudatus
  • BPL Bauhinia purpurea Lectin
  • DSL Datura stramonium LectinK
  • EBL Elderberry Balk Lectin
  • ECL Erythrina cristagalli Lectin
  • EEL Euonymus e ropaeus Lectin L
  • a lectin that specifically recognizes a sugar chain structure in which fucose is bound to N-acetylglucosamine at the reducing end of an N-glucoside-linked complex type sugar chain
  • specific examples thereof include lentil lectin LCA ( Lentil Agglutinin from Lens Culinaris) Endomelectin PSA (Pea Lectin from Pisnffl sativum), Broad bean lectin VFA (Agglutinin from Vicia faba), and Hilochawan evening lectin ML (Lectin from Aleuria aurantia).
  • the antibody composition of the present invention specifically binds to ganglioside GM2 and has high-reactivity ADCC activity and CDC activity, it is useful in the prevention and treatment of various ganglioside GM2-expressing cell-related diseases such as cancer.
  • the ganglioside GM2-related disease includes any disease that involves cells expressing ganglioside GM2.
  • cancer is mentioned.
  • Examples of the cancer of the present invention include neuroblastomas, neuroblastomas, small cell carcinomas and menomas, which are neuroectodermal tumors. ',
  • Ganglioside GM2 is present in very small amounts in normal cells, but is present in large amounts in cancer cells such as small cell lung cancer, 'melanomas', and neuroblastoma, and monoclonal antibodies against GM2 are found in these cancers. CLancet,! ⁇ 6154 (1988), which is considered to be useful for treatment.
  • Ordinary anticancer drugs are intended to suppress the growth of these cancer cells.
  • antibodies having ADCC activity or CDC activity can induce cell death in cancer cells, and are therefore more effective as therapeutic agents than ordinary anticancer drugs.
  • the antitumor effect of an antibody drug alone is not sufficient at present, and combination therapy with chemotherapy is performed [Science, 280. 1197 (1998)]. Since the composition alone has a high anticancer effect, it is less dependent on chemotherapy and also has reduced side effects.
  • the antibody composition of the present invention specifically binds to ganglioside GM2 and exhibits strong cytotoxic activity against ganglioside ( ⁇ expressing 'cells, it can selectively exclude cells expressing ganglioside GM2. '
  • the antibody composition of the present invention has high cytotoxic activity, it can treat patients with the above-mentioned cancers and the like, which cannot be cured by conventional antibody compositions.
  • cancer it is difficult for a drug to reach the site where cancer cells have infiltrated, so that it is preferable that even a small amount of drug has a therapeutic effect.
  • the antibody composition of the present invention has high ADCC activity even in a small amount, it is useful for treating the above-mentioned diseases.
  • the drug containing the antibody of the present invention can be administered alone as a therapeutic agent, it is usually mixed with one or more pharmacologically acceptable carriers to obtain a pharmaceutical preparation. It is desirable to use as a pharmaceutical preparation produced by any method well known in the technical field.
  • the administration route is preferably the one that is most effective in treatment, and may be oral administration or parenteral administration such as buccal, respiratory, rectal, subcutaneous, intramuscular and intravenous administration.
  • parenteral administration such as buccal, respiratory, rectal, subcutaneous, intramuscular and intravenous administration.
  • intravenous administration can be preferably mentioned.
  • Dosage forms include sprays, capsules, tablets, granules, syrups, emulsions, suppositories, injections, ointments, tapes and the like.
  • Formulations suitable for oral administration include emulsions, syrups, capsules, tablets, powders, condyles and the like.
  • Liquid preparations such as emulsions and syrups include water, sucrose, sorbitol, fructose, etc., polyethylene glycols, propylene glycol, etc. glycols, sesame oil, olive oil, soybean oil, etc., P-hydroxybenzoate. It can be produced using preservatives such as acid esters and flavorers such as strawberry flavor and peppermint as additives.
  • Pexel, tablets, powders, granules, etc. are excipients such as lactose, glucose, sucrose, mannitol, disintegrants such as starch and sodium alginate, lubricants such as magnesium stearate, talc, polyvinyl alcohol , Hydroxypropylcellulose, gelatin and the like, surfactants such as fatty acid esters, and plasticizers such as glycerin as additives.
  • Formulations suitable for parenteral administration include injections, suppositories, sprays and the like. The injection is prepared using a carrier such as a salt solution, a glucose solution, or a mixture of both.
  • a powdered injection can be prepared by freezing the antibody according to a conventional method and adding sodium chloride thereto.
  • -Suppositories are prepared using carriers such as cocoa butter, hydrogenated fats or carboxylic acids.
  • Sprays are prepared using the antibody composition itself or a carrier that does not irritate the oral and respiratory tract mucosa of the recipient and disperses the antibody composition as fine particles to facilitate absorption.
  • carrier examples include lactose and glycerin.
  • Formulations such as aerosols and dry powders can be made depending on the properties of the antibody and the carrier used. Also, in these parenteral preparations, the components exemplified as additives for oral preparations can be added.
  • the dose or frequency of administration varies depending on the desired therapeutic effect, administration method, treatment period, age, body weight, etc., but the amount of the active ingredient is usually 10 mg / kg / day and 20 mg / kg per adult per day.
  • Methods for examining the antitumor effect of the antibody on various tumor cells include in vitro experiments such as CDC activity assay and ADCC activity assay.
  • In vivo experiments include tumor tumors in experimental animals such as mice. Antitumor experiments using the system.
  • FIG. 1 shows the construction of the brasmid pKOFUT8Neo.
  • Fig. 2 shows a homologous cell in which one copy of the FUT8 allele of CH0 / DG4 cells was disrupted.
  • FIG. 4 is a view showing the Mfr results of a genomic Southern of a clone.
  • ⁇ - From left to right, are the molecular weight markers, the genome lockout clones 50-10-104 and the genomic Southern of the parent strain CH0 / DG44 cells. .
  • FIG. 3 is a diagram showing the results of genomic Southern analysis of the double noctone clone K704 in which both FUT8 alleles of CH0 / DG4 cells were disrupted.
  • the arrow indicates the detection position of the positive fragment detected when homologous recombination has occurred.
  • FIG. 4 is a diagram showing the results of genomic Southern blotting of a clone in which a drug resistance gene has been removed from a double knockout clone in which both FUT8 alleles of CH0 / DG44 cells have been disrupted. Lanes from left to right indicate molecular weight markers, drug knockout clone 4-5-C3, double knockout clone WK704, double knockout clone 50-10-104 and double knockout clone, respectively. Genomic Southern of parental CH0 / DG44 cells.
  • FIG. 4 is a diagram showing the results of genomic Southern blotting of a clone in which a drug resistance gene has been removed from a double knockout clone in which both FUT8 alleles of CH0 / DG44 cells have been disrupted. Lanes from left to right indicate molecular weight markers, drug knockout clone 4-5-C3, double knockout clone WK704, double knockout clone 50-10-
  • FIG. 5 is a diagram showing the reactivity of purified Ms705 / GM2 antibody and DG44 / GM2 antibody to ganglioside GM2 in ELISA method, which was measured by changing the antibody concentration.
  • the horizontal axis shows the antibody concentration, and the vertical axis shows the absorbance at each antibody concentration.
  • the mouth shows the DG44 / GM2 antibody, and the picture shows the Ms705 / GM2 antibody.
  • FIG. 6 is a graph showing the ADCC activity of purified Ms705 / GM2 antibody and DG44 / GM2 antibody on human small cell lung cancer cell line SBC-3, which was measured by changing the antibody concentration.
  • the horizontal axis shows the antibody concentration, and the vertical axis shows the cytotoxic activity at each antibody concentration.
  • References indicate DG44 / GM2 antibody, and -' ⁇ indicate Ms705 / GM2 antibody.
  • PKOFUT8Neo was constructed as follows.
  • pKOFUT8Puro was digested with a restriction enzyme ⁇ I (manufactured by New England Biolabs), and the end of the DNA fragment was dephosphorylated with Alkaline Phosphatase (manufactured by Takara Shuzo) derived from Escherichia coli C15 strain. reaction Thereafter, the DNA fragment was purified using phenol / cloth form extraction and ethanol precipitation. ,
  • Ligation High (manufactured by Toyobo Co., Ltd.) was added to 0.1 l of the fragment (about 1.6 Kb) derived from pKOSelectNeo and 0.1 ⁇ g of the l fragment (about 10.1 Kb) derived from pK0FU8Puro obtained above by adding sterile water.
  • the ligation reaction was performed by reacting at 16 ° C for 30 minutes.
  • Escherichia coli DH5 ⁇ strain was transformed using the reaction solution, and plasmid DNAs were prepared from the obtained ampi and sillin resistant clones, respectively, using BigDye Terminator Cycle Sequencing Ready. Reaction Kit v2.0 (Applied Biosystems II).
  • pKOFUT8Neo shown in FIG. 1 was obtained.
  • pKOFU8Neo was used as a targeting vector for preparing a minoquat cell line for the FUT8 gene of CH0 cells. 2. Preparation of a homologous knockout cell in which one copy of the FUT8 gene on the genome has been destroyed.
  • CH0 / DG44 cells Somatic Cell and Moleculer Genetics, 12, 555, 1986] were introduced with the Chinese nomster FU 8 genomic region evening vector pKOFUT8Neo constructed in Example 1, paragraph 1 as follows. '
  • pKOFUT8Neo is digested with restriction enzyme I (New England Biolabs) to be linearized, and 4 g of the linearized pKOFUT8Neo is transferred to 1.6 ⁇ 10 8 CH0 / DG44 cells by the electrophoresis method [Cytotechnology ), 3, 133 (1990)], and IMDM-dFBS (10) -HT (1) (transfected FBS (Invitrogen) at 10% concentration, and H supplement (Invitrogen) at 1-fold concentration. Containing IMDM medium (manufactured by Invitrogen)], and seeded on a 10 cm dish for adherent cell culture (manufactured by Falcon).
  • restriction enzyme I New England Biolabs
  • IMDM-dFBS 10 containing G418 (the Nakaraitesu manufactured click Ltd.) at a concentration of 600 g / mL [IMDM medium containing dialyzed FBS in 10%] lOmL
  • This medium exchange operation was repeated every 3 to 4 days, and the cells were cultured at 37 ° C. for 15 days in a 5% CO 2 incubator overnight to obtain G418-resistant clones.
  • the diagnosis of homology ⁇ of the G418-resistant clone obtained in this section (1) was performed as follows by ⁇ ( ⁇ ) using genomic DNA. After trypsinization of the G418-resistant clone on the 96-well plate, 2 volumes of a freezing medium [20% DMS0, 40% fetal calf serum, 0% DffiM] were added to each well and suspended. Half of the cell suspension in each well was inoculated into a flat bottom 96-well plate for adherent cells (manufactured by Asahi Techno Glass Co., Ltd.) to prepare a replica plate, while the other half was frozen and stored as a plate.
  • a freezing medium 20% DMS0, 40% fetal calf serum, 0% DffiM
  • Neomycin-resistant clones on the replica plate were cultured 37 ° C, 1 week at 5% C0 2 incubator within one IMDM-dFBS (lO) containing G418 at a concentration of 600 / zg / mL, the cells were harvested, From the recovered cells, a known method [Analytical-Biochemistry (Analytical-'
  • Primers used for genomic PGR were designed as follows. First, from the sequence of the FUT8 genomic region (SEQ ID NO: 13) obtained by the method described in Example 12 of W03 / 31140, primers represented by SEQ ID NO: 39 or SEQ ID NO: 40 were used as forward primers. did. In addition, a primer (SEQ ID NO: 41 or SEQ ID NO: 42) that specifically binds to the ⁇ sequence of the evening targeting gel was used as a reverse primer and used in the following polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • a 25 / L reaction solution containing 10 / L of each of the genomic DNA solutions prepared above (DNA vulmerase ExTaq (Takara Shuzo), ExTaq buffer (Takara Shuzo), 0.2 t ol / L dNTPs, O ⁇ mol / L
  • the above primer (use a combination of forward primer and Reno primer)]], heat at 94 ° C for 3 minutes, and then heat at 94 ° C for 1 minute, 60 ° C for 1 minute, PCR was performed under the conditions that one cycle consisted of a reaction consisting of 2 minutes at 72 ° C.
  • reaction solution was subjected to 0.8% (w / v) agarose gel electrophoresis, and a strain in which a specific amplification product of about 1.7 Kb generated by homologous recombination was recognized was determined as a positive clone.
  • Diagnosis of homologous recombination of the positive clones obtained in this section (2) was performed as follows by Southern blotting using genomic DNA.
  • the positive black Ichin found in the item (2) Select including 96-well plates, 37 ° C in 5% C0 2 incubator within one After standing for 10 minutes, the cells in the well corresponding to the positive clone are seeded on a flat-bottomed 24-well plate for adherent cells (Grainer). It was. After G418 and cultured 37 ° C, 1 week in 5% C0 2 incubator using IMDM- dFBS (10) in a concentration of 600 g / mL, bottomed 6-well plate for adherent cells: seeding (Gurainane FCM) to did. The plate was cultured at 37 ° C. in a 5% CO 2 incubator, and the cells were collected. From the collected cells, genomic DNA of each clone was prepared according to a known method [Nucleic Acids Research, 3, 2303, (1976)], and 150 L of TE-RNase buffer ( ⁇ 8 0) Nya dissolved.
  • a probe used for the Southern plot was prepared as follows. From the sequence of the FUT8 genomic region (SEQ ID NO: 13) obtained by the method described in Example 12 of WO03 / 31140, primers represented by SEQ ID NO: 43 and SEQ ID NO: 44 were prepared, and were subjected to the following PCR. Using.
  • the reaction solution was subjected to 1.75% (w / v) agarose gel electrophoresis, and a probe DNA fragment of about 230 bp was recovered using a GENECLEAN Spin Kit (BI0101
  • the embroidery was performed as follows. First, the nylon membrane on which the above genomic DNA digest was transferred was sealed in a roller bottle, and 15 mL of hybridization solution (5 x SSPE, 50 X Denhaldt's solution, 0.5% (w / v) SDS, 100% zg / mL salmon sperm DNA] and pre-hybridization at 65 ° C for 3 hours, heat-denature the 32 P-labeled probe DNA, put it into a bottle, and heat it at 65 ° C. The zation was performed. After hybridization, the nylon membrane was immersed in 50 mL of a primary washing solution [2 ⁇ SSC-0.1% (w / v) SDS], and washed by heating at 65 ° C.
  • a primary washing solution [2 ⁇ SSC-0.1% (w / v) SDS
  • the nylon membrane was immersed in 50 mL of a secondary washing solution [0.2 ⁇ SSC-0.1% (w / v) SDS], and washed by heating at 65 ° C. for 15 minutes. After washing, the nylon film was exposed to X-ray film at -80 ° C and developed.
  • FIG. 2 shows the results obtained by applying the genomic DNA of the parent strain CH0 / DG44 cells and the genomic DNA of the positive clone 50-10-104 obtained in this section (2) by this method.
  • CH0 / DG44 cells only a fragment of about 25.5 Kb derived from the wild-type FUT8 " ⁇ f gene was detected.
  • the positive clone 50-10-104 about 25.5 Kb derived from the wild-type FUT8 allele was detected.
  • a fragment of about 20.0 Kb specific to the homologously recombined allele was detected, and the ratio of both fragments was 1: 1. It was confirmed and confirmed that one copy of the gene was a disrupted hemi-knockout clone.
  • pKOFUT8Puro is digested with restriction enzyme I (New England Biolabs) to be linearized, and the linearized 4 zg pKOFUT8Puro is converted to 1.6 x 10 6 FU8 genes by electroporation to mimic-out clones [Site Technology (Cytoteclmology), 3, 133 (1990)], suspended in IMDM-dFBS (10) -HT (1), and seeded on a 10 cm dish for adherent cell culture (Falcon). After culturing at 37 ° C.
  • Diagnosis of homology between the drug-resistant clones obtained in this section (1) was carried out as follows by Southern blotting using genomic DNA. Puromycin-resistant clones were collected on flat bottom plates for adherent cells (Asahi Techno Glass Co., Ltd.) according to a known method [Gene Targeting, Oxford University Press, (1993)]. followed by culturing using IMDM-dFBS at a concentration of ⁇ G / mL (10) - HT ( 1) was cultured 37 ° C, 1 week at 5% C0 2 I Nkyube evening within one used.
  • each clone in the above plate was treated with trypsin, and was seeded on a flat-bottomed 24-well plate for adherent cells (manufactured by GRAINA).
  • puromycin SIGMA Co.
  • the cells were seeded on a flat-bottomed 6-well plate for adherent cells (manufactured by GRAINA).
  • the plate was cultured at 37 ° C.
  • genomic DNA of each clone was prepared and dissolved in 150 / L TE-RNase buffer (pH 8.0). After digesting 12 g of the genomic DNA prepared above with the restriction enzyme Ban) HI (manufactured by New England Biolabs) and recovering the DNA fragment using the ethanol precipitation method, 20 L of TE buffer (pH 8.0) And subjected to 0.6% (w / v) agarose gel electrophoresis. After the electrophoresis, the genome is transferred to a nylon membrane according to a known method [Procedings of the National Academy of Sciences (Proc. Natl. Acad. Sci. USA), 76, 3683, (1979)]. The DNA was transcribed. After the transfer, the nylon membrane was heat-treated at 80 ° C for 2 hours to immobilize it.
  • a probe to be used for a Southern plate was prepared as follows. First, a primer (SEQ ID NO: 45 and SEQ ID NO: 46) that specifically binds to a sequence 5 'further than the FOT8 genomic region contained in the evening vector was prepared and used in the following PCR.
  • the reaction solution was subjected to 1.75% (w / v) agarose gel electrophoresis, and a probe DNA fragment of about 230 bp was purified using a GENECLEAN Spin Kit (BI0101).
  • the obtained probe DNA solution was subjected to radiation recognition using [hi- 32 P] -dCTP 1.75 MBq and Megaprime DNA Labeling system, dCTP (manufactured by Araers am Pharmacia Biotech).
  • the hybridization was performed as follows.
  • the nylon membrane onto which the above genomic DNA digest was transferred was sealed in a roller bottle, and 15 mL of a hybridization solution (5xSSPE, 50xDenaldt's solution, 0.5% (w / v) SDS, 100 zg / mL salmon sperm DNA] and pre-hybridization at 65 ° C for 3 hours, then heat-denature the 32 P-labeled probe DNA into a bottle, and hybridize at 65 ° C. Was done.
  • a hybridization solution 5xSSPE, 50xDenaldt's solution, 0.5% (w / v) SDS, 100 zg / mL salmon sperm DNA
  • the nylon membrane was immersed in 50 mL of a primary washing solution [2 ⁇ SSC-0.1% (/ v) SDS], and washed by heating at 65 ° C. for 15 minutes. After the above washing operation was repeated twice, the nylon membrane was immersed in 50 mL of a secondary washing solution [0.2 ⁇ SSC-0.1 (w / v) SDS], and washed by heating at 65 ° C. for 15 minutes. After washing, the nylon film was exposed to X-ray film at -80 ° C and developed.
  • Fig. 3 shows the results of analysis of the genomic DNA of the WK704 strain, one of the Pukuchimycin-resistant clones, obtained from the 50-10-104 strain by the method described in (1) above, using this method. .
  • the WK704 strain the 25.5 Kb fragment derived from the wild-type FUT8 allele disappeared, and only a fragment of about 20.0 Kb specific to the homologous fragile allele (indicated by an arrow in the figure) was detected. From these results, it was confirmed that the WK704 strain was a clone in which both FUT8 alleles were disrupted.
  • Cre Recombinase expression vector ⁇ ⁇ pBS185 (manufactured by Life Technologies Inc.) was prepared as follows. Introduced. .
  • IMDM-dFBS 10 -HT after introduction of ijULg's pBS185 into 1.6 x 10 6 FU8 gene double knockout clones by electrophoresis—Chillon method [Cytoteclmology, 3, 133 (1990)] (1) The suspension was suspended in 10 mL, and further diluted 20,000-fold using the same medium. After seeding the dilutions for adherent cells 10cm dishes (Falcon ne ⁇ ) 7 sheets, were cultured in 37 ° C, 10 days in 5% C0 2 incubator, to form colonies.
  • any clone can be obtained by using a flat bottom plate for adherent cells (Asahi Techno Glass Co., Ltd.) according to a known method [Gene Targeting, Oxford University Press, (1993)].
  • a flat bottom plate for adherent cells (Asahi Techno Glass Co., Ltd.) according to a known method [Gene Targeting, Oxford University Press, (1993)].
  • each clone on the above plate was treated with trypsin, and two volumes of a freezing medium [20% DMSO, 40% fetal serum, 40% IMDM] was added to each well and suspended.
  • a freezing medium [20% DMSO, 40% fetal serum, 40% IMDM] was added to each well and suspended.
  • Half of the cell suspension in each well was seeded on a flat-bottom 96-well plate for adherent cells (manufactured by Asahi Techno Glass Co., Ltd.) to prepare a replica plate, and the other half was frozen and stored as a plate.
  • the cells were cultured at 37 ° C for one week. Positive clones from which the drug resistance gene flanked by the ⁇ sequence has been removed by the expression of Cre recombinase die in the presence of G418 and puromycin. Positive clones were selected by this method. '
  • the positive clones selected in this section (2) were diagnosed by a genomic Southern blot for the elimination of drug-resistant genes by the following procedure. 'Among the master plates stored frozen in the item (2), 96 well plate containing the above positive clones' were selected and allowed to stand 37 ° C, 10 minutes in 53 ⁇ 4C0 2 incubator. After standing, cells were seeded from a well corresponding to the above-mentioned clones into a flat-bottomed 24-well plate for adherent cells (Grainine ⁇ ).
  • the embroidery was performed as follows. First, the nylon membrane onto which the genomic DNA digest was transferred was sealed in a roller bottle, and the hybridization solution [5 XSSPE, 50 X
  • the nylon membrane was crushed with 50 mL of a primary washing solution [2 XSSC—0.1% (W / V) SDS], and heated at 65 ° C. for 15 minutes for washing. After repeating the above washing operation twice, the nylon membrane was immersed in 50 mL of a secondary washing solution [0. XSSC-0.1% (W / V) SDS], and washed by heating at 65 ° C for 15 minutes. After washing, the nylon film was exposed to X-ray film at -80 ° C and developed.
  • Fig. 4 shows the parent strain CH0 / D (M4 cells, 50-10-104 strain described in section 2 of this example, WK704 strain described in section 3 of this example, and WK704 strain from this strain.
  • the results of analyzing the genomic DNA of strain 4-5-C3, which is one of the drug-sensitive clones obtained by the method described in (2), by this method are shown.
  • FUT8 gene double knockout clones from which drug resistance genes had been removed (hereinafter referred to as FUT8 gene double knockout cells) were obtained in addition to the 4-5-C3 strain.
  • FUT8 gene double knockout cells FUT8 gene double knockout cells
  • the anti-ganglioside GM2 human CDR-grafted antibody expression vector pKANTEX796HM2Lra-28No.l described in Japanese Patent Publication No. 10-257893 was introduced into the FUT8 gene double-nodquart cells described in Example 1, paragraph 4 and the parent strain CH0 / DG44 cells. Then, stable cells producing anti-ganglioside GM2 human CDR-grafted antibody spoilage were prepared as follows.
  • a goat anti-human IgG (ffiL) antibody (American Qualex) diluted with Phosphate Buffered Saline (hereinafter referred to as PBS) (Invitrogen) to l ⁇ g / mL, and a 96-well ELISA plate (Manufactured by Grainer Co., Ltd.) at 50 L / well and left overnight at 4 ° C to adsorb.
  • PBS containing 1% BSA hereinafter referred to as 1% BSA-PBS
  • 1% BSA-PBS Wi-PBS
  • the anti-ganglioside GM2 human CDR-grafted antibody composition produced by each was purified as follows. Was.
  • the G418 500 was suspended in IMDM- dFBS (10) in a concentration of ig / mL, the 30mL in 182cm 2 flasks (Guraina manufactured one company) were seeded in 5% C0 2 incubator 37 And cultivated for several days. When the cell density became confluent, the culture supernatant was removed, the cells were washed with 25 mL of PBS, and then 30 mL of EXCELL301 medium (JRH Biosciencess) was injected.
  • the antibody obtained from the DG44 / GM2 strain was named the antibody obtained from the DG44 / GM2 anti-Ms705 / GM2 strain, and the antibody was obtained as the Ms705 / GM2 antibody.
  • Example 3 the antibody obtained from the DG44 / GM2 strain was named the antibody obtained from the DG44 / GM2 anti-Ms705 / GM2 strain, and the antibody was obtained as the Ms705 / GM2 antibody.
  • the binding activity of the DG44 / GM2 antibody and Ms705 / GM2 antibody purified in section 3 of Example 2 to ganglioside GM2 was measured as follows.
  • ganglioside GM2 57.5 ng of ganglioside GM2 (Sigma) was dissolved in a 2 mL ethanol solution containing 10 ng of phosphatidylcholine (Sigma) and 5 ng of cholesterol (Sigma). This solution 20 was dispensed into each well of a 96-well ELISA plate (Grainer), air-dried, and 1% BSA-PBS solution was added at 100 ⁇ L / well, and reacted at room temperature for 1 hour. The remaining active groups were blocked. Discard 1% BSA-PBS and remove the DG44 / GM2 antibody prepared in Section 3 of Example 2 or
  • FIG. 5 shows the binding activities of the DG44 / GM antibody and the Ms705 / GM2 antibody to ganglioside GM2. Both antibodies had equivalent binding activity to ganglioside GM2.
  • cytotoxic activity (ADCC activity) of anti-ganglioside GM2 human CDR-grafted antibody extinct antibody 'is liimlffl cytotoxic activity of DG44 / GM2 antibody and Ms705 / GM2 antibody obtained in Section 3 of Example 2 was measured as follows.
  • RPMI1640-FCS (IO ') medium Primary RPMI1640 medium containing 10 FCS (manufactured by Invitrogen Corp.)] was cultured in human lung small cell lung carcinoma cell line SBC-3 cells (JCRB0818) by centrifugation and suspension. -After washing with FCS (5) ⁇ g [RPI1640 medium containing 5% FCS (Invitrogen)],
  • FIG. 6 shows the cytotoxic activity of DG44 / GM2 antibody and Ms705 / GM2 antibody on human small cell lung cancer cell line SBC-3 cells.
  • the Ms705 / GM2 antibody showed higher ADCC activity than the DG44 / GM2 antibody at any antibody concentration, and the highest cytotoxic activity value was also high.
  • the neutral sugar / amino acid composition analysis of the DG44 / GM2 antibody and the Ms705 / GM2 antibody purified in section 3 of Example 1 was performed as follows.
  • the thread ratio of each component (fucose, galactose, mannose) when the N-acetylglycosamine ratio was set to 4 was calculated from the peak area of the neutral sugar'amino sugar component obtained in the elution profile.
  • Table 2 shows the percentage of sugar chains in which fucose is not bonded to N-acetylglucosamine at the reducing end of the sugar chain, as calculated from the monosaccharide composition ratio of each antibody. Indicated.
  • Anti-GM2 human CDR-grafted antibody «Proportion of sugar chains not bound to fucose
  • an anti-ganglioside GM2 human CDR-grafted antibody with a fucose-bound sugar chain is mixed with an MS705 / G2 antibody consisting of an anti-ganglioside GM2 human-type CDR-grafted antibody having a sugar chain to which fucose is not bound.
  • an MS705 / G2 antibody consisting of an anti-ganglioside GM2 human-type CDR-grafted antibody having a sugar chain to which fucose is not bound.
  • the ADCC activity of the anti-ganglioside GM2 human CDR-grafted antibody was measured as follows.
  • the mononuclear cell layer was separated according to the method described in item 2 (2) of Example 3 and suspended at a concentration of 4 ⁇ 10 s cells / mL using RPMI1640-FCS (5) medium. The solution was used.
  • the target cell solution prepared in the above (1) was dispensed (1 ⁇ 10 4 cells / well) into each well of a 96-well U-shaped bottom plate (Falcon). Then 50 ⁇ L the effector cell suspension prepared in (2) (2 ⁇ ⁇ ⁇ cells / Ukoru, the ratio of effector cells to target cells becomes 20: 1) was added. Further, the MS705 / GM2 antibody and the DG44 / GM2 antibody were added alone or in a mixture of the two to make a total volume of 150 zL and reacted at 37 ° C for 4 hours.
  • An anti-ganglioside GM2 human CDR-grafted antibody spider was prepared by adding the DG44 / GM2 antibody, and the ADCC activity of the antibody was measured.
  • the sugar chain to which fucose is not bound is obtained.
  • the antibody composition in which the ratio of the antibody molecule having the above is 20% or more showed remarkably higher ADCC activity than the antibody compound having the ratio of less than 20%.
  • the ADCC activity of the MS705 / GM2 antibody sample and an antibody sample obtained by adding a 9-fold amount of the DG44 / GM2 antibody to the same amount of the MS705 / GM2 antibody were measured.
  • the ADCC activity of the MS705 / GM2 antibody was significantly reduced by adding the DG44 / GM2 antibody.
  • the anti-ganglioside GM2 human CDR-grafted antibody composition having a sugar chain to which fucose is not bound according to the present invention cannot be cured by the antibody composition containing the conventional anti-ganglioside GM2 human CDR-grafted antibody molecule. Can be treated. Sequence listing free text
  • SEQ ID NO: 25-Description of Artificial Sequence Amino acid sequence of antibody light chain variable region
  • SEQ ID NO: 34-Description of artificial sequence amino acid sequence of antibody light chain variable region

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

エフェクター機能が増強された医薬品として有用な抗ガングリオシドGM2抗体組成物が求められている。ガングリオシドGM2に特異的に結合し、N-グリコシド結合複合型糖鎖をFc領域に有する抗体分子からなる組成物であって、N-グリコシド結合複合型糖鎖が該糖鎖の還元末端のN-アセチルグルコサミンにフコースが結合していない糖鎖である抗体組成物、該抗体組成物を生産する形質転換体、該抗体組成物の製造方法および該抗体組成物を含有する医薬を提供する。

Description

明細書 ガングリオシド GM2に特異的に結合する抗体組成物 技術分野
本発明は、 ガングリオシド GM2に特異的に結合し、 N-グリコシド結合複合型讓を Fc領域 に有する遺伝子組換え抗体分子からなる «物であって、 N-グリコシド結合複合型 が該 糖鎖の還元末端の N-ァセチルダルコサミンにフコースが結合していない糖鎖である抗体組成 物、 該抗体組成物を生産する形質転換体、 該抗体組成物の製造方法おょぴ該抗体組成物を含 有する医薬に関する。 背景技術
シァル酸を有する糖脂質の一種であるガングリオシドは、 動物の細胞膜を構成しており、 親水性側鎖である纖負と、 «性側鎖であるスフインゴシンおよび脂肪酸とから構成'される 分子である。 ガングリオシドの種類と発現量は、 細胞種、 種、 動物種等によって異なる。 さらに細胞が癌化する過程において、 ガングリオシドの発現が量的および質的に変ィ匕ずるこ とも知られている [Cancer Res., 45, 2405, (1985)]。
例えば、 悪性度が高いといわれている神経外 系腫瘍である神経芽細胞腫、 肺小細胞癌 およびメラノーマでは、 正常細胞にはほとんど認められないガングリオシド GD2、 GD3、 GM2 等が発現していることが報告されており [Cancer Res,, 45, 2405, (1985)、 J. Exp. Med., 155, 1133, (1982)、 J. Biol. Chem. , 257, 12752, (1982)、 Cancer Res., 47, 225, (1987)、. Cancer Res. , 47, 1098,. (1987)、 Cancer Res. , 45, 2642, (1985)、 Proc. Natl. Acad. Sci. U.S.A. 80, 5392, (1983)]、 このような腫瘍細胞に特異的なガングリオシドに対する抗体は ヒトの様々な癌の治療に有用であると考えられている。 .,
一般にヒト以外の動物の抗体をヒトに投与すると、 異物として認識され、 副作用を惹起す ることや [J. Clin. Oncol., 2, 881, (1984)、 Blood, 65, 1349, (1985)、 J. Natl. Cancer Inst., 80, 932, (1988)、 Proc. Natl. Acad. Sci. U.S.A., 82, 1242, (1985)]、 抗体の体 内からの消失を速めることにより [Blood, 65, 1349, (1985)、 J. Nucl. Med., 26, 1011, (1985)、 J. Natl. Cancer Inst., 80, 937, (1988)]、 抗体の治療効果を減じてしまうことが 知られている [J. Immunol., 135, 1530, (1985)、 Cancer Res. , 46, 6489, (1986)] 。
これらの問題点を解決するために遺伝子組換え技術を利用して、 ヒト以外の動物の抗体を ヒト型キメラ抗体、 あるいはヒト型 CDR移植抗体などのヒト化抗体にすることが試みられて いる [Nature, 321, 522, (1986)]。 ヒト化抗体は、 ヒト以外の動物の抗体に比べ、 免疫原 性が低下し [Proc. Natl. Acad. Sci. U.S.A., 86, 4220, (1989)]、 治療効果が延長するこ とが報告されている [Cancer Res., 56,—'1118, (1996)、 Immunol., 85, 668, (1995)] 。 ガングリオシド GM2に対するヒト化抗体は、 ヒトメラノ一マの治療に有用であることが示 されている [Lancet, 1, 786, (1989)] 。 ガングリオシド G 2 こ特異的に反応し、 抗体依存 性細胞傷害活性 (以下、 ADCC活性と記す) や補体依存性細胞傷害活性 (以下、 CDC活性と記 す) 等の細胞傷害活性を有するヒト化抗体としては、 ヒト IgGクラスのヒト型キメラ抗体お よびヒト型 CDR移植抗体が取得されている [TO00/61739、 WO02/31140] 。
また、 ヒト化抗体は、 遺伝子組換え技術を利用して作製するため、 様々な形態の分子とし て作製することができる。例えば、 エフェクター機能の高いヒト化抗体を作製することがで きる [Cancer Res., 56, 1118, (1996)] 。
近年、 Rituxanによる非ホジキン白血病患者の治療、 Herceptinによる乳癌患者の治療にお いて、 該抗体医薬が患者のエフェクター細胞に強い ADCC活性を惹起した場合には、 より高い 治療効果が得られている (Blood, 99. 754, 2002; J. Clin. Oncol., 21, 3940, 2003; Clin. Cancer Res.,' 10, 5650, 2004)。 .
ヒト IgGlサブクラスの抗体は、 その Fc領域および抗体レセプター (以下、 Fcァ Rと表記 する) あるいは各種補体成分を介して、 ADCC活性および CDC活性を発現する。 抗体と Fcァ R との結合においては、 抗体のヒンジ領域及ぴ C領域の第 2番目のドメイン (以下、 Cァ 2 ドメ インと表記する) に結合している糖鎖の重要性が示唆されている [Chem. Immunol . , 65, 88, (1997)] ο
抗体 IgG分子の Fc領域に結合している N-グリコシド結合複合型糖鎖の非還元末端へのガ ラクトースの付加、 および還元末端の N-ァセチルグルコサミンへのフコースの付加に関して は多様性があることが知られており [Biochemistry, 36, 130, (1997)]、 特に糖鎖の還元末 端の N-ァセチルグルコサミンへのフコースの付加により、 抗体の ADCC活性が大きく低下す ることが報告されている [漏/ 61739、 J . Biol . Chem. , 278, 3466, (2003)] 。
一般に、 医薬品として利用される抗体組成物の多くは、 遺伝子組換え技術を用いて作製さ れ、 動物細.胞、 例えばチヤィニーズハムスター卵巣組織由来の CH0細胞などを宿主細胞とし て製造されているが、 発現させた抗体組成物の糖鎖構造は宿主細胞によって異なる。 従って、 最適な薬理活性が発揮できるような,が付加されている抗体 «物を適切に調製し ¾す ることが質の高い医療を患者へ提 ftする上で欠かせない。
抗体生産細胞内の《1 ,6-フコシルトランスフ—: tラーゼ (FUT8) 、 GDP-マンノース 4,6-デヒ ドラ夕一ゼ (GMD) 、 60?-4-ケト-6-デォキシ-0-マンノース-3,5-ェピメラーゼ (FX) の活性 を低下または欠失することにより、 Fc領域を有する抗体分子からなる組成物中で、 該組成物 中に含まれる Fc領域に結合する全 N-グリコシド結合複合型糖鎖のうち、 讓還元末端の N- ァセチルグルコサミンにフコースが結合していない糖鎖の割合を増加させることができる
[W002/31140] 。 · 発明の開示
本発明の目的は、 ガングリオシド GM2に特異的に結合し、 N-グリコシド結合複合型糖鎖を Fc領域に有する遺伝子組換え抗体分子からなる 物であって、 N-グリコシド結合複合型糖 鎖が該糖鎖の還元末端の N-ァセチルグルコサミンにフコースが結合していない糖鎖である抗 体組成物、 該抗体組成物を生産する形質転換体、 該抗体組成物の製造方法および該抗体組成 物を含有する医薬等を«することにある。本発明の抗ガングリオシド GM2抗体 «物は高 い細胞傷害活性を有するため、 ガングリオシド GM2を発現した細胞を患者の体内から減少さ せる治療に有用である。高い細胞傷害活性を有する抗体を治療に用いることにより、 化学療 法、 性同位元素標識体などと併用が不要となることから患者への副作用を軽減させるこ とが期待される。 また、 患者への治療薬の投与量を減少させることで患者への負担の軽減な どが期待される。 課題を解決するための手段
本発明は、 以下の (1 ) 〜 (4 8 ) に関する。 -
( 1 ) ガングリオシド GM2に特異的に結合し、 N-グリコシド結合複合型醒を Fc領域に有 する遺伝子 «え抗体分子からなる 物であつて、 N-グリコシド結合複合型 が該糖鎖 の還元末端の N-ァセチルグルコサミンにフコースが結合していなレヽ糖鎖である抗体組成物。
( 2 ) N-グリコシド結合複合型纖が、 該糖鎖の還元末端の N -ァセチルダルコサミンの 6 位にフコースの 1位がひ結合していない βである、 ( 1 ) に記載の抗体 物。
(3) ガングリオシド GM2発現細胞に特異的に結合する (1) または (2) に記載の抗体 ' 繊物 ο
( 4 ) ガングリオシド GM2発現細胞に対し細胞傷害活性を示す ( 1 ) 〜 ( 3 ) のいずれか 1項に記載の抗体 物。
(5) ガングリオシド GM2発現細胞に対し、 非ヒト動物由来ハイプリドーマが生産するモ ノクローナル抗体よりも高い細胞隼害活性を示す (1) 〜 (4) のいずれか 1項に記載の抗 体繊物 ο
(6) 細胞傷害活性が抗体依存性細胞傷害 (ADCC) 活性である (4) または (5) に記載 の抗体誠物。
(7) 細胞傷害活性が補体依存性細胞傷害 (CDC) 活性である (4) または (5) 記載の 抗体糸誠物。
(8) それそれ配列番号 14、 15および 16で示されるアミノ酸配列からなる抗体分子重鎖 (Η鎖)可変領域 (V領域) の相補性決定領域 (CDR) 1、 CDR2、 CDR3を含む、 (1) 〜 (7) のいずれか 1項に記載の抗体組成物。 ,
(9) それぞれ配列番号 17、 18および 19で示されるアミノ酸配列からなる抗体分子軽鎖 (L鎖)可変領域 (V領域) の相補性決定領域 (CDR) 1、 CDR2、 CDR3を含む、 (1) 〜 (7) のいずれか.1項に記載の抗体組成物。
(10) それそれ配列番号 14、 15および 16で示されるアミノ酸配列からなる抗体分子重 鎖 (H鎖) 可変領域 (V領域) の相補性 領域 (CDR) 1、 CDR2、 CDR3、 およびそれそれ配列 番号 17、 18および 19で示されるァミノ酸配列からなる抗体軽鎖 (L鎖) V領域の相補性決定 領域 (CDR) 1、 CDR2、 CDR3を含む、 (1) 〜 (9) のいずれか 1項に記載の抗体組成物。
(1 1) 遺伝子應え抗体がヒト型キメラ抗体またはヒト型 CDR移植抗体である ( 1 ) 〜 (10) のいずれか 1項に記載の抗体組成物。
(12) ヒト型キメラ抗体がガングリオシド GM2に特異的に結合するモノクローナル抗体 の重鎖 (H鎖)可変領域 (V領域) および軽鎖, (L鎖) V領域の相補性決定領域 (CDR)を含む、 (11) に記載の抗体糸 M物。 ' ·
(13) 抗体分子の重鎖 (H鎖) 可変領域 (V領域) が、 配列番号 20で示されるアミノ酸 配列を含む (12) に記載の抗体糸 物。
(14) 抗体分子の軽鎖 (L鎖) 可変領域 (V領域) が、 配列番号 21で示されるアミノ酸 配列を含む (12) に記載の抗体組成物。
(15) 抗体分子の重鎖 (H鎖) 可変領域 (V領域) が、 配列番号 20で示されるアミノ酸 配列を含み、 かつ、 抗体分子の軽鎖(L鎖) V領域が、 配列番号 21で示されるアミノ酸配列 を含む (12)〜(14) のいずれか 1項に記載のヒト型キメラ抗体組成物。
(16) ヒト型 CDR移植抗体がガングリオシド GM2に特異的に結合するモノクローナル抗 体の重鎖 (H鎖)可変領域 (V領域) および軽鎖 (L鎖) V領域の相補性決定領域 (CDR)を含む、
(11) に記載の抗体糸滅物。 ,
(17) ガングリオシド GM2に特異的に結合するモノク口一ナル抗体の重鎖 (H鎖)可変 領域 (V領域) および軽鎖 (L鎖) V領域の相補性決定領域 (CDR) とヒト抗体の H鎖 V領域お よび L鎖 V領域のフレームワーク領域 (FR) を含む、 (16) に記載の抗体糸滅物。
( 18) ガングリオシド GM2に特異的に結合するモノクローナル抗体の重鎖 (H鎖)可変 領域 (V領域) および軽鎖 (L鎖) V領域の相補性決定領域 (CDR) とヒト抗 4の H鎖 V領域お よび L鎖 V領域のフレームワーク領域 (FR)、 ならびにヒト抗体の H鎖定常領域 (C領域) お よび L鎖 C領域を含む、 ( 16 ) または ( 17 ) に記載の抗体 物。
(19) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 22で示されるアミノ酸配列、 または配列番号 22で示されるアミノ酸配列のうち、 38番目の Arg、 40番目の Ala、 43番目 の Ginおよび 44番目の Glyのうち少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換 されたァミノ酸配列を含む、 ,( 16 )〜 ( 18 ) のいずれか 1項に記載の抗体糸賊物。
(20) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 23で示されるァミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目 の Serおよび 98番目の Argのうち少なくとも 1つのアミノ酸残基が他のァミノ酸残基に置換 されこァミノ酸配列を含む、 ( 16 )〜( 18 ) のいずれか 1項に記載の抗体 I滅物。
(21) 抗体分子の軽鎖 (L鎖)可変領域 (V領域)が、 配列番号 2 で示されるアミノ酸配列、 または配列番号 24で示されるアミノ酸配列のうち、 15番目の Val、 35番目の Ty]、 46番目 の Leu、 59番目の Ser、 69番目の Asp、 70番目の Phe、 71番目の Thr、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのアミノ酸 «が他のアミノ酸残基に置換された ァミノ酸配列を含む、 ( 1 6 )〜 ( 1 8 ) のいずれか 1項に記載の抗体糸誠物。
( 2 2 ) 抗体分子の軽鎖 (L鎖)可変領域 (V領域)が、 配列番号 25で示されるアミノ酸配列、 または配列番号 25で示されるアミノ酸配列のうち、 4番目の Met、 11番目の Leu、 15番目の Val、 35番目の Tyr、 42番目の Ala、 4'6番目の Leu、 69番目の Asp、 70番目の Phe、 71番目の-' Thrs 77番目の Leuおよび 103番目の Valから選ばれる少なくとも 1つのアミノ酸残基が他の アミノ酸残基に置換されたアミノ酸配列を含む、 (1 6 )〜 (1 8 ) のいずれか 1項に記載 の抗体難物。
( 2 3 ) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 22で示されるァミノ酸配列、 または配列番号 22で示されるアミノ酸配列のうち、 38番目の Arg、 40番目の Ala、 43番目 の Ginおよび 44番目の Glyから選ばれる少なくとも 1つのアミノ酸残基が他のァミノ酸残基 に置換されたアミノ酸配列を含み、 かつ、 抗体 の軽鎖 (L鎖) V領域が、 配列番号 24で 示されるアミノ酸配列、 または配列番号 24で示されるアミノ酸配列のうち、 15番目の Val、 35番目の Tyr、 46番目の Leu、 59,番目の Ser、 69番目の Asp、 70番目の Phe、 71番目の Thr、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのアミノ酸残基が他のァミ ノ酸残基に讓されたアミノ酸配列を含む、 (1 6 )〜(1 9 ) または (2 1 ) に記載の抗 体繊物
( 2 4 ) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 23で示されるァミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目 の Serおよび 98番目の Ai、gから選ばれる少なく'とも 1つのアミノ酸残基が他のァミノ酸残基 に置換されたアミノ酸配列を含み、 かつ、 抗体分子の軽鎖 (L鎖) V領域が、 配列番号 24で 示されるアミノ酸配列、 または配列番号 24で示されるアミノ酸配列のうち、 15番目の Val、 35番目の Tyr、 46番目の Leu、 59番目の Ser、 69番目の Asp、 70番目の Phe、 71番目の Tlir、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのアミノ酸残基が他のァミ ノ酸残基に置換されたアミノ酸配列を含む、 (1 6 )〜(1 8 )、 ( 2 0 ) または (2 1 ) に記載の抗体 物。 . (25) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 23で示されるアミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目 の Serおよび 98番目の Argから選ばれる少なくとも 1つのアミノ酸残基が他のァミノ酸残基 に置換されたアミノ酸配列を含み、 かつ、 抗体分子の軽鎖 (L鎖) V領域が、 配列番号 25で 示されるアミノ酸配列、 または配列番号 25で示されるアミノ酸配列のうち、 4番目の Met、 11番目の Leu、 15番目の Val、 35番目の Tyr、 42番目の Ala、 46番目の Leu、 69番目の Asp、 70番目の Phe、 71番目の Thr、 77番目の' Leuおよび 103番目の Valから選ばれる少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列 ¾含む、 (16) 〜 (1 8)、 (20) または (22) のいずれか 1項に記載の抗体 物。
(26) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 それそれ配列番号 22、 23、 26、 27、 28、 29および 30で示されるアミノ酸配列から選ばれるアミノ酸配列を含む、 (16)〜 (2 0) 、 (23) 〜(25) のいずれか 1項に記載の抗体組成物。
(27) 抗体分子の軽鎖 (L鎖)可変 域 (V領域)が、 それそれ配列番号 24、 25、 31、 32、 33、 3 および 35で示されるアミノ酸配列から選ばれるアミノ酸配列を含む (16) 〜 (18)、 (21)〜 (25) のいずれか 1項に記載の抗体組成物。
(28) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 22、 23、 26、 27、 28、 29、 30 で示されるから選ばれるアミノ酸配列から選ばれるアミノ酸配列を含み、 抗体分子の軽鎖 (L 鎖) V領域が、 配列番号 24、 25、 31、 32、 33、 34および 35で示されるアミノ酸配列から選ば れる少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列から選ば れるアミノ酸配列を含む (16)〜 (27) のいずれ'か 1項に記載の抗体 物。
(29) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 26で示されるアミノ酸配列 を含み、 かつ、 抗体分子の軽鎖 (L鎖) V領域が配列番号 31または 32で示されるアミノ酸配列 を含む (16) 〜(19)、 (21)、 (23)、 (26)〜(28) のいずれか 1項に記 載の抗体 物。
(30) 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 22で示されるアミノ酸配列 を含み、 かつ、 抗体分子の軽鎖 (L鎖) V領域が配列番号 32または 35で示されるアミノ酸配列 を含む (16)〜 (19)、 (21) 〜 (23)、 (26)〜(28) のいずれか 1項に記 載の抗体組成物。 ' (31) ガングリオシド GM2に特異的に結合する抗体分子をコードする DNAを宿主細胞に 導入して得られる、 (1) 〜 (30) のいずれか 1項に記載の抗体 物を生産する形貲転 換体 o
(32) 宿主細胞が、 細胞内糖ヌクレオチド GDP-フコ一スの合成に関与する酵素、 または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1.位が ひ結合する 修飾に関与する酵素を失活するようにゲノムが改変された細胞である、 ( 3 1) に記載の形質転換体。 -'
(33) 宿主細胞が、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、 または N-グリコシド結合複合型糖鎖還元未端の N-ァセチルグルコサミンの 6位にフコースの 1位が ひ結合する 修飾に関与する酵素のゲノム上の対立遺伝子のすべてがノヅグァゥトされた 細胞である、 (3 1) に記載の形質転換体。
(34) 細胞内糖ヌクレオチド GDP—フコースの合成に関与する酵素が、 GDP-マンノース 4, 6-デヒドラターゼ (GMD) または. GDP- 4-ケト -6-デォキシ -D-マンノース- 3, 5-ェピメラーゼ
(Fx) から選ばれる酵素である、 (32) または (33) に記載の形質転換体。
(35) GDP-マンノース 4,6-デヒドラ夕ーゼが、 以下の(a)および (b)からなる群から選ば れる DNAがコードする蛋白質である、 (34).に記載の形質転換体。
(a)配列番号 1で表される塩基配列からなる DNA;
(b) 配列番号 1で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつ GDP-マンノース 4, 6-デヒドラ夕ーゼ活性を有する蛋白質をコードする DNA。
(36) GDP-マンノース 4,6-デヒドラ夕ーゼが、 以下の (a)〜(c) からなる群から選ばれ る蛋白質である、 (34) に記載の形質転換体。
(a) 配列番号 2で表されるアミノ酸配列からなる蛋白質;
(b) 配列番号 2で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 挿 入および'/または付加されたアミノ酸配列からなり、 かつ GDP-マンノース 4,6-デヒドラ夕 ーゼ活性を有する蛋白質;
(c)配列番号 2で表されるァミノ酸配列と 80%以上の相同性を有するァミノ酸配列から なり、 かつ GDP-マンノース 4,6-デヒドラターゼ活性を有する蛋白質。
(37) GDP-4-ケト- 6-デォキシ -D-マンノース- 3,5-ェピメラーゼが、 以下の (a)および (b)からなる群から選ばれる DNAがコードする蛋白質である、 (3 4 ) に記載の形質転換体。
(a)配列番号 3で表される塩基配列からなる DNA;
(b) 配列番号 3で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつ GDP- 4-ケト -6-デォキシ- D-マンノース- 3 , 5-ェピメラ一ゼ活'注を有する蛋白質 をコードする DNA。■
( 3 8 ) GDP- 4-ケト- 6-デォキシ- D-マンノース- 3 , 5-ェピメラーゼが、 以下の (a)〜(c) からなる群から選ばれる蛋白質である、 (3 4 )' に記載の形質転換体。
(a)配列番号 4で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 4で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 挿 入およびズまたは付加されたアミノ酸配列からなり、 かつ GDP- 4-ケト- 6-デォキシ- D-マンノ —ス -3, 5-ェピメラーゼ活性を有する蛋白質;
(c)配列番号 4で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列から なり、 かつ GDP-4-ケト- 6-デォキシ- D-マンノース- 3 , 5-ェピメラ一ゼ活' f生を有する蛋白質。
( 3 9 ) N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコ ースの 1位が α結合する糖鎖修飾に関与する酵素がひ 1,6-フコシルトランスフェラ一ゼであ る (3 2 ) または (3 3 ) に 載の形質転換体。
( 4 0 ) ひ 1 , 6-フコシルトランスフェラーゼが、 以下の (a)〜( からなる群から選ばれ る DNAがコードする蛋白質である、 (3 9 ) に記載の形質転換体。
(a)配列番号 5で表される塩基配列 ら ¾る DNA;
(b)配列番号 6で表される塩基配列からなる DNA ;
(c)配列番号 5で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつひ 1 , 6-フコシルトランスフヱラーゼ活性を有する蛋白質をコードする DNA;
(d) 配列番号 6で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつ α 1 , 6-フコシルトランスフヱラーゼ活性を有する蛋白質をコードする DM。
( 4 1 ) cd , 6-フコシルトランスフェラーゼが、 以下の (a)〜(f )からなる群から選ばれる 蛋白質である、 (3 9 ) に記載の形質転換体。 -
(a)配列番号 7で表されるアミノ酸配列からなる蛋白質;
(b) 配列番号 8で表されるアミノ酸配列からなる蛋白質; (c) 配列番号 7で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 挿 入および/または付カロされたァミノ酸配列からなり、 かつ α 1 , 6-フコシルトランスフェラー ゼ活性を有する蛋白質;
(d)配列番号 8で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 揷 入および/または付加されたァミノ酸配列からなり、 かつひ 1 , 6-フコシルトランスフェラー ゼ活性を有する蛋白質;
(e)配列番号 7で表されるアミノ酸配列と S0%以上の相同性を有するアミノ酸配列から なり、 'かつひ 1,6-フコシルトランスフェラーゼ活性を有する蛋白質;
(f)配列番号 8で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列から なり、 かつ αΐ, 6-フコシルトランスフェラーゼ活性を有する蛋白質。
(42) 形質転換体が FERM BP- 8470.である ( 41 ) に記載の形質転換体。
(43) 宿主細胞が、 下記の (a)~(i)からなる群から選ばれる細胞である (31) 〜 (4 2 ) のいずれか 1項に記載の形質転換体。
(a) チャイニーズノヽムスター卵巣組織由来 CH0細胞; '
(b) ラヅトミエローマ細胞株 YB2/3HL.P2.G11.16Ag.20細胞;
(c) マウスミエローマ細胞株 NS0細胞;
(d) マウスミエローマ細胞株 SP2/0- Agl4細胞;
(e) シリアンハムス夕一腎臓組織由来 BHK細胞; つ
(f)抗体を産生するハイプリドーマ細胞;
(g) ヒト白血病細胞株ナマルバ細胞; '.
(h)胚隱細胞;
(i) 受精卵細胞。
(44) (31) 〜 (43) のいずれか 1項に記載の形質転換体を培地に培養し、 培養物 中に抗体 物を生成蓄積させ、 該抗体 物を採取し、 精製する、 (1) 〜 (30) のい ずれか 1項に記載の抗体組成物の製造方法。
(45) (44) に記載の製造方法により得られる、 (1) 〜 (32) のいずれか 1項に 記載の抗体糸誠物。 ' /
(46) (1) 〜 (30) および (45) のいずれか 1項に記載の抗体組成物を有効成分 として含有する医薬。
( 4 7 ) ( 1 ) ~ ( 3 0 ) および (4 5 ) のいずれか 1項に記載の抗体組成物を有効成分 として含有するガングリオシド GM2関連疾患の治療薬。
( 4 8 ) ガングリオシド GM2関連疾患が癌である (4 7 ) に記載の治療薬。
以下、 本発明を詳細に説明する。 本願は、 2003年 10月 9日に出願された日本国特許出願 2003-350168号および 2004年 4月 26日に出願された日本国特許出願 2004-129431号の優先権 を主張するものであり、 当該特許出願め明細書及び図面に記載される内容を包含する。 発明を実施するための最良の形態
本発明のガングリオシド GM2に特異的に結合し、 N-グリコシド結合複合型糖鎖を Fc領域に 有する遺伝子組換え抗体分子からなる抗体繊物であつて、 グリコシド結合複合型糖鎖が 該糖鎖の還元末端の N-ァセチルグルコサミンにフコースが結合していなレヽ糖鎖である抗体組 成物としては、 該 N-グリコシド結合複合型糖鎖が、 該糖鎖還元末端の N-ァセチルグルコサミ ンの 6位にフコースの 1位がひ結合していない 貞である抗体 «物があげられる。 ' 抗体分子には Fc領域があり、 それらの領域に'は N-グリコシド結合糖鎖が結合する。従つ て、 抗体 1分子あたり 2本の が結合している。
N-グリコシド結合糖鎖としては、 コア構造の非還元末端側にガラクトース -N-ァセチルグルコ サミン (以下、 GaHHcNAcと表記する) の側鎖を並行して, 1ないしは複数本有し、 更に Gaト GlcNAcの非還元末端側にシアル酸、 ノヽ 'ィセクティングの N-ァセチルグルコサミンなどを有す るコンプレックス型 (複合型)糖鎖をあげることができる。
本発明において、 N-ダルコシド結合複合型糖鎖としては、 下記化学式 1で示される。
化学式 1
土 FucO 土 GaljS l 4GlcNAcyS l 2Mana 1 、 |
6 6 土 GlcNAc 1 4Man 1 4GlcNAc β 1 + 4GlcNAc
3
± Gal 1 4GlcNAc β 1 2 anな 1
本発明において、 フコースが結合していない ISとしては、 上記で示された化学式中、 還 元末端側の N-ァセチルグルコサミンにフコースが結合されていないものであればよく、 非還 元末端の糖鎖の構造はいかなるものでもよい。 ' したがって、 本発明の抗体 IB ^物としては、 上記の,構造を有していれば、 単一の糖鎖 構造を有する抗体分子から構成されていてもよいし、 複数の異なる糖鎖構造を有する抗体分 子から構成されていてもよい。
本発明において、 糖鎖還元末端の N-ァセチルダルコサミンにフコースが結合していないと は、 実質的にフコースが結合していないことをいう。 実質的にフコースが結合しでいない抗 体組成物とは、 具体的には、 後述の 4に記載の糖鎖分析において、 フコースが実質的に検出 できない程度の抗体組成物である場合をいう。実質的に検出できない程度とは、 測定の検出 限界以下であることを意味する。 糖鎖還元末端の N-ァセチルグルコサミンにフコースが結合 していない本発明の抗体組成物は、 高い ADCC活性を有する。
N-グリコシド結合複合型糖鎖を Fc領域に有する抗体分子からなる «物中に含まれる、 糖 鎖還元末端の N-ァセチルグルコサミンにフコースが結合していない糖鎖を有する抗体分子の 割合は、 抗体分子からヒドラジン分解や酵素消化などの公知の方法 [生物化学実験法 23H@ 蛋白質糖鎖研究法 (学会出版センター)高橋禮子編 (1989) ]を用い、 纖を遊離させ、 遊離 させた糖鎖を蛍光標識又は同位元素標識し、 標識した糖鎖をクロマトグラフィー法にて分離 することによって ^することができる。 また、 遊離させた US貴を HPAED- PAD法 [J. Liq. Chromatogr. , 6 , 1577 (1983)] によって分析することで決定することができる。
本発明の抗体 物としては、 ガングリオシド GM2発現細胞に対し、 細胞傷害活性を有す る抗体繊物が好まじい。
ガングリオシド GM2発現細胞としては、 ガングリオシド G 2が発現している細胞であれば いかなるものでもよい。
細胞傷害活性としては、 補体依存性細胞傷害活性 (以下、 CDC活性と記す)あるいは抗体依 存性細胞傷害活性 (以下、 ADCC活性と記す)などがあげられる。
本発明のガングリオシド GM2発現細胞に対し細胞傷害活性を有する抗体組成物は、 該抗体 物の有する細胞傷害活性によりガングリオシド GM2発現細胞を傷害することにより、 該 細胞が閧与する肺小細胞癌、 メラノーア、 神経芽細胞腫などの疾患を治療できる。
本発明の抗体繊物は、 ヒト型キメラ抗体繊物、 ヒト型 CDR移植抗体繊物およびヒト 抗体 物、 ならびにそれらの抗体断片糸 物を包含する。
ヒト型キメラ抗体は、 ヒト以外の動物の抗体の VHおよび V¾とヒト抗体の CHおよび CLと からなる抗体をいう。.ヒト以外の動物としては、 マウス、 ラヅ ト、 ハムスター、 ラビヅ ト等、 ハイプリドーマを作製することが可能であれば、 いかなるものも用いることができる。
本発明のヒト型キメラ抗体組成物は、 ガングリオシド (M2に特異的に反応するヒト以外の 動物の抗体の VHおよび VLをコードする cDNAを取得し、 ヒト抗体の CHおよび CLをコードす る遺伝子を有する動物細胞用発現ベクターにそれそれ挿入してヒト型キメラ抗体発現べク夕 —を構築し、 動物細胞へ導入することにより発現させ、 製造することができる。
本発明のヒト型キメラ抗体組成物の製造に用いるヒト以外の動物の抗体としては、 具体的 には、 特鬨平 4-311385に記載のマウスモノクローナル抗体 M690、 マウスモノクローナル抗 体 KM750およびマウスモノクローナル抗体 KM796、 Cancer Res . , 46, 4116 , (1986)に記載の モノクローナル抗体 MoAb5-3、 Cancer Res. , 48. 6154, (1988)に記載のモノクローナル抗体 ■1-16、 モノクローナル抗体皿 2-34、 J. Biol . C era. , 264, 12122 , (1989)に記載のモノク 口一ナル抗体 DMAb- 1などがあげられる。 また、 ヒト抗体ではあるが、 IgMクラスである Proc. Natl . Acad. Sci . U.S .A, 79, 7629, (1982)に記載のモノクローナル抗体なども本発明のヒト 型キメラ抗体組成物の製造に用いられる。 本発明において、 ヒト型キメラ抗体の CHとしては、 ヒトイムノグロプリン (以下、 Mgと 表記する) に Mすればいかなるものでもよいが、 MgGクラスのものが好適であり、 さらに hlgGクラスに属する gGl、 hIgG2、 MgG3、 MgG4といったサブクラスのいずれも用いること ができる。 また、 ヒト型キメラ抗体の CLとしては、 hlgに属すればいずれのものでもよく、 クラスあるいはえクラスのものを用いることができる。
本発明のガングリオシド GM2に特異的に結合するヒト型キメラ抗体組成物としては、 それ それ配列番号 14、' 15および' 16で示されるアミノ酸配列からなる VHの CDR1、 CDR2、—CDR3お よび/またはそれそれ配列番号 17、 18および 19で示されるアミノ酸配列からなる VLの CDR1、 CDR2S CDR3、 を含む抗ガングリオシド GM2キメラ抗体組成物、 抗体の VHが配列番号 20 で示されるアミノ酸配列および Zまたは VLが配列番号 1で示されるアミノ酸配列を含む抗 ガングリオシド GM2キメラ抗体組成物、.抗体の VHが配列番号 20で示されるァミノ酸配列お よびヒト抗体の CHが MgGlサブクラスのアミノ酸配列からなり、 抗体の VLが配列番号 21で 示されるァミノ酸配列およぴヒト抗体の CLが クラスのァミノ酸配列からなる抗ガングリオ シド GM2キメラ抗体組成物などがあげられる。 ' 本発明のガングリオシド GM2に特異的に結合するヒト型キヌラ抗体組成物が有するァミノ 酸配列としては、 具体的には、 WO00/61739に記載の KM966が有するアミノ酸配列などがあげ られる。
七ト型 CDR移植抗体は、 ヒト以外の動物の抗体の VHおよび の CDRをヒト抗体の VHおよ び VLの適切な位置に移植した抗体を意味する。 .
本発明のヒト型 CDR移植抗体, «物は、 ガングリオシド GM2に特異的に反応するヒト以外 の動物の抗体の VHおよび VLの CDRを任意のヒト抗体の VHおよび VLの FRに移植した V領域 をコードする cDNAを構築し、 ヒト抗体の H鎖 C領域 (以下、 CHと表記する)および L鎖 C領 域 (以下、 CLと表記する) をコードする DNAを有する動物細胞用発現ベクターにそれぞれ揷 入してヒト型 CDR移植抗体発現ベクターを構築し、 該発現べクタ一を動物細胞へ導入するこ とにより発現させ、 製造することができる。 '
本発明のヒト型 CDR移植抗体組成物の製造に用いるヒト以外の動物の抗体としては、 具体 的には、 特閧平 4-311385に記載のマウスモノクローナル抗体 K 690、 マウスモノクローナル 抗体 KM750およびマウスモノクローナル抗体 KM796、 Cancer Res. , 46 » 4116, (1986)に記載 のモノクローナル抗体 MoAb5-3、 Cancer Res . , 48. 6154, (1988)に記載のモククローナル抗 体 MK1- 16、 モノクローナル抗体 M 2- 34、 J. Biol . C ein. , 26i, 12122 , (1989)に記載のモノ クロ一ナル抗体 DMAb-lなどがあげられる。 また、 ヒト抗体ではあるが、 IgMクラスである Pro Natl . Acad. Sci . U. S.A. 79, 7629 , (1982 )に記載のモノクローナル抗体なども本発明 のヒト型 CDR移植抗体糸! ^物の製造に用いられる。
ヒト抗体の Hおよび VLの FRのアミノ酸配列としては、 ヒト抗体由来のアミノ酸配列であ れば、 いかなるものでも用いる—ことができる。例えば、 Protein Data Bankなどのデーダベー スに登録されているヒト抗体の VHおよび VLの FRのアミノ酸配列、 またはヒト抗体の お よび VLの FRの各サブグループの共通アミノ酸配列 (Sequences of Proteins of
Immunological Interest, US Dept. Health and Human Services , 1991 ) などがあげられる。 本発明において、 ヒト型 CDR移植抗体の CHとしては、 ヒトイムノグロブリン (以下、 hlg ' と表記する) に属すればいかなるものでもよいが、 MgGクラスのものが好適であり、 さらに gGクラスに属する hIgGl、 WgG2、 MgG3、 MgG4といったサブクラスのいずれも用いること ができる。 また、 ヒト型 CDR移植抗体の CLとしては、 hlgに属すればいずれのものセもよく、 クラスあるいはえクラスのものを用いることができる。
本発明のヒト型 CDR移植抗体組成物としては、 ガングリォシド GM2に特異的に反応するヒ ト以外の動物の抗体の VHおよび VLの CDRを含むヒト型 CDR移植抗体組成物があげられるが、 好ましくは、 それぞれ配列番号 14、 15、 16で示されるァ-ミソ酸配列からなる抗体 VHの CDR1、 CDR2、 CDR3および'/またはそれぞれ配列番号 17、 18、 19で示されるアミノ酸配列からなる VLの CDR1、 CDR2、 .CDR3を含むヒト型 CDR移植抗体 物または該抗体断片組成物などがあげ られる。
これらのヒト型 CDR移植抗体糸 物なかでも、 抗体の VHが配列番号 22で示される'ァミノ 酸配列、 または配列番号 22で示されるアミノ酸配列のうち、 38番目の Arg、 40番目の Ala、 43番目の Ginおよび 44番目の Glyのうち少なくとも 1つのアミノ酸残基が他のァミノ酸残 基に置換されたアミノ酸配列を含むヒト型 CDR移植抗体組成物、 抗体の VHが配列番号 23で 示されるアミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目の Serおよび 98番目の Argのうち少なくとも 1つのアミノ酸残基が他 のァミノ酸残基に置換されたァミノ酸配列を含むヒト型 CDR移植抗体 物、 抗体の VLが配 列番号 24で示されるアミノ酸配列、 または配列番号 24で示されるアミノ酸配列のうち、 15 番目の Val、 35番目の Tyr、 46番目の Leu、 59番目の Ser、 69番目の Asp、 70番目の Phe、 71 番目の ¾r、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのアミノ酸残基 が他のアミノ酸残基に置換されたアミノ酸配列を含むヒト型 CDR移植抗体糸滅物、 抗体の VL が配列番号 25で示されるアミノ酸配列、 または配列番号 25で示されるアミノ酸配列のうち、 4番目の Met;、 11番目の Leu、 15番目の Val、 35番目の Tyr、 42番目の Ala、 46番目の Leu、 69番目の Asp、 70番目の Phe、 71番目の Thr、 77番目の Leuおよび 103番目の Valから選ば れる少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列を含むヒ ト型 CDR移植抗体 物が好ましく、 抗体の VHが配列番号 22で示されるァミノ酸配列、 ま たは配列番号 22で示されるアミノ酸配列のうち、 38番目の Arg、 40番目の Ala、 43番目の Ginおよび 44番目の Glyのうち少なくとも 1つのァミノ酸残基が他のァミノ酸残基に置換さ れたアミノ酸配列を含み、 かつ、 抗体の VLが配列番号 24で示されるアミノ酸配列、 または 配列番号 24で示されるアミノ酸配列のうち、 15番目の Val、 35番目の Tyr、 46番目の Leu、 59番目の Ser、 69番目の Asp、 70番目の Phe、 71番目の Thr、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのアミノ酸残基が他のァミノ酸残基に置換されたァミノ酸 配列を含むヒト型 CDR移植抗体糸賊物、 抗体の VHが配列番号 23で示されるアミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目 の Serおよび 98番目の Argのうち少なくとも 1つのアミス酸残基が他のアミノ酸残基に置換 されたアミノ酸配列を含み、 かつ、 抗体の VLが配列番号 24で示されるアミノ酸配列、 また は配列番号 24で示されるアミノ酸配列のうち、 15番目の Val、 35番目の Tyr、 46番目の Leu、 59番目の Ser、 69番目の Asp、 70番目の Phe、 71番目の Thr、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換されたァミノ酸 配列を含むヒト型 CDR移植抗体糸滅物、 抗体の VHが配列番号 23で示されるァミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目 の Serおよび 98番目の Argのうち少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換 されたアミノ酸配列を含み、 かつ、 抗体の VLが配列番号 25で示されるアミノ酸配列、 また は配列番号 25で示されるアミノ酸配列のうち、 4番目の Met、 11番目の Leu、 15番目の Val、 35番目の Tyr、 42番目の Ala、 46番目の Leu、 69番目の Asp、 70番目の Phe、 71番目の Thr、 77番目の Leuおよび 103番目の Val ら選ばれる少なくとも 1つのアミノ酸残基が他のァミ ノ酸残基に置換されたアミノ酸配列を含むヒト型 CDR移植抗体 I誠物、 がより好ましい。 具体的には、 抗体の VHがそれそれ配列番号 22、 23、 26、 27、 28、 29、 30で示されるアミ ノ酸配列から選ばれる 1つのァミノ酸配列を含むヒト型 CDR移植抗体、 VLがそれそれ配列番 号 24、 25、 31、 32、 33、 34、 35で示されるアミノ酸配列から選ばれるアミノ酸配列を含むヒ ト型 CDR移植抗体組成物、 抗体の VHがそれそれ配列番号 22、 23、 26、 27、 28、 29、 30で示 されるアミノ酸配列から選ばれる 1'つのアミノ酸配列を含み、 かつ、 VLがそれそれ配列番号 24、 25、 31、 3 33、 34、 35で示されるアミノ酸配列から選ばれるアミノ酸配列を含むヒト 型 CDR移植抗体組成物、 より具体的には、 VHが配列番号 26で示されるアミノ酸配列を含み、 かつ、 VLが配列番号 31または 32で示されるアミノ酸配列を含むヒト型 CDR移植抗体 «物、 VHが配列番号 22で示されるアミノ酸配列を含み、 かつ、 VLが配列番号 32または 35で示さ れるアミノ酸配列を含むヒト型 CDR移植抗体組成物があげられる。
本発明のヒト型 CDR移植抗伴 «物としては、 VHが配列番号 26で示されるアミノ酸配列 を含み、 かつ、 VLが配列番号 31で示されるアミノ酸配列を含むヒト型 CDR移植抗体賊物、 VHが配列番号 22で示されるァミノ酸配列を含み、 かつ、 VLが配列番号 32で示されるァミノ 酸配列を含むヒト型 CDR移植抗体糸滅物が最も好ましい。
本発明のヒト型 CDR移植抗体組成物が有するァミノ酸配列の具体例としては、 それそれ特 鬨平 10-257893に記載の形質転換株 KM8966 (FERM BP- 510-5) が生産する KM8966、 形質転換株 KM8967 (FERM BP-5106) が生産する KM8967、 形質転換株 KM8969 (FERM BP-5527) が生産する KM8969、 形質転 Mtt KM8970 (FERM BP- 5528) が生産する K 8970が有するアミノ酸配列など があげられる。
これらのアミノ酸配列において、 1以上のアミノ酸が欠失、 付加、 置換または挿入され、 かつガングリオシド GM2と特異的に結合する抗体または抗体断片も本発明の抗体組成物に包 含される。
本発明の抗体繊物の ミノ酸配列において欠失、 置換、 挿入および Zまたは付加される アミノ酸の数は 1個以上でありその数は特に限定されないが、 モレキュラー.クローニング 第 2版、 カレント 'プロトコールズ rイン 'モレキュラー ·バイオロジー、 Nucleic Acids Research, 10, 6487 (1982 )、 Proc . Natl . Acad. Sci . , USA, 79 , 6409 (1982)、 Gene, 34, 315 (1985)、 Nucleic Acids Research, 13 , 4431 (1985)、 Proc. Natl . Acad. Sci USA, 82, 488 (1985)等に記載の部位特異的変異導入法等の周知の接術により、 欠失、 置換もしくは付加で きる程度の数であり、 例えば、 1〜数十個、 好ましくは 1〜 2 0個、 より好ましくは 1〜 1 0個、 さらに好ましくは 1〜5個である。
本発明の抗体 物のアミノ酸配列において 1以上のアミノ酸残基が欠失、 置換、 揷入ま たは付加されたとは、 同一配列中の任意かつ 1もしくは複数のァミノ酸配列中において、 1 または複数のアミノ酸残基の欠失、 置換、 揷入または付加があることを意味し、—欠失、 置換、 挿入または付加が同時に生じてもよく、 置換、 挿入または付加されるアミノ酸残基は天然型 と非天然型とを問わない。 天然型アミノ酸残基としては、 L-ァラニン、 L-ァスパラギン、 L- ァスパラギン酸、 L -グルタミン、 L -グルタミン酸、 グリシン、 L-ヒスチジン、 L-イソ口イシ ン、 L-ロイシン、 L-リジン、 L-メチオ^ン、 L-フエ二ルァラニン、 L-プロリン、 L-セリン、 L-スレオニン、 L-トリブトファン、 L-チロシン、 L-バリン、 L-システィンなどがあげられる。 以下に、 相互に置換可能なアミノ酸残基 0好ましい例を示す。 同一群に含まれるアミノ酸 残基は相互に置換可能である。 '
Α群:ロイシン、 イソロイシン、 ノルロイシン、 ノ リン、 ノルバリン、 ァラニン、 2-アミ ノブタン酸、 メチォニン、 0-メチルセリン、 t-ブチルグリシン、 t-ブチルァラニン、 シクロ へキシルァラニン
B群:ァスパラギン酸、 グルタミン酸、 イソァスパラ ン酸、 イソグルタミン酸、 2-アミ ノアジピン酸、 2-アミノスべリン酸
C群:ァスパラギン、 グルタミン
D群: リジン、 アルギニン、 オル二チン、 2 , 4-ジァミノブ夕ン酸、 2 , 3-ジァミノプロピオ ン酸
E群:プロリン、 3-ヒドロキシプロリン、 4-ヒドロキシプロリン
F群:セリン、 スレオニン、 ホモセリン .
G群:フエニルァラニン、 チロシン
本発明の遺伝子 え抗体断片組成物は、 ガングリオシド GM2に特異的に結合する遺伝子 組換え抗体の抗体断片からなる 物であつて、 Ν-グリコシド結合複合型,が該糖鎖の還 元末端の Ν-ァセチルグルコサミンにフコースが結合していない糖鎖である抗体 Fc領域の一 部または全部を含んでレヽる抗体断片糸滅物である。
本発明の抗体断片 物としては、 Fab、 Fab '、 F( ab ' )2, scFv、 diabody, dsFvおよび CDR を含むぺプチドなどの抗体断片組成物があげられるが、 該抗体断片繊物に抗体の Fc領域の 一部または全部を含まない場合は、 該抗体断片と、 N-グリコシド結合複合型糖鎖の還元末端 の N-ァセチルグルコサミンにフコースが結合していない糖鎖を有する抗体 Fc領域の一部ま たは全部との融合蛋白質とすればよいと融合させるか、 または該 Fc領域の一部または全部を 含む、 蛋白質との融合蛋白質 物とすればよい。 一'
, Fabは、 IgGを蛋白質分解酵素パパインで処理して得られる断片のうち (H鎖の 224番目の アミノ酸残基で切断される) 、 H鎖の N末端側約半分と L鎖全体がジスルフィド結合で結合 した分子量約 5万の ίί¾結合活性を有する抗体断片である。 ,
本発明の Fabは、 本発明のガングリオシド (¾2に特異的に結合する抗体組成物を蛋白質分 解酵素パパインで処理して得ることができる。 または、 該抗体の Fabをコードする DNAを原 核生物用発現べクダ一ある ヽは真核生物用発現べク夕一に挿入し、 該ベクタ一を原核生物あ · るいは真核生物へ導入することにより発現させ、 Fabを製造することができる。
F(ab' )2は、 IgGを蛋白質分解酵素ペプシンで処理して得られる断片のうち (H鎖の 234番 目のアミノ酸残基で切断される)、 Fabがヒンジ領域のジスルフィド結合を介して結合され たものよりやや大きい、 分子量約 10万の抗原結合活性を有する抗体断片である。
本発明の F (ab ' )2は、 本発明のガングリオシド' G 2に特異的に結合する抗体組成物を蛋白 質分解酵素ペプシンで処理して得ることができる。 または、 下記の Fab 'をチォエーテル結合 あるいはジスルフイド結合させ、 作製することができる。
Fab'は、 上記 F(ab ' )2のヒンジ領域のジスルフィド結合を切断した^^量約 5万の抗原結 合活'注を有する抗体断片である。
本発明の Fab 'は、 本発明のガングリオシド GM2に特異的に結合する F(ab' )2組成物を還元 剤ジチオスレィトール処理して得ることができる。 または、 該抗体の Fab '断片をコードする DNAを原核生物用発現ベクターあるいは真核生物用発現ベクターに挿入し、 該べク夕一を原 核生物あるいは真核生物へ導入することにより発現させ、 Fab 'を製造することができる。 scFvは、 1本の VHと 1本の VLとを適当なぺプチドリンカ一 (以下、 Pと表記する) を用 いて連結した、 VH- P-VLないしは VL-P-VHポリペプチドで、 抗原結合活性を有する抗体断片 である。
本発明の scFvは、 本発明のガングリオシド GM2に特異的に結合する抗体組成物の VHおよ び VLをコードする cDNAを取得し、 scFvをコードする DNAを構築し、 該 DNAを原核生物用発 現ベクターあるいは真核生物用発現べクタ一に揷入し、 該発現べク夕ーを原核生物あるいは 真核生物へ導入することにより発現させ、 scFvを製造することができる。
diabodyは、 scFvが二量体化した抗体断片で、 二価の 結合活性を有する抗体断片であ る。 二価の ίί¾結合活性は、—'同一であることもできるし、 一方を異なる 結合活性とする こともできる。
本発明の diabodyは、 本発明のガングリオシド GM2に特異的に結合する抗体組成物の VHお ょぴ VLをコ一ドする cDNAを取得し、 scFvをコードする DNAを Pのアミノ酸配列の長さが 8 残基以下となるように構築し、 該 DNAを原核生物用発現べク夕一あるいは真核生物用発現べ クタ一に挿入し、 該発現ベクターを原核生物あるいは 生物へ導入することにより発現さ せ、 diabodyを製造することができる。
dsFvは、 VHおよび VL中のそれそれ 1アミノ酸残基をシスティン残基に置換したポりぺプ チドを該システィン残基間のジスルフィド結合を介して結合させたものをいう。 システィン 残基に置換するアミノ酸残基は Reiterらにより示された方法 (Protein Engineering, .7 , 697-704, 1994) に従って、 抗体の立体構造予測に基づいて選択することができる。
本発明の dsFvは、 本発明のガングリオシド GM2に特異的に結合する抗体組成物の VHおよ ぴ VLをコードする cDNAを取得し、 dsFvをコ一ドする DNAを構築し、 該 DNAを原核生物用発 現ベクターあるいは真核生物用発現べクタ一に挿入し、 該発現べク夕ーを原核生物あるいは 真核生物へ導入することにより発現させ、 dsFvを製造することができる。
CDRを含むぺブチドは、 VHまたは VLの CDRの少なくとも 1領域以上を含んで構成される。 複数の CDRを含むぺプチドは、 直接または適当なぺプチドリンカ一を介して結合させること ができる。
本発明の CDRを含むぺプチドは、 本発明のガングリオシド GM2に特異的に結合する抗体組 成物の VHおよび VLの CDRをコードする DNAを構築し、 該 DNAを原核生物用発現べク夕一あ るレヽは真核生物用発現べク夕一に挿入し、 該発現べクタ一を原核生物ある ヽは真核生物へ導 入することにより発現させ、 CDRを含むぺプチドを製造することができる。 また、 CDRを含むペプチドは、 Fmoc法 (フルォレニルメチルォキシカルボニル法) 、 tBoc 法 (t -プチルォキシカルボニル法) などの化学合成法によって製造することもできる。 本発明の形質転換体としては、 ガングリオシド GM2に特異的に結合する抗体分子をコ一ド する DNAを宿主細胞に導入して得られる形質転換体であって、 本発明の抗体, 物を生産す る形質転換体であればいかなる形質転換体でも包含される。 具体的な例としては、 ガングリ オシド GM2に特異的に結合する抗体分子をコードする DNAを以下の(a)または (b)などの宿主 細胞に導入して得られる形質転換体があげられる。 -'
(a)細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素が失活するようにゲノム が改変された細胞;
(b) N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコース の 1位が α結合する糖鎖修飾に関与する酵素が失活するようにゲノムが改変された細胞。 上述において、 酵素が失活するようにゲノムが改変されたとは、 該酵素の発現を欠失させ るように該酵素を ードする遺伝子の発現調節領域に変異を導入したり、 または該酵素を失 活させるように該酵素をコ ドする遺伝子のアミノ酸配列に変異を導入することをい 。 変 異を導入するとは、 ゲノム上の塩基配列を欠失、 置換、 挿入および/または付加させるとい つた塩基配列の改変を行うことをいう。 このように改変されたゲノム遺伝子の発現または活 性が完全に抑制されることをゲノム遺伝子がノックアウトされるという。 ,
細胞内糖ヌクレオチド GDP—フコースの合成に関与する酵素としては、 GDP-マンノース 4, 6-デヒドラ夕一ゼ (GMD)、 GDP-4-ケト- 6-デォキシ- D-マンノース- 3, 5-ェピメラーゼ (Fx) などがあげられる。
GDP-マンノース 4, 6-デヒドラ夕ーゼとしては、
(a)配列番号 1で表される塩基配列からなる DNA;
(b)配列番号 1で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつ GDP-マンノース 4,6-デヒ,ドラ夕ーゼ活性を有する蛋白質をコードする DNA ; などがあげられる。
GDP-マンノース 4,6-デヒドラターゼとしては、
(a)配列番号 2で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 2で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 揷 入および'/または付加されたアミノ酸配列からなり、 かつ GDP-マンノース 4,6-デヒドラ夕 —ゼ活性を有する蛋白質;
(c)配列番号 2で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列から なり、 かつ GDP-マンノース 4,6-デヒドラターゼ活性を有する蛋白質;
などがあげられる。
GDP-4-ケト- 6-デォキシ -D-マンノース- 3 , 5-ェピメラーゼとしては、
-(a) 配列番号 3で表される塩基配列からなる DNA; 一'
(b)配列番号 3で表される塩基配列からなる DNAとストリンジェン卜な条件でハイプリ ダイズし、 かつ GDP- 4-ケト -6-デォキシ- D-マンノース- 3, 5-ェピメラーゼ活性を有する蛋白質 をコードする DNA ;
,などがあげられる。 .
GDP- 4-ケト -6-デォキシ- D-マンノース- 3 , 5-ェピメラーゼとしては、
(a) 配列番号 4で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 4で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 挿 入および/または付加されたアミノ酸配列からなり、 かつ GDP- 4-ケト -6-デォキシ- D-マンノ ース -3,5-ェピメラーゼ活性を有する蛋白質;
(c)配列番号 で表されるァミノ酸配列と 80%以上の相同'性を有するアミノ酸配列から なり、 かつ GDP-4-ケト- 6-デォキシ -D-マンノース- 3 , 5-ェピメラーゼ活性を有する蛋白質; などがあげられる。 '
N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位 がひ結合する糖鎖修飾に関与する酵素としては、 ひ 1 , 6-フコシルトランスフェラ一ゼがあげ られる。
本発明において、 1 , 6-フコシル.トランスフェラーゼとしては、 下記(a)、 (b)、 (c)まだは (d)の DNAがコードする蛋白質、 '
(a) 配列番号 5で表される塩基配列からなる DNA
(b)配列番号 6で表される塩基配列からなる DNA '
(c)配列番号 5で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつひ 1 , 6-フコシルトランスフェラーゼ活性を有する蛋白質をコードする DNA . (d)配列番号 6で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつひ 1 , 6 -フコシルトランスフェラーゼ活 '注を有する蛋白質をコードする DNAま たは、 -
(e)配列番号 7で表されるアミノ酸配列からなる蛋白質
(f )配列番号 8で表されるアミノ酸配列からなる蛋白質
(g)配列番号 7で表されるァミノ酸配列において、 1以上のアミノ酸が欠失、 置 揷入ぉ よび/または付加されたァミノ酸配列からなり、 かつひ 1 , 6-フコシルトランスフエラ'一ゼ活 性を有する蛋白質
(h)配列番号 8で表されるァミノ酸配列において、 1以上のァミノ酸が欠失、 置換、 挿入お よび/または付加されたァミノ酸配列からなり、 かつ α 1 , 6-フコシルトランスフェラーゼ活 性を有する蛋白質
(i )配列番号 7で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列からなり、 かつ《1 , 6-フコシルトランスフヱラーゼ活性を有する蛋白質
(j )配列番号 8で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列からなり、 かつ《1 ,6-フコシルトランスフヱラーゼ活性を有する蛋白質
等があげられる。
細胞内糖ヌクレオチド GDP-フコ一スの合成に関与する酵素のァミノ酸配列をコードする DNAとしては、 配列番号 1または 3で表される塩基配列を有する DNA、 配列番号 1または3で 表される塩基配列を有する DNAとストリンジヱントな条件でハイブリダィズし、 かつ細胞内 糖ヌクレオチド GDP-フコースの合成に関与する酵素活性を有する蛋白質をコードする DNAな どがあげられる。 .
αΐ , 6—フコシルトランスフェラ一ゼのァミノ酸配列をコードする DNAとしては、 配列番号 5または 6で表される塩基配列を有する DNA、 配列番号 5または 6で表される塩基配列を有す る DNAとストリンジェントな条件でハイブリダィズし、 かつ αΐ , 6—フコシルトランスフェラ ーゼ活性を有する蛋白質をコードする DNAなどがあげられる。
本発明において、 ストリンジェントな条件下でハイブリダィズする DNAとは、 例えば配列 番号 1、 3、 5または 6で表される塩基配列からなる DNAなどの DNAまたはその一部の断片を プローブとして、 コロニー ·ハイブリダィゼーシヨン法、 プラーク .ハイプリダイゼ一ショ ン法あるいはサザンハイプリダイゼーシヨン法等を用いることにより得られる MAを意味し、 具体的には、 コロニ一あるいはプラーク由来の DNAを固定化したフィルターを用いて、 0.7〜 1Mの塩化ナトリウム存在下、 65°Cでハイブリダィゼーシヨンを行った後、 0.1〜2倍濃度の SSC溶液 (1倍濃度の SSC溶液の糸賊は、 150mM塩化ナトリウム、 15mMクェン酸ナトリウムよ りなる) を用い、 65°C条件下でフィルタ一を洗浄することにより同定できる DNAをあげるこ とができる。ハイブリダィゼーシヨンは、 Molecular Cloning, A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1989)、 Current Protocols in , Molecular Biology, John Wiley & Sons, 1987-1997、 DNA Clonin 1 : Core Techniques, A Practical Approach, Second Edition, Oxford University (1995)等に記載されている方法に準じて行う ことができる。 ストリンジェントな条件下でハイブリダイズ可能な DNAとして具体的には、 配列番号 1、 3、 5または 6で表される塩基配列と少なくとも 60%以上の相同性を有する DNA、 好ましくは 70%以上、 より好ましくは 80%以上、 さらに好ましくは 90%以上、 特に好まし くは 95%以上、 最も好ましくは 98%以上の相同性を有する DNAをあげることができる。
本発明において、 配列番号 2または 4で表されるアミノ酸配列において 1以上のアミノ酸 が欠失、 置換、 挿入および/または付加されたアミノ酸配列からなり、 かつ細胞内糖ヌクレ ォチド GDP—フコースの合成に関与する酵素活性を有する蛋白質、 または配列番号 7または 8 で表されるアミノ酸配列において 1以上のアミノ酸が欠失、 置換、 挿入および Zまたは付加 されたァミノ酸配列からなり、 かつ α 1 , 6-フコシルトラン-スフエラ一ゼ活性を有する蛋白質 は、 Molecular Cloning, A Laboratory Manual , Second Edition, Cold Spring Harbor
Laboratory Press (1989); Current Protocols in Molecular Biology, John Wiley k Sons , 1987 - 1997、 Nucleic Acids Research, 10, 6487 (1982)、 Proc. Natl . Acad. Sci . , USA, 79, 6409 (1982)、 Gene, 34, 315 (1985)、 Nucleic Acids Research, 13 , 4431 (1985)、 Proc.
Natl . Acad. Sci USA, 82 , 488 (1985)等に記載の部位特異的変異導入法を用いて、 例えば、 配列番号 1、 3、 5または 6で表される塩基配列を有する DNAに部位特異的変異を導入するこ とにより取得することおできる。 欠失、 置換、 挿入および/または付加されるアミノ酸の数 は 1個以上でありその数は特に限定されないが、 上記の部位特異的変異導入法等の周知の技 術により、 欠失、 置換もしくは付加できる程度の数であり、 例えば、 1〜数十個、 好ましくは 1〜20個、 より好ましくは 1〜10個、 さらに好ましくは 1〜5個である。 また、 本発明において配列番号 ·2、 4、 7または 8であらわされるアミノ酸配列と 80%以上 の相同性を有するアミノ酸配列からなり、 かつ GDP-マンノース 4, 6-デヒドラ夕一ゼ活性、 GDP- 4-ケト - 6-デォキシ -D-マンノース- 3 , 5-ェピメラーゼ活生、 またはひ 1 , 6-フコシルトラン スフヱラーゼ活性を有する蛋白質としては、 具体的には、 それそれ配列番号 2、 4、 7または 8で表されるアミノ酸配列と BLAST 〔J. Mol . Biol . , 215, 403 (1990)〕 や FASTA Qfethods in Enz mology, 183, 63 (1990) 等の解析ソフトを用いて計算したときに、 少なくとも 80% 以上、 好ましくは 85%以上、 より好ましくは 90%以上;'さらに好ましくは 95%以上、 特に 好ましくは 97%以上、 最も好ましくは 99%以上の相同性を有する蛋白質などをあげることが できる。
また、 本発明に用いられる宿主細胞、 すなわち細胞内糖ヌクレオチド GDP-フコースの合成 に関与する酵素、 または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する 修飾に関与する酵素の活性が欠失した宿主細胞を取 得する方法としては、 目的とする酵素を失活させることができる手法であれば、 いすれの手 法でも用いることができる。上述の酵素を失活させる手法としては、
( a)酵素の遺伝子を標的した遺伝子破壊の手法;
( b )酵素の遺伝子のドミナントネガティブ体を導入する手法;
( c )酵素についての突然変異を導入する手法;
( d )酵素め遺伝子の転写又は翻訳を抑制する手法;,
( e ) N-グリコシド結合糖鎖還元末端の N-ァセチルグルコサミンの 6位とフコースの 1 位が α結合した糖鎖構造を認識するレクチンに耐性である株を選択する手法などがあげられ る。
Ν-グリコシド結合糖鎖還元末端の Ν-ァセチルグルコサミンの 6位とフコースの 1位がひ結 合した糖鎖構造を認識するレクチンとしては、 該糖鎖構造を認識できるレクチンであれば、 いずれのレクチンでも用いることができる。 その具体的な例としては、 レンズマメレクチン LCA (Lens Culinaris由来の Lentil Agglutinin)、 エンドゥマメレクチン PSA (Pisum sativum由来の Pea Lectin) 、 ソラマメレクチン VFA (Vicia f aba由来の Agglutinin) 、 ヒ イロチヤワン夕ケレクチン ML (Aleuria aurantia由来の Lectin) 等を挙げることができる c レクチンに耐性な細胞とは、 レクチンを有効濃度与えたときにも、 生育が阻害されない細 胞を言う。 有効濃度とは、 ゲノム遺伝子が改変される以前の細胞 (以下、 親株とも称す) が 正常に生育できない濃度以上であり、 好ましくは、 ゲノム遺伝子が改変される以前の細胞が 成育できない濃度と同濃度、 より好ましくは 2〜5倍、 きらに好ましくは 10倍、 最も好まし くは 20倍以上である。
生育が阻害されないレクチンの有効濃度は、 細胞株に応じて適宜定めればよく、 通常のレ クチンの有効濃度は 10〃g/mL〜10mg/mL、 好ましくは 0. 5mg/mL〜2mg/mLである。
本発明の抗体組成物を生産させる宿主細胞としては、 本発明の抗体組成物を発現できる上 記宿主細胞であればいかなる細胞も包含する。例えば、 酵母、 動物細胞、 昆虫細胞、 植物細 胞などがあげられる。 これらの細胞としては、 後述 1に記載のものがあげられ、 特に、 動物 細胞の中でも、 チャイニーズハムスター卵巣組織由来の CH0細胞、 ラヅトミエローマ細胞株 YB2/3HL .P2. G11.16Ag.20細胞、 マウスミエローマ細胞株 NS0細胞、 マウスミエローマ細胞株 SP2/0- Agl4細胞、 シリアンハムスター腎臓組織由来 BHK細胞、 抗体を産生するハイプリドー マ細胞、 ヒト白血病細 «ナマルバ細胞、 胚性幹細胞、 受精卵細胞などが好ましい。
本発明の形質転換体としては、 具体的には、 本発明の抗ガングリオシド GM2抗体の遺伝子 を組み込んだチヤィ二一ズハムス夕—卵巣組織由来の CH0細胞株 CH0/DG4 細胞由来の形質転 換株 Ms705/GM2があげられる。 なお、 CH0細胞株 CH0/DG4 細胞由来の形質転 Ms705/GM2 は、 平成 15年 9月 9日付けで独立行政法人産業技術総合研究所特許生物寄託センター(日本 国茨城県つくば巿東 1 T目 1番地 1中央第 6) に FERM BP- 8470として寄託されている。
以下に、 本発明の抗体組成物を生産する細胞の作製方法、 本発明の抗体組成物の製造方法 および本発明の抗体組成物の分析方法ならびに利用方法について説明する。
1 . 本発明の抗体組成物を生産する細胞の作製
' 本発明の抗体組成物を生産する細胞(以下、 本発明の細胞と称する) は、 以下に述べる手 法により、 本発明の抗体組成物を生産するために用いる宿主細胞を作製し、 該宿主細胞に後 述 2に記載の方法により、 抗ガングリオシド ( 2抗体をコードする遺伝子を導入することに より、 作製することができる。
( 1 )酵素の遺伝子を標的とした遺伝子破壊の手法
本発明の抗体組成物を生産する細胞 (以下、 本発明の細胞と称す) の作製のために用いる 宿主細胞は、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド 結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖 鎖修飾に関与する酵素の遺伝子を標的とし、 遺伝子破壊の方法を用いることにより作製する ことができる。 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素としては、 具体的 には、 GDP-マンノース 4,6-デヒドラ夕ーゼ (以下、 GMDと表記する)、 GDP-4-ケト -6-デォキ シ -D-マンノース- 3, 5-ェピメラーゼ (以下、 Fx と表記する) などがあげられる。 N-グリコシ ド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する 糖鎖修飾に関与する酵素としては、 具体的には、 ひ 1 ,6-フコシルトランスフェラーゼ、 ひ- L- フコシダ一ゼなどがあげられる。
ここでいう遺伝子とは、 DNAまたは諷を含む。
遺伝子破壊の方法としては、 標的とする酵素の遺伝子を破壊することができる方法であれ ぱいかなる方法も包含される。 その例,としては、 アンチセンス法、 リボザィム法、 相同組換 え法、 腿- DNAオリゴヌクレオチド法 (以下、 RD0法と表記する) 、 RNAインターフェアレン ス法 (以下、 RNAi法と表記する) 、 レトロウイルスを用いた方法、 トランスポゾンを用いた 方法等があげられる。 以下これらを具体的に説明する。
( a ) アンチセンス法又はリボザィム法による本発明の細胞を作製するための宿主細胞の作 製 '
本発明の細胞の作製のために用いる宿主細胞は、 細胞内糖ヌク オチド GDP-フコースの合 成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素遺伝子を標昀とし、 細胞工学, 12, 239 (1993)、. BIO/TECHNOLOGY, 17, 1097 (1999)、 Hum. Mol . Genet. , 5, 1083 (1995)、 細 胞工学, 13, 255 (1994)、 Proc. Natl . Acad. Sci . U.S.A. , 96> 1886 (1999)等に記載された アンチセンス法またはリポザィム法を用いて、 例えば、 以下のように作製することができる。 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元 の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素をコ一ドする cDNAあるいはゲノム DNAを調製する。
調製した cDNAあるいはゲノム DNAの塩基配列を決定する。
決定した DNAの配列に基づき、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が α結合する纖員修飾に関与する酵素をコードする DNA部分、 非翻訳領域の部分あるい はィントロン部分を含む適当な長さのアンチセンス遺伝子またはリボザィムを設計する。 該アンチセンス遺伝子、 またはリボザィムを細胞内で発現させるために、 調製した DNAの 断片、 または全長を適当な発現ベクターのプロモー夕一の下流に揷入することにより、 組換 えべクタ一を作製する。
該組換えベクターを、 該発現べクタ一に適合した宿主細胞に導入することにより形質転換 体を得る。 , -'
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または Ν-グリコシド結合複合型 糖鎖還元末端の Ν-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素の活性を指標として形質転換体を選択することにより、 本発明の抗体組成物を作 製するために用いる宿主細胞を得ることができる。 また、 細胞膜上の糖蛋白質の糖鎖構造ま たは産生抗体分子の糖鎖構造を指標として形質転換体を選択することにより、 本発明の抗体 «物を作製のために用いる宿主細胞を得ることもできる。 '
本発明の抗体組成物を作製するために用いられる宿主細胞としては、 酵母、 動物翻胞、 昆 虫細胞、 植物細胞など、 標的とする細胞内糖ヌクレオチド GDP-フコ一スの合成に関与する酵 素または Ν-グリコシド結合複合型糖鎖還元末端の Ν -ァセチルグルコサミンの 6位にフコース の 1位がひ結合する糖鎖修飾に関与する酵素の遺伝子を有しているものであればいずれも用 いることができる。 具体的には、 後述 2に記載の宿主細胞があげられる。
発現べク夕一としては、 上記宿主細胞において自立複製が可能であるか、 ないしは染色体 中への組み込みが可能で、 設計したアンチセンス遺伝子、 またはリポザィムを転写できる位 置にプロモーターを含有しているものが用いられる。 具体的には、 後述 2に記載の発現べク ターがあげられる。
各種宿主細胞への遺伝子の導入方法としては、 後述 2に記載の各種宿主細胞に適した組換 え Λクタ一の導入方法を用いることができる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または Ν-グリコシド結合複合型 糖鎖還元末端の Ν-ァセチルグルコサミンの 6位にフコースの 1位が α結合する糖鎖修飾に関 与する酵素の活性を指標として形質転換体を選択する方法としては、 例えば、 以下の方法が あげられる。 形質転換体を選択する方法
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素が失活した細胞を選択する方法としては、 文献 [新生化学実験講座 3~«質 I ,糖 蛋白質 (東京化学同人)日本生化学会編 (1988)]、 文献 [細胞工学, 別冊, 実験プロトコールシ リーズ,グライコバイオロジー実験プロトコ一ル,糖蛋白質'糖脂質 ·プロテオグリカン (秀潤 社製)谷口'直之 ·鈴木明美 ·古川清 ·菅原一幸監修 ( 1996 ) 〗'、 Molecular Cloning, A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989)、 Current Protocols in Molecular Biology, John Wileyも Sons (1987- 1997)等に記載された生化学的 な方法あるいは遺伝子工学的な方法などを用いて、 細胞内糖ヌクレオチド GDP-フコースの合 成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の活性を測定する方法があげら れる。生化学的な方法としては、 例えば、 酵素特異的な基質を用いて酵素活性を評価する方 法があげられる。 遺伝子工学的な方法としては、 例えば、 酵素遺伝子の mRNA量を測^するノ —ザン解析や RT-PCR法等があげられる。 '
細胞 SI±の糖蛋白質の糖鎖構造を指標として形質転換体を選択する方法としては、 例えば、 後述 1の ( 5 ) に記載の方法があげられる。 産生抗体分子の糖鎖構造を指標として形質転換 体を選択する方法としては、 例えば、 後述 4または後述 5に記載の方法があげられる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元未端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素をコードする cDNAを調製する方法としては、 例えば、 下記に記載の方法があげら れる。 - cDNAの調製方法
各種宿主細胞の 1¾織又は細胞から全 RNA又は mRNAを調製する。
調製した全腿又は mRNAから cDNAライブラリーを作製する。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素のアミノ酸配列に基づいて、 デジエネレイティブプライマーを作製し、 作製した cDNAライブラリーを銪型として PCR法で細胞内糖ヌクレオチド GDP-フコースの合成に関与す る酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコ ースの 1位がひ結合する糖鎖修飾に閧与する酵素をコードする遺伝子断片を取得する。
取得した遺伝子断片をプローブとして用い、 cDNAライブラリ一をスクリーニングし、 細胞 内糖ヌクレオチド GDP-フコースの合成に閧与する酵素または N-グリコシド結合複合型糖鎖還 元末端の N-ァセチルダルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する 酵素をコードする DNAを取得することができる。 一' '
ヒト又は非ヒト動物の組織又は細胞の mRNAは市販のもの (例えば Clontech社)を用いても よいし、 以下のようにしてヒト又は非ヒト動物の組織又は細胞から調製してもよい。
ヒト又は非ヒト動物の組織又は細胞から全 R Aを調製する方法としては、 チォシアン酸グ ァニジン-トリフルォロ酢酸セシウム法 [Methods in Enzymology, 154, 3 (1987)] 、 酸性チ オシアン酸グァニジン ·フエノール ·クロ口ホルム (AGPC) 法 [Analytical Biochemistry, 162 , 156 (1987) ; 実験医学、 9, 1937 (1991 )] などがあげられる。
また、 全 RNA.から poly(A)+ RNAとして mRNAを調製する方法としては、 オリゴ ( T) 固定 ィ匕セ レロースカラム法 [Molecular Cloning, A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989)]等があげられる。
さらに、 Fast Track mRNA Isolation Kit (Invitrogen¾fc) Quick Prep mRNA
Purification Kit (Pharmacia社) などの市販のキットを用いることにより mRNAを調製する ことができる。
調製したヒト又は非ヒト動物の組織又は細胞 mRNAから cDNAライブラリ一を作製する。 cDNA ライブラリ一作製法としては、 Molecular Cloning, A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989.)、 Current Protocols' in Molecular Biology, John Wiley & Sons (1987-1997)、 A Laboratory Manual , 2 nd Ed. (1989)等に記載さ れた方法、 あるいは市販のキヅト、 例えば Superscript Plasmid System for cDNA Synthesis and Plasmid Cloning (Life Technologies社) 、 ZAP- cDNA Synthesis Kit (STRATAGENE社) を用いる方法などがあげられる。
cDNAライブラリーを作製するためのクロ一ニングベクターとしては、 大腸菌 K12株中で自 立複製できるものであれば、 ファージベクター、 プラスミドべク夕一等いずれでも使用でき る。 具体的には、 ZAP Express [STRATAGENE社、 Strategies, 5 , 58 (1992)] 、 pBluescript II SK (+) [Nucleic Acids .Research, 17 , 9494 (1989) ] 、 λ ΖΑΡ II (STRATAGENE社) 、 入 gtlO、 Agtll [DNA cloning, A Practical Approach, 1 , 49 (1985) ] 、 ATriplEx (Clontech 社) 、 AExCell (Pharmacia社) 、 pT7T318U (Pharmacia社) 、 pcD2 [Mol , Cell . Biol . , 3, 280 (1983)']および pUC18 [Gene , 33, 103 (1985)]等をあげることができる。
cDNAラィブラリ一を作製するための宿主 生物としては、 微生物であればレヽずれ も用い ることができるが、 好ましくは大腸菌が用いられる。.具体的には、 Escherichia coli XLl- Blue MRF' [STRATAGENE社、 Strategies, 5 , 81 (1992 )] 、 Escherichia coli C600 [Genetics 39 , 440 (1954) ] 、 Escherichia coli Y1088 [Science, 222 , 778 (1983) ] 、 Escherichia coli Y1090 [Science, 222 , 778 (1983)] 、 Escherichia coli丽 522 [J. Mol . Biol . ,崖, 1 (1983) ] 、 Escherichia coli K802 [J, Mol . Biol . , 16, 118 (1966)] および Escherichia coli JM105 [Gene, 38, 275 (1985)]等が用いられる。
cDNAライブラリ一は、'そのまま以降の解析に用いてもよいが、 不完全長 cDNAの割合を下 げて、 完全長 cDNAを効率よく取得するために、 菅野らが開発したオリゴキヤップ法' [Gene , 138 > 171 (1994)、 Gene, 200 , 149 (1997)、 蛋白質核酸酵素, 41 , 603 (1996) ; 実験医学, 11 , 2491 (1993) ; cDNA クローニング (羊土社)(1996) ; 遺伝子ライブラリーの作製法(羊土社) (1994)] を用いて調製して以下の解析に用いても.よい。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素まこは N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素のァ.ミノ酸配列に基づいて、 該アミノ酸配列をコードすることが予測される塩基 配列の 5'末端および 3'末端の塩≤配列に特異的なデジエネレイティブプライマ一を作製し、 作製した cDNAライブラリーを铸型として PCR法 [PCR Protocols, Academic Press (1990)] を用い T DNAの増幅を行うことにより、 細胞内糖ヌクレオチド GDP-フコースの合成に関与す る酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコ —スの 1位がひ結合する糖鎖修飾に関与する酵素をコードする遺伝子断片を取得することが できる。
取得した遺伝子断片が細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N- グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ 結合する 修飾に関与する酵素をコードする DNA.であることは、 通常用いられる塩基配列 解析方法、 例えばサンガ一 (Sanger) らのジデォキシ法 [Proc. Natl . Acad. Sci . U.S .A. , 74, 5463 (1977)] あるいは ABI PRISM377DNAシークェンサ一 (Applied Biosystemsネ ±¾) 等 の塩基配列分析装置を用いて分析することにより、 確認することができる。
該遺伝子断片をプローブとして、 ヒト又は非ヒト動物の組織又は細胞に含まれる mRNAから 合成した cDNAあるいは cDNAライプラリーからコロニーハイブリダィゼーシヨンやプラーク ハイブリダィゼーシヨン [Molecular Cloning; A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989)]等を用いて、 細胞内糖ヌクレオチド GDP-フコース の合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミ ンの 6位にフコースの 1位が α結合する糖鎖修飾に関与する酵素の DNAを取得することがで きる。
また、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または Ν-グリコシド結合 複合型糖鎖還元末端の Ν-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修 飾に関与する酵素をコ一ドする遺伝子断片を取得するために用レ、たブラィマ一を使角し、 ヒ ト又は非ヒト動物の組織又は細胞に含まれる mRNAから合成した cDNAあるいは cDNAライブラ リ一を錶型として、 PCR法を用いて増幅することにより、 細胞内糖ヌクレオチド GDP-フコー スの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサ ミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の cDNAを取得することも できる。
取得した細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結 合複合型 «還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する纖負 修飾に関与する酵素をコードする DNAの塩基配列は、 通常用いられる塩基配列解析方法、 m えばサンガ一 (Sanger) らのジデォキシ法 [Proc.
Natl . Acad. Sci . U.S .A. , 74, 5463 (1977) ] あるいは ABI PRISM377DNA シークェンサ一 (Applied Biosystems社製)等の塩基配列分析装置を用いて分析することにより、 該 DNAの 塩基配列を決定することができる。 '
決定した cDNAの塩基配歹リをもとに、 BLAS 等の相同性検索プログラムを用いて、 Genbank、 EMBLおよび DDBJなどの塩基配列デ一夕ペースを検索することにより、 取得した DNAがデー 夕ベース中の遺伝子の中で細胞内糖ヌクレオチド GDP-フコースの合成に閧与する酵素または N-グリコシド結合複合型 還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位が ひ結合する糖鎖修飾に関与する酵素をコードしている遺伝子で.あることを確認することもで ぎる。 ,
上記の方法で得られる細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素をコード する遺伝子の塩基配列としては、 例えば、 配列番号 1 または 3に記載の塩基配列があげられ る。 -'
上記の方法で得られる N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素をコードする遺伝子の塩基配列 としては、 例えば、 配列番号 5または 6に記載の塩基配列があげられる。 '
決定された DNAの塩基配列に基づいて、 フォスフォアミダイト法を利用した DNA合成機 model 392 (Perkin Elmer社製)等の DNA合 で化学合成することにより.、 細胞内糖ヌクレ ォチド GDP-フコースの合成に闋与する酵素または N-グリコシド結合複合型糖鎖還元末端の ' N-ァセチルグルコサミンの 6位にフコースの 1位が α結合する糖鎖修飾に関与する'酵素の cDNAを取得することもできる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する難負修飾に関 与する酵素のゲノム DNAを調製する方法としては、 例えば、 以下に記載の方法があげられる。 ゲノム DNAの調製方法 '
ゲノム DNA を調製する方法としては、 Molecular Cloning, A' LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989)、 Current Protocols in Molecular Biology, John Wiley k Sons (1987- 1997)等に記載された公知の方法があげられる。 また、 ゲ ノム DNA ラィブラリースクリーニングシステム (Genome Systems 社) や Universal GenomeWalkerTM Kits (CL0 TECH社) などを用いることにより、 細胞内糖ヌクレオチド GDP - フコースの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグ ルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素のゲノム DNAを取 得することもできる。
取得した細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結 合複合型 還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖 修飾に関与する酵素をコードする DNAの塩基配列は、 通常用いられる塩基配列解析方法、 例 えばサンガー (Sanger) らのジデォキシ法 [Proc .
Natl . Acad. Sci . U.S .A. ; 74, 5463 (1977 ) ] あるいは ABI PRISM377DNA シークェンサ (Applied Biosystems社製)等の塩基配列分析装置を用いて分析することにより、 該 DNAの 塩基配列を することができる。
決定したゲノム DNAの塩基配列をもとに、 BLAST—等の相同性検索プログラムを用いて、 Genbank, EMBLおよび DDBJなどの塩基配列データベースを検索することにより、 取得した DNAがデ一夕ペース中の遺伝子の中で細胞内糖ヌクレオチド GDP-フコースの合成に関与する 酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコー スの 1位がひ結合する糖鎖修飾に関与する酵素をコードしている遺伝子であることを確認す ることもできる。
決定された DNAの塩基配列に基づいて、 フォスフォアミダイト法を利用した DNA合成機 model 392 (Perkin Elmer社製) 等の DNA合 «で化学合成することにより、 細胞内耱ヌクレ ォチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素のゲ ノム DNAを取得することもできる。
上記の方法で得られる細胞内糖ヌクレオチド GDP-フ S3 ^"スの合成に関与する酵素のゲノム DNAの塩基配列としては、 例えば配列番号.9、 10、 11および 12に記載の塩基配列があげられ る。
上記の方法で得られる N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコ一スの 1位が α結合する糖鎖修飾に関与する酵素のゲノム DNAの塩基配列として は、 例えば配列番号 13に記載の塩基配列があげられる。
また、 発現ベクターを用いず、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 または Ν-グリコシド結合複合型 還元末端の Ν-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の塩基配列に基づいて設計したアンチセンスオリ ゴヌクレオチドまたはリボザィムを、'直接宿主細胞に導入することで、 本発明の抗体組成物 を作製するために用いる宿主細胞を得ることもできる。 'アンチセンスオリゴヌクレオチドまたはリボザィムは、 公知の方法または DNA合 によ り調製することができる。 具体的には、 細胞内糖ヌクレオチド GDP-フコースの合成に関与す る酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグル jサミンの 6位にフコ ースの 1位がひ結合する糖鎖修飾に関与する酵素をコードする cDNAおよびゲノム DNAの塩基 配列のうち、 連続した 5〜150塩基、 好ましくは 5〜60塩 より好ましくは 10〜40塩基に 相当する配列を有するオリゴヌクレオチドの配列情報に基づき、 該ォリゴヌクレオチドと相 一'補的な配列に相当するオリゴヌクレオチド (アンチセンスオリゴヌクレオチド) または該ォ リゴヌクレオチドの配列を含むリボザィムを合成して調製することができる。
ォリゴヌクレオチドとしては、 ォリゴ RNAおよび該ォリゴヌクレオチドの誘導体 (以下、 オリゴヌクレオチド誘導体という) 等があげられる。 .
ォリゴヌクレオチド誘導体としては、 ォリゴヌクレオチド中のリン酸ジエステル結合がホ スフォロチォエート結合に変換されたォリゴヌクレオチド誘導体、 ォリゴヌクレオチド中の リン酸ジエステル結合が N3 ' - P5 'ホスフォアミデート結合に変換されたォリゴヌクレオチド 誘導体、 ォリゴヌクレオチド中のリボースとリン酸ジエステル結合がぺプチド核酸結合に変 換されたオリゴヌクレオチド誘導体、 オリゴヌクレオチド中のゥラシルが C- 5 プロピニルゥ ラシルで置換されたォリゴヌクレオチド誘導体、 オリゴヌクレオチド中のゥラシルが C- 5チ ァゾールゥラシルで置換された誘導体ォリゴヌクレオチド、 ォリゴヌクレオチド中のシトシ ンが C- 5 プロピニルシトシンで置換されたォリゴヌクレオチド誘導体、 ォリゴヌクレオチド 中のシトシンがフエノキサジン修飾シトシン (phenoxazine- modified cytosine) で置換され たオリゴヌクレオチド誘導体、 オリゴヌクレオチド中のリボースが 2 '- 0-プロピルリボース で置換されたオリゴヌクレオチド誘導体、 あるいはオリゴヌクレオチド中のリボースが 2に メトキシェトキシリポースで置換されたォリゴヌクレオチド誘導体等があげられる [細胞ェ 学, 16 , 1463 (1997 )] 。
( b )相同 «え法による本発明の抗体組成物を作製するための宿主細胞の作製
本発明の抗体糸滅物を作製するために用いる宿主細胞は、 細胞内糖ヌクレオチド GDP-フコ —スの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコ サミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、 染色体上の標的遺伝子を相同組換え法を用 ヽて染色体を改変することによつて作製すること ができる。
染色体上の標的遺伝子の改変は、 Manipulating the Mouse Embryo A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1994)、 Gene Targeting, A Practical Approach, IRL Press at OxfordUniversity Press (1993)、 バイオマニュアルシリ ーズ 8 ジーン夕ーゲヅティング, ES細胞を用いた変異マウスの作製,羊土社 (1995) (以下、 「ES細胞を用いた変異マウスの作製」 と略す) 等に記載の方法を用い、 例えば以下のように 行うことができる。 -'
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの 1 '位がひ結合する糖鎖修飾に関 与する酵素のゲノム DNAを調製する。
ゲノム DNAの塩基配列にも基づき、 .改変する標的遺伝子 (例えば、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 «I貴還元末端の N-ァセチ ルグルコサミンの 6位にフコースの 1位が α結合する糖鎖修飾に関与する酵素め構造遺伝子、 あるいはプロモーター遺伝子) を相同翻:換えするためのターゲットベクターを作製す ¾。
作製した夕一ゲヅトベクターを宿主細胞に導入し、 染色体上の標的遺伝子と夕ーゲヅトべ クタ一の間で相同組換えを起こした細胞を選択することにより、 本発明の細胞の作製のため に用いる宿主細胞を作製することができる。
宿主細胞としては、 酵母、 動物細胞、 昆虫細胞、 植物細胞等、 標的とする細胞内糖ヌクレ ォチド GDP-フコースの合成に関与する酵素または Ν-グリコシド結合複合型糖鎖還元末端の Ν -ァセチルグルコサミンの 6位にフコースの 1位が 結合する糖鎖修飾に関与する酵素の遺 伝子を有しているものであればいずれも用いることができる。 具体的には、 後述 2に記載の 宿主細胞があげられる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または Ν-グリコシド結合複合型 . 糖鎖還元末端の Ν-ァセチルダルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素のゲノム DNAを調製する方法としては、 上記 1の (1 ) の (a) に記載のゲノム DNAの調製方法などがあげられる。
上記の方法で得られる細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素のゲノム DNAの塩基配列として、 例えば配列番号 9、 10、 11および 12に記載の塩基配列があげられる。 上記の方法で得られる N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの ί位がひ結合する糖鎖修飾に関与する酵素のゲノム DNAの塩基配列として 例えば配列審号 13に記載の塩基配列があげられる。 .
染色体上の標的遺伝子を相同組換えするための夕一ゲットぺク夕一は、' Gene Targeting, A Practical Approach, IRL Press at Oxford University Press (1993 )、 ノ ィォマニュアル シリーズ 8 ジーン夕ーゲヅティング, ES細胞を用いた変異マウスの作製 (羊土社)(1995)等 に記載の方法にしたがって作製することができる-。 ターゲヅトベクターは、 置換型、 挿入型 いずれでも用いることができる。
各種宿主細胞へのタ一ゲヅトぺクタ一の導入には、 後述 3に記載の各種宿主細胞に適した 組換えベクターの導入方法を用いることができる。
相同組換え体を効率的に選別する方法として、 例えば、 Gene Targeting, A Practical Approach, IRL Press at Oxford University Press (1993)、 バイオマニュアルシリーズ 8 ジ —ン夕ーゲヅティング, ES細胞を用いた変異マウスの作製 (羊土社)(1995)等に記載のポジテ イブ選択、 プロモーター選択、 ネガティブ選択、 ポリ A選択などの方法を用いることができ る。 別した細胞株の中から目的とする相同組換え体を選択する方法としては、 ゲノム DNA に対するサザンハイプリダイゼーシヨン法 [Molecular Cloning, A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press .(1989)] や PC 法 [PCR Protocols, Academic Press (1990)]等があげられる。 つ
( c ) RDO方法による本発明の抗体組成物を作製するために用いる宿主細胞の作製
本発明の抗体«物を作製するために用いる宿主細胞は、 細胞内糖ヌクレオチド GDP-フコ —スの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコ サミンの 6位にフコースの 1位が 結合する糖鎖修飾に関与ずる酵素の遺伝子を標的とし、 RD0法を用い、 例えば、 以下のように作製することができる。 . 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素の cDNAあるいはゲノム DNAを上記 1の (1 ) の (a) に記載の方法を用い、 調製 する。
調製した cDNAあるいはゲノム DNAの塩基配列を決定する。 決定した DMの配列に基づき、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素をコードする部分、 非翻訳領域の部分あるいはィ ントロン部分を含む適当な長さの RD0のコンストラクトを設計し合成する。
合成した RD0を宿主細胞に導入し、 標的とした酵素、 すなわち細胞内糖ヌクレオチド GDP- フコースの合成に閧与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグ ルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素に変異が生じた形 質転換体を選択することにより、 本発明の宿主細胞を作製することができる。
宿主細胞としては、 酵母、 動物細胞、 昆虫細胞、 植物細胞等、 標的とする細胞内糖ヌクレ ォチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の遺 伝子を有しているものであればいずれも用いることができる。 具体的には、 後述 2に記載の 宿主細胞があげられる。
各種宿主細胞への RD0の導入には、 後述 2に記載の各種宿主細胞に適した組換え クター の導入方法を用いることができる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素の cDNAを調製する方法としては、 例えば、 '上記 1の (1 ) の (a ) に記載の cDNAの調製方法などがあげられる。 .
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素のゲノム DNAを調製する方法としては、 例えば、 上記 1の (1 ) の (b ) に記載 のゲノム DNAの調製方法などがあげられる。
DNAの塩基配列は、 適当な制限酵素などで切断後、 pBluescript SK (-) (Stratagene社製) 等のプラスミドにサブクロ一ニングし、 通常用いられる塩基配列解析方法、 例えば、 サンガ 一 (Sanger) らのジデォキシ法 [Proc . Natl . Acad. Sci . , U.S .A. , 74, 5463 (1977)]等の反 応を行レヽ、塩基配列自動分析装置、 例えば、 ABI PRISM377DNA シークェンサ一 (Applied Biosystemsネ ±S)等の塩基配列分析装置を用いて分析することにより、 確認することができ る。
RDOは、 常法または DNA合 βを用いることにより調製することができる。
RD0-を宿主細胞に導入し、 標的とした酵素、 細胞内糖ヌクレオチド GDP-フコースの合成に 関与する酵素または Ν-グリコシド結合複合型糖鎖還元末端の Ν-ァセチルダルコサミンの 6位 にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の遺伝子に変異が生じた細胞を選択 する方法としては、 Molecular Cloning, A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989)、 Current Protocals in Molecular Biology, John Wiley &; Sons (1987-1997)等に記載された染色体上の遺伝子の変異を直接検出する方法があげられる。 また、 前記 1の (1) の (a) に記載の、 細胞内糖ヌクレオチド GDP-フコ^ "スの合成に関 与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位に フコースの 1位がひ結合する糖鎖修飾に関与する酵素の活性を指標として形質転換体を選択 する方法、 後述 1の (5) に記載の細胞膜上の糖蛋白質の糖鎖構造を指標として形質転換体 を選択する方法、 あるいは、 後述 4または後述 5に記載の産生抗体分子の糖鎖構造を指標と して形質転換体を選択する方法も用いることができる。
RD0は、 Science, 273, 1386 (1996); Nature Medicine, 4, 285 (1998); Hepatol ogy, 25, 1462 (1997); Gene Therapy, 5, 1960 (1999); J. Mol. Med., 75, 829 (1997); Proc. Natl. Acad. Sci. USA, 96, 8774 (1999); Proc. Natl. Acad. Sci. USA, 96, 8768 (1999); Nuc. Acids. Res.), 27, 1323 (1999); Invest. Dematol. , 11 1172 (1998); Nature Biotech.), 16, 1343 (1998); Nature Biotech., 18, 43 (2000); Nature Biotech. , 18, 555 (2000)等の 記載に従って設計することができる。
(d) RNAi法による本発明の抗体組成物を作製するために用いる宿主細胞の作製
本発明の抗体 «物を作製するために用いる宿主細胞は、 細胞内糖ヌクレオチド GDP-フコ ースの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコ サミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、 RNAi法を用い、 例えば、 以下のように作製することができる。 '
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還 末端の N-ァセチルグルコサミンの 6位にフコースの;!位が α結合する糖鎖修飾に関 与する酵素の cDNAを上記 1の (1) の (a) に記載の方法を用い、 cDNAを調製する。 調製した cDNAの塩基配列を決定する。
決定した cDNAの配列に基づき、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵 素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコース の 1位がひ結合する糖鎖修飾に関与する酵素をコ一ドする部分あるいは非翻訳領域の部分を 含む適当な長さの RNM遺伝子を設計する。
該 RNAi遺伝子を細胞内で発現させるために、 調製した cDNAの断片、 または全長を適当な 発現ベクターのプロモーターの下流に揷入することにより、 組換えべクタ一を作製する。 該組換えべクタ一を、 該発現べクタ一に適合した宿主細胞に導入することにより形質転換 体を得る。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位が α結合する糖鎖修飾に関 与する酵素の活性、 あるいは産生抗体分子または細胞表面上の糖蛋白質の糖鎖構造を指標に 形質転換体を選択することで、 本発明の細胞を作製するために用いる宿主細胞を得ることが できる。 ' 宿主細胞としては、 酵母、 動物細胞、 昆虫細胞、 植物細胞等、 標的とする細胞内糖ヌクレ ォチド GDP-フコースの合成に関与する酵素または Ν-グリコシド結合複合型糖鎖還元末端の Ν -ァセチルダルコサミンの 6位にフコースの 1位がひ.結合する糖鎖修飾に関与する酵素の遺 伝子を有しているものであればいずれも用いることができる。 具体的には、 後述 2に記載の 宿主細胞があげられる。
発現べクタ一としては、 上記宿主細胞において自立複製可能ないしは染色体への組み込み が可能で、 設計した R Ai遺伝子を転写できる位置にプロモーターを含有しているものが用い られる。具体的には、 後述 2に記載の発現ベクターがあげられる。
各種宿主細胞への遺伝子の導入には、 後述 2に記載の各種宿主細胞に適した組換えべク夕 —の導入方法を用いることができる。
細胞内糖ヌクレオチド GDP-フコースの合威に関与する酵素の活性または N-グリコシド結合 複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修 飾に関与する酵素の活性を指標として形質転換体を選択する方法としては、 例えば、 本項 1 の (1 ) の (a) に記載の方法があげられる。 細胞膜上の糖蛋白質の糖鎖構造を指標として形質転換体を選択する方法としては、 例えば、 本項 1の (5) に記載の方法があげられる。 産生抗体分子の糖鎖構造を指標として形質転換 体を選択する方法としては、 例えば、 後述 4または後述 5に記載の方法があげられる。
また、 発現べクタ一を用いず、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位にフコースの
1位がひ結合する編員修飾に関与する酵素の cDNAを調製する方法としては、 例えば、 本項 1 の (1) の (a) に記載された cDNAの調製方法などがあ-げられる。
また、 発現ベクターを用いず、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素 または N-グリコシド結合複合型 還元末端の N-ァセチルグルコサミンの 6位にフコースの
1位がひ結合する β修飾に関与する酵素の塩基配列に基づいて設計した RNAi遺伝子を、 直 接宿主細胞に導入することで、 本発明の細胞を.作製するために用いる宿主細胞を得ることも できる。
RNAi遺伝子は、 常法または DNA合 を用いることにより調製することができる。 RNAi 遺伝子のコンストラクトは、 [Nature, 391, 806 (1998); Proc. Natl. Acad. Sci. USA, 95, 15502 (1998); Nature, 395, 854 (1998); Proc. Natl. Acad. Sci. USA, 96, 5049 (1999); Cell, 95, 1017 (1998); Proc. Natl. Acad. Sci. USA, 96, 1451 (1999); Proc. Natl. Acad.Sci. USA, 95, 13959 (1998); Nature Cell Biol., 2, 70 (2000)]等の記載に従って設計する ことができる。 ,
(e) トランスポゾンを用いた方法による、 本発明の抗体組成物を作製するために用いる宿 主細胞の作製
本発明の抗体組成物を作製するために用いる宿主細胞は、 Nature Genet., 25, 35 (2000) 等に記載のトランスポゾンのシステムを用い、 細胞内糖ヌクレオチド GDP-フコースの合成に 関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位 にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の活性、 あるいは産生抗体分子また は細胞膜上の糖蛋白質の糖鎖構造を指標に突然変異体を選択することで、 本発明の細胞を作 製するために用いる宿主細胞を作製することができる。
トランスポゾンのシステムとは、 外来遺伝子をランダムに染色体上に揷入させることで突 然変異を誘発させるシステムであり、 通常、 トランスポゾンに挿まれた外来遺伝子に突然変 異を誘発させるベクターとして用い、 この遺伝子を染色体上にランダムに挿入させるための トランスポゼースの発現べク夕ーを同時に細胞の中に導入する。
トランスポゼースは、 用いるトランスポゾンの配列に適したものであればいかなるものも 用いることができる。
外来遺伝子としては、 宿主細胞の DNAに変異を誘起するものであればいかなる遺伝子も用 いることができる。
宿主細胞としては、 酵母、 動物細胞、 昆虫細胞、 植物細胞等、 標的とする細胞内糖ヌクレ ォチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフ.コースの 1位が 結合する糖鎖修飾に関与する酵素の遺 伝子を有しているものであればいずれも用いることができる。 具体的には、 後述 2に記載の 宿主細胞があげられる。各種宿主細胞 の'遺伝子の導入には、 後述 2に記載の各種宿主細胞 に適した組み換えぺク夕一の導入方法を用いることができる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位が α結合する糖鎖 ίί飾に閧 与する酵素の活性を指標として突然変異体を選択する方法としては、 例えば、 本項 1の
( 1 ) の (a) に記載の方法があげられる。
細胞 H ±の糖蛋白質の糖鎖構 itを指標として突然変異体を選択する方法としては、 例えば、 本項 1の (5 ) に記載の方法があげられる。 産生抗体分子の糖鎖構造を指標として突然変異 体を逡択する方法としては、 例えば、 後述 4または後述 5に記載の方法があげられる。 -
( 2 )酵素の遺伝子のドミナントネガティブ体を導入する手法 .
本発明の抗体 «物を作製するために用いる宿主細胞は、 細胞内糖ヌクレオチド GDP-フコ —スの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N -ァセチルグルコ サミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、 該酵素のドミナントネガティブ体を導入する手法を用いることにより作製することができる。 細胞内糖ヌクレオチド GDP-フコースの合成に閧与する酵素としては、 具体的には、 GM)、 Fx などがあげられる。 N-グリコシド結合複合型糖鎖還元末端の N-ァセチルダルコサミンの 6位 にフコースの 1位が α結合する糖鎖修飾に関与する酵素としては、 具体的には、 ひ 1 ,6-フコ シルトランスフェラーゼ、 ひ- L-フコシダーゼなどがあげられる。 これらの酵素は、 基質特異性を有したある特定の反応を触媒する酵素であり、 このような 基質特異性を有した触媒作用を有する酵素の活性中心を破壊することで、 これらの酵素のド ミナントネガティブ体を作製することができる。標的とする酵素のうち、 GMD を例として、 そのドミナントネガティブ体に作製について具体的に以下に述べる。
大腸菌由来の GMDの立 «造を解析した結果、 4つのアミノ酸 (133番目の小レオニン、 135番目のグルタミン酸、 157番目のチロシン、 161番目のリシン) が酵素活性に重要な機能 を担っていることが明らかにされている (Structure, 8, 2, 2000) 。 すなわち、 立 造の 情報にもとづきこれら 4つのアミノ酸を異なる他のァミノ酸に置換した変異体を作製した結 果、 いずれの変異体においても有意に酵素活性が低下していたことが示されている。 一方、 GMDの補酵素 NADPや基質である GDP-マンノースとの結合能に関しては、 いずれの変異体にお いてもほとんど変ィヒが観察されていない。 従って、 GMDの酵素活性を担うこれら 4つのアミ ノ酸を置換することによりドミナントネガティブ体を作製することができる。 大腸菌由来の GMDのドミナントネガティブ体の作製の結果に基づき、 アミノ酸配列情報をもとにした相同 性比較や立 造予測を行うことにより、 例えば、 0細胞由来の(¾1) (配列番号2 ) 'では、 155番目のトレオニン、 157番目のグルタミン酸、 179番目のチロシン、 183番目のリシンを 他のアミノ酸に置換することによりドミナントネガティブ体を作製することができる。 この ようなアミノ酸置換を導入した遺伝子の作製は、 Molecular Cloning, A LaboratoryManual, Second Edition, Cold Spring Harbor Laboratory Press. (1989)、 Current Protocols in Molecular Biology, John Wiley k Sons (1987- 1997)等に記載された部位特異的変異導入法を 用いて行うことができる。
本発明の抗体 物を作製するために用いる宿主細胞は、 上述のように作製した標的酵素 のドミナントネガティブ体をコードする遺伝子 (以下、 ドミナントネガティブ体遺伝子と略 記する) を用い、 Molecular Cloning, A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989)、 Current Protocols in Molecular Biology, John Wiley & Sons ( 1987-1997)、 Manipulating the Mouse Embryo A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1994)等に記載された遺伝子導入の方法に従って、 例 えば、 以下のように作製することができる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型 糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関 与する酵素のドミナントネガティブ体遺伝子を調製する。
調製したドミナントネガティブ体遺伝子の全長 DNAをもとにして、 必要に応じて、 該蛋白 質をコードする部分を含む適当な長さの DNA断片を調製する。
該 DNA断片、 または全長 DNAを適当な発現ベクターのプロモーターの下流に挿入すること により、 組換えべクタ一を作製する。
該組換えベクターを、 該発現べクタ一に適合した宿主細胞に導入することにより、 形質転 換体を得る。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素の活性または N-グリコシド結合 複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修 飾に関与する酵素の活性、 あるいは産生抗体分子または細胞膜上の糖蛋白質の糖鎖構造を指 標に形質転換体を選択することで、 本発明の細胞を作製するために用いる宿主細胞を作製す ることができる。
宿主細胞としては、 酵母、 動物細胞、 昆虫細胞、 植物細胞等、 標的とする細胞内耱ヌクレ ォチド GDP-フコースの合成に閧与する酵素または N-グリコシド結合複合型糖鎖還元末端の N -ァセチルグルコサミンの 6位にフコースの 1位が^結合する糖鎖修飾に関与する酵素の遺 伝子を有しているものであればいずれも用いることができる。 具体的には、 後述 2に記載の 宿主細胞があげられる。 - 発現べクタ一としては、 上記宿主細胞において自立複製可能ないしは染色体中への組み込 みが可能で、 ·目的とするドミナントネガティブ体をコードする DNAを転写できる位置にプロ モータ一を含有しているものが用いられる。 具体的には、 後述 2に記載の発現ベクターがあ げられる。
各種宿主細胞への遺伝子の導入には、 後述 2に記載の各種宿主細胞に適した組換えべク夕 一の導入方法を用いることができる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素の活性または N-グリコシド結合 複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修 飾に関与する酵素の活性を指標として形質転換体を選択する方法としては、 例えば、 後述 1 ( 1 ) の (a) に記載の方法があげられる。 , 細胞膜上の糖蛋白質の糖鎖構造を指標として形質転換体を選択する方法としては、 例えば、 後述 1の (5 ) に記載の方法があげられる。 産生抗体分子の糖鎖構造を指標として形質転換 体を選択する方法としては、 例えば、 後述 4または後述 5に記載の方法があげられる。
( 3 )酵素に突然変異を導入する手法
本発明の抗体 ¾β¾物を作製するために用いる宿主細胞は、 細胞内糖ヌクレオチド GDP-フコ ースの合成に関与する酵素または Ν-グリコシド結合複合型糖鎖還元末端の Ν-ァセチルダルコ サミンの 6位にフコースの 1位がび結合する糖鎖修飾に関与する酵素の遺伝子に突然 ―' 変異を導入し、 該酵素に突然変異を生じた所望の細胞株を選択する手法を用いることにより 作製できる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素としては、 具体的には、 GMD、 Fxなどがあげられる。 N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6 位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素としては、 具体的には、 ひ 1 , 6 -フ コシルトランスフェラ一ゼ、 ひ- L-フコシダーゼなどがあげられる。
酵素に突然変異を導入する方法としては、 1 ) 突然変異誘発処理で親株を処理しこ突然変 異体あるいは自然発生的に生じた突然変異体から、 細胞内糖ヌクレオチド GDP-フコースの合 成に関与する酵素の活性または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサ ミンの 6位にフコースの 1位がひ結合する難貴修飾に関与する酵素の活性を指標として所望 の細胞株を選択する方法、 2 ) 突然変異誘発処理で親株を処理した突然変異体あるいは自然 発生的に生じた突然変異体から、 生産抗体分子の糖鎖構造を指標として所望の細胞株を選択 する方法、 3 )突然変異誘発処理で親株を処理した突然変異体あるいは自然発生的に生じた 突然変異体から、 該細胞の細胞膜上の糖蛋白質の糖鎖構造を指標として所望の細胞株を選択 する方法などがあげられる。
突然変異誘発処理としては、 親株の細胞の DNAに点突然変異、 欠失あるいはフレームシフ ト突然変異を誘起するものであればいかなる処理も用いることができる。
具体的には、 ェチルニトロソゥレア、 ニトロソグァ二ジン、 ベンゾピレン、 ァクリジン色 素による処理、 放射線の照射などがあげられる。 また、 種々のアルキル化剤や発癌物質も突 然変異誘発物質として用いることができる。 突然変異誘発物質を細胞に作用させる方法とし ては、 例えば、 組織培養の技術第三版 (朝倉書店) 日本組織培養学会編 (1996)、 Nature Genet. , 24, 314, (2000)等に記載の方法を挙げることか'できる。
自然発生的に生じた突然変異体としては、 特別な突然変異誘発処理を施さないで、 通常の 細胞培養の条件で継代培養を続けることによって自然発生的に生じる突然変異体を挙げるこ とができる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素の活性または N-グリコシド結合 複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修 飾に関与する酵素の活性を測定する方法'としては、 例えば、 本項 1の (1 ) の (a) に記載 の方法があげられる。産生抗体分子の糖鎖構造を識別する方法としては、 例えば、 後述 4ま たは後述 5に記載の方法があげられる。細胞膜上の糖蛋白質の糖鎖構造を識別する方法とし ては、 例えば、 本項の 1の (5 ) に記載の方法があげられる。
( 4 )酵素の遺伝子の転写又は翻訳を抑制する手法
本発明の抗体 物を作製するために用いる宿主細胞は、 細胞内糖ヌクレオチド GDP-フコ ースの合成に関与する酵素または N-グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコ サミンの 6位にフコースの 1位がひ結合する糖鎖修飾に関与する酵素の遺伝子を標的とし、 アンチセンス RNA/DNA技術 [バイオサイエンスとインダストリー, 50, 322 (1992 )、 化学, 46, 681 (1991 )、 Biotechnology ,_9 , 358 (1992)、 Trends in Biotechnology, 10, 87 (1992 )、 Trends in Biotechnology, 10, 152 (1992)、 細胞工学, 16, 1463 (1997)]、 トリプル'ヘリ ヅクス技術 [Trends in Biotechnology, 10, 132 (1992 )] 等を用い、 標的とする遺伝子の転写 または翻訳を抑制することで作製することができる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素としては、 具体的には、 GMD、 Fxなどがあげられる。 N-グリコシド結合複合型; M還元末端の N-ァセチルダルコサミンの 6 位にフコースの 1位がひ結合する糖鎖修飾に関 する酵素としては、 具体的には、 α ΐ ,δ -フ コシルトランスフェラーゼ、 ひ- L-フコシダーゼなどがあげられる。
細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素の活性または N-グリコシド結合 複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ結合する糖鎖修 飾に関与する酵素の活性を測定する方法としては、 例えば、 本項 1の (1 ) 'の (a) に記載 の方法があげられる。 '
細胞膜上の糖蛋白質の糖鎖 ¾造を識別する方法としては、 例えば、 本項 1の (5 ) に記載 の方法があげられる。 産生抗体分子の糖鎖構造を識別する方法としては、 例えば、 後述 4ま たは後述 5に記載の方法があげられる。.
( 5 ) N-グリコシド結合糖鎖還元末端の N-ァセチルグルコサミンの 6位とフコースの 1位が α結合した) M構造を認識するレクチンに耐性である株を選択する手法
- 本発明の抗体組成物を作製するために用いる宿主細胞は、 Ν-グリコシド結合糖鎖還元末端 の Ν-ァセチルダルコサミンの 6位とフコースの 1位がひ結合した難負構造を認識するレクチ ンに耐性である株を選択する手法を用いる-ことにより作製することができる。
Ν -グリコシド結合糖鎖還元末端の Ν-ァセチルグルコサミンの 6位とフコースの 1位がひ結 合した糖鎖構造を認識するレクチンに耐性で,ある株を選択する手法としては、 例えば、 Somatic Cell Mol . Genet. , 12, 51 (1986)等に記載のレクチンを用いた方法があげられる。 レクチンとしては、 N-グリコシド結合糖鎖還元末端の N-ァセチルグルコサミンの 6位とフ コースの 1位がひ結合した糖鎖構造を認識するレクチシであればいずれの.レクチンでも用い ることができるが、 その具体的な例としては、 レンズマメレクチン LCA (Lens Culinaris 由 来の Lentil Agglutinin) ェンドウマメレクチン PSA (Pi sum sativum由来の Pea Lectin) 、 ゾラマメレクチン WA (Vicia faba由来の Agglutinin)、 ヒィロチャワンタケレクチン AAL
(Aleuriaaurantia由来の Lectin) 等を挙げることができる。
具体的には、 l/ g/mL〜lmg/mLの濃度の上述のレクチンを含む培地で 1日〜 2週間、 好まし くは 1 日〜 1週間培養し、 生存している細胞を継代培養あるいはコロニーをピヅクァヅプし 別の培養容器に移し、 さらに引き続きレクチンを含む培地で培養を続けることによって、 本 発明の N-グリコシド結合 還元末端の N-ァセチルグルコサミンの 6位とフコースの 1位が ひ結合した 構造を認識するレクチンに耐性である株を選択することができる。
2 . 抗体 物の製造方法
本発明の抗体組成物は、 Molecular Cloning, A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989)、 Current Protocols in Molecular Biology, John Wiley k Sons (1987-1997) 、 Antibodies, A Laboratory manual , Cold Spring Harbor Laboratory, 1988、 Monoclonal Antibodies: principles and practice, Third Edition, Acad, Press, 1993 、 Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press, 1996等に記載された方法を用い、 例えば、 以下のように宿主細胞中で発 現させて取得することができる。
抗ヒトガングリオシド GM2抗体分子の全長 cDNAを調製し、 該抗体分子をコードする部分を 含む適当な長さの DNA断片を調製する。
該 DNA'断片、 または全長を適当な発現べク夕一のプロモーターの下流に挿入することによ り、 IB¾えベクタ一を作製する.。 '
該組換えべク夕一を、 該発現ベクターに適合した宿主細胞に導入することにより、 抗体組 成物を生産する形質転換体を得-ることができる。 一' 宿主細胞としては、 酵母、 動物細胞、 昆虫細胞、 植物細胞等、 抗体を発現できるものであ ればいずれも用いることができる。
抗 ί本分子の Fc領域に結合する N-グリコシド結合糖鎖の修飾に係わる酵素、 すなわち細胞 内糖ヌクレオチド GDP-フコースの合成に関与する酵素または N-グリコシド結合複合型糖鎖還 元末端の N-ァセチルダルコサミンの 6位にフコースの 1位が α結合する糖鎖修飾に関与する 酵素が失活した細胞を選択するか、 または前述 1に示された種々の人為的手法により得られ た細胞を宿主細胞として用いることもできる。
発現ベクターとしては、 上記宿主細胞において自立複製可能ないしは染色体中への組込が 可能で、 目的とする抗体分子をコードする DNAを転写できる位置にプロモーターを含有して いるものが用いられる。
cDNAは、 前記 1 . の ( 1 ) © (a) に記載の cDNAの調製方法に従い、 ヒト又は非ヒト動 物の組織又は細胞より、 目的とする抗体分子をコードする cDNAに特異的なプローブまたはプ ライマ一等を用いて調製することができる。
酵母を宿主細胞として用'いる場合には、 発現べク夕一として、 例えば、 YEP13 (ATCC37115) 、 YEp2 (ATCC37051) 、 YCp50 (ATCC37419) 等をあげることができる。
プロモー夕一としては、 酵母菌株中で発現できるものであればいずれのものを用いてもよ く、 例えば、 へキソースキナーゼ等の解糖系の遺伝子のプ Dモーター、 PH05 プロモーター、 PGKプロモー夕一、 GAPプロモ一夕一、 ADHプロモーター、 gal 1 プロモーター、 gal 10プロ モー夕一、 ヒ一トショヅク蛋白質プロモー夕一、 MFひ 1 プロモ一夕一、 CUP 1 プロモーター 等をあげることができる。 '
宿主細胞としては、 サヅカロミセス属、 シゾサヅカロミセス属、 クリュイべ口ミセス属、 トリコスポロン属、 シュヮニォミセス属等に属する微生物、 例えば、 Saccharomyces cerevisiae、 Sc izosaccharomyces 顏 be、 Kluyveromyces lactiSx Trichosporon pullulans^ Sc wanniomyces alluvius等をあげることができる。
組換えベクターの導入方法としては、 酵母に DNAを導入する方法であればいずれも用いる ことができ、 例えば、 エレクト口ポレーシヨン法 [Methods. Enz mol . , 194, 182 (1990)] 、 スフエロプラスト法 [Proc. Natl . Acad. Sci . U.S . A, 84, 1929 (1978)]、 酢酸リチウム法 [J. Bacteriology, 153, 163 (1983")、 Proc. Natl . Acad. Sci . U.S. A, 75, 1929 (1978)] に 記載の方法等をあげることができる。 '
動物細胞を宿主として用いる場合には、 発現ベクターとして、 例えば、 pcDNAI、 pcDM8 (フ ナコシ社より巿販) 、 pAGE107 [特鬨平 3-22979 ; Cytotechnology, 3, 133 , (1990) ] 、 PAS3-3 [特開平 2-227075] 、 pCDM8 [Nature, 329 , 840 , (1987)] 、 pcDNAI/Arap (Invitrogen 社)、 pREP4 (Invitrogen社) 、 pAGE103 [J. Biochemistry, 101 , 1307 (1987)] 、 pAGE210等 をあげることができる。
プロモー夕一としては、 動物細胞中で発現できるものであればいずれも用いるこ^ができ、 例えば、 サイトメガロウィルス (CMV) の IE (immediate early) 遺伝子のプロモーター、 SV40の初期プロモータ一、 レトロウイルスのプロモーター、 メタ口チォネインプロモー夕一、 ヒートショヅクプロモーター、 SRaプロモ一夕一等をあげることができる。 また、 ヒト (MV の IE遺伝子のェンハンサーをプロモ一夕一と共に用いてもよい。
宿主細胞としては、 ヒトの細胞であるナマルバ (Namalwa)細胞、 サルの細胞である COS細 胞、 チャイニーズ 'ハムスターの細胞である CH0細胞、 HBT5637 (特鬨昭 63-299) 、 ラヅトミ エローマ細胞、 マウスミエローマ細胞、 シリアンハムスター腎臓由来細胞、 胚性幹細胞、 受 精卵細胞等をあげることができる。
組換えベクターの導入方法としては、 動物細胞に DNAを導入する方法であればいずれも用 いることができ、 例えば、 エレクト口ポレーシヨン法 [Cytotechnology, 3, 133 (1990)] 、 リン酸カルシウム法 [特閧平 2-227075] 、 リポフエクシヨン法 [Proc Jatl . Acad. Sci . U. S .A. , 84, 7413 (1987) ] 、 インジェクション法 tManipulating the Mouse Embryo A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1994)]、 ノ ー ティクルガン (遺伝子銃) を用いる方法 [特許第 2606856、 特許第 2517813] 、 D E-デキス トラン法 [バイオマニュアルシリーズ 4~¾伝子導入と発現'解析法 (羊土社) 横田崇 '新 井賢一編(1994) ] 、 ウィルスベクタ 法 [Manipulating the Mouse Embryo A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1994)]等をあげることが できる。
.昆虫細胞を宿主として用いる場合には、 例えばカレント ·プロトコールズ ·イン ·モレキ ユラ一 · ノ、、ィォロジ一 Baculovirus Expression Vectors, A Laboratory Manual , W. H. Freeman and Company, New York (1992), Bio/Technology, 6, 47 (1988)等に記載された方 法によって、 蛋白質を発現することができる。
即ち、 発現ベクターおよびバキュロウィルスを昆虫細胞に共導入して昆虫細胞培養上清中 に組換えウィルスを得た後、 さらに組換えウィルスを昆虫細胞に感染させ、 蛋白質を発現さ せることができる。 ''
該方法におい T用いられる遺伝子導入べクタ一としては、 例えば、 pVL1392、 pVL1393, pBlueBacIII (ともに Invitorogen社)等をあげることができる。
バキュロウィルスとしては、 例えば、 夜盗蛾科昆虫に感染するウィルスである Autographa californica nuclear poly edrosis virus等を用いることができる。 ·
昆虫細胞としては、 Spodopterafrugiperdaの卵巣細胞である Sf9、 Sf21 [カレント 'プロ トコ一レズ ·イン ' モレキュラー -ノ、'ィォロジ一 Baculovims Expression Vectors , A Laboratory Manual , W. H. Freeman and Company, New Yor'k (1992)]、 Trichoplusiani の卵 巣細胞である High 5 (Invitrogen社) 等を用いることができる。 ' ,
組換えゥィルスを調製するための、 昆虫細胞への上記発現導入べクタ一と上記バキュ口ゥ ィルスの共導入方法としては、 例えば、 リン酸カルシウム法 (特鬨平 2-227075) 、 リポフエ クシヨン法 [Proc. Natl . Acad. Sci . U.S.A. , 84, 7413 (1987)]等をあげることができる。 植物細胞を宿主細胞として用いる場合には、 発現ベクターとして、 例えば、 Ti プラスミド、 タバコモザイクウィルスべク夕一等をあげることができる。
プロモ一夕一としては、 植物細胞中で発現できるものであればいずれのものを用いてもよ く、 例えば、 カリフラワーモザイクウィルス (CaMV) の 35S プロモーター、 ィネアクチン 1 プロモー夕一等をあげることができる。
宿主細胞としては、 夕ノ コ、 ジャガイモ、 トマト、 ニンジン、 ダイズ、 アブラナ、 アルフ アルファ、 イネ、 コムギ、 ォォムギ等の植物細胞等をあげることができる。
組換えベクターの導入方法としては、 植物細胞に DNAを導入する方法であればいずれも用 いることができ、 例えば、 ァグロパクテリゥム (Agrobacterium) [特開昭 59-140885、 特鬨 昭 60-70080、 WO94/00977]、 エレクト口ポレーシヨン法 [特開昭 60-251887] 、 パーテイク ルガン (遺伝子銃) を用いる方法 [日本特許第 2606856、 日本特許第 2517813]等をあげるこ とができる。
抗体組成物の発現方法と しては'、 直接発現以外に、 Molecular Cloning, A LaboratoryManual , Second Edition, Cold Spring Harbor Laboratory Press (1989)に記載さ れている方法等に準じて、 分泌生産、 Fc領域と他の蛋白質との融合蛋白質発現等を行うこと ができる。
糖鎖の合成に関与する遺伝子を導入した酵母、 動物細胞、 昆虫細胞または植物細胞により 発現させた場合には、 導入した遺伝子によって糖あるいは糖鎖が付加された抗体分子を得る ことができる。
以上のようにして得られる形質転換体を培地に培養し、 培養物中に抗体分子を生威蓄積さ せ、 該培養物から採取することにより、 抗体«物を製造することができる。形質転換体を 培地に培養する方法は、 宿主細胞の培養に用いられる通常の方法に従って行うことができる。 酵母等の真核生物を宿主として得られた形質転換体を培養する培地としては、 該生物が資 化し得る炭素源、 窒素源、 無機塩類等を含有し、 形質転換体の培養を効率的に行える培地で あれば天然培地、 合成培地のいずれを用いても1よい。
炭素源としては、 該生物が資化し得るものであればよく、 グルコース、 フラクトース、 ス クロース、 これらを含有する糖蜜、 デンプンあるいはデンプン加水分解物等の炭水化物、 酢 酸、 プロピオン酸等の有機酸、 エタノール、 プロパノールなどのアルコール類等を用いるこ とができる。
窒素源としては、 アンモニア、 塩化アンモニゥム、 硫酸アンモニゥム、 酢酸アンモニゥム、 リン酸アンモニゥム等の無機酸もしくは有機酸のアンモニゥム塩、 その他の含窒素化合物、 ならびに、 ペプトン、 肉エキス、 酵母エキス、 コーンスチープリカー、 カゼイン加水分解物、 大豆粕および大豆粕加水分解物、 各種発酵菌体およびその消化物等を用いることができる。 無機塩類としては、 リン酸第一カリウム、 リン酸第二カリウム、 リン酸マグネシウム、 硫 酸マグネシウム、 塩化ナトリウム、 硫酸第一鉄、 硫酸マン癌、 硫酸銅、 炭酸カルシウム等を 用いることができる。
培養は、 通常振盪培養または深部通気攪拌培養などの好気的条件下で行う。培養温度は 15 〜40°Cがよく、 培養時間は、 通常 16時間〜 7日間である。 培養中の pHは 3〜9に保持する。 pHの調製は、 無機または有機の酸、 アルカリ溶液、 尿素、 炭酸カルシウム、 アンモニアなど を用いて行う。
また、 培養中必要に応じて、 アンピシリンゃテトラサイクリン等の抗生物質を培地に添加 してもよい。 .
プロモー夕一として誘導性のプロモ一夕一を用いた組換えべク夕一で形質転換した微生物 を培養するときには、 必要に応じてインデュ一サーを培地に添加してもよい。 例えば、 lac プロモー夕一を用いた組換えぺク夕一で形質転換した微生物を培養するときにはイソプロピ ル-^- D-チォガラクトビラノシド等を、 trp プロモーターを用いた組換えベクターで形質転 換した微生物を培養するときにはィンドールァクリル酸等を培地に添加してもよい。
動物細胞を宿主として得られた形質転換体を培養する培地としては、 一般に使用きれてい る RPMI1640培地 [The Journal of the, American Medical Association, 199, 519 (1967)]、 Eagleの MM培地 [Science , 122 , 501 (1952)]、 ダルべヅコ改変 MEM培地 [Virology, 8, 396 (1959)]、 199培地 [Proceeding of the Society for the Biological Medicine) , 73, 1 (1950)]、 WhiUen培地 [発生工学実験マニュアル-トランスジェニヅク 'マウスの作り方 (講 談社)勝木元 ¾編 (1987) ]またはこれら培地に牛胎児血清等を添加した培地等を用いること ができる。
培養は、 通常 pH6〜8、 30~40°C、 5%C02存在下等の条件下で 1~7日間行う。
また、 培養中必要に応じて、 カナマイシン、 ペニシリン等の抗生物質を培地に添加しても よい。
昆虫細胞を宿主として得られた形質転換体を培養する培地としては、 一般に使用されてい る T匪- FH培地 (Pharmingen社) 、 Sf- 900 II SFM培地 (Life Technologies社) 、 ExQell400、 ExCell405 (いずれも JRH Biosciences 社) 、 Grace ' s Insect Medium [Nature, 195, 788 (1962)]等を用いることができる。
培養は、 通常 pH6〜7、 25〜30°C等の条件下で、 1〜5日間行う。 また、 培養中必要に応じて、 ゲン夕マイシン等の抗生物質を培地に添加してもよい。
植物細胞を宿主として得られた形質転換体は、 細胞として、 または植物の細胞や器官に分 化させて培養することができる。 該形質転換体を培養する培地としては、 一般に使用されて い!)ムラシゲ 'アンド 'スクーグ (MS)培地、 ホワイト(White)培地、 またはこれら培地にォ一 キシン、 サイトカイニン等、 植物ホルモンを添加した培地等を用いることができる。
培養は、 通常 pH5〜9、 20〜40°Cの条件下で 3~60日間行う。 . また、 培養中必要に応じて、 カナマイシン、—'ハイグロマイシン等の抗生物質を培地に添加 してもよい。
上記のとおり、 抗体分子をコードする DNAを組み込んだ発現ベクターを保有する動物細胞、 あるいは植物細胞由来の形質転換体を、 通常の培養方法に従って培養し、 抗体組成物を生成 蓄積させ、 該培養物より抗体組成物を採取することにより、 抗体 物を製造することがで きる。
抗体組成物の発現方法としては、 直接発現以外に、 Molecular Cloning, A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1989)に記載されている方 法に準じて、 分铋生産、 融合蛋白質発現等を行うことができる。.
抗体 物の生産方法としては、 宿主細胞内に生産させる方法、 宿主細胞外に分铋させる 方法、 あるいは宿主細胞外膜上に生産させる方法があり、 使用する宿主細胞や、 生産させる 抗体分子の構造を変えることにより、 該方法を選択することができる。
抗体組成物が宿主細胞内あるいは宿主細胞外膜上に生産される場合、 ポールソンらの方法 [J. Biol . Chem. , 264, 17619 (1989)]、 ロウらの方法 [Proc. Natl . Acad. Sci . U.S .A. , 86 , 8227 (1989) ; Genes Develop. , 4, 1288 ( 1990 ) ] 、 また 特開平 05-336963 s WO94/23021等に記載の方法を準用することにより、 該抗体 物を宿主細胞外に積極的に分 泌させることができる。
すなわち、 遺伝子組換えの手法を用いて、 発現ベクターに、 抗体分子をコードする DNA、 および抗体分子の発現に適切なシグナルペプチドをコードする DNAを揷入し、 該発現べクタ —を宿主細胞へ導入の後に抗体分子を発現させることにより、 目的とする抗体分子を宿主細 胞外に積極的に分泌させることができる。
また、 特鬨平 2-227075に記載されている方法に準じて、 ジヒドロ葉酸還元酵素遺伝子等を 用いた遺伝子増幅系を利用して生産量を上昇させることもできる。
さらに、 遺伝子導入した動物または植物の細胞を再分化させることにより、 遺伝子が導入 された動物個体 (トランスジェニヅク非ヒト動物) または榷物個体(トランスジェニヅク植 物) を造成し、 これらの個体を用いて抗体 物を製造することもできる。
形質転換体が動物個体または植物個体の場合は、 通常の方法に従って、 飼育または栽培し、 抗体組成物を生成蓄積させ、 該動物個体または植物個体より該抗体, 物を採取することに より、 該抗体 物を製造することができる。 -' 動物個体を用いて抗体組成物を製造する方法としては、 例えば公知の方法 [American Journal of Clinical Nutrition, 63, - 639S (1996) ; American Journal of Clinical Nutrition) , 63 , 627S (1996) ; Bio/Technology, 9, 830 (1991 )] に準じて遺伝子を導入して 造成した動物中に目的とする抗体 物を生産させる方法があげられる。
動物個体の場合は、 例えば、 抗体分子をコードする DNAを導入したトランスジヱニック非 ヒト動物を飼育し、 抗体 物を該動物中に生成 '蓄積させ、 該動物中より抗体 ,«物を採 取することにより、 抗体組成物を製造することができる。 該動物中の生成 ·蓄積場戶 jfとして は、 例えば、 該動物のミルク (特開昭 63-309192) または卵等をあげることができる。 この 際に用いられるプロモーターとしては、 動物で発現できるものであればいずれも用いること ができるが、 例えば、 乳腺細胞特異的なプロモーターであるひカゼインプロモー夕一、 7力 ゼインプロモ一夕一、 ?ラクトグロブリンプロモ一夕一、ホエー酸生プロテインプロモータ —等が好適に用いられる。
植物個体を用いて抗体組成物を製造する方法としては、 例えば抗体分子をコードする DNA r
を導入したトランスジヱニック植物を公知の方 [組織培養, 20 (1994) ; 組織培養, 21 (1995) ; Trends in Biotechnology, 15, 45 (1997)] に準じて栽培し、 抗体組成物を該植物 中に生成 ·蓄積させ、 該植物中より該抗体 «物を採取することにより、 抗体組成物を生産 する方法があげられる。
抗体分子をコードする DNAを導入した形質転換体により製造された抗体糸滅物は、 例えば 抗体組成物が、 細胞内に溶解状態で発現した場合には、 培養終了後、 細胞を遠心分離により 回収し、 水系緩衝液に懸濁後、 超音波破砕機、 フレンチプレス、 マントンガウリンホモゲナ ィザ一、ダイノミル等により細胞を破碎し、 無細胞抽出液を得る。 該無細胞抽出液を遠心分 離することにより得られる上清から、 通常の酵素の単離精製法、 即ち、 溶媒抽出法、 硫安等 による塩析法、 脱塩法、 有機溶媒による沈殿法、 ジェチルアミノエチル (DEAE) -セファロー ス、 DIAION HPA-75 (三菱化学(株)製) 等レジンを用いた陰イオン交換クロマトグラフィー 法、 S-Sepharose
FF (Pharmacia社) 等のレジンを用いた陽イオン交換クロマトグラフィ一法、 プチルセファ ロース、 フエ二ルセファロ一ス等のレジンを用いた疎水性クロマトグラフィー法、 分子篩を 用いたゲルろ過法、 ァフィ二ティ一クロアトグラフィ一法、 クロマトフォーカシング法、 等 電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、 抗体組成物の精製 標品を得ることができる。
また、 抗体滅物が細胞内に不溶体を形成して発現した場合は、 同様に細胞を回収後破砕 し、 遠心分離を行うことにより、 沈殿画分として抗体 «物の不溶体を回収する。 回収した 抗体«物の不溶体を蛋白質変性剤で可溶化する。 該可溶化液を希釈または透析することに より、 該抗体! ^物を正常な立 造に戻した後、 上記と同様の単離精製法により該抗体組 成物の精製標品を得ることができる。 ' 抗体繊物が細胞外に分泌された場合には、 培養上清に該抗体滅物あるいはその誘導体 ¾回収することができる。 即ち、 該培養物を上記と同様の遠心分離等の手法により処理する ことにより培養上清を取得し、 該培養上清から、 上記と同様の単離精製法を用いることによ り、 抗体 物の精製標品を得ることができる。
以下に、 本発明の抗体組成物の取得のより具体的な例として、 ヒト化抗体の組成物の製造 方法について記すが、 他の抗体 物も当該方法と同様にして取得することができる。
( 1 ) ヒト化抗体発現用べクタ一の構築
ヒト化抗体発現用べクターとは、 ヒト抗体の CHおよび CLをコ一ドする遺伝子が組み込ま れた動物細胞用発現ベクターであり、 動物細胞用発現べクタ一にヒト抗体の CHおよび CLを コードする遺伝子をそれそれクローニングすることにより構築することができる。
ヒト抗体の C領域としては、 任意のヒト抗体の CHおよび CLであることができ、 例えば、 ヒト抗体の Η鎖の IgGlサブクラスの C領域 (以下、 hCァ 1と表記する) およぴヒト抗体の L 鎖の クラスの C領域(以下、 hC と表記する)等があげられる。
ヒト抗体の CHおよび CLをコードする遺伝子としてはェキソンとィントロンから成る染色 体 DNAを用いることができ、 また、 mRNAから逆転写して作製された cDNAを用いることもで ぎる。
動物細胞用発現ベクターとしては、 ヒト抗体の C領域をコードする遺伝子を組込み発現で きるものであればいかなるものでも用いることができる。例えば、 AGE107 [Cytotec nology, 3, 133 (1990)] 、 pAGE103 [J. Biochem. , 101, 1307 (1987)] 、 pHSG274 [Gene, 27, 223
(1984) ] 、 pKC [Proc. Natl. Acad. Sci. U.S.A., 78, 1527 (1981) ] 、 SGl β d2-4 [Cytotechnology, 4, 173 (1990)]等があげられる。 動物細胞用発現ベクターに用いるプロ モー夕一とェンハンサーとしては、 SV40 の初期プロモー夕一とェンハンサー [J. Biochem., 101, 1307 (1987)] 、 モロニ一マウス白血病ウィルスの LTR [Biochem. Biophys. Res. Commun. , 149, 960 (1987)] 、 免疫グロブリン Η鎖のプロモーター [Cell, 1, 79
(1985) ] とェンハンサ一 [Cell, 33, 7.17 (1983)]等があげられる。
ヒト化抗体発現用ベクターは、 抗体 H鎖及び L鎖が別々のべク夕一上に存在するタイプあ るいは同一のベクタ一上に存在するタイプ (以下、 タンデム型と表記する) のどちらでも用 いることができるが、 ヒト化抗体発現ベクターの構築の容易さ、 動物細胞への導入の容易さ、 動物細胞内での抗体 H鎖及び L鎖の発現量のパランスが均衡する等の点からタンデム型のヒ ト化抗体発現用ベクターの方が好ましい [J. Immunol. Methods, 167, 271 (1994)] 。 夕ンデ ム型のヒト化抗体発現べクタ一としては、 pKANTEX93[Mol.I腿 unol., 37, 1035 (2000)]、 pEE18[Hybridoraa, 17, 559 (1998)]などがあげられる。 つ
構築したヒト化抗体発現用べクタ一は、 ヒト型キメラ抗体及び bト型 CDR移植抗体の動物 細胞での発現に使用できる。
( 2 ) ヒト以外の動物の抗体の V領域をコードする cDNAの取得
ヒト以外の動物の抗 例えば、 マウス抗体の Hおよび VLをコードする cDNAは以下のよ うにして取得することができる。 '
ガングリオシド GM2に特異的に結合する抗体を産生するハイプリドーマ細胞から抽出した mRNAを鐯型として用い、 cDNAを合成する。合成した cDNAをファージ或いはプラスミド等の ベクターに挿入して cDNAライブラリーを作製する。 該ライブラリーより、 既存のマウス抗体 の C領域或いは V領域をコードする DNAをプローブとして用い、 H鎖 V領域をコードする - cDNAを有する組換えファージ或いは組換えプラスミド及び L鎖 V領域をコードする cDNAを 有する組換えファージ或いは組換えプラスミドをそれそれ単離する。 組換えファージ或いは 組換えプラスミド上の目的のマウス抗体の VHおよび VLの全塩基配列を決定し、 塩基配列よ り VHおよび VLの全ァミノ酸配列を推定する。
ガングリオシド GM2に特異的に結合できるヒト以外の動物の抗体を生産するハイプリドー マ細胞は、 ガンダリオシド GM2をヒト以外の動物に免疫し、 周知の方法 [Antibodies: A Laboratory Manual , Cold Spring Harbor Laboratory, Chapter 14, (1998)] に従って、 免疫 一'された動物の抗体産生細胞とミエローマ細胞とでハイプリドーマを作製し、 次いで単一細胞 化したハイプリドーマを選択し、 これを培養し、 培養上清から精製し、 取得することができ る。
ヒト以外の動物としては、 マウス、 ラット、 ハムスター、 ゥサギ等、 ハイプリドーマ細胞 を作製することが可能であれば、 いかなるものも用いることができる。
ノヽィプリドーマ細胞から全 RNAを調製する方法としては、 チォシアン酸グァニジン-トリフ ルォロ酢酸セシウム法 [Methods in EnzyraoL , 154, 3 (1987)]、 また全 UNAから mRNAを調 製する方法として'は、 オリゴ(dT)固定化セルロースカラム法 [Molecular Cloning, A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1989)]等があ げられる。 また、 ハイプリドーマ細胞から mE A を調製するキットとしては、 Fast Track mRNA Isolation Kit (Invitroge 社製)、 Quick Prep mRNA Purification Kit (Pharmacia社 製)等があげられる。 . つ
cDNA の合成及び cDNA ライブラリー作製法としては、 常法 [Molecular Cloning, A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1989)、 Current Protocols in MolecularBiology, Supplement 1-34] 或いは市販のキヅト、 例えば、 Super ScriptTM Plasmid System for cDNA Synthesis and Plasraid Cloning (GIBCO BRL 社 製) や ZAP-cMA Synthesis Kit (Stratagene社製) を用いる方法などがあげられる。
cDNAライブラリ一の作製の際、 ハイプリドーマ細胞から抽出した mRNAを鎳型として合成 した cDNAを組み込むベクターは、 該 cDNAを組み込めるべク夕一であればいかなるものでも 用いることができる。 例えば、 ZAP Express [Strategies, 5, 58 (1992)] 、 pBluescript II SK (+) [Nucleic Acids Research, 17, 9494 (1989)]、 人 ZAP II (Stratagene ¾¾) 、 え gtlO、 Agtll [DNA Cloning: A Practical Approach, I , 49 (1985)] 、 Lambda BlueMid (Clontech 社製) 、· A ExCelU pT7T3 18U ( Pharmacia 社製) 、· pcD2 [Mol . Cell . Biol . , 3 , 280 (1983)]及び pUC18 [Gene , 33 , ,103 (1985)]等が用いられる。
ファージ或いはプラスミドベクターにより構築される cDNAライブラリ一を導入する大腸菌 としては該 cDNAライブラリ一を導入、 発現及ぴ維持できるものであればいかなるものでも用 いることができる。例えば、 XLl-Blue MRF' [Strategies, 5, 81 (1992)]、 C600 [Genetics , 39 , 440 (1954)]、 Y1088、 Y1090 [Science, 222 , 778 (1983)]、 丽 522 [J. Mol . Biol . , 166 r (1983)]、 画 [J. Mol . Biol . , 16 , 118 (1966)]及ぴ JM105 [Gene, 38 , 275 (1985)]等 が用いられる。
cDNAライブラ 'リーからのヒト以外の動物の抗体の VHおよび VLをコードする cDNAクロー ンを選択する方法としては、.ァイソトープ或いは蛍光などで標識したプロ一ブを用いたコロ ニー ·ハイプリダイゼ一シヨン法或い.はプラーク ·ハイプリダイゼ一シヨン法 [Molecular Cloning, A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1989)] により選択することができる。 また、 プライマーを調製し、 cDNA或いは cDNAライ ブラリ一を錶型として、 PCR [Molecular Cloning, A Laboratory Manual , Second Edition, Cold Spring Harbor Laboratory Press (1989)、 Current Protocols in Molecular Biology, Supplement 1-34] により VHおよび VLをコードする cDNAを調製することもできる。
上記方法により選択された cDNA を、 .適当な制限酵素などで切断後、 pBluescript SK (-) (Stratagene社製)等のブラスミドにクローニングし、 通常用いられる塩基配列解析方法、 例えば、 サンガー (Sanger) らのジデォキシ法 [Proc . Natl . Acad. Sci . , U.S.A. , 74, 5463 (1977)]等の反応を行い、 塩基配列自動分析装置、 例えば、 ABI PRISM377 DNAシークェンサ 一 (Applied Biosystems社製) 等の塩基配列分析装置を用いて分析することにより該 cDNAの 塩基配列を することができる。
決定した塩基配列から VHおよび VLの全アミノ酸配列を推定し、 既知の抗体の Hおよび VLの全アミノ酸酉 3列 [Sequences of Proteins of Immunol ogicallnterest , US Dept.. Health and Human Services , 1991] と比較することにより、 取得した cDNAが分泌シグナル配列を含 む抗体の VHおよび VLを完全に含んでいるアミノ酸配列をコードしているかを確認すること ができる。
さらに、 抗体可変領域のアミノ酸配列または該可変領域をコードする DNAの塩基配列がす でに公知である場合には、 以下の方法を用いて製造することができる。
アミノ酸配列^公知である場合には、 コドンの使用頻度 [Sequences of Proteins of Immunological Interest , US Dept. Health and Human Services , 1991] を考慮して該可変領 域をコードする DNA配列を設計し、 設計した DNA配列に基づき、 100塩基前後の長さからな る数本の合成 DNAを合成し、 それらを用いて PCR法を行うことにより DNAを得ることができ る。 塩基配列が公知である場合には、 その情報を基に 100塩基前後の長さからなる数本の合 成' DNAを合成し、 それらを用いて PCR法を行うことにより BNAを得ることができる。
( 3 ) ヒト以外の動物の抗体の V領域のアミノ酸配列の解析
分泌シグナル配列を含む抗体の VHおよび VLの完全なアミノ酸配列に関しては、 既知の抗 体の VHおよび VL'のアミノ酸配列 [Sequences of Proteins of Immunological Interest , US Dept. Health and Human Services, 19.91] と比較することにより、 分泌シグナル配列の長さ 及び N末端アミノ酸配列を ί ^でき、 更には抗体が属するサブグループを知ることができる。 また、 Hおよび VLの各 CDRのアミノ酸配列についても、 同様の方法で見出すことができる。
( 4 ) ヒト型キメラ抗体発現ベクターの構築
本項 2の (1 ) に記載のヒト化抗体発現用ベクターのヒト抗体の CHおよび CLをコードす る遺伝子の上流に、 ヒト以外の動物の抗体の VHおよび VLをコードする cDNAを揷入し、 ヒト 型キメラ抗体発現ベクターを構築することができる。例えば、 ヒト以外の動物の抗体の お よび VLをコードする cDNAを、 ヒト以外の動物の抗体 VHおよび VLの 3'末端側の塩基配列と ヒト抗体の CHおよび CLの 5 '末端側の塩基配列とからなり、 かつ適当な制限酵素の認識配列 を両端に有する合成 DNA とそれそれ連結し、 それそれを本項 2の (1 ) に記載のヒト化抗体 発現用ベクターのヒト抗体の CHおよび CLをコードする遺伝子の上流にそれらが適切な形で 発現するように揷入し、 ヒト型キメラ抗体発現ベクターを構築することができる。
( 5 ) ヒト型 CDR移植抗体の V領域をコードする cDNAの構築
ヒト型 CDR移植抗体の VHおよび VLをコードする cDNAは、 以下のようにして構築すること ができる。 まず、 目的のヒト以外の動物の抗体の VHおよび VLの CDRを移植するヒト抗体の VHおよび VLの FRのアミノ酸配列を選択する。 ヒト抗体の VHおよび VLの FRのアミノ酸配 列としては、 ヒト抗体由来のものであれば、 いかなるものでも用いることができる。 例えば、 Protein Data Bank等のデータペースに登録されているヒト抗体の VHおよび VLの FRのアミ ノ酸配列、 ヒト抗体の VHおよび VLの FRの各サブグループの共通アミノ酸配列 [Sequences of Proteins of Immunological Interest , US Dept . Health and Human Services , 1991]等が あげられるが、 その中でも、 十分な活性を有するヒト型 CDR移植抗体を作製するためには、 目的のヒト以外の動物の抗体の Hおよび VLの ΕΈのアミノ酸配列とできるだけ高い相同性
(少なくとも 60%以上) を有するアミノ酸配列を選択することが望ましい。
次に、 選択したヒト抗体の VHおよび VLの FRのアミノ酸配列に目的のヒト以外の動物の抗 体の Hおよび VLの CDRのァミノ酸配列を移植し、 ヒト型 CDR'移植抗体の VHおよび VLのァ ミノ酸配列を設計する。 設計したアミノ酸配列を抗体の遺伝子の塩基配列に見られるコドン の使用頻度 [Sequences of Proteins of Immunological Interest, US Dept. Health and Human Services, 1991] を考慮して DNA配列に変換し、 ヒト型 CDR移植抗体の VHおよび VL のアミノ酸配列をコードする DNA配列を設計する。 設計した DNA配列に基づき、 100塩基前 後の長さからなる数本の合成 D Aを合成し、 それらを用いて PCR法を行う。 この場合、 PCR での反応、効率及び合成可能な DNAの長さから、 H鎖、 L鎖とも 4〜6本の合成 DNAを設計する ことが好ましい。 ' また、 両端に,位置する合成 DNAの 5 '末端に適当な制限酵素の認識配列を導入することで、 本項 2の (1 ) で構築したヒト化抗体発現用べクタ一に容易にクロ一ニングすることができ る。 PCR後、 増幅産物を pBluescript SK (-) (Stratagene社製) 等のプラスミドにクロ一ニン グし、 本項 2の (2 ) に記載の方法により、 塩基配列を決定し、 所望のヒト型 CDR移植抗体 の VHおよび VLのアミノ酸配列をコードする DNA配列を有するプラスミドを取得する。
( 6 ) ヒト型 CDR移植抗体の V領域のアミノ酸配列の改変
ヒト型 CDR移植抗体は、 ヒト以外の動物の抗体の' VHおよび VLの CDRのみをヒト抗体の VH および VLの FRに移植しただけでは、 その抗原結合活性は元のヒト以外の動物の抗体に比べ て低下してしまうことが知られている [BIO/TECHNOLOGY, 9, 266 (1991 )] 。 この原因として は、 元のヒト以外の動物の抗体の VHおよび VLでは、 CDHのみならず、 FRのいくつかのァミ ノ酸残基が直接的或いは間接的に抗原結合活性に関与しており、 それらアミノ酸残基が CDR の移植に伴い、 ヒト抗体の VHおよび VLの の異なるアミノ酸残基へと変化してしまうこと が考えられている。 この問題を解決するため、 ヒト型 CDR移植抗体では、 ヒト抗体の VHおよ び VLの FRのァミノ酸配列の中で、 直接 との結合に関与しているァミノ酸残基や CDRの ァミノ酸残基と相互作用したり、 抗体の立 «造を維持し、 間接的に抗原との結合に関与し ているアミノ酸残基を同定し、 それらを元のヒト以外の動物の抗体に由来するアミノ酸残基 に改変し、 低下した抗原結合活性を上昇させることが行われている [BIO/TECHNOLOGY, 9 , 266 (1991 )]。
ヒト型 CDR移植抗体の作製においては、 それら抗原結 活性に関わる FRのアミノ酸残基を 如何に効率よく同定するかが、 最も重要な点であり、 そのために X線結晶解析 [J . Mol . Biol . , 112 , 535 (1977)]或いはコンピューターモデリング [Protein Engineering, 7 , 1501 (1994)]等による抗体の立体構造の構築及び解析が行われている。 これら抗体の立 ί; ^造の 情報は、 ヒト型 CDR移植抗体の作製に多くの有益な情報をもたらして来たが、 その一方、 あ らゆる抗体に適応可能なヒト型 CDR移植抗体の作製法は未だ確立されておらず、 現状ではそ れそれの抗体について数種の改変体を作製し、 それそれの抗原結合活性との相関を検討する 等の種々の試行錯誤が必要である。
ヒト抗体の VHおよび VLの FRのアミノ酸残基の改変は、 改変用合成 DNAを用いて本項 2の ( 5 ) に記載の PCR法を行うことにより、 達成できる。. PCR後の増幅産物について: ^項 2の ( 2 ) に記載の方法により、 塩基配列を決定し、 目的の改変が施されたことを確認する。
( 7 ) ヒト型 CDR移植抗体発現べクタ一の構築
本項 2の ( 1 ) に記載のヒト化抗体発現用ベクターのヒト抗体の CHおよび CLをコードす る遺伝子の上流に、 本項 2の (5 ) および(6 ) で構築したヒト型 CDR移植抗体の VHおよび VLをコードする cDNAを揷入レ、 ヒト型 CDR移植抗体発現ベクターを構築することができる。 例えば、 本項 2の (5 ) および(6 ) でヒト型 CDR移植抗体の VHおよび VLを構築する際【こ 用いる合成 DNAのうち、 両端に位置する合成 DNAの 5 '末端に適当な制限酵素の認識配列を導 入することで、 本項 2の (1 ) に記載のヒト化抗体発現用ベクターのヒト抗体の CHおよび CLをコードする遺伝子の上流にそれらが適切な形で発現するように挿入し、 ヒト型 CDR移植 抗体発現ぺク夕一を構築することができる。
( 8 ) ヒトイ匕抗体の安定的生産 , 本項 2の (4 )及び (7 ) に記載のヒト化抗体発現ベクターを適当な動物細胞に導入する ことによりヒト型キメラ抗体及ぴヒト型 CDR移植抗体 (以下、 併せてヒト化抗体と称す) を 安定に生産する形質転換株を得ることができる。 動物細胞へのヒト化抗体発現ベクターの導入法としては、 エレクト口ポレーシヨン法 [特 開平 2- 257891 ; Cytotechnology, 3, 133 (1990)]等があげられる。
ヒト化抗体発現ベクターを導入する動物細胞としては、 ヒト化抗体を生産させることがで きる動物細胞であれば、 いかなる細胞でも用いることができる。
具体的には、 マウスミエローマ細胞である NS0細胞、 SP2/0細胞、 チャイニーズハムス夕 一卵巣細胞 CHO/dhむ-細胞、 CH0/DG4 細胞、 ラヅトミエローマ細胞 YB2/0細胞、 IR983F細胞、 シリアンハムスター腎臓由来である BHK細胞、 ヒド'ミエ口一マ細胞であるナマルバ細胞など があげられるが、 好ましくは、 チャイニーズハムスター卵巣細胞である CH0/DG44細胞、 ラヅ トミエローマ YB2/0細胞等があげられる。 . ヒト化抗体発現ぺク夕一の導入後、 ヒト化抗体を安定に生産する形質転 «は、 特開平 2- 257891に開示されている方法に従い、 G418硫酸塩 (以下、 G418と表記する; SI(M社製) 等 の薬剤を含む動物細 J3g培養用培地により選択できる。 動物細胞培養用培 ¾としては、 RPMI1640培地(日水製薬ネ ±S)、 GIT培地 (日本製薬ネ: fc )、 EX-CELL302培地 (JRH社製)、 IMDM培地 (GIBCO BRLネ ±S)、 Hybridoma-SFM培地 (GIBCO BRL社製)、 またはこれら'培地に 牛胎児血清 (以下、 FCS と表記する)等の各種添加物を添加した培地等を用いることができ る。得られた形質転換株を培地中で培養することで培養上清中にヒト化抗体を'生産蓄積させ ることができる。 培養上清中のヒト化抗体の生産量及び抗原結合活性は酵素免疫抗体法 [以 下、 ELISA 法と表 §ΰする ; Antibodies : A Laboratory Manual , Cold ' Spring Harbor Laboratory, Chapter 14, 1998、 Monoclonal Antibodies : Principles and Practice, Academic Press Limited, 1996] 等により測定できる。 また、 形質転換株は、 特開平 2 - 257891に鬨示されている方法に従い、 DHFR遺伝子増幅系等を利用してヒト化抗体の生産量を 上昇させることができる。
ヒト化抗体は、 形質転換株の培養上清よりプロティン Aカラムを用いて精製することがで きる [Antibodies : A Laboratory Manual , Cold Spring Harbor Laboratory, Chapter 8 , 1988、 Monoclonal Antibodies : Principles and Practice, Academic Press Limited, 1996] 。 また、 その他に通常、 蛋白質の精製で用いられる精製方法を使用することができる。例えば、 ゲル 濾過、 ィオン交換ク口マトグラフィ一及び限外濾過等を組み合わせて行い、 精製することが できる。精製したヒト化抗体の H鎖、 L鎖或いは抗体分子全体の分子量は、 SDS変性ポリアク リルアミドゲル電気泳動 [以下、 SDS-PAGE と表記する; Nature , 227, 680 (1970)] ゃゥェ スタンブロ ヅティ ンク法' L Antibodies : A Laboratory Manual , Cold Spring Harbor Laboratory, Chapter 12 , 1988、 Monoclonal Antibodies : Principles and Practice, Academic Press Limited, 1996]等で測定することができる。
以上、 動物細胞を宿主とした抗体繊物の製造方法を示したが、 上述したように、 酵母、 昆虫細胞、 植物細胞または動物個体あるレ、は植物個体においても動物細胞と同様の方法によ り抗体糸 物を製造することができる。 ―'
すでに宿主細胞が抗体を発現する能力を有する場合には、 上記 1に記載した方法を用いて 抗体, 物を発現させる細胞を調製した後に、 該細胞を培養し、 該培養物から目的とする抗 体翻成物を精製することにより、 本発明の抗体 «物を製造することができる。
3 . 抗体難物の活性評価
精製した抗体 物の蛋白質量、 との結合活性あるいは細胞傷害活性を測定する方法 としては、 Monoclonal Antibodies : Principles and Practice, Academic Press Limited, 1996、 あるいは Antibody Engineering, A Practical Approach, IRL Press at Oxford University Press, 1996等に記載の公知の方法を用いることができる。
その具体的な例としては、 抗体組成物がヒト化抗体の場合、 抗原との結合活性、 陽性 培養細胞株に対する結合活性は ELISA法及ぴ蛍光抗体法 [Cancer Immunol . Immunot er. , 36 , 373 (1993)]等により測定できる。 抗原陽性培養細腿に対する細胞傷害活性は、 CDC活性、 ADCC活性等を測定することにより、 評価することができる [Cancer Immunol . Immunother. , 36. 373 (1993)]。
また、 抗体組成物のヒトでの安全性、 治療効果は、 力二クイザル等のヒトに比較的近い動 物種の適当なモデルを用いて評価することができる。
4 . 抗体 «物の の分析
各種細胞で発現させた抗体組成物の糖鎖構 は、 通常の糖蛋白質組成物の糖鎖構造の解析 に準じて行うことができる。例えば、 IgG分子に結合している糖鎖はガラクトース、 マンノ ース、 フコースなどの中 '注糖、 N-ァセチルグルコサミンなどのアミノ糖、 シアル酸などの酸 性糖から構成されており、 糖組成分析および二次元糖鎖マヅプ法などを用いた糖鎖構造解析 等の手法を用いて行うことができる。 ( 1 ) 中性糖.アミノ糖 «分析
抗体組成物の糖鎖の組成分析は、 トリフルォロ酢酸等で、 糖鎖の酸加水分解を行うことに より、 中性糖またはアミノ糖を遊離し、 その組成比を分析することができる。
具体的な方法として、 Dionex社製糖組成分析装置を用いる方法があげられる。 BioLCは HPAEC-PAD ( high performance ani on-exchange chromatography-pulsed amperometric detection)法 [J. Liq. Chromatogr. , 6, 1577 (1983)] によって糖 を分析する装置であ る;' - また、 2-アミノピリジンによる蛍光標識化法でも I减比を分析することができる。 具体的 には、 公知の方法 [Agric.Biol .Chem. , 55 (1 ) . 283 (1991 )] に従って酸加水分解した試料を 2-ァミノピリジル化で蛍光ラベル化し、 HPLC分析して 比を算出することができる。
(2)讓構造解析 .
抗体 物の糖鎖の構造解析は、 2次元糖鎖マップ法 [Anal. Biochem. , 171 , 73 (1988 )、 生物化学実験法 23-糖蛋白質糖鎖研究法 (学会出版センタ一) 高橋禮子編 (1989年) ] によ り行うことができる。 2 '次元織貞マップ法は、 例えば、 X軸には逆相クロマトグラフィーによ る糖鎖の保持時間または溶出位置を、 Υ軸には順相クロマトグラフィ一による糖鎖の保持時 間または溶出位置を、 それそれプロットし、 既知糖鎖のそれらの結果と比較することにより、 糖鎖構造を推定する方法である。
具体的には、 抗体 «物をヒドラジン分解して、 抗体«物から糖鎖を遊離し、 2-ァミノ ピリジン (以下、 ΡΑと略記する) による難員の蛍光標識 [J. Biochem. , 95 , 197 (1984)] を 行った後、 ゲルろ過により糖鎖を過剰の PA化試薬などと分離し、 逆相ク口マトグラフィ一を 行う。 次いで、 分取した糖鎖の各ピークについて順相クロマトグラフィーを行う。 これらの 結果をもとに、 2次元糖鎖マヅプ上にプロヅ トし、 糖鎖スダンダード (TaKaRa社製) 、 文献 [Anal . Biochem.' , 171 , 73 (1988)] とのスポットの比較より糖鎖構造を推定することがで きる。
さらに各 の MALDI-TOF- MSなどの質量分析を行 ヽ、 2次元 マヅプ法により推定され る構造を確認することができる。
5 . 抗体分子の糖鎖構造を識別する免疫学的定量方法
抗体組成物は、 抗体の Fc領域に結合する糖鎖構造が異なった抗体分子から構成されている。 本発明の抗体誠物は、 Fc領域に結合する全 N-グリコシド結合複合型糖鎖のうち、 糖鎖還元 末端の N-ァセチルグルコサミンにフコースが結合していない糖鎖の割合が 100%であり、 高い ADCC活性を示す。 このような抗体 «物は、 上記 4 . に記載の抗体, «物の 構造の分析 法を用いることにより識別できる。 また、 レクチンを用いた免疫学的定量方法を用いること によっても識別できる。
レクチンを用いた免疫学的定量方法を用いた抗体組成物の糖鎖構造の識別は、 文献
[Monoc onal Antibodies: Principles and Applications,- Wi ley-Li ss, Inc. , (1995); 酵素 免疫測定法, 第 3版, 医学書院 (1987) ; 改訂版, 酵素抗体法, 学際企画 (1985) ]等に記 載のウエスタン染色、 IA ( Radioimmunoassay ) 、 VIA ( Viro immunoassay ) 、 EIA
(Enzymoi謹漏 assay) 、 FIA (Fluoroimmunoassay) 、 MIA (Metal loimmunoassay) などの免疫 学的定量方法に準じて、 例えば、 以下のように行うことができる。
抗体 «物を構成する抗体分子の糖鎖構造を認識するレクチンを標識し、 檩識したレクチ ンと試料である抗体組成物を反応させる。 次に、 標識したレクチンと抗体分子の複合体の量 を測定する。 ' 抗体分子の糖鎖構造を識別に用いられるレクチンとしては、 例えば、 WGA (T. vulgaris 由 来の. wheat - gera agglutinin)ヽ ConA (C. ensiformis 由来の concanavalin A)、 RIC (R. co腿 is由来の毒素)、 L-PHA (P. vulgaris由来の leukoagglutinin) LCA (L. culinaris 由 来の lentil agglutinin ) PSA (P, sativum 由来の Pea. lectin)、 AAL (Aleuria aurantia Lectin) ACL (Amaranthus caudatus Lectin) . BPL (Bauhinia purpurea Lectin) DSL (Datura stramonium LectinK DBA (Dolichos biflorus Agglutinin )s EBL (Elderberry Balk Lectin) ECL (Erythrina cristagalli Lectin) s EEL (Euonymus e ropaeus Lectin)、 GNL (Galanthus nivalis Lectin) GSL (Griffonia simplicifolia Lectin)N HPA (Helix pomatia Agglutinin)、 HHL (Hippeastrum Hybrid Lectin) Jacalin、 LTL (Lotus tetragonolobus Lectin) N LEL (Lycopersicon esculentum Lectin) 、 MAL (Maackia amurensis Lectin) 、 MPL (Maclura pomifera Lectin)s PL (Narcissus pseudonarcissus Lectin)、 PNA (Peanut Agglutinin )N E - PHA (Phaseolus vulgaris Eryt roagglutinin) PTL (Psophocarpus tetragonolobus LectinK RCA ( icinus communis Agglutinin) 、 STL (Sola醒— tuberosum Lectin) 、 SJA (Sop ora japonica Agglutinin)、 SBA (Soybean Agglutinin) UEA (Ulex europaeus Agglutinin ) WL (Vicia villosa Lectin)^ WFA (Wisteria floribunda Agglutinin)があげられる。
N-グルコシド結合複合型糖鎖還元末端の N-アセチルグルコサミンにフコースが結合してい る糖鎖構造を特異的に認識するレクチンを用いることが好ましく、 その具体的な例としては、 レンズマメレクチン LCA (Lens Culinaris由来の Lentil Agglutinin) エンドゥマメレクチン PSA (Pisnffl sativum 由来の Pea Lectin) 、 ソラマメレクチン VFA (Vicia faba 由来の Agglutinin)、 ヒィロチャワン夕ケレクチン ML (Aleuria aurantia 由来の Lectin) を挙げ ることができる。 一'
6 . 本発明の抗体組成物の利用 .
本発明の抗体組成物はガングリオシド GM2に特異的に結合し、 高レヽ ADCC活性および CDC活 性を有するため、 癌をはじめとする各種ガングリオシド GM2発現細胞関連疾患の予防および 治療において有用である。
本発明において、 ガングリオシド GM2関連疾患としては、 ガングリオシド GM2を発現する 細胞が関与する疾患であればいかなるものも包含される。例えば、 癌などがあげられる。
本発明の癌としては、 神経外胚葉系腫瘍である神経芽細胞腫、 胚小細胞癌およびメ^ノ一 マなどが包含される。 ' ,
ガングリオシド GM2は、 正常細胞にはごく微量にしか存在しないが、 肺小細胞癌、' メラノ 一マ、 神経芽細胞腫などの癌細胞では多量に存在し、 GM2に対するモノクローナル抗体は、 これらの癌の治療に有用であると考えられている CLancet,!^ 6154 (1988)〕。通常の抗癌 剤は、 これらの癌細胞の増殖を抑制することを とする。 しかし、 ADCC活性または CDC活 性を有する抗体は、 癌細胞に細胞死を誘導することができるため、 通常の抗癌剤よりも治療 薬として有効である。特に癌の治療薬において、 現状では抗体医薬単独の抗腫瘍効果は不充 分であり、 化学療法との併用療法が行われているが [Science, 280. 1197 (1998)]、 本発明 の抗体組成物は単独で高い抗癌効果を有するため、 化学療 に対する依存度が低くなり、 副 作用の低減にもなる。
本発明の抗体組成物は、 ガングリオシド GM2に特異的に結合し、 ガングリオシド (Μ 発現 ' 細胞に対して強 ヽ細胞傷害活性を示すので、 ガングリオシド GM2が発現した細胞を選択的に 排除することができる。 ' また、 本発明の抗体組成物は高い細胞傷害活性を有するため、 従来の抗体組成物では治癒 することができない、 上述の癌などの患者を治療することができる。 さらに、 癌の場合、 癌 細胞の浸潤部位に薬物が届きにくいため、 少量の薬物でも治療効果を有することが好ましい。 本発明の抗体組成物は少量でも高い ADCC活性を有するため、 上述の疾患の治療に有用である。 本発明の抗体 物を含有する医薬は、 治療薬として単独で投与することも可能ではある が、 通常は薬理学的に許容される一つあるいはそれ以上の担体と一緒に混合し、 製剤学の技 術分野においてよく知られる任意の方法により製造した医薬製剤として ¾するのが望まし い。
投与経路は、 治療に際して最も効果的なものを使用するのが望ましく、 経口投与、 または 口腔内、 気道内、 直腸内、 皮下、 筋肉内および静脈内等の非経口投与をあげることができ、 抗体製剤の場合、 望ましくは静脈内投与をあげることができる。
投与形態としては、 噴霧剤、 カプセル剤、 錠剤、 顆粒剤、 シロップ剤、 乳剤、 座剤、 注射 剤、 軟膏、 テープ剤等があげられる。
経口投与に適当な製剤としては、 乳剤、 シロップ剤、 カプセル剤、 錠剤、 散剤、 顆 剤等 があげられる。
乳剤およびシロップ剤のような液体調製物は、 水、 ショ糖、 ソルビトール、 果糖等の麵、 ポリエチレングリコール、 プロピレングリコール等のグリコール類、 ごま油、 ォリーブ油、 大豆油等の油類、 P-ヒドロキシ安息香酸エステル類等の防腐剤、 ストロベリーフレーバー、 ペパーミント等のフレーパー類等を添加剤として用いて製造できる。
力.プセル剤、 錠剤、 散剤、 顆粒剤等は、 乳糖、 ブドウ糖、 ショ糖、 マンニトール等の賦形 剤、 デンプン、 アルギン酸ナトリウム等の崩壊剤、 ステアリン酸マグネシウム、 タルク等の 滑沢剤、 ポリビニルアルコール、 ヒドロキシプロピルセルロース、 ゼラチン等の結合剤、 旨 肪酸エステル等の界面活性剤、,グリセリン等の可塑剤等を添加剤として用いて製造できる。 非経口投与に適当な製剤としては、 注射剤、 座剤、 噴霧剤等があげられる。 · ' 注射剤は、 塩溶液、 ブドウ糖溶液、 あるいは両者の混合物からなる担体等を用いて調製さ れる。 または、 抗体 物を常法に従って凍結 し、 これに塩化ナトリウムを加えること によって粉末注射剤を調製することもできる。 - 座剤はカカオ脂、 水素化脂肪またはカルボン酸等の担体を用いて調製される。 また、 噴霧剤は該抗体組成物そのもの、 ないしは受容者の口腔および気道粘膜を刺激せず、 かつ該抗体組成物を微細な粒子として分散させ吸収を容易にさせる担体等を用いて調製され る。 ·'
担体として具体的には乳糖、 グリセリン等が例示される。 該抗体 物および用いる担体 の性質により、 エアロゾル、 ドライパウダー等の製剤が可能である。 また、 これらの非経口 剤においても経口剤で添加剤として例示した成分を添加することもできる。
投与量または投与回数は、 目的とする治療効果、 投与方法、 治療期間、 年齢、 体重等によ り異なるが、 有効成分の量として、 通常成人 1日当たり 10〃g/kg 20mg/kgである。
また、 抗体 物の各種腫瘍細胞に対する抗腫瘍効果を検討する方法は、 インビトロ実験 としては、 CDC活性測定法、 ADCC活性測定法等があげられ、 インビボ実験としては、 マウス 等の実験動物での腫瘍系を用 1ヽた抗腫瘍実験等があげられる。
CDC活性、 ADCC活性、 抗腫瘍実験は、 文献 [Cancer Immunology Immunotherapy, 36, 373 . (1993)、 CancerResearch, 54, 1511 (1994)]等記載の方法に従って行うことができる。 図面の簡単な説明
第 1図は、 ブラスミド pKOFUT8Neoの構築を示した図である。
第 2図は、 CH0/DG4 細胞の FUT8対立遺伝子を 1コピー破壊したへミノヅクァゥ
トクローンのゲノムサザンの Mfr結果を示した図である。 ^—ンは左からそれそれ分子量マ —カー、 へミノヅクアウトクローン 50- 10-104および親株である CH0/DG44細胞のゲノムサザ ンである。 .
第 3図は、 CH0/DG4 細胞の FUT8両対立遺伝子を破壊したダブルノヅクァゥトクローン K704のゲノムサザン解析結果を示した図である。 矢印は、 相同組換えが起こった際に検出 される陽性断片の検出位置を示す。
第 4図は、 CH0/DG44細胞の FUT8両対立遺伝子を破壊したダブルノヅクアウトクローンよ り薬剤耐性遺伝子を除去したクローンのゲノムサザン麟斤結果を示した図である。 レーンは 左からそれそれ分子量マ一カー、 ダブルノックアウトクローンの薬剤耐性遺伝子除去クロー ン 4- 5-C3、 ダブルノヅクアウトクローン WK704、 へミノヅクアウトクロ^"ン 50- 10- 104およ び親株である CH0/DG44細胞のゲノムサザンである。 第 5図は、 精製した Ms705/ GM2抗体および DG44/ GM2抗体のガングリオシド GM2に対する ELISA法における反応性を、 抗体濃度を変化させて測定した図である。横軸に抗体濃度を、 縦軸に各抗体濃度における吸光度を示す。 口が DG44/ GM2抗体、 画が Ms705/ GM2抗体をそれ それ示す。
第 6図は、 精製した Ms705/ GM2抗体および DG44/ GM2抗体のヒト小細胞性肺癌株 SBC-3細 胞に対する ADCC活性を、 抗体濃度を変化させて測定した図である。 横軸に抗体濃度を、 縦軸 に各抗体濃度における細胞傷害活性を示す。 參が DG44/ GM2抗体、—'〇が Ms705/ GM2抗体をそ れそれ示す。 以下に、 例により本発明を説明するが、 本発明はこれらに限定されるものではない。 実施例 +
実施例 1 '
ゲノム上のひ 1 , 6-フコシルトランスフェラーゼ (以下、 FUT8と表記する)両対立遺伝字を破 壊した CH0/DG44細胞の造成
FUT8両対立遺伝子の翻訳開始コドンを含むゲノム領域を欠失させた CH0/DG44細胞株を以 下の手順で造成した。 ,
1. チャイニーズハムスター FUT8遺伝子のェクソン 2を含む夕ーゲティングぺク夕一 pKOFU 8Neoの構築
. W002/31140の実 例 13の 1項に記載の方法で構築されたチャイニーズノヽムス夕一 FUT8遺 伝子のェクソン 2を含む夕ーゲティングぺクタ一 pKOFUT8Puroおよび pKOSelectNeo (Lexicon 社製)を用いて、 以下の様にして pKOFUT8Neoを構築した。
KOSelectNeo (Lexicon社製)を制限酵素 I (New England Bio labsネ: で消化後、 ァガ ロースゲル電気泳動に供し、 GENECLEAN Spin Kit (BI0101社製) を用いてネオマイシン耐性 遺伝子発現ュニヅトを含む約 1 .6Kbの k£l断片を回収した。
次に、 pKOFUT8Puroを制限酵素 ≤I (New England Biolabs社製)で消化後、 大腸菌 C15株 由来 Alkaline Phosphatase (宝酒造社製)により、 DNA断片の末端を脱リン酸化させた。反応 後、 フエノール/クロ口ホルム抽出処理およびエタノール沈殿法を用いて、 DNA断片を精製し た。 ,
上記で得た pKOSelectNeo由来の l断片 (約 1 · 6Kb)0.1^ と pK0FU 8Puro由来の l断 片 (約 10.1Kb) 0.1〃gに滅菌水を加えて とし、 Ligation High (東洋紡社製) をカロ えて 16°Cで 30分間反応させることにより、 連結反応を行った。該反応液を用いて大腸菌 DH5 α株を形質転換し、 得られたアンピ,シリン耐性クローンより各々プラスミド DNAを調製し、 BigDye Terminator Cycle Sequencing Ready. Reaction Kit v2.0 (Applied Biosystems ¾ ) を用いて添付の説明書に従って反応後、 同社の DNAシーケンサ ABI PRISM 377により塩基配 列を解析した。 この様にして第 1図に示した pKOFUT8Neoを得た。 pKOFU 8Neoは CH0細胞の FUT8遺伝子へミノヅクァゥト細胞株を作製するための夕ーゲティングベクターとして用いた。 2. ゲノム上の FUT8遺伝子の 1コピーを破壊したへミノヅクアウト細 »の作製
(1 ) 夕ーゲティングベクター pKOFUT8Neo導入株の取得 '
ジヒドロ葉酸還 酵素遺伝子 (dhfr) を欠損したチャイニーズハムス夕一卵巣由来
CH0/DG44細胞 [Somatic Cell and Moleculer Genetics, 12 , 555, 1986] に、 実施例 1の 1項 で構築したチャイニーズノヽムスター FU 8ゲノム領域夕一ゲティングベクター pKOFUT8Neoを以 下の様にして導入した。 '
pKOFUT8Neoを制限酵素 I (New England Biolabs社製)で消化して線状化し、 線状化した 4 gの pKOFUT8Neoを 1.6 x 108個の CH0/DG44細胞へェレクトロボレ一シヨン法 [サイトテク ノロジー (Cytotechnology) , 3, 133 (1990) ]により導入した後、 IMDM-dFBS (10)-HT(1 ) [透 析 FBS (インビトロジェン社製 )を 10%、 H supplement (インビトロジェン社製 )を 1倍濃度で 含む IMDM培地 (インビトロジェン社製) ] に懸濁し、 接着細胞培養用 10cmデヅシュ (Falcon 社製)へ播種した。 5%C02インキュベーター内で 37°C、 24時間培養後、 G418 (ナカライテス ク社製) を 600 g/mLの濃度で含む IMDM-dFBS (10) [透析 FBSを 10%で含む IMDM培地] lOmL に培地交換した。 この培地交換作業を 3〜4日毎に繰り返しながら 5%C02インキュぺ一夕一 内で 37°C、 15日間の培養を行い、 G418耐性クローンを取得した。
(2) ゲノム PCRによる相同組換えの診断
本項 (1 )で取得した G418耐性クローンの相同 βえの診断を、 ゲノム DNAを用いた Ρ(¾に より、 以下の様に行った。 96穴プレート上の G418耐性クローンに対してトリプシン処理を行った後、 2倍容量の凍結 培地 [20% DMS0、 40% ゥシ胎児血清、 0% DffiM] を各ゥエルに添加、 懸濁した。 各ゥエル中 の細胞懸濁液の半量を接着細胞用平底 96穴プレート (旭テクノグラス社製) へ播種してレブ リカプレートとする一方、 残りの半量をマス夕一プレートとして凍結保存した。
レプリカプレート上のネオマイシン耐性クローンは、 G418を 600/zg/mLの濃度で含む IMDM-dFBS (lO)で 5%C02インキュベータ一内で 37°C、 1週間培養した後、 細胞を回収し、 回収 した細胞から公知の方法 [アナリティカル'バイオケミストリー (Analytical -'
Biochemistry) , 201 , 331 (1992)] に従って各クローンのゲノム DNAを調製し、 各々 30 zLの TE-RNase緩衝液 (pH8.0) [10mmol/L Tris-HCk 1腿 ol/L EDTA、 200 /g/mL RNase A] にー晚溶 解した。
ゲノム PGRに用いるプライマーは以下の様に設計した。 まず、 W03/31140の実施例 12に記 載の方法により取得した FUT8ゲノム領域の配列 (配列番号 13) の中から、 配列番号 39また は配列番号 40でそれそれ示されるプライマーをフォワードプライマ一とした。 また、 夕ーゲ ティングぺク夕一の ΙοχΡ配列に特異的に結合するプライマ一 (配列番号 41または配列番号 42) をリバースプライマーとし、 以下のポリメラ一ゼ連鎖反応 (PCR) に用いた。 上記で調製 したゲノム DNA溶液を各々10/ L含む 25 /Lの反応液 [DNAボリメラ一ゼ ExTaq (宝酒造社製)、 ExTaq buffer (宝酒造社製)、 0.2腿 ol/L dNTPs、 O ^^mol/L上記プライマー (フォワードブラ イマ一とリノ、'ースプライマーを組み合わせて使用する) ]を調製し、 94°Cで 3分間の加熱の後、 94°Cで 1分間、 60°Cで 1分間、 72°Cで 2分間からなる反応を 1サイクルとした条件で PCRを 行った。
PCR後、 該反応液を 0.8% (w/v) ァガロースゲル電気泳動に供し、 相同組換えによって生 じる約 1.7Kbの特異的増幅産物が認められた株を陽性クローンと判定した。
(3 ) ゲノムサザンプロットによる相同 «えの診断
本項 (2 )で取得された陽性クローンの相同組換えの診断を、 ゲノム DNAを用いたサザンプロ ヅトにより、以下の様に行った。
本項 (2 )で凍結保存したマスタ一プレートのうち、 本項 (2 )で見出された陽性クロ一ンを含 む 96穴プレートを選択し、 5%C02インキュベータ一内で 37°C、 10分間静置した後、 陽性クロ —ンに該当するゥエル中の細胞を接着細胞用平底 24穴プレート (グライナ一社製)へ播種し た。 G418を 600 g/mLの濃度で含む IMDM- dFBS ( 10)を用いて 5%C02インキュベーター内で 37°C、 1週間培養した後、 接着細胞用平底 6穴プレート (グライナーネ: fcM) へ播種した。 該プレー トを 5%C02インキュベーター内で 37°Cにて培養し、 細胞を回収した。 回収した細胞より公知 の方法 [ヌクレイヅク ·ァシヅド ' リサーチ(Nucleic Acids Research) , 3 , 2303 , ( 1976)] に従って各クローンのゲノム DNAを調製し、 各々 150〃Lの TE-RNase緩衝液 (ρΗ8 · 0) にー晚 溶解した。
上記で調製 たゲノム DNA 12〃gを制限酵素 ¾HI (New England Bio tabs社製)で消化し、 エタノール沈殿法を用いて DNA断片を回収した後、 20//Lの TE緩衝液 (pH8.0 ) [lOramol/L Tris-HC lmmol/L EDTA] に溶解し、 0.6°/。(w/v) ァガロースゲル電気泳動に供した。 泳動後、 公知の方法 [プロシ一ディングス ·ォブ ·ザ ·ナショナル ·アカデミー ·ォブ ·サイエンス (Proc . Natl . Acad. -Sci . USA) , 76 , 36.83 , ( 1979)] に従って、 ナイロン膜へゲノム DNAを転 写した。 転写終了後、. ナイ口ン膜に対し 80°Cで 時間の熱処理を行い、 固定ィ匕した。
—方、 サザンプロットに用いるプローブを以下のように調製した。 WO03/31140の実施例 12 に記載の方法により取得した FUT8ゲノム領域の配列 (配列番号 13) の中から、 配列審号 43 および配列番号 44でそれそれ示されるプライマーを作製し、 以下の PCRに用いた。
W002/31140の実施例 12に記載の pFUT8fgE2- 2 4.0n をテンプレートとして含む 20 /Lの反応 液 [DNAポリメラーゼ ExTaq (宝酒造社製)、 ExTaq buffer (宝酒造社製)、 0.2mmol/L dN Ps、 0.5 zmol/L上記プライマー]を調製し、 94°Cで 1分間の加熱の後、 94°Cで 30秒間、 55°Cで 30秒 間、 74°Cで 1分間からなる反応を 1サイクルとした 25サイクルの条件で PCRを行った。
PCR後、 該反応液を 1.75% (w/v) ァガロースゲル電気泳動に供し、 GENECLEAN Spin Kit (BI0101 |± ) を用いて約 230bpのプローブ DNA断片を回収した。得られたプローブ DNA溶 液のうち 5〃Lを、 [ひ-32 P] dCTP 1 .75MBqおよび Megapiime DNA Labelling system, dCTP (Amersham Pharmacia Biotech社製) を用いて放射線標識した。
ノ、イブリダィゼーシヨンは以下の様に行った。 まず、 上記のゲノム DNA消化物が転写され たナイロン膜をローラーボトルへ封入し、 15mLのハイブリダィゼーシヨン液 [5 x SSPE、 50 XDenhaldt ' s液、 0.5%(w/v) SDS、 100 zg/mLサケ精子 DNA] を加えて 65°Cで 3時間のプレハ ィプリダイゼ一シヨンを行った後、 32P標識したプローブ DNAを熱変性してボトルへ投入し、 65°Cでー晚ハイプリダイゼーションを行った。 ハイブリダィゼ一'シヨン後、 ナイロン膜を 50mLの一次洗浄液 [2 xSSC-0.1%(w/v) SDS] に浸潰し、 65°Cで 15分間加温して洗浄した。 上記の洗浄操作を 2回繰り返した後、 ナイロン 膜を 50mLの二次洗浄液 [0.2 xSSC-0.1%(w/v) SDS] に浸漬し、 65°Cで 15分間加温して洗浄 した。洗浄後、 ナイロン膜を X線フィルムへ- 80°Cで暴露し現像した。
第 2図には、 親株である CH0/DG44細胞、 および本項 (2) で取得した陽性クローンである 50- 10- 104株のゲノム DNAを本法により «した結果を示した。 CH0/DG44細胞では、 野生型 FUT8"^f立遺伝子由来の約 25.5Kbの断片のみが検出された。 方、 陽性クローン 50- 10- 104株 では、 野生型 FUT8対立遺伝子由来の約 25.5Kbの断片に加え、 相同組換えされた対立遺伝子 に特異的な約 20.0Kbの断片が検出された。 両断片の量比は 1: 1であったことから、 50-10- 104株は、 FUT8対立遺伝子のうち 1コピーが破壊されたへミノックアウトクローンであるこ とが確認、された。
3. ゲノム上の FUT8遺伝子をダブルノックアウトした CH0/DG44細胞の作製
( 1 ) 夕ーゲテイングぺク夕一 pK0FUT8Puro導入株の作製
本 »例の 2項で得た FUT8遺伝子へミノヅクアウトクローンのもう一方の FU 8対 遺伝 子を破壊するために、 WO02/31U0の実施例 13の 1項に記載のチャイニーズハムスター FUT8 遺伝子ェクソン 2夕ーゲティングベクターである pK0FUT8Puroを以下の様にして導入した。 pKOFUT8Puroを制限酵素 I (New England Biolabs社製)で消化して線状化し、 線状化し た 4 zgの pKOFUT8Puroを 1.6 X 106個の FU 8遺伝子へミメヅクアウトクローンへエレクトロ ポレーシヨン法 [サイトテクノロジー (Cytoteclmology) , 3 , 133 (1990) ]により導入後、 IMDM-dFBS (10)-HT(1 ) に懸濁し、 接着細胞培養用 10cmデッシュ (Falcon社製) へ播種した。 5%C02インキュベーター内で 37°C、 24時間培養後、 ピュ一ロマイシン (SIGMA社製) を 15 z g/mLの濃度で含む IMDM-dFBS (lO)-HT(l ) lOmLに培地交換した。 この培地交換作業を 7日毎 に繰り返しながら 5%C02インキュベーター内で 37°C、 15日間の培養を行い、 ピュー口マイ シン耐' 14クローンを取得した。 '
(2 ) ゲノムサザンプロヅトによる相同 «えの診断
本項 (1 )で取得された薬剤耐性クローンの相同 «えの診断を、 ゲノム DNAを用いたサザン プロヅトにより以下の様に行った。 ピューロマイシン耐性クローンを、 公知の方法 [Gene Targeting, Oxford University Press , (1993)] に従って接着細胞用平底プレート (旭テクノグラス社製)へ採取し、 ピュー 口マイ.シン (SIGMA社製) を 15〃g/mLの濃度で含む IMDM-dFBS (10 )- HT(1 )を用いて 5%C02ィ ンキュベー夕一内で 37°C、 1週間培養した。
培 «¾、 上記プレートの各クローンに対しトリプシン処理を行い、 接着細胞用平底 24穴プ レート (グライナ一社製) へ播種した。 ピューロマイシン (SIGMA社製) を 15 g/mLの濃度 で含む IMDM-dFBS (10 )-HT(1 )を用いて 5%∞2インキュベーター内で' 37°C、 1週間培養した後、 同様にトリプシン処理を行い、 接着細胞用平底 6穴プレート (グライナ一社製)へ播種した。 該プレートを 5%C02インキュベータ一内で 37°Cにて培養し、 回収した細胞より公知の方法 [ヌクレイヅク ·ァシヅド · リサ一チ (Nucleic Acids Research) , 3, 2303 , (1976 )] に従つ て各クローンのゲノム DNA ,を調製し、 各々 150 /Lの TE-RNase緩衝液 (pH8.0)にー晚溶解した。 上記で調製したゲノム DNA 12 gを制限酵素 Ban)HI (New England Biolabs社製)で消化し、 エタノール沈殿法を用いて DNA断片を回収した後、 20〃Lの TE緩衝液 (pH8.0 ) に溶解し、 0.6%(w/v) ァガロースゲル電気泳動に供した。 泳動後、 公知の方法 [プロシ一ディングス · ォブ.ザ.ナショナル.アカデミー ·ォブ ·サイエンス(Proc . Natl . Acad. Sci . USA) , 76 , 3683 , (1979 )] に従って、 ナイロン膜へゲノム DNAを転写した。転写後、 ナイロン膜に対し 80°Cで 2時間の熱処理を行い、 固定化した。
一方、 サザンプロヅトに用いるプローブを以下のように調製した。 まず、 夕ーゲティング ベクタ一に含まれる FOT8ゲノム領域よりもさらに 5' 側の配列に特異的に結合するブラィマ 一(配列番号 45および配列番号 46) を作製し、 以下の PCRに用いた。 WO02/31140の実施例 12に記載のプラスミド pFUT8fgE2-2 4.0ngをテンプレ一トとして含む 0 zLの反応液 [DNAポ リメラ一ゼ ExTaq (宝酒造社製)、 ExTaq buffer (宝酒造社製)、 0.2讓 ol/L dNTPsヽ 0.5 zmol/L 上記プライマ一]を調製し、 94°Cで 1分間の加熱の後、 94°Cで 30秒間、 55°Cで 30秒間、 74°C で 1分間からなる反応を 1サイクルとした 25サイクルの条件で PCRを行った。
PCR後、 該反応液を 1 .75% (w/v) ァガ口一スゲル電気泳動に供し、 GENECLEAN Spin Kit (BI0101社製) を用いて約 230bpのプローブ DNA断片を精製した。得られたプローブ DNA溶 液のうち を、 [ひ-32 P] -dCTP 1.75MBqおよび Megaprime DNA Labelling system, dCTP (Araers am Pharmacia Biotech社製) を用いて放射線; 識した。 ハイブリダィゼーシヨンは以下の様に行った。 まず、 上記のゲノム DNA消化物が転写され たナイロン膜をローラ一ボトルへ封入し、 15mLのハイブリダィゼ一シヨン液 [5xSSPE、 50 xDen aldt' s液、 0.5%(w/v) SDS、 100 zg/mLサケ精子 DNA] を加えて 65°Cで 3時間のプレ ハイプリダイゼ一ションを行った後、 32P標識したプロ一ブ DNAを熱変性してボトルへ投入し、 65°Cでー晚ハイブリダイゼーションを行った。
ハイブリダィゼーシヨン後、 ナイロン膜を 50mLの一次洗浄液 [2 xSSC-0.1%( /v) SDS] に浸潰し、 65°Cで 15分間加温して洗浄した。 上記の洗浄操作を 2回練り返した後、 ナイロン 膜を 50mLの二次洗浄液 [0.2 xSSC-0.1 (w/v) SDS] に浸潰し、 65°Cで 15分間加温して洗浄 した。洗浄後、 ナイロン膜を X線フィルムへ- 80°Cで暴露し現像した。
第 3図には、 50-10- 104株から本項 (1 )に記載の方法により取得したピュー口マイシン耐性 クローンの 1つである WK704株のゲノム DNAを本法により解析した結果を示した。 WK704株 では、 野生型 FUT8対立遺伝子由来の 25.5Kbの断片が消失し、 相同繊えされた対立遺伝 子に特異的な約 20.0Kbの断片(図中に矢印で示す) のみが検出された。 この結果から WK704 株は、 FUT8両対立遺伝子が破壊されたクローンであることが確認された。
4. FUT8遺伝子をダブルノヅクァゥトした細胞からの薬剤耐性遺伝子の除去
(1 ) Creリコンピナ一ゼ発現べク夕一の導入
本 例の 3項で取得した FUT8遺伝子ダブルノヅクアウトクローンの薬剤耐性遺伝子を除 去することを目的として、 Creリコンビナ一ゼ発現べクタ ^~pBS185 (Life Technologies ¾: 製) を以下の様にして導入した。 . .
ijULgの pBS185を 1.6 X 106個の FU 8遺伝子ダブルノヅクアウトクローンへェレクトロポレ —シヨン法 [サイトテクノロジ一 (Cytoteclmology) , 3, 133 (1990) ]により導入後、 IMDM- dFBS (10)-HT(1 ) 10mLに懸濁し、 さらに同培地を用いて 2万倍に希釈した。 該希釈液を接着 細胞 用 10cmディッシュ (Falconネ ± ) 7枚へ播種後、 5%C02インキュベーター内で 37°C、 10日間の培養を行い、 コロニーを形成させた。
5. Creリコンビナーゼ発現べク夕一導入株の取得
本項 (1 )で取得したコロニーのうち、 任意のクローンを公知の方法 [Gene Targeting, Oxford University Press , (1993)] に従って接着細胞用平底プレ"ト (旭テクノグラス社 製)へ採取し、 IMDM-dFBS ( 10 )-HT( l )を用いて 5%C02インキュベータ一内で 37°C、 1週間培養 した。 '
培 «¾、 上記プレートの各クローンに対してトリプシン処理を行い、 2倍容量の凍結培地 [20% DMS0、 40%ゥシ胎児血清、 40% IMDM] を各ゥエルに添加、 懸濁した。各ゥエル中の細 胞顕濁液の半量を接着細胞用平底 96穴プレート (旭テクノガラス社製) へ播種してレプリカ プレートとする一方、 残りの半量をマス夕一プレートとして凍結保存した。
次にレプリカプレート上の細胞を、 G418を 600; g/raL、 ピュー口マイシンを 15〃g/raLの濃 度で含む IMDM- dFBS (10)- HT(1 )を用いて 5%C02インキュベーター内で 37°C、 一週間培養した。 Creリコンビナ一ゼの発現により ΙοχΡ配列に挟まれた薬剤耐性遺伝子が除去された陽性クロ ーンは、 G418およびピューロマイシン存在下で死滅する。本法により陽性クローンを選択し た。 '
(3 ) ゲノムサザンブロヅトによる薬剤耐性導伝子除去の診断
本項 (2 )で選択した陽性クローンに対し、 以下の手順でゲノムサザンブロヅトによる薬剤耐 性遺伝子除去の診断を行った。 ' 本項 (2 )で凍結保存したマスタープレートのうち、 上記陽性クローンを含む 96穴プレート ' を選択し、 5¾C02インキュベーター内で 37°C、 10分間静置した。静置後、 上記クローンに該 当するゥエルから細胞を接着細胞用平底 24穴プレート (グライナ一ネ±¾)へ番種した。
IMDM-dFBS (10)-HT(1 )を用いて 1週間培養した後、 トリプ-シン処理を行い、 接着細胞用平底 6 穴プレート (グライナ一社製)へ播種して 5%C02インキュべ一夕一内で 37°Cで培養し、 増殖 した細胞を回収した。 回収した細胞より公知の方法 [ヌクレイヅク ·ァシヅド · リサ一チ (Nucleic Acids Research) , 3 , 2303 , (1976 )] に従って各クロ一ンのゲノム DNAを調製し、 各々 150/zLの TE- RNase緩衝液 (pH8.0) にー晚溶解した。
上記で調製したゲノム DNA 12〃gを制限酵素 I (New England Biolabsネ ±S)で消化し、 エタノール沈殿法を用いて DNA断片を回収した後、 0 /Lの TE緩衝液 (pH8.0)に溶解し、 0.6%(w/v) ァガロースゲル電気泳動に供した。 泳動後、 公知の方法 [プロシ一ディングス · ォブ ·ザ'ナショナル ·アカデミー'ォブ 'サイエンス(Proc . Natl . Acad. Sci . USA) , 76, 3683 , (1979)] に従って、 ナイロン膜へゲノム DNAを転写した。転写終了後、 ナイロン膜に 対し 80°Cで 2時間の熱処理を行い、 固定化した。 一方、 サザンプロヅトに用いるプローブを以下のように調製した。 夕一ゲティングべク夕 一に含まれる FUT8ゲノム領域よりもさらに 5, 側の配列に特異的に結合するプライマ一 (配 列番号 5および配列番号 46) を用いて、 以下の PCRを行った。 WO02/31140の実施例 12に記 載の pFUT8fgE2-2 4.0n をテンプレートとして含む 20 zLの反応液 [DNAポリメラーゼ
ExTaq (宝酒造ネ ±S)、 ExTaq buffer (宝酒造社製)、 0.2腿 ol/L dNTPs、 0.5 zmol/L上記プライ マー]を調製し、 94°Cで 1分間の加熱の後、 - 94°Cで 30秒間、 55°Cで 30秒間、 74°Cで 1分間か らなる反応を 1サイクルとした 25サイクルの条件で PCRを行った。 - PCR後、 該反応液を 1.75% (w/v) ァガロースゲル電気泳動に供し、 GENECLEAN Spin Kit
(BI0101社製) を用いて、 約 230bpのプローブ DNA断片を精製した。得られたプローブ DNA 溶液のうち 5〃Lを、 [ひ-32 P] dCTP 1.75MBqおよび Megaprime DNA Labelling system, dCTP
(Amersham Pharmacia Biotech社製) を用いて放射線標識した。
ノ、イブリダィゼーシヨンは以下の様に行った。 まず、 上記のゲノム DNA消化物が転写され たナイロン膜をローラ一ボトルへ封入し、 ハイブリダィゼ一シヨン液 [5 XSSPE, 50 X
Denhaldt' s液、 0.5%(w/v) SDS、 100 zg/mLサケ精子 DNA] 15mLを加えて 65°Cで 3 B 間のプ レハイブリダィゼ一シヨン後、 32P標識したプローブ DNAを熱変性してボトルへ投入し、 65°C で一晩ハイブリダィゼーシヨンを行った。
ノヽイブリダィゼ一シヨン後、 ナイロン膜を 50mLの一次洗浄液 [2 XSSC— 0.1%(W/V) SDS] に 潰し、 65°Cで 15分間加温して洗浄した。 上記の洗浄操作を 2回繰り返した後、 ナイロン 膜を 50mLの二次洗浄液 [0. XSSC-0.1%(W/V) SDS] に浸潰し、 65°Cで 15分間加温して洗浄 した。洗浄後、 ナイロン膜を X線フィルムへ- 80°Cで暴露し現像した。
第 4図には、 親株である CH0/D(M4細胞、 本実施例の 2項に記載の 50-10-104株、 本実施例 の 3項に記載の WK704株、 および WK704株から本項 (2)に記載の方法により取得した薬剤感受 性クローンの 1つである 4-5-C3株のゲノム DNAを、 本法により解析した結果を示した。
CH0/DG44細胞では、 野生型 FUT8対立遺伝子に由来する約 8.0Kbの DNA断片のみが検出された。 また、 50- 10-104株や WK704株では、 相同組換えが起こった対立遺伝子に由来する約 9. 5Kbの DNA断片が認められた。一方、 4-5-C3株では、 相同組換えが起こった対立遺伝子からさらに ネオマイシン耐性遺伝子 (約 1.6Kb) およびピューロマイシン耐性遺伝子 (約 1.5Kb) が除去 されて生じる約 8.0Kbの DNA断片のみが検出された。 この結果から 4-5- C3株は、 Cr.eリコン ピナーゼにより薬剤耐性遺伝子が除去されたことが確認された。
薬剤耐性遺伝子の除去された FUT8遺伝子ダブルノヅクアウトクローン (以下、 FUT8遺伝 子ダブルノックアウト細胞と表記する) は、 4- 5- C3株以外にも複数株取得された。 実施例 2
FUT8遺伝子ダブルノ―ヅクァゥト細胞による抗ガン'グリオシド GM2ヒト CDR移植抗体繊物の 発現
1. FUT8遺伝子ダブルノヅクァゥト細胞での安定発現
例 1の 4項に記載の FUT8遺伝子ダブルノヅクァゥト細胞および親株である CH0/DG44 細胞に、 特鬨平 10-257893記載の抗ガングリオシド GM2ヒト型 CDR移植抗体発現ベクター pKANTEX796HM2Lra-28No . lを導入し、 抗ガングリオシド GM2ヒト型 CDR移植抗体糸賊物の安定 生産細胞を以下のようにして作製した。
p ANTEX796HM2Lm-28No . lを制限酵素 ΜΠ (New England Biolabs社製) で消化して'線状ィ匕 した後、 直線状化された 10〃gの pE TEX1259HV3LV0を 1.6 x 106個の FUT8遺伝子ダブルノヅ クアウト細胞および親株である CH0/DG44細胞へェレクト口ポレーシヨン法 [ Cytotec nology , 3 , 133 (1990) ]により導入後、 10mLの IMDM- dFBS (10 )-HT(1 ) [透析 FBS (インビトロジェン社 製)を 10'%、 HT supplement (インビトロジェン社製 )を ί倍濃度で含む IMDM培地 (インビ,トロ ジェン社製) ] に懸濁し、 75cm2フラスコ (グライナ一社製) に ί番種した。 5%C02インキュ 一夕一内で 37° 24時間培養後、 G418 (ナカライテスク社製) を 500 zg/mLの濃度で含む IMDM- dFBS ( 10) [透析 FBSを 10%で含む IMDM培地] に培地交換し、 1〜2週間培養した。 最終 的に G418を SOO g/mLの濃度で含む IMDM-dFBS (lO)培地で増殖可能かつ、 抗 GM2ヒト型 CDR 移植抗体を生産する形質転»を得た。 »の CH0/DG44細胞より得られた形質転 a»を DG44/GM2株、 FUT8遺伝子ダブルノヅクアウト細胞より得られた形質転 «を Ms705/GM2株と 名付けた。
2. 培養上清中のヒト IgG抗体濃度の測定 (ELISA法)
ャギ抗ヒト IgG(ffiL)抗体 (American Qualex社製)を Phosphate Buffered Saline (以下、 PBS と表記する) (インビトロジェン社製) で希釈して l〃g/mLとし、 96穴の ELISA用プレート (グライナ一社製) に、 50〃L/ゥエルで分注し、 4°Cで一晩放置して吸着させた。 PBSで洗浄 後、 BSAを 1%の濃度で含む PBS (以下、 1%BSA- PBSと表記する) (和光純薬社製) を 100〃 L/ゥエルで加え、 室温で 1時間反応させて残存する活性基をプロヅクした。 1%BSA- PBSを捨 て、 形質転 «の培養上清、 または培養上清から精製した抗体の各種希釈溶液を ゥェ ルで加え、 室温で 1時間反応させた。反応後、 ween20を 0.05%の濃度で含む PBS (以下、 Tween- PBSと表記する) (和光純薬社製) で各ゥエルを洗浄後、 1%BSA-PBSで 2000倍に希釈 したペルォキシダ一ゼ標識ャギ抗ヒト IgG(ffiL)抗体溶液 (American Qimlex社
製) を二次抗体溶液として、 それそれ 50 L/ゥェルで加え、 室温で 1時間反応させた。 反応 後、 Tween-PBSで洗浄後、 ABTS基質液 [2 , 2'-アジノ-ビス(3-ェチルペンゾチアゾリン -6-スル ホン酸)アンモニゥム (和光純薬社製) の 0.5 を 1Lの 0.1Mクェン酸緩衝液 (pH4.2 )に溶解 し、 使用直前に過酸化水素 (和光純難製) を l〃L/mLで添加した溶液]を 50 L/ゥエルで 加えて発色させ、 415 の吸光度 (以下、 0D415と表記する) を測定した。 ' 3. 抗ガングリオシド GM2ヒト型 CDR移植抗体 物の精製 ' '
実施例 の 1項で得られた形質転換細 « DG44/GM2株および Ms705/GM2株を用いて'、 それ それが生産する抗ガングリオシド GM2ヒト型 CDR移植抗体組成物を以下のようにして精製し た。
各々の形質転換株を、 G418を 500 ig/mLの濃度で含む IMDM- dFBS (10)に懸濁し、 30mLを 182cm2フラスコ (グライナ一社製) に播種して 5%C02インキュベーター内で 37で、 数日間培 養した。 細胞密度がコンフルェントになった時点で培養上清を除去し、 25mLの PBSで細胞を 洗浄後、 EXCELL301培地 (JRH Biosciences ¾ ) 30mLを注入した。 5%C02インキュベーター 内で 37°C、 7日間培養後、 細胞懸濁液を回収し、 3000rpm、 4°Cの条件で 5分間の遠心分離を 行って上清を回収した後、 0.22 zin?Lg Millex GVフィルタ一 (ミリボア社製) を用いて濾 過滅菌した。上述の方法により取得した培養上清より、 Mab Select (Araersham Biosciences 社製) カラムを用いて、 添付の説明書に従い、 抗ガングリオシド GM2ヒト型 CDR移植抗体組 成物を精製した。精製した抗ガングリオシド GM2ヒト型 CDR移植抗体組成物は、 DG44/GM2株 より得られた抗体 物を DG44/GM2抗 Ms705/GM2株より得られた 体 物を, Ms705/GM2抗体と名付けた。 実施例 3'
FUT8遺伝子ダブルノヅクァゥト細胞が生産する抗ガングリオシド GM2ヒト型 CDR移植抗体組 成物の生物活性
1. 抗ガングリォシド GM2ヒト型 CDR移植抗体組成物のガングリオシド GM2に対する結合活 性 (ELISA法)
実施例 2の 3項で精製した DG44/GM2抗体および Ms705/GM2抗体のガング オシド GM2に対 する結合活性を、 以下のようにして測定した。
57.5ngのガングリオシド GM2 (シグマ社製) を 10ngのフォスファチジルコリン (シグマ社 製).と 5ngのコレステロール (シグマ社製) とを含む 2mLのエタノール溶液に溶解した。 こ の溶液 20 を 96穴の ELISA用プレート (グライナ一 ) の各ゥエルにそれそれ分注し、 風乾後、 1%BSA-PBS溶液を 100〃L/ゥエルで加え、 室温で 1時間反応させて残存する活性基を プロヅクした。 1%BSA- PBSを捨て、 実施例 2の 3項で調製した DG44/GM2抗体または
Ms705/GM2抗体の各種希釈溶液を 50 zL/ゥエルで加え、 室温で 1時間反応させた。 反 jife後、 Tween-PBSで各ゥエルを洗浄後、 1%BSA-PBS溶液で 2000倍に希釈したペルォキシダーゼ標識 ャギ抗ヒト IgG(ffiL)抗体溶液 (American Qualex¾¾) を二次抗体溶液として 50〃L/ゥエル で加え、 室温で 1時間反応させた。反応後、 ween- PBSで洗浄後、 ABTS基質液を 50〃L/ゥェ ルで加えて発色させ、 OD415を測定した。 '
第 5図には、 DG44/GM 抗体および Ms705/GM2抗体のガングリオシド GM2に対する結合活性 を示した。 両抗体はガングリオシド GM2に対して同等の結合活性を有していた。
2. 抗ガングリオシド GM2ヒト型 CDR移植抗体糸滅物の ifi 細胞傷害活性 (ADCC活性) ' 実施例 2の 3項で得られた DG44/GM2抗体おょぴ Ms705/GM2抗体の is liimlffl胞傷害活性 を以下のようにして測定した。
(1 )標的細胞溶液の調製
RPMI1640- FCS(IO')培地 [10 FCSを含む RPMI1640培地 (インビトロジェン社製)] で培養し たヒト肺小細胞癌株 SBC- 3細胞 (JCRB 0818) を、 遠心分離操作及び懸濁により RPMI 1640- FCS(5)±g¾ [5%FCSを含む RPMI1640培地 (インビトロジヱン社製)] で诛浄した後、
RPMI1640-FCS(5)培地によって、 2 x10s細胞 /mLに調製し、 標的細胞溶液とした。 (2 ) エフェクター細胞溶液の調製
健常人静 I l 50mLを採取し、 へパリンナトリゥム (清水製對土製) 0.5mLを加え穏やかに 混ぜた。 こ.れを L mphoprep (AXIS SHIELD社製) を用いて、 添付の使用説明書に従い単核球 層を分離した。 RPMI1640- FCS (5 )培地で 3回違心分離して洗浄後、 同培地を用いて 5 x 10s細 胞 /mLの濃度で懸濁し、 ェフエクタ一細胞溶液とした。
(3) ADCC活性の測定
96ゥエル U字底プレート (Falconネ ±|¾) の各ゥエルに上記 (1 ) .で調製した標的細胞溶液の 50 /L ( l x lO4細胞/ゥエル) を分注した。 次いで (2 ) で調製したエフェクター細胞溶液を 50 jbLl (2.5 x'105細胞/ゥェル、 エフェクター細胞と標的細胞の比は 25 : 1となる) 添加した。 更 に、 各種抗 GM2ヒト型 CDR移植抗体を各最終濃度 0. l〜1000ng/mLとなるように加えて全量'を 150 /Lとし、 37°Cで 4時間反応させた'。反応後、 プレートを遠心分離し、 上清中の乳酸デヒ ドロゲナ一ゼ(LDH)活性を、 CytoTox96 Non-Radioactive Cytotoxicity Assay (Promega社製) を用いて、 寸の説明書にしたがって吸光度デ一夕を取得することで測定した。標的細胞自 然遊離の吸光度データは、 ェフエクタ一細胞溶液および抗体溶液の代わりに培地のみを用い て、 また、 エフヱクタ一細胞自然遊離の吸光度データは、 標的細胞溶液および抗体溶液の代 わりに培地のみを用いて、 上記と同様の操作を行うことで取得した。標的細胞全遊離の吸光 度データは、 抗体溶液、 エフェク夕一細胞溶液の代わりに培地を用い、 反応終了 45分前に 15 zLの 9% Triton X- 100溶液を添加し、 上記と同様の操作を行い、 上清の LDH活性を測定 することにより求めた。 ADCC活性は次式により求めた。 , 細胞傷害活性二 ΐ [検体の吸光度] - [エフヱク夕一細胞自然遊禽の吸光度] - [標的細胞自 然遊離の吸光度] } / { [標的細胞全遊離の吸光度] - [標的細胞自然遊離の吸光度] } 第 6図には、 DG44/GM2抗体および Ms705/ GM2抗体のヒト肺小細胞癌株 SBC-3細胞に対する 細胞傷害活性を示した。 Ms705/ GM2抗体はいずれの抗体濃度においても DG44/ GM2抗体より も高い ADCC活性を示し、 最高細胞傷害活性値も'高い値を示した。 実施例 4
FUT8遺伝子ダブルノヅクァゥト細胞が生産する抗 G 2ヒト型 CDR移植抗体«物の単糖 « 分析
実施例 1の 3.項で精製した DG44/GM2抗体および Ms705/GM2抗体の中性糖 ·ァミノ耱組成分 析を、. 以下の様にして行った。
抗体を遠心濃縮機で減圧下乾固した後、 2.0〜4.0mMのトリフルォロ酢酸溶液を加えて -' 100 2~4時間酸加水分解を行い、 タンパク質から中性糖'アミノ糖を遊離した。 トリフ ルォロ酢酸溶液を遠心濃縮機で除去し、 脱ィオン水に再溶解して Dionexネ環糖分析装置 (M- 500)を用いて分析を行った。 CarboPac PA-1カラム、 CarboPac PA- 1ガードカラム (Monex社 製)を用い、 溶離液として 10〜20raM水酸ィ匕ナトリウム-脱イオン水 解液、 洗浄液として 500mM水酸化ナトリゥム-脱イオン水溶解液を使用して、 第 1表に示した溶出プログラムで分 祈した。 第 1表 中性糖 ·ァミノ糖組成分析の溶出プログラム
時間 (分) 0 35 35.1 45 45.1 58 溶離液 (%) 100 100 0 0 100 100 洗浄液 (%) 0 0 100 100 0 0
得られた溶出プロファイルの中性糖'アミノ糖成分のピーク面積から、 N-ァセチルグルコ サミン比を 4とした場合の各成分 (フコース、 ガラクトース、 マンノース) の糸 比を算出 した。 '
第 2表に各抗体の単糖組成比により計算される、 全 N-グリコシド結合複合型糖鎖に占める、 糖鎖還元末端の N-ァセチルグルコサミンにフコースが結合していない糖鎖の割合を示した。
DG44/GM 抗体ではフコースが結合していない糖鎖の割合が 4%であつた。 一方、 Ms705/GM2抗 体ではフコースのピークは検出限界以下であったことから、 フコースが結合していなレ、糖鎖 の割合はほぼ 100%と見積もられた。
以上の結果より、 MS705/GM2抗体の N-グリコシド結合複合型繊 ίの還元末端の Ν-ァセチル グルコサミンには、 フコースが結合していないことが示された。 第 2表
抗 GM2ヒト型 CDR移植抗体 «物のフコースが結合していない糖鎖の割合
抗体名 フコースを含まない糖鎖率 {% )
DG44/GM 抗体 4% '
MS705/GM2抗体 〜100% 、 実施例 5
フコースが結合していない糖鎖を有する抗ガングリオシド GM2ヒト型 CDR移植抗体 物の 生物活性の簾
実施例 3の 2項において、 Ms705/GM2抗体が DG44/GM2抗体よりも高い ADCC活性を宥するこ とを示した (第 6図) 。本実施例では、 本発明のフコースが結合していない糖鎖を有する抗 ガングリオシド GM2ヒト型 CDR移植抗体 «物の優位性をさらに明らかにするため、 フコー ズが!^した糖鎖を有する抗ガングリオシド GM2ヒト型 CDR移植抗体が混合された抗体 ¾¾ 物との生物活性の比較を以下のようにして行った。 ,
フコースが結合していない糖鎖を有する抗ガングリオシド GM2ヒト型 CDR移植抗体からな る MS705/G 2抗体に、 フコースが結合した糖鎖を有する抗ガングリオシド GM2ヒト型 CDR移 植抗体を混合させた場合の細胞傷害活性の変化を調べた。 抗ガングリオシド GM2ヒト型 CDR 移植抗体の ADCC活性は、 以下のようにして測定した。
1·標的細胞溶液の調製
実施例 3の 2項の (1) に記載の方法に従って行った。
2. エフェク夕一細胞溶液の調製
実施例 3の 2項の (2) に記載の方法に従って単核球層を分離し、 RPMI1640- FCS (5)培地を 用いて 4 X 10s細胞/ mLの濃度で懸濁し、 エフェク夕一細胞溶液とした。
3. ADCC活性の測定 96ゥエル U字底プレート (Falcon社製) の各ゥヱルに、 上記 (1) で調製した標的細胞溶 液を (1 X 104細胞/ゥエル)分注した。 次いで (2) で調製したエフェクター細胞溶液 を 50〃L (2 Χ ΐΟδ細胞/ゥ工ル、 エフェクター細胞と標的細胞の比は 20: 1となる)添加した。 更に、 MS705/GM2抗体および DG44/GM2抗体をそれそれ単独で、 または両者を混合して加えて 全量を 150 zLとし、 37°Cで 4時間反応させた。反応後、 プレートを遠心分離し、 上清中の乳 酸デヒドロゲナーゼ (Lffl)活性を LDH- Cytotoxic Test Wako (和光純薬社製) を用いて添付の 説明書に従い測定した。 ADCC活性は実施 の 2項に記載の方法に従って算出した。
一定量の MS705/GM2抗体に DG44/GM2抗体を添加することで、 一定量のフコース非結合型抗 体を含み、 かつフコース非結合型抗体の割合を変ィ匕させた抗ガングリオシド GM2ヒト型 CDR 移植抗体組成物、 即ち、 一定量の Ms705/G 2抗体に、 Ms705/GM2抗体の 0〜100倍量の
DG44/GM2抗体を添加した抗ガングリオシド GM2ヒト型 CDR移植抗体糸賊物を調製し、 該抗体 物の ADCC活性を測定した。
MS705/GM2抗体にさらに Ms705/G 2抗体を添加すると、 総抗体量の増加にともなって ADCC 活性の上昇が観察された。 一方、 MS705/GM2抗体にさらに DG44/GM2抗体を添加すると、'総抗 体濃度が増加するにも関わらず調製した抗体 物の ADCC活性は逆に低下した。 このことは、 フコースが結合した糖鎖を有する抗体分子が、 フコースが結合していない糖鎖を有する抗体 分子の活性を阻害することを示している。 また、 フコースが結合した糖鎖を有する抗体分子 とフコースが結合していな,レヽ l貴を有する抗体分子が混合された抗体翻减物にぉレヽても、 フ コースが結合していない糖鎖を有する抗体分子の割合が 20%以上の抗体組成物では、 該割合 が 20%未満の抗体 物に比べ顕著に高い ADCC活性を示した。 さらに、 MS705/GM2抗体サン プルと、 同じ量の MS705/GM2抗体に 9倍量の DG44/GM2抗体を加えた抗体サンプルの ADCC活 性を測定した。 MS705/GM2抗体の ADCC活性は、 DG44/GM2抗体を加えることで大幅に低下した。 MS705/GM2抗体と DG44/GM2抗体の存在比が 1対 9のまま抗体 物の抗体濃度を 100倍に上 昇させても、 その 1/100の抗体濃度の MS705/GM2抗体サンプルの ADCC活性には及ばなか た。 このことは、 本発明のフコースが結合していない糖鎖を有する抗ガングリオシド GM2ヒト型 CDR移植抗体分子のみからなる抗体«物の医薬としての優位性を示している。 したがって、 本発明のフコースが結合していない糖鎖を有する抗ガングリオシド GM2ヒト 型 CDR移植抗体組成物によって、 これまでの抗ガングリオシド GM2ヒト型 CDR移植抗体分子 を含む抗体組成物では治癒できなかつた患者を治療することができる。 配列表フリーテキスト
配列番号 22 -人工配列の説明: 体重鎖可変領域アミノ酸配列
配列番号 23-人工配列の説明:抗体重鎖可変領域アミノ酸配列
配列番告 24-人工配列の説明:抗体軽鎖可変領域アミノ酸配列
配列番号 25-人工配列の説明:抗体軽鎖可変領域アミノ酸配列
配列番号 26-人工配列の説明:抗体重鎖可 領域アミノ酸配列
配列番号 27-人工配列の説明:抗体重鎖可変領域アミノ酸配列
配列番号 28-人工配列の説明:抗体重鎖可変領域アミノ酸配列
配列番号 29-人工配列の説明:抗体重鎖可変領域アミノ酸配列
配列番号 30-人工配列の説明:抗体重鎖可変領域アミノ酸配列
配列番号 31-人工配列の説明:抗体軽鎖可変領域アミノ酸配列
配列番号 32 -人工配列の説明:抗体軽鎖可変領域アミノ酸配列
配列番号 33-人工配列の説明:抗体軽鎖可変領域アミノ酸配列
配列番号 34-人工配列の説明:抗体軽鎖可変領域アミノ酸配列
配列番号 35 -人工配列の説明:抗体軽鎖可変領域アミノ酸配列
配列番号 36-人工配列の説明 :合成 DNA
配列番号 37-人工配列の説明 :合成 DNA
配列番号 38-人工配列の説明 :合成 DNA
配列番号 39-人工配列の説明 :合成 DNA
配列番号 40-人工配列の説明 :合成通
配列番号 41-人工配列の説明 :合成腿
配列番号 42-人工配列の説明 :合成腿
配列番号 43-人工配列の説明 :合成 DNA

Claims

請求の範囲
1 . ガングリオシド GM2に特異的に結合し、 N-グリコシド結合複合型糖鎖を Fc領域に有す る遺伝子組換え抗体分子からなる組成物であつて、 N-グリコシド結合複合型糖鎖が該糖鎖の 還元末端の N-ァセチルグルコサミンにフコースが結合していない糖鎖である抗体組成物。
2 . N -グリコシド結合複合型; 員が、 該糖鎖の還元末端の N-ァセチルグルコサミンの 6位 にフコースの 1位がひ結合していない糖鎖である、 請求の範囲 1に記載の抗体糸!^物。
3 . ガングリオシド GM2発現細胞に特異的に結合する請求の範囲 1または 2に記載の抗体 繊物
4 . ガングリオシド GM2発現細胞に対し細胞傷害活性を示す請求の範囲 1〜 3のいずれか 1項に記載の抗体 ,«物。
5 . ガングリオシド GM2発現細胞に対し、 非ヒト動物由来ハイプリドーマが生産するモノ クロ一ナル抗体よりも高い細胞傷害活性を示す請求の範囲 1〜4のいずれか 1項に記載の抗 体糸滅物 0 ,
6 · 細胞傷害活性が抗体依存性細胞傷害 (ADCC) 活性である請求の範囲 4または 5に記載 の抗体組成物。 -
7 . 細胞傷害活性が補体依存性細胞傷害 (CDC) 活性である請求の範囲 4または 5に記載の 抗体繊物 0 ―'
8 . それそれ配列番号 14、 15および 16で示されるアミノ酸配列からなる抗体分子重鎖 (H 鎖) 可変領域 (V領域) の相補性決定領域 (CDR) 1ヽ CDR2、 CDR3を含む、 請求の範囲 1〜7 のいずれか 1項に記載の抗体組成物。
9 . それぞれ配列番号 17、 18および 19で示されるアミノ酸配列からなる抗体分子軽鎖 (L 鎖)可変領域 (V領域) の相補性決定領域 (CDR) 1、 CDR2, CDR3を含む、 請求の範囲 1〜7 のいずれか 1項に記載の抗体組成物。
1 0 . それそれ配列番号 14、 15および 16で示されるァミノ酸配列からなる抗体分子重鎖 (H鎖) 可変領域 (V領域) の相補性決定領域 (CDR) 1、 CDR2、 CDR3、 およびそれそれ配列番 号 17、 18および 19で示されるアミノ酸配列からなる抗ィ *@鎖 (L鎖) V領域の相補性決定領 域 (CDR) 1、 CDR2、 CDR3を含む、 請求の範囲 1〜 9のいずれか 1項に記載の抗体組成物。
1 1 . 遺伝子組換え抗体がヒト型キメラ抗体またはヒト型 CDR移植抗体である請求の範囲 1〜 1 0のいずれか 1項に記載の抗体組成物。
1 2 . ヒト型キメラ抗体がガングリオシド GM2に特異的に結合するモノクローナル抗体の 重鎖 (H鎖)可変領域 (V領域) および軽鎖 (L鎖) V領域の相補性決定領域 (CDR)を含む、 請 求の範囲 1 1に記載の抗体組成物。
1 3 . 抗体分子の重鎖 (H鎖)可変領域 (V領域) が、 配列番号 20で示されるアミノ酸配 一 列を含む請求の範囲 1 2に記載の抗体組成物。 ―'
1 4 . 抗体分子の軽鎖 (L鎖) 可変領域 (V領域) が、 配列番号 21で示されるアミノ酸配 列を含む請求の範囲 1 2に記載の抗体組成物。
1 5 . 抗体分子の重鎖 (H鎖)可変領域 (V領域) が、 配列番号 20で示されるアミノ酸配 列を含み、 かつ、 抗体分子の軽鎖 (L鎖) V領域が、 配列番号 21で示されるアミノ酸配列を 含む請求の範囲 1 2〜: L 4のいずれか 1項に記載のヒト型キメラ抗体組成物。
1 6 . ヒト型 CDR移植抗体がガングリオシド GM2に特異的に結合するモノクロ一ナル抗体 の重鎖 (H鎖)可変領域 (V領域)および軽鎖 (L鎖) V領域の相補性決定領域 (CDR)を'含む、 請求の範囲 1 1に記載の抗体組成物。
1 7 . ガングリオシド GM2に特異的に結合するモノクローナル抗体の重鎖 (H鎖)可変領 域 (V領域)および軽鎖 (L鎖) V領域の相補性 領域 (CDR) とヒト抗体の H鎖 V領域およ ぴ L鎖 V領域のフレームヮ一ク領域 (FR) を含む、 請求 囲 1 6に記載の抗体糸賊物。
1 8 . ガングリオシド GM2に特異的に結合するモノクローナル抗体の重鎖 (H鎖)可変領 域 (V領域) および軽鎖 (L鎖) V領域の相補性^領域 (CDR) とヒト抗体の H鎖 V領域およ ぴ L鎖 V領域のフレームワーク領域 (FR)、 ならびにヒト抗体の H鎖定常領域(C領域) およ び L鎖 C領域を含む、 請求の範囲 1 6または 1 7に記載の抗体組成物。
1 9 . 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 22で示されるアミノ酸配列、 または配列番号 22で示されるアミノ酸配列のうち、 38番目の Arg、 40番目の Ala、 43番目 の Ginおよび 44番目の Glyのうち少なくとも 1つのアミノ酸残基が他のァミノ酸残基に置換 されたァミノ酸配列を含む、 請求の範囲 1 6〜: L 8のいずれか 1項に記載の抗体組成物。
2 0 . 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 23で示されるアミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目 の Serおよび 98番目の Argのうち少なくとも 1つのァミノ酸残基が他のアミノ酸残基に置換 されたァミノ酸配列を含む、 請求の範囲 1 6〜: L 8のいずれか 1項に記載の抗体組成物。
2 1 . 抗体分子の軽鎖 (L鎖)可変領域 (V領域)が、 配列番号 24で示されるアミノ酸配列、 または配列番号 24で示されるアミノ酸配列のうち、 15番目の Val、 35番目の Tyr、 46番目 の Leu、 59番目の Ser、 69番目の Asp、 70番目の Phe、 71番目の Thr、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのアミノ酸残基が他のアミノ酸残基に置換された アミノ酸配列を含む、 請求の範囲 1 6〜: L 8のいずれか 1項に記載の抗体 物。
2 2 . 抗体分子の軽鎖 (L鎖)可変領域 (V領域)が、 配列番号 25で示されるアミノ酸配列、 または配列番号 25で示されるアミノ酸配列のうち、 4番目の Met、 11番目の Leu、 15番目の Val、 35番目の Tyr、 42番目の Ala、 46番目の Leu、 69番目の Asp、 70番目の Phe、 71番目の Thr、 77番目の Leuおよび 103番目の Val 'から選ばれる少なくとも 1つのアミノ酸残基が他の ァミノ酸残基に置換されたアミノ酸配列を含む、 請求の範囲 1 6〜: 1 8のいずれか 1項に記 載の抗体誠物。
2 3 . 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 22で示されるアミノ酸 ¾列、 . または配列番号 22で示されるアミノ酸配列のうち、 38番目の Arg、 40番目の Ala、 43番目 の Ginおよび 44番目の Gl yから選ばれる少なくとも 1つのアミノ酸残基が他のァミノ酸 に置換されたアミノ酸配列 ¾含み、 かつ、 抗体分子の軽鎖 (L鎖) V領域が、 配列番号 24で 示されるアミノ酸配列、 または配列番号 24で示されるアミノ酸配列のうち、 15番目の Val、 35番目の Tyr、 46番目の Leu、 59番目の Ser、 69番目の Asp、 70番目の Phe、 71番目の Thr、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのアミノ酸残基が他のアミ ノ酸残基に置換されたアミノ酸配列を含む、 請求の範囲 1 6〜1 9または 2 1に記載の抗体 繊物 0 '
2 4 . 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 23で示されるァミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目 の Serおよび 98番目の Argから選ばれる少なくとも 1つのアミノ酸残基が他のアミノ酸残基 に置換されたアミノ酸配列を含み、 かつ、 抗体分子の軽鎖 (L鎖) V領域が、 配列番号 24で 示されるアミノ酸配列、 または配列番号 24で示されるアミノ酸配列のうち、 15番目の Val、 35番目の Tyr、 46番目の' Leu、 59番目の Sei?、 69番目の Asp、 70番目の Phe、 71番目の Thi、、 72番目の Pheおよび 76番目の Serから選ばれる少なくとも 1つのァミノ酸残基が他のァミ ノ酸残基に置換されたアミノ酸配列を含む、 請求の範囲 1 6〜: L 8、 2 0または 2 1に記載 の抗体糸誠物。
2 5 . 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 3で示されるアミノ酸配列、 または配列番号 23で示されるアミノ酸配列のうち、 67番目の Arg、 72番目の Ala、 84番目 の Serおよび 98番目の Argから選ばれる少なくとも 1つのアミノ酸残基が他のァミノ酸残基 に置換されたアミノ酸配列を含み、 かつ、 抗体分子の軽鎖 (L-fl) V領域が、 配列番号 25で 示されるアミノ酸配列、 または配列番号 25で示されるアミノ酸配列のうち、 4番目の Met、 11番目の Leu、 15番目の Val、 35番目の Tyi?、 42番目の Ala、 46番目の Leu、 ^番目の Asp、 70番目の Plie、 71番目の Thr、 ?7番目の Leuおよび 103番目の Valから選ばれる少なくとも 1つのァミノ酸残基が他のァミノ酸 に置換されたァミノ酸配列を含む、 請求の範囲 1 6 〜 1 8、 2 0または 2 2のいずれか 1項に記載の抗体組成物。
2 6 . 抗体分子の重鎖 (H S貴)可変領域 (V領域)が、 それそれ配列番号 22、 26、
27、 28、 29 および 30で示されるアミノ酸配列から選ばれるアミノ酸配列を含む、 請求の範囲 1 6〜2 0、 2 3 ~ 2 5のいずれか 1項に記載の抗体組成物。 ' 2 7 . 抗体分子の軽鎖 (L鎖)可変領域 (V領域)が、 それぞれ配列番号 31、 32、 33、 34およ び 35で示されるアミノ酸配列から選ばれるアミノ酸配列を含む請求の範囲 1 6〜: L 8、 2 1 〜 2 5のいずれか 1項に記載の抗体組成物。
2 8 . 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 22、 26、 27、 28、 29、 30で示 されるから選ばれるアミノ酸配列から選ばれるアミノ酸配列を含み、 抗体分子の軽鎖 (L鎖) V 領域が、 配列番号 31、 32、 33、 34および 35で示されるアミノ酸配列から選ばれる少なくと も 1つのアミノ酸残基が他のアミノ酸残基に置換されたアミノ酸配列から選ばれるアミノ酸 配列を含む請求の範囲 1 6 ~ 2 7のいずれか 1項に記載の抗体組成物。
2 9 . 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 26で示されるアミノ酸配列を 含み、 かつ、 抗体分子の輕鎖 (L鎖) V領域が配列番号 31または 32,で示されるアミノ酸配列を 含む請求の範囲 1 6〜; 1 9、 2 1、 2 3、 2 6 - 2 8のいずれか 1項に記載の抗体組成物。
3 0 . 抗体分子の重鎖 (H鎖)可変領域 (V領域)が、 配列番号 22で示されるァミノ酸配列を 含み、 かつ、 抗体分子の軽鎖 (L鎖) V領域が配列番号 32または 35で示されるアミノ酸配列を 含む請求の範 H 1 6〜: L 9、 2;!〜 2 3、 2 6 ~ 2 8のいずれか 1項に記載の抗体組成物。
3 1 . ガングリオシド GM2に特異的に結合する抗体分子をコードする DNAを宿主細胞に導 入して得られる、 請求の範囲 1〜3 0のいずれか 1項に記載の抗体 «物を生産する形質転 換体。
3 2 . 宿主細胞が、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、 または N- グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ 結合する糖鎖修飾に関与する酵素を失活するようにゲノムが改変された細胞である、 請求の 範囲 3 1に記載の形質転換体。
3 3 . 宿主細胞が、 細胞内糖ヌクレオチド GDP-フコースの合成に関与する酵素、 または N- グリコシド結合複合型糖鎖還元末端の N-ァセチルグルコサミンの 6位にフコースの 1位がひ 結合する糖鎖修飾に関与する酵素のゲノム上の対立遺伝子のすべてがノヅクアウトされた細 胞である、 請求の範囲 3 1に記載の形質転換体。 '
3 4 . 細胞内糖ヌクレオチド GDP—フコースの合成に関与する酵素が、 GDP-マンノース 4 , 6-デヒドラターゼ (GMD) または GDP-4-ケト- 6-デォキシ- D-マンノース- 3 , 5-ェピメラーゼ (Fx) から選ばれる酵素である、 請求の範囲 3 2または 3 3に記載の形質転換体。 .
3 5 . GDP-マンノース 4,6-デヒドラターゼが、 以下の (a)および (b)からなる群から選ばれ る DNAがコ一ドする蛋白質である、 請求の範囲 3 4に記載の形質転換体。
(a)配列番号 1で表される塩基配列からなる DNA ; つ
(b)配列番号 1で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつ GDP-マンノース 4, 6-デヒドラ夕一ゼ活性を有する蛋白質をコードする D 。
3 6 . GDP-マンノース 4, 6-デヒドラ夕ーゼが、 以下の (a)〜(c) からなる群から選ばれる 蛋白質である、 請求の範囲 3 4に記載の形質転換体。 '
(a)配列番号 2で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 2で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 挿 入および/または付加されたアミノ酸配列からなり、 かつ GDP-マンノ一ス 4, 6-デヒドラ夕 ーゼ活性を有する蛋白質;
(c)配列番号 2で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列から なり、 かつ GDP-マンノース 4, 6-デヒドラ夕ーゼ活性を有する蛋白質。
3 7 . GDP-4-ケト- 6-デォキシ- D-マンノース- 3 , 5-ェピメラーゼが、 以下の (a)および (b) からなる群から選ばれる DNAがコ一ドする蛋白質である、 請求の範囲 3 4に記載の形質転換 体。
(a) 配列番号 3で表される塩基配列からなる DNA;
(b)配列番号 3で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつ GDP-4-ケト -6-デォキシ -D-マンノース- 3,5-ェビメラーゼ活性を有する蛋白質 をコードする DNA -。 -'
3 8 . GDP-4-ケト- 6-デォキシ -D-マンノース- 3 , 5-ェピメラーゼが、 以下の (a)〜(c ) か らなる群から選ばれる蛋白質である、 請求の範囲 3 4に記載の形質転換体。
(a) 配列番号 4で表されるアミノ酸配列からなる蛋白質; '
(b)配列番号 4で表きれるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 揷 入および/または付加されたアミノ酸配列からなり、 かつ GDP-4-ケト -6-デォキシ -D-マンノ ース- 3 , 5-ェピメラーゼ活性を有する蛋白質;
( c)配列番号 4で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸 ffi列から なり、 かつ GDP- 4-ケト- 6-デォキシ- D-マンノース- 3 , 5-ェピメラーゼ活性を有する蛋白質。
3 9 . N-グリコシド結合複合型糖鎖還元末端の N -ァセチルグルコサミンの 6位にフコー スの 1位が α結合する «修飾に閧与する酵素が α ΐ , 6-フコシルトランスフェラーゼである 請求の範囲 3 2または 3 3に記載の形質転換体。 -,
4 0 . « 1 , 6-フコシルトランスフェラ一ゼが、 以下の (a)〜(d)からなる群から選ばれる DNAがコードする蛋白質である、 請求の範囲 3 9に記載の形質転換体。 '
(a) 配列番号 5で表される塩基配列からなる DNA; ■
(b) 配列番号 6で表される塩基配列からなる DNA;
( c )配列番号 5で表される塩基配列からなる DNAとストリンジェン卜な条件でハイプリ ダイズし、 かつ 1 , 6-フコシルトランスフェラ一ゼ活^ 4を有する蛋白質をコードする DNA;
(d) 配列番号 6で表される塩基配列からなる DNAとストリンジェントな条件でハイプリ ダイズし、 かつひ 1, 6-フコシルトランスフェラ一ゼ活'注を有する蛋白質をコードする DNA。
4 1 . α 1 , 6-フコシルトランスフェラーゼが、 以下の (a)〜(f )からなる群から選ばれる蛋 白質である、 請求の範囲 3 9に記載の形質転換体。 , (a)配列番号 7で表されるアミノ酸配列からなる蛋白質;
(b)配列番号 8で表されるアミノ酸配列からなる蛋白質;
(c)配列番号 7で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 揷 入および/または付加されたァミノ酸配列からなり、 かつひ 1 , 6-フコシルトランスフェラー ゼ活性を有する蛋白質;
(d)配列番号 8で表されるアミノ酸配列において、 1以上のアミノ酸が欠失、 置換、 揷 入および'/ たは付加されたァミノ酸配列からなり、 かつひ 1 , 6-フコシルトランスフェラー ゼ活性を有する蛋白質;
(e) 配列番号 7で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列から なり、 かつ 1 , 6-フコシルトランスフェラーゼ活性を有する蛋白質;
(f ) 配列番号 8で表されるアミノ酸配列と 80%以上の相同性を有するアミノ酸配列から なり、 かつ αΐ , 6-フコシルトランスフェラ一ゼ活性を有する蛋白質。
4 2 . 形質転換体が FERM ΒΡ-8470である請求の範囲 4 1に記載の形質転換体。
4 3 . 宿主細胞が、 下記の (a)〜(i )からなる群から選ばれる細胞である請求の範囲 3 1〜
4 2のいずれか 1項に記載の形質転換体。
(a) チャイニーズハムスター卵巣繊由来 CH0細胞;
(b) ラヅトミエローマ細胞株 YB2/3HL .P2. G11.16Ag.20細胞;
(c) マウスミエローマ細 « NS0細胞; ,
(d) マウスミエ口一マ細胞株 SP2/0- Agl4細胞;
(e) シリアンハムスター腎臓組織由来 Bffi細胞;
(f )抗体を産生するハイプリドーマ細胞;
(g) ヒト白血病細胞株ナマルバ細胞;
(h)胚性幹細胞; .
( i) 受精卵細胞。
4 4 . 請求の範囲 3 1〜4 3のいずれか 1項に記載の形質転換体を培地に培養し、 培養物 中に^ t体 物を生成蓄積させ、 該抗体 $賊物を採取し、 精製する、 請求の範囲 1〜3 0の ヽずれか 1項に記載の抗体 物の製造方法。
4 5 . 請求の範囲 4 4に記載の製造方法により得られる、 請求の範囲 1〜3 2のいずれか 1項に記載の抗体組成物。
4 6 . 請求の範囲 1〜 3 0および 4 .5のいずれか 1項に記載の抗体組成物を有効成分とし て含有する医薬。
4 7 . .請求の範囲 1 ~ 3 0および 4 5のいずれか 1項に記載の抗体 物を有効成分とし て含有するガングリオシド GM2関連疾患の治療薬。 ' 4 8 . ガングリオシド G 2関連疾患が癌である請求の範囲 4 7に記載の治療薬。 '
PCT/JP2004/015317 2003-10-09 2004-10-08 ガングリオシドgm2に特異的に結合する抗体組成物 WO2005035578A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP04773768A EP1688433A4 (en) 2003-10-09 2004-10-08 ANTIBODY COMPOSITION SPECIFICALLY INDUCING GANGLIOSIDE GM2
JP2005514669A JPWO2005035578A1 (ja) 2003-10-09 2004-10-08 ガングリオシドgm2に特異的に結合する抗体組成物
AU2004279736A AU2004279736A1 (en) 2003-10-09 2004-10-08 Antibody composition specifically binding to ganglioside GM2
CA002548787A CA2548787A1 (en) 2003-10-09 2004-10-08 Antibody composition specifically binding to ganglioside gm2
US10/575,114 US20090028877A1 (en) 2003-10-09 2004-10-08 Antibody Composition Specifically Binding to Ganglioside Gm

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003350168 2003-10-09
JP2003-350168 2003-10-09
JP2004-129431 2004-04-26
JP2004129431 2004-04-26

Publications (1)

Publication Number Publication Date
WO2005035578A1 true WO2005035578A1 (ja) 2005-04-21

Family

ID=34436912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/015317 WO2005035578A1 (ja) 2003-10-09 2004-10-08 ガングリオシドgm2に特異的に結合する抗体組成物

Country Status (6)

Country Link
US (1) US20090028877A1 (ja)
EP (1) EP1688433A4 (ja)
JP (1) JPWO2005035578A1 (ja)
AU (1) AU2004279736A1 (ja)
CA (1) CA2548787A1 (ja)
WO (1) WO2005035578A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010018846A1 (ja) * 2008-08-13 2010-02-18 協和発酵キリン株式会社 ガングリオシドgm2に特異的に結合する抗体組成物を含む医薬
JP2012087131A (ja) * 2000-10-06 2012-05-10 Kyowa Hakko Kirin Co Ltd 抗体組成物
US11584793B2 (en) 2015-06-24 2023-02-21 Hoffmann-La Roche Inc. Anti-transferrin receptor antibodies with tailored affinity

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10260089B2 (en) 2012-10-29 2019-04-16 The Research Foundation Of The State University Of New York Compositions and methods for recognition of RNA using triple helical peptide nucleic acids
WO2014088040A1 (ja) 2012-12-06 2014-06-12 国立大学法人 金沢大学 中皮腫の治療方法
DK2953634T3 (da) 2013-02-07 2021-08-30 Massachusetts Gen Hospital Fremgangsmåder til udvidelse eller udtømning af regulerende t-celler
CN107849142B (zh) * 2015-05-15 2022-04-26 综合医院公司 拮抗性抗肿瘤坏死因子受体超家族抗体
KR20240095471A (ko) 2016-05-13 2024-06-25 더 제너럴 하스피탈 코포레이션 길항성 항-종양 괴사 인자 수용체 슈퍼패밀리 항체
EP4263600A1 (en) 2020-12-18 2023-10-25 Century Therapeutics, Inc. Chimeric antigen receptor systems with adaptable receptor specificity

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257893A (ja) * 1997-03-19 1998-09-29 Kyowa Hakko Kogyo Co Ltd ガングリオシドgm2に対するヒト型相補性決定領域(cdr)移植抗体
WO2002031140A1 (fr) * 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2003085107A1 (fr) * 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellules à génome modifié
WO2003085118A1 (fr) * 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Procede de production de composition anticorps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10257893A (ja) * 1997-03-19 1998-09-29 Kyowa Hakko Kogyo Co Ltd ガングリオシドgm2に対するヒト型相補性決定領域(cdr)移植抗体
WO2002031140A1 (fr) * 2000-10-06 2002-04-18 Kyowa Hakko Kogyo Co., Ltd. Cellules produisant des compositions d'anticorps
WO2003085107A1 (fr) * 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Cellules à génome modifié
WO2003085118A1 (fr) * 2002-04-09 2003-10-16 Kyowa Hakko Kogyo Co., Ltd. Procede de production de composition anticorps

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP1688433A4 *
YAMANE-OHNUKI N. ET AL.: "Establishment of FUT8 knockout chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity", BIOTECHNOL. BIOENG., vol. 87, no. 5, 5 September 2004 (2004-09-05), pages 614 - 622, XP002983153 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012087131A (ja) * 2000-10-06 2012-05-10 Kyowa Hakko Kirin Co Ltd 抗体組成物
WO2010018846A1 (ja) * 2008-08-13 2010-02-18 協和発酵キリン株式会社 ガングリオシドgm2に特異的に結合する抗体組成物を含む医薬
US11584793B2 (en) 2015-06-24 2023-02-21 Hoffmann-La Roche Inc. Anti-transferrin receptor antibodies with tailored affinity

Also Published As

Publication number Publication date
AU2004279736A1 (en) 2005-04-21
US20090028877A1 (en) 2009-01-29
JPWO2005035578A1 (ja) 2007-11-22
CA2548787A1 (en) 2005-04-21
EP1688433A1 (en) 2006-08-09
EP1688433A4 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP6270930B2 (ja) 抗体組成物を生産する細胞
WO2005035577A1 (ja) ガングリオシドgd3に特異的に結合する抗体組成物
US20080095765A1 (en) IL-5R-specific antibody composition
WO2003085118A1 (fr) Procede de production de composition anticorps
US20110236374A1 (en) Genetically recombinant antibody composition capable of binding specifically to ganglioside gm2
JPWO2003055993A1 (ja) Cd20に特異的に結合する抗体組成物
WO2003084569A1 (fr) Medicament contenant une composition anticorps
WO2003085119A1 (fr) Procede d'amelioration de l'activite d'une composition d'anticorps de liaison avec le recepteur fc$g(g) iiia
WO2007011041A1 (ja) 遺伝子組換え抗体組成物
WO2003085102A1 (fr) Cellule avec inhibition ou suppression de l'activite de la proteine participant au transport du gdp-fucose
US20080213266A1 (en) Method for Treating CCR4-Related Diseases
WO2005035578A1 (ja) ガングリオシドgm2に特異的に結合する抗体組成物
EP1688436A1 (en) Composition of antibody capable of specifically binding ccr4
EP1688437A1 (en) Antibody composition specifically binding to il-5 receptor
JP2007129903A (ja) Cd10に特異的に結合する抗体組成物
WO2005035581A1 (ja) ヒトVEGF受容体Flt-1に特異的に結合する抗体組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005514669

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004773768

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004279736

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2004279736

Country of ref document: AU

Date of ref document: 20041008

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004279736

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2548787

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2004773768

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10575114

Country of ref document: US