WO2005033114A1 - Polyzyklische makrolactone - Google Patents

Polyzyklische makrolactone Download PDF

Info

Publication number
WO2005033114A1
WO2005033114A1 PCT/EP2004/010661 EP2004010661W WO2005033114A1 WO 2005033114 A1 WO2005033114 A1 WO 2005033114A1 EP 2004010661 W EP2004010661 W EP 2004010661W WO 2005033114 A1 WO2005033114 A1 WO 2005033114A1
Authority
WO
WIPO (PCT)
Prior art keywords
substance
bacteria
substances
protozoa
microorganism
Prior art date
Application number
PCT/EP2004/010661
Other languages
English (en)
French (fr)
Inventor
Hans-Peter Fiedler
Roderich SÜßMUTH
Hans ZÄHNER
Alan Bull
Original Assignee
Universität Tübingen
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10353300A external-priority patent/DE10353300A1/de
Application filed by Universität Tübingen filed Critical Universität Tübingen
Priority to EP04765521A priority Critical patent/EP1740595A1/de
Priority to US10/574,237 priority patent/US20080132565A1/en
Publication of WO2005033114A1 publication Critical patent/WO2005033114A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/18Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/22Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains four or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/12Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D498/18Bridged systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/22Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/18Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms containing at least two hetero rings condensed among themselves or condensed with a common carbocyclic ring system, e.g. rifamycin
    • C12P17/181Heterocyclic compounds containing oxygen atoms as the only ring heteroatoms in the condensed system, e.g. Salinomycin, Septamycin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention relates to new substances, processes for their production, use of these substances and pharmaceutical compositions.
  • Infectious diseases continue to represent a very large medical problem worldwide. Of particular importance here are the increasing resistance of pathogens, particularly bacterial pathogens, which means that these pathogens no longer respond to the currently available drugs. Bacteria that are resistant to a wide range of active substances are also increasingly occurring. This is known as multi-resistant pathogens. Many of the pathogenic multi-resistant Gram-positive bacteria, such as B. the multi-resistant and methicillin-resistant Staphylococcus aureus strains (MRSA) can currently only be treated with glycopeptide antibiotics of the vancomycin / teicoplanin type. It is only a matter of time before multi-tire-resistant, including vancomycin-resistant Staphylococcus aur / s strains will appear in the clinical area. Such super-multi-resistant strains have already been diagnosed in isolated cases and mean death for the infected patient because they cannot be treated.
  • MRSA multi-resistant and methicillin-resistant Staphylococcus aureus strains
  • the object of the invention is therefore to provide new substances which are suitable as active compounds for controlling pathogens, in particular bacterial pathogens, and which can thus be used as new antibiotics.
  • Such new substances should be able to serve as lead structures so that further effective substances can be developed from them.
  • Claims 12 and 13 sum up with appropriate pharmaceutical compositions.
  • Claims 14 to 17 and claim 21 relate to corresponding uses of the substances according to the invention or a method for controlling microorganisms.
  • Claims 22 and 24 are directed to a microorganism, claims 25 and 26 describe suitable processes for producing the substances. Preferred embodiments of these subjects are described in the various dependent claims. The wording of all claims is hereby incorporated by reference into the content of the description.
  • the substance according to the invention is characterized in that it is a polycyclic macrolactone, which can be produced by a representative of the bacterial genus Verrucosispora.
  • This substance is advantageously secreted by the bacterium, i.e. that is, it is released into the culture supernatant when the bacterium is cultivated. It is particularly preferred if this substance develops pharmacological activity and in particular antibiotic activity.
  • the substance according to the invention has this antibiotic effect especially against Gram-positive bacteria.
  • the substance according to the invention has a cytotoxic effect.
  • the inventors were able to obtain preferred embodiments of this substance according to the invention by isolating and characterizing a new bacterial strain from the genus Verrucosispora.
  • This strain hereinafter referred to as AB 18-032
  • This strain was isolated from a marine sediment that was collected from 1000 m depth in Sagami Bay in the Japanese Sea.
  • the strain was deposited with the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ) under DSM No. 15899. Especially before It is therefore important that the substances according to the invention can be produced from the bacterial strain AB 18-032.
  • the bacterial strain AB 18-032 has the following described morphological characteristics.
  • the strain grows as a surface culture on standard complex agar media, such as B. ISP-2 complex medium (0.4% yeast extract, 1% malt extract, 0.4% glucose, 1, 5% agar) as orange-red colonies that turn black after about two weeks of incubation at 27 ° C due to sporulation discolor.
  • 1 shows a scanning electron micrograph of the sporulated substrate mycelium.
  • the chemotaxonomic properties of the strain AB 18-032 are summarized in Table 1.
  • the complete nucleic acid sequence of the gene for the 16S ribosomal RNA was determined by direct sequencing of the PCR-amplified 16S rDNA [Chun, J. & M. Goodfellow (1995), Int. J. Syst. Bacteriol. 45: 240-245; Kim, SB, C. Falkoner, ST Williams & M. Goodfellow (1998), J. Syst. Bacteriol. 48: 59-88]. Then the sequence data was compared with the known sequences from representatives of the subordinate Micromonospo - NEAE. The highest agreement of the sequence from AB 18-032 was found for Verrucosispora gifhornensis with 99.65%.
  • FIG. 2 shows the sequence of the gene for the 16S rRNA of AB 18-032 (SEQ ID No. 1).
  • the strain AB 18-032 could be assigned to the rare actinomycetes genus Verrucosispora. This strain is the first marine representative of this genus and is the second species of this genus described so far in the literature.
  • Verrucosispora gifhornensis 1 DSM strain AB 18-032 44337 Carbon utilization: D (+) xylose ++ D (-) ribose D-fructose -
  • the substances according to the invention are represented by the general formula I.
  • the dotted lines indicate ties that may be present.
  • the numbers indicate the numbering of the carbon atoms in the framework, which was used for the assignment of the 1 H and 13 C chemical shifts in the NMR analysis.
  • Formula I is representative of all conceivable relative configurations and includes all possible stereoisomers.
  • This general formula comprises various substances, that is to say polycyclic macrolactones, which can be used with particular advantage as an active ingredient against microorganisms, in particular against bacteria and / or protozoa.
  • the structure of these substances that is the A-byssomicine, represents a new lead structure on the basis of which the development of new antibiotic substances can be carried out.
  • This embodiment in particular is characterized by particularly advantageous antibiotic properties which have an effect in particular on Gram-positive bacteria.
  • the substance according to formula II is referred to below as abyssomicin B, the substance according to formula III as abyssomicin C and the substance according to formula IV as abyssomicin D.
  • the invention further includes substances which are characterized in that they inhibit the biosynthesis of para-aminobenzoic acid (pABA).
  • these substances according to the invention inhibit the synthesis of para-aminobenzoic acid from chorismic acid.
  • pABA para-aminobenzoic acid
  • these substances according to the invention inhibit the synthesis of para-aminobenzoic acid from chorismic acid.
  • the biosynthetic pathway of para-aminobenzoic acid from chorismic acid is shown on the left-hand side of FIG. 4.
  • Para-aminobenzoic acid is an essential component of folic acid biosynthesis, which is shown on the right-hand side of FIG. 4.
  • the substances according to the invention thus ultimately inhibit the synthesis of folic acid.
  • the particular advantage of this point of attack of the substances according to the invention is that mammals and in particular humans do not have this biosynthetic pathway of folic acid, so that mammalian cells in particular are not adversely affected by the substances according to the invention. Consequently, the substances according to the invention can be used, for example, in the treatment of diseases, in particular infectious diseases, in humans or animals, without having any further side effects. In a particularly preferred embodiment of these substances, these substances have features as described above.
  • the invention includes polycyclic macrolactones as substances which have at least one oxabicyclo system and at least one Michael system as a double bond system as partial structures.
  • the Michael system is preferably a trans double bond that is conjugated to a ketone. It is particularly preferred if this Michael system is located, for example, at positions C7 to C9 of a ring system according to general formula I.
  • a Michael system can advantageously be directly involved in the mechanism of action of the substances according to the invention, for example by advantageously irreversibly interacting with nucleophilic amino acid side chains.
  • the oxabicyclo system contained according to the invention in the polycyclic macrolactones has similarities to the solution conformation of chorismate.
  • the substances according to the invention can therefore to a certain extent mimic the substrate chorismate, so that the special effect of the substances according to the invention can be explained thereby.
  • This oxabicyclo system can be designed, for example, as it results from the formulas I to IV. It is particularly preferred if such a bicyclo system is in the vicinity of the Michael system described. A preferred embodiment of such a substance which has a Michael system and an oxabicyclo system can be described, for example, by the formula III.
  • Substances according to formulas I to IV show an (R) configuration.
  • FIG. 7 B shows examples of the substances according to the invention in a corresponding configuration
  • the formulas shown here correspond to formulas II, II) and IV from left to right.
  • the invention comprises substances which are characterized in that they are derivatives of the polycyclic macrolactones described above.
  • These substances can be naturally occurring substances.
  • this also includes substances that are at least partially produced synthetically or by other means and can be derived, for example, from naturally occurring substances.
  • the substances described above can be used as lead structures in order to design and produce correspondingly suitable substances which may have further advantages over the starting substances.
  • These can advantageously be antibiotically active substances which have similar or improved antibiotic activity as the starting substance, but which, for example, have better properties than the starting substances with regard to side effects in an organism or bioavailability in an organism.
  • the invention comprises pharmaceutical compositions which have at least one substance as described above and at least one pharmaceutically acceptable carrier.
  • the invention encompasses pharmaceutical compositions which, in addition to at least one pharmaceutically acceptable carrier, comprise at least one substance which inhibits the biosynthesis of para-aminobenzoic acid and in particular inhibits the synthesis of para-aminobenzoic acid from chorismic acid.
  • These pharmaceutical compositions can advantageously microorganisms and in particular bacteria and / or protozoa can be combated.
  • compositions can be used particularly advantageously for the treatment of infectious diseases which are caused by bacteria or are at least influenced by bacteria. It is very particularly preferred if these pharmaceutical compositions are used to control gram-positive bacteria. Furthermore, the pharmaceutical compositions are also suitable for the treatment of infectious diseases which are caused or at least influenced by other microorganisms, such as, for example, protozoa. Examples of infectious protozoa that can be controlled with the substances according to the invention are plasmodia, leishmania and trypanosomes, which are responsible for tropical infectious diseases (malaria, leishmaniasis, African sleeping sickness, Chagas disease). The particularly advantageous effect of these pharmaceutical compositions or the corresponding substances is based primarily on the fact that these substances ultimately inhibit the biosynthesis of folic acid.
  • This metabolic pathway is only present in the microorganisms to be controlled, in particular bacteria and / or protozoa, and not in animals or humans, which can be treated with these compositions. It can be used to combat clinically pathogenic microorganisms, in particular pathogenic multiresistant bacteria, which no longer respond to conventional antibiotics.
  • the pharmaceutical compositions are very advantageously suitable for the treatment of infectious diseases which are at least influenced by Gram-positive bacteria.
  • MRSA methicillin-resistant Staphylococcus aureus strains
  • Infectious diseases can also be treated, for example in which Staphylococcus aureus strains are involved which, in addition to various other resistances, are also resistant to vancomycin.
  • Treatment with the pharmaceutical compositions according to the invention can, in particular in such a case, save the patient from death, since there is otherwise no therapeutic option for such super-multi-resistant strains.
  • the pharmaceutical compositions can also be used to combat pathogenic microorganisms which have developed little or no resistance to conventional antibiotics.
  • the invention also encompasses the use of the substances described above for the treatment of infectious diseases which are at least also influenced by bacteria and / or protozoa. Furthermore, the invention includes a use of the substances according to the invention for the manufacture of a medicament for the treatment of infectious diseases which are at least also influenced by bacteria and / or protozoa. The invention also encompasses the use of substances for the treatment of the infectious diseases mentioned, the substances inhibiting the synthesis of para-aminobenzoic acid and in particular inhibiting the synthesis of para-aminobenzoic acid from chorismic acid. The use of appropriate substances for the manufacture of a medicament for the treatment of infectious diseases which are at least influenced by bacteria and / or protozoa is also included.
  • the invention further comprises a method for the treatment of infectious diseases which are at least influenced by bacteria and / or protozoa, at least one substance being administered in the form of a pharmaceutical composition according to the above description.
  • infectious diseases which are at least influenced by bacteria and / or protozoa
  • the invention comprises a method for controlling microorganisms, in particular bacteria and / or protozoa, at least one of the substances according to the invention described above being used.
  • Such a control of microorganisms can be, for example, a disinfection process.
  • surfaces of all kinds, such as surfaces of surgical equipment or furnishings be sterilized to prevent infection with pathogenic microorganisms.
  • the substances according to the invention can be used very advantageously in this context; this is particularly preferably done in combination with other disinfectants.
  • the invention further comprises a microorganism which is characterized in that it can produce at least one substance as described above.
  • the microorganism is a bacterium, this bacterium preferably being a representative of the Verrucosispora genus. It is particularly preferred that this is the bacterial strain AB 18-032 (DSM 15899).
  • the bacterial strain AB 18-032 is the strain from which the inventors were able to isolate the substances listed as examples. Mutants of these microorganisms and in particular of the AB 18-032 strain are also encompassed by the invention.
  • the invention also encompasses other microorganisms which produce corresponding substances.
  • the invention comprises a method for producing at least one substance according to the invention, in which case a microorganism is first cultivated which is capable of producing at least one of the substances described.
  • the substance is preferably secreted by the microorganism, so that in a next process step a filtrate of the culture supernatant is produced in which the desired substance is located.
  • This culture filtrate or the culture supernatant can be used directly in order to use the substances according to the invention accordingly.
  • the substances can also be isolated from the culture filtrate or the culture supernatant and preferably more or less purified so as to have the substance available in a purified form.
  • This is particularly advantageous for medical applications, since if possible only purified substances should be used for pharmaceutical use in order to avoid undesirable effects of other substances.
  • the substance is not secreted, but remains within the microorganism.
  • the substance is isolated from the cultivated microorganisms by suitable methods known to those skilled in the art.
  • the AB 18-032 strain is advantageously used as the microorganism.
  • the microorganism is preferably cultivated in the presence of a medium which contains at least one carbon source, nitrogen source and mineral salts.
  • Subsequent extraction of the substances is preferably carried out from the culture filtrate, but can also take place directly from the culture supernatant.
  • the substances can be isolated from the culture filtrate or the supernatant, for example, by solvent extraction (e.g. ethyl acetate).
  • solvent extraction e.g. ethyl acetate
  • Another possibility is, for example, a sauce Linear chromatography with a polystyrene resin (e.g. Amberlite XAD-16).
  • Further isolation or purification can be carried out by separating the various substances by, for example, absorption and / or exclusion chromatography.
  • the substances can be obtained in pure form by crystallization. If necessary, the purified substances can be further implemented using common chemical processes. Details of this manufacturing process will be readily apparent to those skilled in the art.
  • FIG. 7 (A) diaxial conformation of chorismate in aqueous solution; (B) Configuration structural formulas of the substances according to Form II, III and IV.
  • Inhibitors of chorismic acid biosynthesis and the biosynthetic pathways that are derived from chorismic acid are determined using a so-called cross test, which is based on a modified agar diffusion test. Bacillus subtilis is used as the test organism and is poured into a chemically defined agar medium. One filter paper strip of the cross test batch is soaked with a cell extract, the second filter paper strip with the following variation: (a) Tyr + Phe + Trp + pABA, (b) Tyr + Phe, (c) Trp and (d) pABA.
  • the pattern of the abolition of the individual variants can be used to decide whether it is an inhibitor of early aromatic biosynthesis (before chorismic acid) or an inhibitor that intervenes after chorismic acid, and whether this is an inhibitor of tyrosine (Tyr) / phenylalanine (Phe) biosynthesis, tryptophan (Trp) biosynthesis or para-aminobenzoic acid (pABA) biosynthesis is.
  • Tyr tyrosine
  • Phe phenylalanine
  • Trp tryptophan
  • pABA para-aminobenzoic acid
  • the polycyclic macrolactones are produced by the AB 18-032 strain during the logarithmic to the stationary growth phase.
  • a typical fermentation proceeds as follows: A 10 liter leaf fermenter is mixed with 9.5 liters of complex medium (1% glucose, 1% starch, 1% glycerin, 0.25% Com Steep Powder, 0.5% peptone, 0.2% yeast extract, 0.1% NaCl, 0.3% CaC0 3 ; pH 7.3) filled. The fermenter is inoculated with 5% by volume of a 48-hour shake culture (500 ml Erlenmeyer flask with a side puncture, 100 ml complex medium, 120 rpm, 27 ° C.).
  • the fermenter is incubated at 27 ° C, a speed of 200 rpm and aeration of 0.5 vvm for 4-5 days.
  • the polycyclic macrolactones can be detected in the culture supernatant using HPLC diode array detection (HPLC-DAD) and biological testing.
  • HPLC-DAD HPLC diode array detection
  • the fermenter broth is separated into biomass and culture filtrate with the addition of 2% filter aid (Hyphlo-Supercel). The biomass is discarded.
  • the culture filtrate is adjusted to pH 4 (HCl) and extracted twice with a V * volume of ethyl acetate.
  • the organic phases are combined and concentrated to an oily residue on a vacuum rotary evaporator. The oily residue is washed twice with a small volume of petro- Leum petrol extracted to remove fats. The petroleum spirit extract is discarded.
  • the oily residue is dissolved in a little methanol and separated into the individual raw substance fractions on a Sephadex LH-20 column (100 ⁇ 5 cm) in methanol.
  • Pure polycyclic macrolactones are isolated by low-pressure chromatography on a LiChroprep diol column (40 x 2.6 cm) and a linear gradient from dichloromethane to dichloromethane / methanol (90 + 10) in 3 hours with a flow of 2 ml / min, and a subsequent exclusion chromatography on a Fractogel TSK HW 40 column (90 x 2.5 cm) in methanol at a flow of 0.5 ml / min.
  • ESI-FTICR-MS The mass spectra were recorded on an APEX II FTICR mass spectrometer (4.7 T; Bruker-Daltonics). PEG 400 was used for internal calibration.
  • the isolated substances showed the following physico-chemical properties:
  • Abyssomicin C shows an antibiotic effect in the agar diffusion test, which is directed primarily against the Gram-positive bacteria tested.
  • the gram-negative bacteria and fungi tested were opposite insensitive to the abyssomicins.
  • the antibiotic spectrum of activity is shown in Table 6.
  • the minimum inhibitory concentration (MIC) of Abyssomicin C was determined in a dilution series test. The results are shown in Table 7. As expected, the test germs are much more sensitive to abyssomicin C in a chemically defined medium. Table 7: Minimum inhibitory concentration (MIC; ⁇ g / ml) of Abyssomicin C in the dilution series test (2 ml test tube scale, shaking machine 120 rpm)
  • the determination of the MIC against clinically pathogenic Staphylococcus at / ret / s strains was carried out in a microtiter plate assay.
  • the efficacy of abyssomicin C against the multidrug-resistant, including methicillin-resistant strain S. aureus N315 and against the multidrug-resistant, including vancomycin-resistant strain S. aureus Mu50 was determined. The results are shown in Fig. 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Es werden neue polyzyklische Makrolactone bereitgestellt, die insbesondere von einem Vertreter der Bakteriengattung Verrucosispora herstellbar sind. Diese Substanzen zeichnen sich vorzugsweise durch ihre pharmakologische Wirkung aus. Insbesondere weisen sie antibiotische Wirkung auf. Bevorzugterweise tritt diese antibiotische Wirkung gegenüber Gram-positiven Bakterien ein.

Description

Beschreibung Polvzvklische Makrolactone
Die Erfindung betrifft neue Substanzen, Verfahren zu deren Herstellung, Verwendung dieser Substanzen und pharmazeutische Zusammensetzungen.
Infektionskrankheiten stellen nach wie vor weltweit ein sehr großes medizinisches Problem dar. Von besonderer Bedeutung sind hierbei die zunehmend auftretenden Resistenzen von Erregern, insbesondere bei bakteriellen Erregern, wodurch diese Erreger auf die derzeit verfügbaren Medikamente nicht mehr reagieren. Zunehmend treten auch Bakterien auf, die gegen eine ganze Bandbreite von Wirkstoffen resistent sind, man spricht hier von multiresistenten Erregem. Viele der pathogenen multiresistenten Gram-positiven Bakterien, wie z. B. die multiresistenten und Methicillin-resistenten Staphylococcus aureus-Stämme (MRSA) sind derzeit nur noch mit Glycopeptid-Antibiotika vom Vancomycin/Teico- planin-Typ therapierbar. Es ist nur eine Frage der Zeit, bis vermehrt mul- tiresistente, einschließlich Vancomycin-resistente Staphylococcus au- ret/s-Stämme im Klinikbereich auftreten werden. Derart super-multire- sistente Stämme wurden bereits vereinzelt diagnostiziert und bedeuten für den infizierten Patienten den Tod, da sie nicht therapierbar sind.
Die Erfindung stellt sich daher die Aufgabe, neue Substanzen bereitzu- stellen, die als Wirkstoffe zur Bekämpfung von Erregern, insbesondere von bakteriellen Erregern, geeignet sind und so als neue Antibiotika eingesetzt werden können. Solche neuen Substanzen sollen als Leitstrukturen dienen können, um daraus weitere wirksame Substanzen entwickeln zu können.
Diese Aufgabe wird gelöst durch eine Substanz, wie sie in den Ansprüchen 1 , 5, 9, 10 und 11 beschrieben ist. Die Ansprüche 12 und 13 be- fassen sich mit entsprechenden pharmazeutischen Zusammensetzungen. Die Ansprüche 14 bis 17 sowie der Anspruch 21 betreffen entsprechende Verwendungen der erfindungsgemäßen Substanzen bzw. ein Verfahren zur Bekämpfung von Mikroorganismen. Die Ansprüche 22 und 24 richten sich auf einen Mikroorganismus, die Ansprüche 25 und 26 beschreiben geeignete Verfahren zur Herstellung der Substanzen. In den verschiedenen abhängigen Ansprüchen werden bevorzugte Ausführungsformen dieser Gegenstände beschrieben. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt der Beschreibung gemacht.
Die erfindungsgemäße Substanz ist dadurch gekennzeichnet, daß es sich dabei um ein polyzyklisches Makrolacton handelt, welches von einem Vertreter der Bakteriengattung Verrucosispora herstellbar ist. Diese Substanz wird vorteilhafterweise von dem Bakterium sekretiert, d. h., daß sie bei einer Kultivierung des Bakteriums in den Kulturüberstand abgegeben wird. Besonders bevorzugt ist es, wenn diese Substanz pharmakologische Wirkung und insbesondere antibiotische Wirkung entwickelt. In einer bevorzugten Ausführungsform weist die erfindungs- gemäße Substanz diese antibiotische Wirkung vor allem gegenüber Gram-positiven Bakterien auf. In einer weiteren bevorzugten Ausführungsform zeigt die erfindungsgemäße Substanz cytotoxische Wirkung.
Die Erfinder konnten bevorzugte Ausführungsformen dieser erfindungs- gemäßen Substanz durch die Isolierung und Charakterisierung eines neuen Bakterienstammes aus der Gattung Verrucosispora gewinnen. Dieser Stamm, der im folgenden als AB 18-032 bezeichnet wird, wurde aus einem Meeressediment isoliert, das aus 1000 m Tiefe in der Sag- ami-Bay in der japanischen See gesammelt wurde. Der Stamm wurde bei der deutschen Sammlung von Mikroorganismen und Zellkulturen GmbH (DSMZ) unter der DSM Nr. 15899 hinterlegt. Besonders bevor- zugt ist es daher, daß die erfindungsgemäßen Substanzen von dem Bakterienstamm AB 18-032 herstellbar sind.
Der Bakterienstamm AB 18-032 hat die folgenden beschrieben morpho- logischen Charakteristika. Der Stamm wächst als Oberflächenkultur auf standardmäßigen Komplexagarmedien, wie z. B. ISP-2 Komplexmedium (0,4 % Hefeextrakt, 1 % Malzextrakt, 0,4 % Glukose, 1 ,5 % Agar) als orange-rote Kolonien, die sich nach ca. zweiwöchiger Inkubation bei 27 °C aufgrund der Sporulation schwarz verfärben. Fig. 1 zeigt eine raster- elektronenmikroskopische Aufnahme des sporulierten Substratmyzels. Die chemotaxonomischen Eigenschaften des Stammes AB 18-032 sind in der Tabelle 1 zusammengefaßt.
Tabelle 1 : Chemotaxonomische Charakterisierung des Stammes AB 18- 032
Figure imgf000004_0001
Für eine präzise phylogenetische Zuordnung wurde die komplette Nuk- leinsäuresequenz des Gens für die 16S ribosomale RNA durch direkte Sequenzierung der PCR-amplifizierten 16S rDNA bestimmt [Chun, J. & M. Goodfellow (1995), Int. J. Syst. Bacteriol. 45: 240-245; Kim, S. B., C. Falkoner, S. T. Williams & M. Goodfellow (1998), J. Syst. Bacteriol. 48: 59-88]. Danach erfolgte der Vergleich der Sequenzdaten mit den be- kannten Sequenzen von Vertretern der Unterordnung Micromonospo - neae. Die höchste Übereinstimmung der Sequenz von AB 18-032 wurde zu Verrucosispora gifhornensis mit 99,65 % gefunden. In Fig. 2 ist die Sequenz des Gens für die 16S rRNA von AB 18-032 dargestellt (SEQ ID No. 1). Aus dem Vergleich der Sequenzdaten für den Stamm AB 18-032 mit den bekannten Sequenzen der 16S rRNA von Vertretern der Unterordnung Micromonosporineae ergab sich die Position des Stammes dieser Erfindung auf dem phylogenetischen Stammbaum der Micromonosporineae, welcher in Fig. 3 dargestellt ist. Aufgrund der phylogenetischen Analyse der 16S rRNA sowie der oben beschriebenen morpholo- gischen und chemotaxonomischen Eigenschaften konnte der Stamm AB 18-032 zu der seltenen Actinomyceten-Gattung Verrucosispora zugeordnet werden. Dieser Stamm ist der erste marine Vertreter dieser Gattung und ist die zweite bislang in der Literatur beschriebene Art dieser Gattung.
Zur weiteren Charakterisierung des neuen Stammes AB 18-032 wurden seine phänotypischen Eigenschaften im Vergleich mit dem bekannten Stamm Verrucosispora gifhornensis [DSM 44337; Rheims, H., P. Schumann, M. Rohde & E. Stackebrandt (1998), Int. J. Syst. Bacteriol. 48: 1119-1127] untersucht. Die Ergebnisse sind in der Tabelle 2 zusammengefaßt.
Tabelle 2: Phänotypische Eigenschaften des Stammes AB 18-032 und seines nächsten phylogenetischen Verwanden Verrucosispo- ra gifhornensis DSM 44337
Verrucosispora gifhornensis1 DSM Stamm AB 18-032 44337 Kohlenstoffverwertung: D(+)Xylose ++ D(-)Ribose D-Fructose -
D(+)Glucose + +
D(+)Galactose +
D-Mannose + + +
Maltose + + +
Saccharose + + +
D(+)σ-Trehalose + + +
L(+)Arabinose + + + +
L(-)Rhamnose -
L(-)Sorbose - cr-Lactose - + α-Melibiose - +
D(+)Melezitose - +
D(+)Raffinose - +
Glycerin - +
Dulcitol - + meso- Inosit - +
D-Sorbit - +
D-Mannit - +
Salicin + +
Stickstoffverwertung:
DL-Serin + + +
L-Asparaginsäure + +
L-Glutaminsäure + + +
L-Histidin + +
L-Arginin + + +
L-Alanin + + +
L-Valin + + +
L-Methionin - + +
L-Phenylalanin + + +
L-Tryptophan - + + Casein p p Cellullose-Abbau n n Gelatine-Verflüssigung p nb Bildung von Nitrat aus Nit- n n rit Stärkehydrolyse p p
1 Daten von Rheims er al. (1998)
+ +, gute Verwertung; +, normale Verwertung; +, schlechte Verwertung;
-, keine Verwertung; p, positiv; n, negativ; nb, nicht bestimmt
Dieser erstmals von den Erfindern isolierte und charakterisierte Vertreter der Gattung Verrucosispora produziert verschiedene Substanzen, die vorteilhafterweise pharmakologische Wirkung entfalten. Diese Substanzen werden im folgenden unter der Bezeichnung Abyssomicine zusam- mengefaßt.
In einer bevorzugten Ausführungsform der Erfindung sind die erfindungsgemäßen Substanzen durch die allgemeine Formel I
Figure imgf000007_0001
gekennzeichnet. Hierbei bezeichnet X: C=0 oder C-OH
Figure imgf000007_0002
c=o Z: C=N- oder CH oder CH2
Die punktierten Linien deuten Bindungen an, die vorhanden sein können. Die Ziffern bezeichnen die Numerierung der Kohlenstoffatome im Gerüst, die für die Zuordnung der 1H und 13C chemischen Verschiebungen der NMR-Analytik verwendet wurde. Die Formel I steht repräsentativ für alle denkbaren relativen Konfigurationen und umfaßt alle möglichen Stereoisomere.
Diese allgemeine Formel umfaßt verschiedene Substanzen, also polyzyklische Makrolactone, die mit besonderen Vorteil als Wirkstoff gegen Mikroorganismen, insbesondere gegen Bakterien und/oder Protozoen, eingesetzt werden können. Die Struktur dieser Substanzen, also der A- byssomicine, stellt eine neue Leitstruktur dar, anhand welcher die Entwicklung neuer antibiotisch wirksamer Substanzen vorgenommen werden kann.
Eine bevorzugte Ausführungsform der erfindungsgemäßen Substanzen ist durch die folgende Formel II
Figure imgf000008_0001
darstellbar. Diese Formel sowie auch alle anderen hier aufgeführten Formeln stehen stellvertretend für alle möglichen relativen Konfigurationen, beispielsweise auch für die spiegelbildliche Formel lla.
Figure imgf000009_0001
Eine weitere bevorzugte Ausführungsform läßt sich mit der Formel IV
Figure imgf000009_0002
beschreiben, die ebenfalls alle möglichen Konfigurationen umfaßt.
Eine ganz besonders bevorzugte Ausführungsform der erfindungsgemäßen Substanzen ist durch die Formel III
Figure imgf000009_0003
mit jeweils allen möglichen relativen Konfigurationen gekennzeichnet. Insbesondere diese Ausführungsform ist durch besonders vorteilhafte antibiotische Eigenschaften gekennzeichnet, die sich insbesondere gegenüber Gram-positiven Bakterien auswirken. Die Substanz gemäß Formel II wird im folgenden als Abyssomicin B, die Substanz gemäß Formel III als Abyssomicin C und die Substanz gemäß Formel IV als Abyssomicin D bezeichnet.
Die Erfindung umfaßt weiterhin Substanzen, die dadurch gekennzeich- net sind, daß sie die Biosynthese der para-Aminobenzoesäure (pABA) hemmen. Insbesondere hemmen diese erfindungsgemäßen Substanzen die Synthese der para-Aminobenzoesäure aus Chorisminsäure. Zur Veranschaulichung ist der Biosyntheseweg der para-Aminobenzoesäure aus Chorisminsäure auf der linken Seite der Fig. 4 dargestellt. Die para- Aminobenzoesäure ist ein essentieller Baustein der Folsäurebiosynthe- se, die auf der rechten Seite der Fig. 4 dargestellt ist. Die erfindungsgemäßen Substanzen hemmen also letztendlich die Folsäuresynthese. Hierbei handelt es sich um ein lebensnotwendiges Vitamin von Mikroorganismen, insbesondere von Prokaryonten und Protozoen, so daß durch die erfindungsgemäßen Substanzen deren Stoffwechsel derart beeinträchtigt wird, daß die entsprechenden Mikroorganismen mit den erfindungsgemäßen Substanzen bekämpft werden können. Der besondere Vorteil dieses Angriffspunkts der erfindungsgemäßen Substanzen ist, daß Säugetiere und insbesondere der Mensch diesen Biosyntheseweg der Folsäure nicht besitzen, so daß vor allem Säugetier-Zellen von den erfindungsgemäßen Substanzen nicht negativ beeinflußt werden. Folglich können die erfindungsgemäßen Substanzen beispielsweise bei der Behandlung von Krankheiten, insbesondere von Infektionskrankheiten, im Menschen oder im Tier eingesetzt werden, ohne weitergehende Ne- benwirkungen zu entfalten. In einer besonders bevorzugten Ausführungsform dieser Substanzen weisen diese Substanzen Merkmale gemäß der obigen Beschreibung auf. Weiterhin umfaßt die Erfindung polyzyklische Makrolactone als Substanzen, die als Teilstrukturen mindestens ein Oxabicyclo-System und mindestens ein Michael-System als Doppelbindungssystem aufweisen. Bei dem Michael-System handelt es sich vorzugsweise um eine trans- Doppelbindung, die sich in Konjugation mit einem Keton befindet. Besonders bevorzugt ist es, wenn sich dieses Michael-System beispielsweise an den Positionen C7 bis C9 eines Ringsystems gemäß der allgemeinen Formel I befindet. Versuche der Erfinder haben gezeigt, daß ein solches Michael-System vorteilhafterweise direkt an dem Wirkungsmechanismus der erfindungsgemäßen Substanzen beteiligt sein kann, indem es beispielsweise mit nukleophilen Aminosäureseitenketten vorteilhafterweise irreversibel wechselwirkt. Das erfindungsgemäß in den polyzyklischen Makrolactonen enthaltende Oxabicyclo-System weist Ähnlichkeiten mit der Lösungskonformation von Chorismat auf. Die entsprechenden Konformationen von Chorismat sind zur Erläuterung in Fig. 7 A dargestellt. Die erfindungsgemäßen Substanzen können daher in gewisser Weise das Substrat Chorismat nachahmen, so daß sich hierdurch die besondere Wirkung der erfindungsgemäßen Substanzen er- klären läßt. Dieses Oxabicyclo-System kann beispielsweise so ausgestaltet sein, wie es sich aus den Formeln I bis IV ergibt. Besonders bevorzugt ist es, wenn sich ein solches Bicyclo-System in der Nähe des beschriebenen Michael-Systems befindet. Eine bevorzugte Ausführungsform einer solchen Substanz, die ein Michael-System und ein Oxa- bicyclo-System aufweist, läßt sich beispielsweise durch die Formel III beschreiben.
Weiterhin ist es bevorzugt, wenn die Position C12 in den beispielhaften
Substanzen gemäß den Formeln I bis IV eine (R)-Konfiguration zeigt. Zur Erläuterung wird auf die Fig. 7 B verwiesen, welche Beispiele für die erfindungsgemäßen Substanzen in entsprechender Konfiguration zeigt, wobei die hier gezeigten Formeln von links nach rechts den Formeln II, II) und IV entsprechen.
Weiterhin umfaßt die Erfindung Substanzen, die dadurch gekennzeich- net sind, daß es sich dabei um Derivate der oben beschriebenen polyzyklischen Makrolactone handelt. Bei diesen Substanzen kann es sich um natürlich vorkommende Substanzen handeln. Andererseits werden hiervon auch Substanzen umfaßt, die zumindest zum Teil synthetisch oder auch mit anderen Mitteln hergestellt sind und beispielsweise von natürlich vorkommenden Substanzen abgeleitet sein können. So können beispielsweise die oben beschriebenen Substanzen als Leitstrukturen verwendet werden, um entsprechend geeignete Substanzen, die möglicherweise gegenüber den Ausgangssubstanzen weitere Vorteile aufweisen, zu entwerfen und herzustellen. Hierbei kann es sich vorteilhafter- weise um antibiotisch wirksame Substanzen handeln, die ähnliche oder verbesserte antibiotische Wirksamkeit wie die Ausgangssubstanz haben, die aber beispielsweise bezüglich Nebenwirkungen in einem Organismus oder Bioverfügbarkeit in einem Organismus bessere Eigenschaften aufweisen als die Ausgangssubstanzen. Bezüglich weiterer Merkma- le dieser erfindungsgemäßen Substanzen wird auf die obige Beschreibung verwiesen.
In einem weiteren Aspekt umfaßt die Erfindung pharmazeutische Zusammensetzungen, welche mindestens eine Substanz gemäß der obi- gen Beschreibung und mindestens einen pharmazeutisch akzeptablen Träger aufweisen. Insbesondere umfaßt die Erfindung pharmazeutische Zusammensetzungen, welche neben mindestens einem pharmazeutisch akzeptablen Träger mindestens eine Substanz aufweisen, welche die Biosynthese der para-Aminobenzoesäure hemmt, und insbesondere die Synthese der para-Aminobenzoesäure aus Chorisminsäure hemmt. Mit diesen pharmazeutischen Zusammensetzungen können vorteilhafterwei- se Mikroorganismen und insbesondere Bakterien und/oder Protozoen bekämpft werden.
Besonders vorteilhaft sind diese pharmazeutischen Zusammensetzun- gen für die Behandlung von Infektionskrankheiten verwendbar, welche durch Bakterien verursacht sind oder zumindest durch Bakterien beeinflußt werden. Ganz besonders bevorzugt ist es, wenn diese pharmazeutischen Zusammensetzungen zur Bekämpfung von Grampositiven Bakterien eingesetzt werden. Weiterhin eignen sich die phar- mazeutischen Zusammensetzungen auch zur Behandlung von Infektionskrankheiten, die durch andere Mikroorganismen, wie beispielsweise Protozoen, verursacht oder zumindest beeinflußt werden. Beispiele für infektiöse Protozoen, die mit den erfindungsgemäßen Substanzen bekämpft werden können, sind Plasmodien, Leishmanien und Trypanoso- men, welche für tropische Infektionskrankheiten (Malaria, Leishmaniose, Afrikanische Schlafkrankheit, Chagas-Krankheit) verantwortlich sind. Die besonders vorteilhafte Wirkung dieser pharmazeutischen Zusammensetzungen bzw. der entsprechenden Substanzen beruht vor allem darauf, daß durch diese Substanzen die Biosynthese der Folsäure letztend- lieh gehemmt wird. Dieser Stoffwechselweg ist nur in den zu bekämpfenden Mikroorganismen, insbesondere Bakterien und/oder Protozoen, und nicht in Tieren oder Menschen vorhanden, welche mit diesen Zusammensetzungen behandelt werden können. Besonders vorteilhaft können hiermit klinisch-pathogene Mikroorganismen bekämpft werden, insbesondere pathogene multiresistente Bakterien, die auf herkömmliche Antibiotika nicht mehr ansprechen. Mit sehr großem Vorteil sind die pharmazeutischen Zusammensetzungen zur Behandlung von Infektionskrankheiten geeignet, die durch Gram-positive Bakterien zumindest mitbeeinflußt werden. Beispielsweise sind mit den erfindungsgemäßen pharmazeutischen Zusammensetzungen multiresistente und insbesondere Methicillin-resistente Staphylococcus aureus-Stämme (MRSA) bekämpfbar. Es können beispielsweise auch Infektionskrankheiten behan- delt werden, bei welchen Staphylococcus aureus-Stämme beteiligt sind, die neben verschiedenen anderen Resistenzen auch gegen Vancomycin resistent sind. Resistenzen gegenüber Vancomycin sind bereits verschiedentlich diagnostiziert worden. Eine Behandlung mit den erfin- dungsgemäßen pharmazeutischen Zusammensetzungen kann insbesondere in einem solchen Fall den Patienten vor dem Tod bewahren, da es ansonsten keine Therapiemöglichkeit für derartige super-multire- sistente Stämme gibt. Selbstverständlich können die pharmazeutischen Zusammensetzungen auch für die Bekämpfung von pathogenen Mikro- Organismen eingesetzt werden, die keine oder nur wenige Resistenzen gegenüber herkömmlichen Antibiotika entwickelt haben.
Die Erfindung umfaßt auch die Verwendung der oben beschriebenen Substanzen zur Behandlung von Infektionskrankheiten, die durch Bakte- rien und/oder Protozoen zumindest mitbeeinflußt sind. Weiterhin umfaßt die Erfindung eine Verwendung der erfindungsgemäßen Substanzen zur Herstellung eines Medikaments zur Behandlung von Infektionskrankheiten, die durch Bakterien und/oder Protozoen zumindest mitbeeinflußt sind. Die Erfindung umfaßt außerdem die Verwendung von Substanzen zur Behandlung der genannten Infektionskrankheiten, wobei die Substanzen die Synthese der para-Aminobenzoesäure hemmen und insbesondere die Synthese der para-Aminobenzoesäure aus Chorisminsäure hemmen. Die Verwendung entsprechender Substanzen zur Herstellung eines Medikaments zur Behandlung von Infektionskrankheiten, die von Bakterien und/oder Protozoen zumindest mitbeeinflußt sind, wird ebenfalls umfaßt. Ferner umfaßt die Erfindung ein Verfahren zur Behandlung von Infektionskrankheiten, welche durch Bakterien und/oder Protozoen zumindest mitbeeinflußt sind, wobei mindestens eine Substanz im Form einer pharmazeutischen Zusammensetzung gemäß der obigen Be- Schreibung verabreicht wird. Bezüglich weiterer Merkmale dieser verschiedenen Verwendungen und Verfahren wird auf die obige Beschreibung verwiesen. Weiterhin umfaßt die Erfindung ein Verfahren zur Bekämpfung von Mikroorganismen, insbesondere von Bakterien und/oder Protozoen, wobei mindestens eine der erfindungsgemäßen Substanzen, die oben be- schrieben sind, verwendet wird. Bei einer solchen Bekämpfung von Mikroorganismen kann es sich beispielsweise um ein Desinfektionsverfahren handeln. Insbesondere im Krankenhaus oder in anderen medizinischen Einrichtungen ist es unbedingt erforderlich, daß Oberflächen verschiedenster Art, wie beispielsweise Oberflächen von Operationsbe- steck oder von Einrichtungsgegenständen, entkeimt werden, um eine Infektion mit krankheitserregenden Mikroorganismen zu verhindern. Die erfindungsgemäßen Substanzen können in diesem Zusammenhang sehr vorteilhaft eingesetzt werden, dies geschieht besonders bevorzugt in Kombination mit anderen desinfizierenden Mitteln.
Die Erfindung umfaßt ferner einen Mikroorganismus, der dadurch gekennzeichnet ist, daß er mindestens eine Substanz produzieren kann, wie sie oben beschrieben ist. In einer bevorzugten Ausführungsform handelt es sich bei dem Mikroorganismus um ein Bakterium, wobei die- ses Bakterium vorzugsweise ein Vertreter der Gattung Verrucosispora ist. Besonders bevorzugt ist es, daß es sich hierbei um den Bakterienstamm AB 18-032 (DSM 15899) handelt. Bei dem Bakterienstamm AB 18-032 handelt es sich um den Stamm, aus welchem die Erfinder die beispielhaft aufgeführten Substanzen isolieren konnten. Mutanten dieser Mikroorganismen und insbesondere des Stammes AB 18-032 werden ebenfalls von der Erfindung umfaßt. Die Erfindung umfaßt auch andere Mikroorganismen, die entsprechende Substanzen produzieren. Besonders bevorzugt sind hierbei Mikroorganismen, die beispielsweise größere Mengen der erfindungsgemäßen Substanzen produzieren können. Mit diesen Mikroorganismen können mit besonderem Vorteil die Mengen der erfindungsgemäßen Substanzen hergestellt werden, die für therapeutische Einsätze erforderlich sind. Schließlich umfaßt die Erfindung ein Verfahren zur Herstellung mindestens einer erfindungsgemäßen Substanz, wobei hier zunächst ein Mikroorganismus kultiviert wird, der in der Lage ist, mindestens eine der be- schriebenen Substanzen zu produzieren. Bevorzugterweise wird die Substanz von dem Mikroorganismus sekretiert, so daß in einem nächsten Verfahrensschritt ein Filtrat des Kulturüberstands hergestellt wird, in welchem sich die gewünschte Substanz befindet. Dieses Kulturfiltrat o- der auch der Kulturüberstand kann direkt verwendet werden, um die er- findungsgemäßen Substanzen entsprechend einzusetzen. Andererseits können die Substanzen auch aus dem Kulturfiltrat oder dem Kulturüberstand isoliert und vorzugsweise mehr oder weniger gereinigt werden, um so die Substanz in gereinigter Form zur Verfügung zu haben. Dies ist vor allem für medizinische Anwendungen vorteilhaft, da für den pharma- zeutischen Einsatz möglichst nur gereinigte Substanzen zu verwenden sind, um unerwünschte Wirkungen anderer Stoffe zu vermeiden. Weiterhin kann es bevorzugt sein, daß die Substanz nicht sekretiert wird, sondern innerhalb des Mikroorganismus verbleibt. In diesem Fall wird die Substanz durch geeignete, dem Fachmann bekannte Methoden aus den kultivierten Mikroorganismen isoliert. Als Mikroorganismus wird vorteilhafterweise der Stamm AB 18-032 verwendet. Es kann jedoch auch sehr vorteilhaft sein, einen Mikroorganismus einzusetzen, der beispielsweise hinsichtlich der Menge der zu produzierenden Substanz optimiert ist. Eine entsprechende Optimierung kann beispielsweise durch ent- sprechende Selektion erfolgen. Die Kultivierung des Mikroorganismus erfolgt vorzugsweise in Gegenwart von einem Medium, welches mindestens eine Kohlenstoffquelle, Stickstoffquelle und Mineralsalze enthält. Die anschließende Gewinnung der Substanzen erfolgt bevorzugt aus dem Kulturfiltrat, kann jedoch auch direkt aus dem Kulturüberstand er- folgen. Die Substanzen können aus dem Kulturfiltrat oder dem Überstand beispielsweise durch Lösungsmittelextraktion (z. B. Ethylacetat) isoliert werden. Eine andere Möglichkeit ist beispielsweise eine Sau- lenchromatographie mit einem Polystyrolharz (z. B. Amberlite XAD-16). Eine weitere Isolierung oder Reinigung kann durch Auftrennung der verschiedenen Substanzen durch beispielsweise Absorptions- und/oder Ausschlußchromatographie erfolgen. Durch eine Kristallisation können die Substanzen in reiner Form gewonnen werden. Gegebenenfalls können die gereinigten Substanzen mit gängigen chemischen Verfahren weiter umgesetzt werden. Einzelheiten zu diesem Herstellungsverfahren erschließen sich dem Fachmann ohne weiteres.
Einzelheiten zu den beschriebenen Merkmalen sowie weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung von Beispielen in Verbindung mit den Figuren und den Unteransprüchen. Hierbei können die einzelnen Merkmale jeweils für sich oder in Kombination miteinander verwirklicht sein.
In den Figuren zeigen:
Fig. 1 rasterelektronenmikroskopische Aufnahme des Stammes AB 18- 032,
Fig. 2 Sequenz des Gens der 16S rRNA des Stammes AB 18-032 (SEQ ID No. 1),
Fig. 3 Position des Stammes AB 18-032 im phylogenetischen Stammbaum der Unterordnung Mikromonosporineae (Stammbaum nach Saitou, N. & M. Nei (1987), Mol. Biol. Evol. 4: 406-425),
Fig. 4 Biosyntheseweg der para-Aminobenzoesäure (links) und der Folsäure (rechts), Fig. 5 UV-Spektren der Abyssomicine gemäß den Formeln II, III und IV,
Fig. 6 minimale Hemmkonzentration der Substanz gemäß Formel III (Abyssomicin C) gegen die multiresistenten Stämme Staphylococcus aureus 135 und Staphylococcus aureus Mu50,
Fig. 7 (A) diaxiale Konformation von Chorismat in wäßriger Lösung; (B) Konfigurations-Strukturformeln der Substanzen gemäß den For- mein II, III und IV.
Beispiele
1. Screening nach Hemmstoffen der Biosynthese der Chorisminsäure, der para-Aminobenzoesäure (oABA) und der aromatischen Aminosäuren
Hemmstoffe der Chorisminsäurebiosynthese und der Biosynthesewege, die sich von der Chorisminsäure ableiten, werden sich mit einem sogenannten Kreuztest ermittelt, der auf einem modifizierten Agardiffusi- onstest beruht. Als Testorganismus wird Bacillus subtilis verwendet, der in einem chemisch-definierten Agarmedium eingegossen wird. Der eine Filterpapierstreifen des Kreuztestansatzes wird mit einem Zellextrakt ge- tränkt, der zweite Filterpapierstreifen mit folgender Variation: (a) Tyr + Phe + Trp + pABA, (b) Tyr + Phe, (c) Trp und (d) pABA. Nach dem Muster der Aufhebung der einzelnen Varianten kann entschieden werden, ob es sich um einen Hemmstoff der frühen Aromatenbiosynthese handelt (vor der Chorisminsäure) oder um einen Hemmstoff, der nach der Cho- risminsäure eingreift, und ob es sich hierbei um einen Hemmstoff der Tyrosin (Tyr)/Phenylalanin (Phe)-Biosynthese, der Tryptophan (Trp)- Biosynthese oder der para-Aminobenzoesäure (pABA)-Biosynthese handelt. Nur der Extrakt, dessen Hemmwirkung durch (a) und (d) anta- gonisiert wird, enthält einen Antagonisten der pABA, der die pABA- Biosynthese nach der Chorisminsäure hemmt. Mit diesem Test wurde der Stamm AB 18-032 gefunden, der die wirksamen Substanzen produ- ziert.
2. Produktion der polyzyklischen Makrolactone durch den Bakterienstamm AB 18-032
Die polyzyklischen Makrolactone werden vom Stamm AB 18-032 während der logarithmischen bis hin zur stationären Wachstumsphase produziert. Eine typische Fermentation verläuft folgendermaßen: Ein 10- Liter-Blattrührfermenter wird mit 9,5 Liter Komplexmedium (1 % Gluco- se, 1 % Stärke, 1 % Glycerin, 0,25 % Com Steep Powder, 0,5 % Pep- ton, 0,2 % Hefeextrakt, 0,1 % NaCI, 0,3 % CaC03; pH 7,3) gefüllt. Der Fermenter wird mit 5 Volumen-% einer 48-stündigen Schüttelkultur (500 ml Erlenmeyerkolben mit einem seitlichen Einstich, 100 ml Komplexmedium, 120 Upm, 27 °C) angeimpft. Der Fermenter wird bei 27°C, einer Drehzahl von 200 Upm und einer Belüftung von 0,5 vvm 4-5 Tage inku- biert. Die polyzyklischen Makrolactone sind mit HPLC-Diodenarrayde- tektion (HPLC-DAD) und biologischer Testierung im Kulturüberstand nachweisbar.
3. Isolierung der polyzyklischen Makrolactone
Die Fermenterbrühe wird unter Zusatz von 2 % Filterhilfsmittel (Hyphlo- Supercel) in Biomasse und Kulturfiltrat getrennt. Die Biomasse wird verworfen. Das Kulturfiltrat wird auf pH 4 eingestellt (HCI) und 2 x mit je V* Volumen Ethylacetat extrahiert. Die organischen Phasen werden verei- nigt und am Vakuumrotationsverdampfer bis zum öligen Rückstand konzentriert. Der ölige Rückstand wird 2 x mit einem kleinen Volumen Petro- leumbenzin extrahiert, um Fette zu entfernen. Der Petroleumbenzin- Extrakt wird verworfen.
Der ölige Rückstand wird in wenig Methanol gelöst und an einer Sepha- dex LH-20-Säule (100 x 5 cm) in Methanol in die einzelnen Substanz- Rohfraktionen aufgetrennt. Die Isolierung von reinen polyzyklischen Makrolactonen erfolgt durch Niederdruck-Chromatographie an einer LiChroprep Diol-Säule (40 x 2,6 cm) und einem linearen Gradienten von Dichlormethan zu Dichlormethan/Methanol (90+10) in 3 Stunden bei ei- nem Fluß von 2 ml/min, und einer nachfolgenden Ausschluß-Chromatographie an einer Fractogel TSK HW 40-Säule (90 x 2,5 cm) in Methanol bei einem Fluß von 0,5 ml/min.
4. HPLC-DAD-Analvtik der polyzyklischen Makrolactone
Chromatographische Ausstattung: HP 1090 Liquid Chromatograph mit integriertem Diodenarray-Detektionssystem und HP Kayak XM 600- ChemStation mit HPLC-Software A.08.03 (Agilent Technologies). Die Mehrkanaldetektion erfolgte bei 210, 230, 260, 280, 310, 360, 435 und 500 nm, die UV-Vis-Spektren wurden bei 200-600 nm registriert.
Trennparameter: HPLC-Säule gefüllt mit Nucleosil-100 C-18 (125 x 4,6 mm, Vorsäule 20 x 4,6 mm, Korngröße 5 μm; Macherey & Nagel). Lineare Gradientenelution von 100 % wäßriger Phosphorsäure (0,1 % v/v) zu 100 % Acetonitril in 15 min bei einem Fluß von 2 ml/min. Das Injektionsvolumen beträgt 10 μl. Die Retentionszeiten betragen für Abyssomicin B 6,7 min, Abyssomicin C 7,35 min, Abyssomicin D 9,0 min. Neben den Retentionszeiten werden die Abyssomicine anhand ihrer charakteristischen UV-Spektren identifiziert (Fig. 5). 5. Strukturaufklärung
LC-MS-Experimente: Agilent 1100 HPLC System (Agilent Technologies) gekoppelt an Bruker Esquire 3000+-Massenspektrometer (Bruker-Dal- tonics).
ESI-FTICR-MS: Die Massenspektren wurden auf einem APEX II FTICR Massenspektrometer (4.7 T; Bruker-Daltonics) aufgenommen. Zur internen Kalibrierung wurden PEG 400 verwendet.
1H/13C-NMR Experimente (1D: 1H, 2D: COSY, TOCSY, HSQC, HMBC) wurden auf einem AMX 600 NMR-Spektrometer (Bruker) mit 5 mm Tri- pelresonanz-Probenkopf mit Z-Gradienten durchgeführt.
6. Phvsiko-Chemische Eigenschaften
Die isolierten Substanzen zeigten folgende physiko-chemischen Eigenschaften:
Abyssomicin B:
farblose Substanz, löslich in Methanol und DMSO Summenformel: C-ι9H23N07 [377]
ESI-FTICR-MS: [M+Na]+ = 400.13654 Da ([M+Na]+ theor. = 400.13667 Δm = 0.34 ppm; Cι9H23N07Na)
1H-NMR- / 13C-NMR-Daten: siehe Tabelle 3 Tabelle 3: 1H- und 13C-NMR chemische Verschiebungen von Abyssomicin B ([D6]DMSO, 305 K); Kopplungskonstanten nicht bestimmt
N H δ [ppm] 3 C δ [ppm]
1 - 169.4
2 - 99.7
3 - 212.6
4 3.18 41.9
5 2.59 (a) 34.8 2.59 (b)
6 2.14 43.7
7 - 197.1
8 1.33 (a) 38.5 1.77 (b)
9 - n.b.
10 2.59 45.8 11 4.24 68.9 5.82 (OH) - 12 4.55 84.5 13 2.55 24.2 14 2.54 (a) 36.9 1.04 (b) 15 - 78.0 16 - 184.5 17 0.99 18.7 18 0.97 16.6 19 0.96 20.1 n.b. = nicht bestimmt
Abyssomicin C
farblose Substanz, löslich in Methanol und DMSO Summenformel: C-ι9H26 [346] ESI-FTICR-MS: [M+Na]+ = 369.13079 Da ([M+Na]+ ther. = 369.13085 Δm
= 0.20 ppm; C19H2206Na) 1H-NMR- / 13C-NMR-Daten: siehe Tabelle 4 Tabelle 4: 1H- und 13C-NMR chemische Verschiebungen von Abyssomicin C ([D4]MeOD, 298 K)
No. 1H δ [ppm] Kopplungskonstanten [Hz] 13C δ [ppm]
1 - - 173.8
2 - - 106.7
3 - - 202.8
4 3.51 m 3J4ι18 = 6.7; 3J4,5a = 11.2; 3J4,5b = 2.7 45.3
5 2.01 (a) m 2J5a,5b = 14.1 ; 3J5a,4 = 1 1.2; 3J5a,6 = 10.1 42.3 1.44 (b) m 2J5b,5a = 14.1 ; 3J5b,4 = 2.7; 3J5b>6 = 1.6
6 2.94 m 3J6,5a = 10.1 ; 3J4ι5b = 1.6; 3J6,19 = 7.2 50.3
7 - - 208.4
8 6.55 m 3J8,9 = 13.5 137.1
9 5.98 dd 3J9ι8 = 13.5; 3J9,10 = 9.5 137.3
10 2.99 dd 3Jιo,9 = 9-5; 3J10,ιι = 6.1 51.5
11 5.06 dd 3J11 ,10 = 6.1 ; 3J11,12 = 3.3 76.0 4.59 (OH)
12 4.57 d 3J12ι11 = 3.3; 3J12,13 = n.b. 88.9
13 2.73 n.b. 28.1
14 1.26 (a) dd 2J14a,14b = 12.4; 3J14a,13 = 23.9 39.6 2,69 (b) dd 2J14bι14a = 12.4; 3J14b,13 = 2.4
15 - - 81.1
16 - - 189.8
17 1.17 d 3J17,13 = 17.0 21.5
18 1.09 d 3J18ι4 = 6.7 19.3
19 1.11 d 3J19|6 = 7.2 23.0 n.b. = nicht bestimmt
Abyssomicin D:
farblose Substanz, löslich in Methanol und DMSO Summenformel Cι9H24θ6 [348] ESI-FTICR-MS: [M+Na]+ = 371.14663 Da ([M+Na]+ theor. = 371.14650 Δm = 0.32 ppm; Cι9H2406Na) 1H-NMR- / 13C-NMR-Daten: siehe Tabelle 5 Tabelle 5: 1 H- und 13C-NMR chemische Verschiebungen von Abyssomicin D ([D6]DMSO, 305 K)
No. 1H δ [ppm] Kopplungskonstanten [Hz] 13C δ [ppm]
1 - - 172.9
2 - - 98.0
3 - - 178.9 11.04 (OH) -
4 2.42 m n.b. 39.5
5 1.59 (a) dd 2J5a,5b = 15.0; J5a, = n.b.; 3J5a,6 = n.b. 32.5 2.70 (b) dd 2J5bt5a = 15.0; 3J5b, = n.b.; 3J5b,6 = n.b.
6 2.14 m n.b. 47.3
7 - - 210.3
8 3.57 t 3J8,9a = 8.03; 3J8,9b = 9.8 57.8
9 1.54 (a) dd 3J9a,9b = 12.0; 3J9a,8 = 8.03; 3J9b,10 = n.d 26.1 2.00 (b) m 3J9bι9a = 12.0; 3J9b,10 = 3.5; 3J9b,8 = 9.8
10 2.26 d 3J10,9b = 3.5; 3J10,n = n.b.; 3J10,9a = n.b. 47.5
11 4.09 d 3J11,12 = 4.0; 3J11,10 = n.d 72.1 5.53 (OH) -
12 3.54 d 3J12,n = 4.0; 3J12ι13 = n.b. 76.0
13 2.46 m n.b. 23.7
14 2.29 (a) dd n.b. 31.8 0.91 (b) dd n.b.
15 - - 86.9
16 - - 84.5
17 0.93 d 3J17,13 = 6.8 18.0
18 1.27 d 3J184 = 7.4 18.7
19 1.01 d 39,6 = 7.1 18.3 n.b. = nicht bestimmt
7. Antibiotische Aktivität im Agardiffusionstest und Wirkspektrum
Abyssomicin C zeigt im Agardiffusionstest eine antibiotische Wirkung, die sich vor allem gegen die getesteten Gram-positiven Bakterien richtet.
Die getesteten Gram-negativen Bakterien und Pilze waren gegenüber den Abyssomicinen unempfindlich. Das antibiotische Wirkspektrum ist in Tabelle 6 dargestellt.
Tabelle 6: Antibiotische Aktivität von Abyssomicin C im Agardiffusi- onstest (10 μl Antibiotikumlösung pro Filterrondelle; Hemmzonendurchmesser in mm)
Figure imgf000025_0001
KM, Komplexmedium; MM, chemisch-definiertes Medium
8. Minimale Hemmkonzentration
Die minimale Hemmkonzentration (MIC) von Abyssomicin C wurde in einem Verdünnungsreihentest ermittelt. Die Ergebnisse sind in Tabelle 7 dargestellt. Die Testkeime sind in chemisch-definierten Medium erwartungsgemäß wesentlich empfindlicher gegenüber Abyssomicin C. Tabelle 7: Minimale Hemmkonzentration (MIC; μg/ml) von Abyssomicin C im Verdünnungsreihentest (2 ml-Reagenzglasmaßstab, Schüttelmaschine 120 Upm)
Figure imgf000026_0001
Die Ermittlung der MIC gegenüber klinisch pathogenen Staphylococcus at/ret/s-Stämmen wurden in einem Mikrotiterplattenassay durchgeführt. Es wurde die Wirksamkeit von Abyssomicin C gegenüber dem multire- sistenten, einschließlich Methicillin-resistenten Stamm S. aureus N315 sowie gegenüber dem multiresistenten, einschließlich Vancomycin- resistenten Stamm S. aureus Mu50 ermittelt. Die Ergebnisse sind in Fig. 6 dargestellt.

Claims

Patentansprüche
1. Substanz, dadurch gekennzeichnet, daß sie ein polyzyklisches Makrolacton ist und von einem Vertreter der Bakteriengattung Ver- rucosispora herstellbar ist.
2. Substanz nach Anspruch 1 , dadurch gekennzeichnet, daß sie pharmakologische Wirkung, insbesondere antibiotische Wirkung, aufweist.
3. Substanz nach Anspruch 1 oder Anspruch 2, dadurch gekennzeichnet, daß sie antibiotische Wirkung gegenüber Gram-positiven Bakterien aufweist.
4. Substanz nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Vertreter der Bakteriengattung Verrucosispora der Bakterienstamm AB 18-032 (DSM 15899) ist.
5. Substanz, insbesondere nach einem der Ansprüche 1 bis 4, durch die allgemeine Formel I mit allen möglichen relativen Konfiguratio¬
Figure imgf000027_0001
oder
Figure imgf000028_0001
c=o
C=N- oder CH oder CH2 ist.
6. Substanz nach Anspruch 5, durch die Formel II mit allen möglichen relativen Konfigurationen
Figure imgf000028_0002
gekennzeichnet.
Substanz nach Anspruch 5, durch die Formel III mit allen möglichen relativen Konfigurationen
Figure imgf000028_0003
gekennzeichnet.
. Substanz nach Anspruch 5, durch die Formel IV mit allen möglichen relativen Konfigurationen
Figure imgf000029_0001
gekennzeichnet.
9. Substanz, insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie die Synthese der para- Aminobenzoesäure hemmt, insbesondere die Synthese der para- Aminobenzoesäure aus Chorisminsäure.
10. Substanz, insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie ein polyzyklisches Makro- lacton ist und als Teilstrukturen mindestens ein Oxabicyclo- System und mindestens ein Michael-System als Doppelbindungssystem aufweist.
11. Substanz, dadurch gekennzeichnet, daß sie ein Derivat eines polyzyklischen Makrolactons gemäß einem der vorhergehenden An- sprüche ist.
12. Pharmazeutische Zusammensetzung, dadurch gekennzeichnet, daß sie mindestens eine Substanz gemäß einem der vorhergehenden Ansprüche und mindestens einen pharmazeutisch akzeptablen Träger umfaßt.
13. Pharmazeutische Zusammensetzung, dadurch gekennzeichnet, daß sie mindestens eine Substanz, die die Synthese der para- Aminobenzoesäure aus Chorisminsäure hemmt, und mindestens einen pharmazeutisch akzeptablen Träger umfaßt.
14. Verwendung einer Substanz gemäß einem der Ansprüche 1 bis 11 zur Behandlung von Infektionskrankheiten, die durch Bakterien und/oder Protozoen zumindest mitbeeinflußt sind.
15. Verwendung einer Substanz gemäß einem der Ansprüche 1 bis 11 zur Herstellung eines Medikaments zur Behandlung von Infektionskrankheiten, die durch Bakterien und/oder Protozoen zumindest mitbeeinflußt sind.
16. Verwendung einer Substanz zur Behandlung von Infektionskrankheiten, die durch Bakterien und/oder Protozoen zumindest mitbeeinflußt sind, dadurch gekennzeichnet, daß die Substanz die Synthese der para-Aminobenzoesäure aus Chorisminsäure hemmt.
17. Verwendung einer Substanz zur Herstellung eines Medikaments zur Behandlung von Infektionskrankheiten, die durch Bakterien und/oder Protozoen zumindest mitbeeinflußt sind, dadurch gekennzeichnet, daß die Substanz die Synthese der para- Aminobenzoesäure aus Chorisminsäure hemmt.
18. Verwendung nach Anspruch 16 oder Anspruch 17, dadurch gekennzeichnet, daß mindestens eine Substanz gemäß einem der Ansprüche 1 bis 11 eingesetzt wird.
19. Verwendung nach einem der Ansprüche 14 bis 18, dadurch gekennzeichnet, daß die Bakterien zumindest teilweise Grampositive Bakterien sind.
20. Verwendung nach einem der Ansprüche 14 bis 19, dadurch gekennzeichnet, daß die Bakterien und/oder Protozoen gegenüber herkömmlichen Antibiotika resistent, insbesondere multiresistent, sind.
21. Verfahren zur Bekämpfung von Mikroorganismen, insbesondere von Bakterien und/oder Protozoen, dadurch gekennzeichnet, daß mindestens eine Substanz gemäß einem der Ansprüche 1 bis 11 verwendet wird.
22. Mikroorganismus, dadurch gekennzeichnet, daß er mindestens eine Substanz gemäß einem der Ansprüche 1 bis 11 produzieren kann.
23. Mikroorganismus nach Anspruch 22, dadurch gekennzeichnet, daß er ein Bakterienstamm der Bakteriengattung Verrucosispora oder eine Mutante davon ist.
24. Mikroorganismus, insbesondere nach Anspruch 22 oder Anspruch 23, dadurch gekennzeichnet, daß er der Bakterienstamm AB 18- 032 (DSM 15899) der Bakteriengattung Verrucosispora oder eine Mutante davon ist.
25. Verfahren zur Herstellung mindestens einer Substanz gemäß einem der Ansprüche 1 bis 11 , umfassend die Verfahrensschritte: a) Kultivieren eines Mikroorganismus gemäß einem der Ansprüche 22 bis 24, b) Gewinnung eines Kulturüberstandes aus der Kultivierung, c) gegebenenfalls Herstellen eines Kulturfiltrates und d) gegebenenfalls Isolieren einer oder mehrerer Substanzen aus dem Kulturüberstand und/oder dem Kulturfiltrat.
26. Verfahren zur Herstellung mindestens einer Substanz gemäß einem der Ansprüche 1 bis 11 , umfassend die Verfahrensschritte: a) Kultivieren eines Mikroorganismus gemäß einem der Ansprüche 22 bis 24, b) Isolieren einer oder mehrerer Substanzen aus dem Mikro- Organismus.
PCT/EP2004/010661 2003-10-01 2004-09-23 Polyzyklische makrolactone WO2005033114A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04765521A EP1740595A1 (de) 2003-10-01 2004-09-23 Polyzyklische makrolactone
US10/574,237 US20080132565A1 (en) 2003-10-01 2004-09-23 Polycyclic Macrolactones

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10347472 2003-10-01
DE10347472.2 2003-10-01
DE10353300.1 2003-11-11
DE10353300A DE10353300A1 (de) 2003-10-01 2003-11-11 Polyzyklische Makrolactone

Publications (1)

Publication Number Publication Date
WO2005033114A1 true WO2005033114A1 (de) 2005-04-14

Family

ID=34424330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/010661 WO2005033114A1 (de) 2003-10-01 2004-09-23 Polyzyklische makrolactone

Country Status (3)

Country Link
US (1) US20080132565A1 (de)
EP (1) EP1740595A1 (de)
WO (1) WO2005033114A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417919B (zh) * 2011-09-02 2017-05-24 山东鲁抗医药股份有限公司 一种发酵法生产高纯度替考拉宁的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255564A (en) * 1977-03-09 1981-03-10 Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai Novel macrolactone derivatives and process of producing them
EP0506561A1 (de) * 1991-03-28 1992-09-30 Aventis Pharma S.A. Verfahren zur enzymatischen Herstellung von Makrolakton

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255564A (en) * 1977-03-09 1981-03-10 Zaidan Hojin Biseibutsu Kagaku Kenkyu Kai Novel macrolactone derivatives and process of producing them
EP0506561A1 (de) * 1991-03-28 1992-09-30 Aventis Pharma S.A. Verfahren zur enzymatischen Herstellung von Makrolakton

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BISTER, B. ET AL.: "Abyssomicin C-A Polycyclic Antibiotic from a Marine Verrucosispora Strain as an Inhibitor of the p-Aminobenzoic Acid/Tetrahydrofolate Biosynthesis Pathway", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 43, April 2004 (2004-04-01), pages 2574 - 2576, XP002315813 *
RIEDLINGER, J. ET AL.: "Abyssomicins, Inhibitors of the para-Aminobenzoic Acid Pathway Produced by the Marine Verrucosispora Strain AB-18-032", THE JOURNAL OF ANTIBIOTICS, vol. 57, no. 4, April 2004 (2004-04-01), pages 271 - 279, XP009043286 *

Also Published As

Publication number Publication date
EP1740595A1 (de) 2007-01-10
US20080132565A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
EP0629636A1 (de) Lipopeptide aus Actinoplanes sp. mit pharmakologischer Wirkung, Verfahren zu ihrer Herstellung und Verwendung derselben
EP1791823B1 (de) Antibiotikum und verfahren zur herstellung
DE60006690T2 (de) Antibiotische caprazamycine und verfahren zu deren herstellung
DE60110908T2 (de) Antibiotische tripropeptine und verfahren ihrer herstellung
DE69927306T2 (de) Antibakterielle Verbindungen
DE2715255B2 (de) Anthracyclinglykoside MA 144-M1 und MA 144-M2 und deren Salze, Verfahren zu deren Herstellung und diese Verbindungen enthaltende pharmazeutische Zubereitungen
DE10021731B4 (de) Cyclipostine, Verfahren zu ihrer Herstellung und pharmazeutische Zubereitung derselben
EP1740595A1 (de) Polyzyklische makrolactone
DE69816621T2 (de) Macrolide mit antitumoraktivität
DE10353300A1 (de) Polyzyklische Makrolactone
DE69837111T2 (de) Antibiotikum tkr2999, verfahren zur herstellung desselben sowie mikrobe
EP1740566B1 (de) Hki10311129, neues antibiotikum, verfahren zu dessen herstellung und dessen verwendung
EP0891376B1 (de) Antifungische peptide aus scleroderma texense
EP1049707B1 (de) Ustilipide, verfahren zu deren herstellung sowie deren verwendung
EP0848064B1 (de) Neues Antibiotikum, Feglymycin, Verfahren zu seiner Herstellung und Verwendung
DE102008005097B4 (de) Antitumoraler Cyclodepsipeptide, deren Herstellung und Verwendung
EP0026485B1 (de) Herbicolin, Verfahren zu seiner Herstellung und es enthaltende Mittel
DE19948644A1 (de) Neue Peptaibole mit neuroleptischer Wirkung
AT390802B (de) Glykopeptidantibiotika
DE2944143C2 (de) Antibiotikum SF-2052, Verfahren zu dessen Herstellung und das Antibiotikum SF-2052 enthaltende antibakterielle Mittel
DE10065606A1 (de) Altamiramycin, Verfahren zu dessen Herstellung und dessen Verwendung
WO2012016266A2 (de) Tetrahydroanthracenon-derivat
DE3427651A1 (de) Clavam-verbindungen
DE10238697A1 (de) Neue Peptaibole mit neuroleptischer Wirkung
EP0497299A1 (de) Decarestrictine und verwandte Verbindungen, Verfahren zu ihrer Herstellung und ihre Verwendung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004765521

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004765521

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10574237

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10574237

Country of ref document: US