WO2005032696A1 - Verfahren zur entfernung von ammoniak und staub aus einem abgas, das bei der herstellung von düngemitteln anfällt - Google Patents

Verfahren zur entfernung von ammoniak und staub aus einem abgas, das bei der herstellung von düngemitteln anfällt Download PDF

Info

Publication number
WO2005032696A1
WO2005032696A1 PCT/EP2004/009886 EP2004009886W WO2005032696A1 WO 2005032696 A1 WO2005032696 A1 WO 2005032696A1 EP 2004009886 W EP2004009886 W EP 2004009886W WO 2005032696 A1 WO2005032696 A1 WO 2005032696A1
Authority
WO
WIPO (PCT)
Prior art keywords
scrubber
washer
washing area
aqueous solution
exhaust gas
Prior art date
Application number
PCT/EP2004/009886
Other languages
English (en)
French (fr)
Inventor
Paul Niehues
Harald Franzrahe
Original Assignee
Uhde Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde Gmbh filed Critical Uhde Gmbh
Priority to US10/574,091 priority Critical patent/US7682425B2/en
Priority to DE502004010324T priority patent/DE502004010324D1/de
Priority to AT04764837T priority patent/ATE447435T1/de
Priority to CA2540645A priority patent/CA2540645C/en
Priority to EP04764837A priority patent/EP1663455B1/de
Priority to JP2006529969A priority patent/JP4589927B2/ja
Publication of WO2005032696A1 publication Critical patent/WO2005032696A1/de
Priority to HK07101154.3A priority patent/HK1096327A1/xx

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/54Nitrogen compounds
    • B01D53/58Ammonia
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05CNITROGENOUS FERTILISERS
    • C05C3/00Fertilisers containing other salts of ammonia or ammonia itself, e.g. gas liquor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the invention relates to a method for removing ammonia and dust from an exhaust gas which is produced in the production of fertilizers, preferably urea, in which the exhaust gas is introduced into a first scrubber and a cooling gas into a second scrubber and into a scrubber make-up water and an aqueous solution is introduced into the other scrubber, both the exhaust gas and the cooling gas passing through at least one droplet separator before exiting the respective scrubber.
  • a generic method of the applicant is known for removing dust from exhaust gas emerging from the granulation and from the granulate cooling gas.
  • two washers are provided, each with at least one in the upper area
  • Droplet separators are equipped.
  • the exhaust gas from the granulation is introduced into the first scrubber, while the cooling gas is introduced into the second scrubber.
  • additional water preferably purified or unpurified process water, is introduced into the second scrubber below the droplet separator in countercurrent to the cooling gas.
  • the aqueous solution emerging from the second scrubber is then likewise introduced into the first scrubber in countercurrent to the exhaust gas to be cleaned.
  • the object of the invention is therefore to develop a generic method so that the exhaust gas pollution can be significantly reduced.
  • This object is achieved according to the invention in a method of the type mentioned at the outset by first introducing the make-up water into a fine washing area of the first scrubber delimited on the upper side by the droplet separator and on the underside through a liquid-impermeable separating base, and spraying it onto the at least one droplet separator and the aqueous solution which arises in the fine washing area Solution is then passed into the second washer.
  • the make-up water is thus initially introduced completely into the additional fine-washing area provided in the first scrubber, into which the drop-laden exhaust gas enters before it passes through the drop separator.
  • the additional water causes a strong dilution, so that the urea concentration of the drops is considerably reduced.
  • the droplet separator is also cleaned.
  • the strong thinning of the drops makes it possible to significantly increase the urea concentration of the aqueous solution in the main washing area of the scrubber, so that the energy required for the subsequent evaporation of the aqueous solution can be greatly reduced.
  • this procedure can be used to reduce the dust pollution in the exhaust gas from previously achievable values of approximately 50 mg / m 3 to 20 mg / m 3 .
  • the aqueous solution emerging from the second scrubber is conducted in a manner known per se into the first scrubber, and of course into the main washing area of the first scrubber provided below the partition, into which the exhaust gas also enters.
  • a bell bottom is preferably used to separate the fine washing area and the main washing area of the first washer.
  • other dividers can also be used that are impermeable to liquids but permeable to gases.
  • an acid is introduced into the fine washing area of the first scrubber.
  • sulfur or salt nitric acid can be used.
  • Such an acid treatment is known in principle, for example from EP 0 440 932 B1.
  • a 40-60%, preferably 55%, urea concentration is set in the main washing area of the first scrubber.
  • the energy expenditure for evaporation can thereby be significantly reduced without this very high urea concentration in the aqueous solution leading to problems in cleaning the exhaust gas, since, as mentioned above, the drops entering this area are greatly diluted in the fine washing area.
  • Fig. 1 shows a schematic diagram for performing the method
  • Fig. 2 shows a detail of Fig. 1 in a special embodiment.
  • An installation for carrying out the method assigns next a first washer 1 and a second washer 2.
  • a precleaning stage 3 is connected upstream of the first washer 1.
  • a droplet separator 4 (demister) is arranged in the upper area of the first washer 1, just like a droplet separator 5 in the second washer 2.
  • the first washer 1 is divided into two washing areas, with a liquid-impermeable, but underneath the droplet separator 4, forming a fine washing area 14 gas-permeable partition 12 (eg bubble cap) and an outlet 11 are arranged.
  • the main washing area 21 of the first washer 1 is located below the partition 12.
  • the above-described plant parts are preferably part of a plant for the production of fertilizers, preferably urea, and are connected to a granulator (not shown) and a cooler.
  • Exhaust gas laden with ammonia and dust is supplied from the granulator (not shown), initially into the pre-cleaning stage 3, which is indicated by an arrow 6.
  • the exhaust gas passes through the pre-cleaning stage 3 and is introduced into the main washing area 21 of the first scrubber 1.
  • loaded cooling gas is fed directly to the second washer 2, this is indicated by an arrow 7.
  • Make-up water preferably cleaned or unpurified process water, is fed directly to the fine washing area 14 of the first washer 1, the water supply line being indicated by arrows 8, 9.
  • the water supply line opens inside the scrubber 1 below the droplet separator 4 into spray heads 10 directed upwards in such a way that the additional water is sprayed against the droplet separator 4 and thereby cleans it.
  • the make-up water mixes with the droplets passing through the separating base 12 and leads to a strong thinning of the urea concentration, so that the droplets, for example, only have a urea concentration of 1 to 4%, even if the urea concentration in the main washing area 21 is 55 to 60% , The make-up water thereby accumulates and emerges as an aqueous solution through the outlet 11, to which a line 13 is connected, which opens into the second scrubber 2, whereby the aqueous solution is passed into the second scrubber 2.
  • the exhaust gas to be cleaned thus first enters the main washing area 21 of the first scrubber 1, in which sieve trays 22 or the like, after passing through the pre-cleaning stage 3. are arranged, and then passes through the separating floor 12 into the fine washing area 14, in which a star- ke thinning and reduction of the drops adhering to the exhaust gas takes place.
  • the exhaust gas subsequently passes through the droplet separator 4 and then exits the head of the first scrubber 1 in a cleaned manner (arrow 15).
  • the cooling gas to be cleaned enters the second scrubber 2 in the lower area (arrow 7), in which sieve trays 23 are also arranged, in order to emerge at the top of the second scrubber through the introduced aqueous solution and then cleaned by the droplet separators 5 (arrow 16).
  • the respective sump product in the two washers 1 and 2 is circulated in a conventional manner, which is indicated by appropriate circuits 17 and 18, respectively.
  • the aqueous solution is branched off from the circuit 18 and via a line 19 to the pre-cleaning stage 3 . fed. From the pre-cleaning stage 3, aqueous solution and exhaust gas thus enter the main washing area 21 of the first scrubber 1.
  • a urea concentration in the aqueous solution is about 60% in the main washing area 21 of the first washer 1, ie the aqueous solution emerging from the washer 1 (Line 24) then has a urea concentration of 60%, so that this aqueous solution can be evaporated for further use with much lower energy expenditure compared to the prior art.
  • a urea concentration in the main washing area 21 it is possible due to the process with the introduction of the additional water into the fine washing area 14 to achieve urea concentrations in the order of 1 to 4% in the fine washing area 14.
  • the urea concentration in the second washer 2 is about 10%.
  • an acid is introduced into the fine-washing area 14 to reduce the ammonia load on the exhaust gas, which is indicated by an arrow 20.
  • part of the aqueous solution emerging from the outlet 11 of the first scrubber 1 is recirculated from the line 13 via a pump 25 to introduce the acid into the fine washing area 14.
  • sulfuric or nitric acid can be used as the acid.
  • Such an acid treatment is basically known, for example, from EP 0 440 932 B1.
  • Acid (stream 20) is preferably added in a corrosion-resistant, self-priming nozzle after the pump (for example jet nozzle), the flow of which is regulated.
  • the pressure line of the All or part of the pump can be used as a jet stream.
  • the method is also suitable alternatively for a scrubber in which a plurality of droplet separators are arranged in an upright position.
  • the make-up water is then first passed in a corresponding manner into a washing area for the scrubber for the waste gas coming from the granulation.

Abstract

Ein Verfahren zur Entfernung von Ammoniak und Staub aus einem Abgas, das bei der Herstellung von Düngemitteln, vorzugsweise Harnstoff, anfällt, bei welchem das Abgas in einen ersten Wäscher (1) und ein Kühlgas (7) in einen zweiten Wäscher (2) eingeleitet werden und in einen Wäscher Zusatzwasser (8, 9) und in den anderen Wäscher eine wässrige Lösung eingeleitet wird, wobei sowohl das Abgas als auch das Kühlgas vor dem Austritt aus dem jeweiligen Wäscher durch wenigstens einen Tropfenabscheider (4, 5) hindurchtritt, soll so weiter entwickelt werden, dass die Abgasbelastung deutlich reduziert werden kann. Dies wird dadurch erreicht, dass das Zusatzwasser zunächst in einen oberseitig durch den Tropfenabscheider und unterseitig durch einen flüssigkeitsundurchlässigen Trennboden (12) begrenzten Feinwaschbereich (14) des ersten Wäschers eingeleitet und auf den wenigstens einen Tropfenabscheider gesprüht wird und die im Feinwaschbereich entstehende wässrige Lösung anschließend in den zweiten Wäscher geleitet wird.

Description

"Verfahren zur Entfernung von Ammoniak und Staub aus einem Abgas, das bei der Herstellung von Düngemitteln anfällt"
Die Erfindung betrifft ein Verfahren zur Entfernung von Ammoniak und Staub aus einem Abgas, das bei der Herstellung von Düngemitteln, vorzugsweise Harnstoff, anfällt, bei welchem das Abgas in einen ersten Wäscher und ein Kühlgas in einen zweiten Wäscher eingeleitet werden und in einen Wäscher Zusatzwasser und in den anderen Wäscher eine wässrige Lösung eingeleitet wird, wobei sowohl das Abgas als auch das Kühlgas vor dem Austritt aus dem jeweiligen Wäscher durch wenigstens einen Tropfenabscheider hindurchtritt .
Bei der Herstellung von ammoniumhaltigen Düngemitteln bzw. bei Düngemitteln, die Ammoniak abspalten können, z.B. Harnstoff enthaltende Düngemittel, fallen in verschiedenen Verfahrensstufen ammoniak- und staubhaltige Abluftströme an, die vor der Abgabe an die Umwelt oder die Rückführung in den Prozess gereinigt werden müssen. Solche Abgase entstehen insbesondere bei der Granulation und der Kühlung.
Zur Entfernung von Staub aus aus der Granulation austretendem Abgas und aus dem Granulatkühlgas ist ein gattungsgemäßes Verfahren der Anmelderin bekannt. Zur Durchführung dieses Verfahrens sind zwei Wäscher vorgesehen, die jeweils im oberen Bereich mit wenigstens einem Tropfenabscheider (Demister) ausgerüstet sind. Dabei wird in den ersten Wäscher das aus der Granulation stammende Abgas eingeleitet, während in den zweiten Wäscher das Kühlgas eingeleitet wird. Zur Reinigung wird Zusatzwasser, vorzugsweise gereinigtes oder ungereinigtes Prozess- wasser, in den zweiten Wäscher unterhalb des Tropfenabscheiders im Gegenstrom zum Kühlgas eingeleitet. Die aus dem zweiten Wäscher austretende wässrige Lösung wird anschließend ebenfalls im Gegenstrom zum zu reinigenden Abgas in den ersten Wäscher eingeleitet.
In der Praxis hat sich herausgestellt, dass dieses bekannte Verfahren noch verbesserungswürdig ist. Da die aus dem ersten Wäscher austretende wässrige Lösung weiter verarbeitet bzw. weiter verwandt werden muss, besteht das Bestreben, die Harnstoffkonzentration in der wässrigen Lösung so hoch wie möglich einzustellen, um den Energieaufwand für die Eindampfung der austretenden wässrigen Lösung möglichst gering zu halten. Bei dem bisherigen Verfahren sind jedoch dieser Maximalkonzentration Grenzen gesetzt. Der bisherige Maximalwert der Harnstoffkonzen- tration in der wässrigen Lösung im ersten Wäscher liegt bei etwa 30 bis 45 %, höhere Konzentrationen sind nicht möglich, da trotz des Tropfenabscheiders sich nicht vollständig vermeiden läßt, dass entsprechend mit Harnstoff beladene Tropfen im austretenden Abgas verbleiben und in diesem eine entsprechend hohe Harnstoffkonzentration verursachen.
Aufgabe der Erfindung ist es deshalb, ein gattungsgemäßes Verfahren so weiter zu entwickeln, dass die Abgasbelastung deutlich reduziert werden kann.
Diese Aufgabe wird bei einem Verfahren der eingangs bezeichneten Art erfindungsgemäß dadurch gelöst, dass das Zusatzwasser zunächst in einen oberseitig durch den Tropfenabscheider und unterseitig durch einen flüssigkeitsundurchlässigen Trennboden begrenzten Feinwaschbereich des ersten Wäschers eingeleitet und auf den wenigstens einen Tropfenabscheider gesprüht wird und die im Feinwaschbereich entstehende wässrige Lösung anschließend in den zweiten Wäscher geleitet wird.
Anders als beim bekannten Verfahren wird somit das Zusatzwasser zunächst vollständig in den in dem ersten Wäscher vorgesehenen zusätzlichen Feinwaschbereich eingeleitet, in welchen das tropfenbeladene Abgas vor dem Durchtritt durch den Tropfenabscheider eintritt. Im Feinwaschbereich erfolgt dabei durch das Zusatzwasser eine starke Verdünnung, so dass die Harnstoffkonzentration der Tropfen erheblich herabgesetzt wird. Gleichzeitig folgt auch zusätzlich eine Abreinigung des Tropfenabscheiders. Durch die starke Verdünnung der Tropfen ist es möglich, die Harnsto fkonzentration der wässrigen Lösung im eigentlichen Hauptwaschbereich des Wäschers deutlich zu erhöhen, so dass der Energieaufwand für die nachfolgende Eindampfung der wässrigen Lösung stark verringert werden kann. Außerdem kann durch diese Verfahrensführung erreicht werden, dass die Staubbelastung im Abgas von bisher erreichbaren Werten von etwa 50 mg/m3 auf 20 mg/m3 reduziert werden kann.
Die aus dem zweiten Wäscher austretende wässrige Lösung wird in an sich bekannter Weise in den ersten Wäscher geleitet, und zwar selbstverständlich in den unterhalb des Trennbodens vorgesehenen Hauptwaschbereich des ersten Wäschers, in den auch das Abgas eintritt.
Zur Trennung des Feinwaschbereiches und des Hauptwaschbereiches des ersten Wäschers wird bevorzugt ein Glockenboden verwendet. Grundsätzlich sind auch andere Trennböden einsetzbar, die flüssigkeitsundurchlässig, aber gasdurchlässig sind.
Um die Ammoniakkonzentration im Abgas zu reduzieren, ist in weiterer vorteilhafter Ausgestaltung vorgesehen, dass in den Feinwaschbereich des ersten Wäschers eine Säure eingeleitet wird. Beispielsweise kann Schwefel- oder Sal- petersäure verwendet werden. Eine derartige Säurebehandlung ist grundsätzlich bekannt, beispielsweise aus EP 0 440 932 Bl.
Um die Weiterverarbeitung der aus dem ersten Wäscher austretenden wässrigen Lösung energetisch zu optimieren, ist bevorzugt vorgesehen, dass im Hauptwaschbereich des ersten Wäschers eine 40 - 60 %-ige, vorzugsweise 55 %-ige Harnstoffkonzentration eingestellt wird. Der Energieaufwand für die Eindampfung kann dadurch deutlich reduziert werden, ohne dass diese sehr hohe Harnstoffkonzentration in der wässrigen Lösung zu Problemen bei der Reinigung des Abgases führt, da, wie vorerwähnt, im Feinwaschbereich eine starke Verdünnung der in diesen Bereich eintretenden Tropfen erfolgt .
Die Erfindung ist nachstehend anhand der Zeichnung beispielhaft näher erläutert . Diese zeigt in
Fig. 1 ein Prinzipschema zur Durchführung des Verfahrens und in
Fig. 2 ein Detail der Fig. 1 in einer speziellen Ausgestaltung.
Eine Anlage zur Durchführung des Verfahrens weist zu- nächst einen ersten Wäscher 1 und einen zweiten Wäscher 2 auf. Dem ersten Wäscher 1 ist eine Vorreinigungsstufe 3 vorgeschaltet. Im oberen Bereich des ersten Wäschers 1 ist ein Tropfenabscheider 4 (Demister) angeordnet, genauso wie im zweiten Wäscher 2 ein Tropfenabscheider 5. Der erste Wäscher 1 ist in zwei Waschbereiche unterteilt, wobei unterhalb des Tropfenabscheiders 4 unter Ausbildung eines Feinwaschbereiches 14 ein flüssigkeitsundurchlässiger, aber gasdurchlässiger Trennboden 12 (z.B. Glockenboden) sowie ein Ablauf 11 angeordnet sind. Unterhalb des Trennbodens 12 befindet sich der Hauptwaschbereich 21 des ersten Wäschers 1.
Die vorbeschriebenen Anlagenteile sind bevorzugt Bestandteil einer Anlage zur Herstellung von Düngemitteln, vorzugsweise Harnstoff, und stehen mit einem nicht dargestellten Granulator und einem Kühler in Verbindung. Aus dem nicht dargestellten Granulator wird mit Ammoniak und Staub beladenes Abgas zugeführt, und zwar zunächst in die Vorreinigungsstufe 3 , was durch einen Pfeil 6 angedeutet ist. Das Abgas tritt durch die Vorreinigungsstufe 3 hindurch und wird in den Hauptwaschbereich 21 des ersten Wäschers 1 eingeleitet. Ebenfalls beladenes Kühlgas wird direkt dem zweiten Wäscher 2 zugeführt, dies ist durch einen Pfeil 7 angedeutet. Zusatzwasser, vorzugsweise gereinigtes oder ungereinigtes Prozesswasser, wird unmittelbar dem Feinwaschbereich 14 des ersten Wäschers 1 zugeführt, wobei die Wasserzuleitung durch Pfeile 8, 9 angedeutet ist. Die Wasserzuleitung mündet innerhalb des Wäschers 1 unterhalb des Tropfenabscheiders 4 in nach oben gerichtete Sprühköpfe 10, derart, dass das Zusatzwasser gegen den Tropfenabscheider 4 gesprüht wird und diesen dadurch abreinigt . Das Zusatzwasser vermischt sich mit den durch den Trennboden 12 hindurchtretenden Tropfen und führt zu einer starken Harnstoffkonzentrationsverdünnung der Tropfen, so dass die Tropfen z.B. nur noch eine Harnstoffkonzentration von 1 bis 4 % aufweisen, selbst wenn die Harnstoffkonzentration im Hauptwaschbereich 21 bei 55 bis 60 % liegt. Das Zusatzwasser reichert sich dadurch an und tritt als wässrige Lösung durch den Ablauf 11 aus, an den eine Leitung 13 angeschlossen ist, welche in den zweiten Wäscher 2 mündet, wodurch die wässrige Lösung in den zweiten Wäscher 2 geleitet wird.
Das zu reinigende Abgas tritt somit nach dem Durchtritt durch die Vorreinigunsstufe 3 zunächst in den Hauptwaschbereich 21 des ersten Wäschers 1 ein, in welchem Siebböden 22 oder dgl . angeordnet sind, und gelangt dann durch den Trennboden 12 hindurch in den Feinwaschbereich 14, in dem durch die Vermischung mit dem Zusatzwasser eine star- ke Verdünnung und Reduzierung der am Abgas anhaftenden Tropfen stattfindet. Nachfolgend tritt das Abgas durch den Tropfenabscheider 4 hindurch und tritt dann am Kopf des ersten Wäschers 1 gereinigt aus (Pfeil 15) .
Das zu reinigende Kühlgas tritt im unteren Bereich (Pfeil 7) in den zweiten Wäscher 2 ein, in dem ebenfalls Siebböden 23 angeordnet sind, um im Gegenstrom durch die eingeleitete wässrige Lösung und anschließend durch die Tropfenabscheider 5 gereinigt am Kopf des zweiten Wäschers auszutreten (Pfeil 16) .
Das jeweilige Sumpfprodukt in den beiden Wäschern 1 und 2 wird in üblicher Weise umgewälzt, was durch entsprechende Kreisläufe 17 bzw. 18 angedeutet ist. Dabei wird aus dem Kreislauf 18 die wässrige Lösung abgezweigt und über eine Leitung 19 der Vorreinigungsstufe 3. zugeführt. Aus der Vorreinigungsstufe 3 tritt somit wässrige Lösung und Abgas in den Hauptwaschbereich 21 des ersten Wäschers 1 ein.
Durch den erheblichen Verdünnungs- bzw. Reinigungseffekt im Feinwaschbereich 14 ist es möglich, im Hauptwaschbereich 21 des ersten Wäschers 1 eine Harnstoffkonzentration in der wässrigen Lösung von etwa 60 % einzustellen, d.h. die aus dem Wäscher 1 austretende wässrige Lösung (Leitung 24) weist dann eine Harnstoffkonzentration von 60 % auf, so dass diese wässrige Lösung mit gegenüber dem Stand der Technik wesentlich geringerem energetischen Aufwand zwecks Weiternutzung eingedampft werden kann. Trotz dieser hohen Harnstoffkonzentration im Hauptwaschbereich 21 ist es aufgrund der Verfahrensführung mit der Einleitung des Zusatzwassers in den Feinwaschbereich 14 möglich, im Feinwaschbereich 14 selbst Harnstoffkonzentrationen in einer Größenordnung von 1 bis 4 % zu erreichen. Die Harnstoffkonzentration im zweiten Wäscher 2 liegt bei etwa 10 %.
Wie Fig. 2 zeigt, ist bevorzugt zusätzlich vorgesehen, dass in den Feinwaschbereich 14 zur Verringerung der Ammoniakbelastung des Abgases eine Säure eingeleitet wird, was durch einen Pfeil 20 angedeutet ist. Dazu wird ein Teil der aus dem Ablauf 11 des ersten Wäschers 1 austretenden wässrigen Lösung aus der Leitung 13 im Kreislauf über eine Pumpe 25 zur Einleitung der Säure in den Feinwaschbereich 14 zurückgeführt. Als Säure kann beispielsweise Schwefel- oder Salpetersäure eingesetzt werden. Eine solche Säurebehandlung ist grundsätzlich z.B. aus EP 0 440 932 Bl bekannt. Die Zugabe von Säure (Strom 20) erfolgt bevorzugt in einer korrosionsbeständigen, selbstansaugenden Düse nach der Pumpe (z.B. Strahldüse), deren Zustrom geregelt wird. Dabei kann die Druckleitung der Pumpe ganz oder teilweise als Treibstrahlstrom angesetzt werden.
Das Verfahren eignet sich grundsätzlich auch alternativ für einen Wäscher, in dem mehrere Tropfenabscheider stehend angeordnet sind. Das Zusatzwasser wird dann in entsprechender Weise zunächst in einen Feinwaschbereich des Wäschers für das aus der Granulation kommende Abgas geleitet.

Claims

Patentansprüche :
1. Verfahren zur Entfernung von Ammoniak und Staub aus einem Abgas, das bei der Herstellung von Düngemitteln, vorzugsweise Harnstoff, anfällt, bei welchem das Abgas in einen ersten Wäscher und ein Kühlgas in einen zweiten Wäscher eingeleitet werden und in einen Wäscher Zusatzwasser und in den anderen Wäscher eine wässrige Lösung eingeleitet wird, wobei sowohl das Abgas als auch das Kühlgas vor dem Austritt aus dem jeweiligen Wäscher durch wenigstens einen Tropfenabscheider hindurchtritt, dadurch gekennzeichnet, dass das Zusatzwasser zunächst in einen oberseitig durch den Tropfenabscheider und unterseitig durch einen flüssigkeitsundurchlässigen Trennboden begrenzten Feinwaschbereich des ersten Wäschers eingeleitet und auf den wenigstens einen Tropfenabscheider gesprüht wird und die im Feinwaschbereich entstehende wässrige Lösung anschließend in den zweiten Wäscher geleitet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die aus dem zweiten Wäscher austretende wässrige Lösung in den unterhalb des Trennbodens vorgesehenen Haupt- waschbereich des ersten Wäschers eingeleitet wird, in den auch das Abgas eintritt.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, dass als Trennboden ein Glockenboden verwendet wird.
4. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass in den Feinwaschbereich des ersten Wäschers eine Säure eingeleitet wird.
5. Verfahren nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass im Hauptwaschbereich des ersten Wäschers eine 40 - 60 %-ige, vorzugsweise 55 %-ige Harnstoffkonzentration eingestellt wird.
PCT/EP2004/009886 2003-10-02 2004-09-04 Verfahren zur entfernung von ammoniak und staub aus einem abgas, das bei der herstellung von düngemitteln anfällt WO2005032696A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US10/574,091 US7682425B2 (en) 2003-10-02 2004-09-04 Method for removing ammonia and dust from a waste gas that results during the production of fertilizers
DE502004010324T DE502004010324D1 (de) 2003-10-02 2004-09-04 Verfahren zur entfernung von ammoniak und staub aus einem abgas, das bei der herstellung von harnstoff anfällt
AT04764837T ATE447435T1 (de) 2003-10-02 2004-09-04 Verfahren zur entfernung von ammoniak und staub aus einem abgas, das bei der herstellung von harnstoff anfällt
CA2540645A CA2540645C (en) 2003-10-02 2004-09-04 Method for removing ammonia and dust from a waste gas generated during the production of fertilizers
EP04764837A EP1663455B1 (de) 2003-10-02 2004-09-04 Verfahren zur entfernung von ammoniak und staub aus einem abgas, das bei der herstellung von harnstoff anfällt
JP2006529969A JP4589927B2 (ja) 2003-10-02 2004-09-04 化学肥料を製造する際に生じる廃ガスからアンモニアおよびダストを除く方法
HK07101154.3A HK1096327A1 (en) 2003-10-02 2007-02-01 Method for removing ammonia and dust from a waste gas that results during the production of fertilizers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10346519A DE10346519A1 (de) 2003-10-02 2003-10-02 Verfahren zur Entfernung von Ammoniak und Staub aus einem Abgas, das bei der Herstellung von Düngemitteln anfällt
DE10346519.7 2003-10-02

Publications (1)

Publication Number Publication Date
WO2005032696A1 true WO2005032696A1 (de) 2005-04-14

Family

ID=34399331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/009886 WO2005032696A1 (de) 2003-10-02 2004-09-04 Verfahren zur entfernung von ammoniak und staub aus einem abgas, das bei der herstellung von düngemitteln anfällt

Country Status (11)

Country Link
US (1) US7682425B2 (de)
EP (1) EP1663455B1 (de)
JP (1) JP4589927B2 (de)
CN (1) CN100434143C (de)
AT (1) ATE447435T1 (de)
CA (1) CA2540645C (de)
DE (2) DE10346519A1 (de)
ES (1) ES2333723T3 (de)
HK (1) HK1096327A1 (de)
RU (1) RU2345823C2 (de)
WO (1) WO2005032696A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119489A1 (de) 2008-05-14 2009-11-18 Uhde Fertilizer Technology B.V. Verfahren zur Minderung der Aerosolemissionen in einer Harnstoffgranulationsanlage
WO2019180155A1 (en) 2018-03-23 2019-09-26 Thyssenkrupp Fertilizer Technology Gmbh Fluid-bed granulator system with coating material to prevent dust buildup in the air systems of urea granulation plants
WO2019180186A1 (en) 2018-03-23 2019-09-26 Thyssenkrupp Fertilizer Technology Gmbh Divided perforated plate for fluid bed granulator or cooler
EP3560907A1 (de) 2018-04-23 2019-10-30 thyssenkrupp Fertilizer Technology GmbH Harnstoffherstellungsanlage und scheuersystem
WO2019215193A1 (en) 2018-05-08 2019-11-14 Thyssenkrupp Fertilizer Technology Gmbh Internal cooling system for fluid-bed granulation plants
EP3593898A1 (de) 2018-07-13 2020-01-15 thyssenkrupp Fertilizer Technology GmbH Herstellung von düngemittelgranulaten mit einer definierten grössenverteilung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2232673A1 (de) * 2007-12-27 2010-09-29 UTC Power Corporation Integrierter verunreinigungsseparator und wasserregelkreis für einen brennstoffreaktionsmittelstrom einer brennstoffzelle
EP2192099A1 (de) * 2008-11-28 2010-06-02 Uhde Fertilizer Technology B.V. Harnstoffgranulationsverfahren mit saurem Scrubbing-System und die anschließende Integration von Ammoniaksalz in Harnstoffgranulate
US8398945B2 (en) * 2008-12-12 2013-03-19 Thyssenkrupp Uhde Gmbh Removal of ammonia nitrogen, ammonium nitrogen and urea nitrogen by oxidation with hypochlorite-containing solutions from exhaust air in plants for producing ammonia and urea
EP2301917A1 (de) 2009-09-16 2011-03-30 Stamicarbon B.V. Entfernen von Harnstoff und Ammoniak aus Abgasen
EP2386346A1 (de) 2010-05-11 2011-11-16 Stamicarbon B.V. Verfahren zur Senkung von Ammoniakemissionen in einem Harnstoffherstellungsverfahren
EP2662349A1 (de) 2012-05-08 2013-11-13 Uhde Fertilizer Technology B.V. Harnstoffgranulationsverfahren mit Scrubbing-System
EP2746244A1 (de) * 2012-12-21 2014-06-25 Uhde Fertilizer Technology B.V. Verfahren zur Verringerung der Opazität von von dem Wind losgelösten Rauchschwaden
TW201529530A (zh) 2013-08-23 2015-08-01 Koch Agronomic Services Llc 脲及氮穩定劑組合物及其製造和使用方法與系統
RU2675578C2 (ru) * 2014-03-10 2018-12-19 САИПЕМ С.п.А. Система регенерации и способ обработки потока газа из секции отверждения установки по производству мочевины
CN104941380A (zh) * 2014-03-31 2015-09-30 英尼奥斯欧洲股份公司 用于淬冷流出物的改进的烟雾消除器操作
CN110325289B (zh) * 2016-12-28 2022-04-08 沙特基础工业全球技术公司 从吹扫气流中回收溶剂
DE102017108843A1 (de) * 2017-04-25 2018-10-25 Thyssenkrupp Ag Vorrichtung und Verfahren zur Abgaswäsche
CN108854452A (zh) * 2018-06-21 2018-11-23 绍兴化工有限公司 一种自然挥发氨气的回收利用方法
CN110538540A (zh) * 2019-09-26 2019-12-06 南京蓝胜环保科技有限公司 一种应用尿素造粒尾气的水帘式除尘除氨的系统及工艺
DE102019216931A1 (de) * 2019-11-04 2021-05-06 Thyssenkrupp Ag Verfahren und Anlage zur Herstellung von Harnstoffgranulat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3306664A1 (de) * 1983-02-25 1984-08-30 Krupp-Koppers Gmbh, 4300 Essen Zwei- oder mehrstufiges verfahren zur auswaschung von ammoniak aus gasen, insbesondere aus koksofengas
EP0440932A2 (de) * 1990-01-10 1991-08-14 BASF Aktiengesellschaft Verfahren zur Entfernung von Ammoniak aus Abgasen
EP0514902A1 (de) * 1991-05-22 1992-11-25 ENICHEM AGRICOLTURA S.p.A. Verfahren zum Herauswaschen von Ammoniak aus einem Gasstrom mittels einer Flüssigkeit
GB2315435A (en) * 1996-07-22 1998-02-04 Basf Ag Purifying waste gas from fertiliser production
EP1151785A2 (de) * 2000-05-04 2001-11-07 Vapo Oy Verfahren zur Reinigung von Abgasen in einem Kompostierungsverfahren und zur Rückgewinnung von Wärme

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3344585A (en) * 1967-05-12 1967-10-03 Eugene G Hollowell Method for recovering ammonia from gaseous mixture
JPS4925560B1 (de) * 1968-04-16 1974-07-01
US4157250A (en) * 1972-09-22 1979-06-05 Ulrich Regehr Scrubber apparatus for washing gases and having a coarse and fine droplet separator
DE2246474A1 (de) * 1972-09-22 1974-04-04 Regehr Ulrich Vorrichtung zum waschen von gasen
JPS5032076A (de) * 1973-07-25 1975-03-28
US3985523A (en) * 1974-09-30 1976-10-12 Foster Wheeler Energy Corporation Pollution control process for fertilizer plant
JPS51125669A (en) * 1974-10-22 1976-11-02 Chiyoda Chem Eng & Constr Co Ltd A method and arrangement for treating waste gas from urea granulating towers
US4140501A (en) * 1975-12-12 1979-02-20 Frank Ekman Wet gas modular venturi scrubbing apparatus
AT363954B (de) * 1977-06-09 1981-09-10 Azote Sa Cie Neerlandaise Verfahren zur herstellung von harnstoffkoernern
JPS5534162A (en) * 1978-09-04 1980-03-10 Hitachi Ltd Method and apparatus for removing malodor
CA1129181A (en) * 1979-03-30 1982-08-10 Mark Richman So.sub.2 scrubbing system for flue gas desulfurization
NL8102391A (nl) * 1981-05-15 1982-12-01 Unie Van Kunstmestfab Bv Werkwijze voor het winnen van waardevolle bestanddelen uit de afvalstromen verkregen bij de ureumbereiding.
DE4331415C3 (de) * 1993-09-15 1999-05-20 Steinmueller Gmbh L & C Verfahren und Vorrichtung zur Behandlung eines Gasstromes mit Waschflüssigkeit
US5478507A (en) * 1994-02-16 1995-12-26 Carbonair, Inc. Gas-liquid contacting apparatus with valved downcomer
DK0778067T3 (da) * 1995-12-06 2001-10-08 Lurgi Lentjes Bischoff Gmbh Anlæg til rensning af røggasser med forskellige indhold af sure bestanddele, og fremgangsmåde til drift af anlægget
JPH09227493A (ja) * 1996-02-27 1997-09-02 Toyo Eng Corp 排ガス中からの尿素ダスト及びアンモニアの回収方法
JPH10118440A (ja) * 1996-10-24 1998-05-12 Ebara Corp メタノール含有ガスの処理方法
DE19731062C2 (de) * 1997-07-19 2001-07-12 Lurgi Lentjes Bischoff Gmbh Verfahren zur Entfernung von sauren Gasen aus Rauchgasen, insbesondere aus Kraftwerksabgasen und Abgasen von Müllverbrennungsanlagen
JP3572188B2 (ja) * 1997-11-18 2004-09-29 三菱重工業株式会社 排煙処理方法
JP2000001466A (ja) * 1998-06-12 2000-01-07 Toyo Eng Corp 排ガス中の尿素ダスト及びアンモニアの回収・利用方法
JP2000279736A (ja) * 1999-03-29 2000-10-10 Toyo Eng Corp 尿素ダスト及びアンモニアを含有する流体の処理装置、それを用いた処理方法及びそれを付設した尿素製造装置
US7258848B1 (en) * 2006-07-31 2007-08-21 E. I. Du Pont De Nemours And Company Process for scrubbing ammonia from acid gases comprising ammonia and hydrogen sulfide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3306664A1 (de) * 1983-02-25 1984-08-30 Krupp-Koppers Gmbh, 4300 Essen Zwei- oder mehrstufiges verfahren zur auswaschung von ammoniak aus gasen, insbesondere aus koksofengas
EP0440932A2 (de) * 1990-01-10 1991-08-14 BASF Aktiengesellschaft Verfahren zur Entfernung von Ammoniak aus Abgasen
EP0514902A1 (de) * 1991-05-22 1992-11-25 ENICHEM AGRICOLTURA S.p.A. Verfahren zum Herauswaschen von Ammoniak aus einem Gasstrom mittels einer Flüssigkeit
GB2315435A (en) * 1996-07-22 1998-02-04 Basf Ag Purifying waste gas from fertiliser production
EP1151785A2 (de) * 2000-05-04 2001-11-07 Vapo Oy Verfahren zur Reinigung von Abgasen in einem Kompostierungsverfahren und zur Rückgewinnung von Wärme

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2119489A1 (de) 2008-05-14 2009-11-18 Uhde Fertilizer Technology B.V. Verfahren zur Minderung der Aerosolemissionen in einer Harnstoffgranulationsanlage
WO2009138178A1 (en) * 2008-05-14 2009-11-19 Uhde Fertilizer Technology B.V. Method for reducing aerosol emissions in a urea granulation plant
CN102026704A (zh) * 2008-05-14 2011-04-20 伍德肥料技术有限责任公司 减少尿素造粒设备中的悬浮微粒排放的方法
US8080687B2 (en) 2008-05-14 2011-12-20 Uhde Fertilizer Technology B.V. Method for reducing aerosol emissions in a urea granulation plant
RU2493903C2 (ru) * 2008-05-14 2013-09-27 Уде Фертилайзер Текнолоджи Б.В. Способ снижения выпусков аэрозоля на установке гранулирования мочевины
CN102026704B (zh) * 2008-05-14 2013-11-06 伍德肥料技术有限责任公司 减少尿素造粒设备中的悬浮微粒排放的方法
WO2019180155A1 (en) 2018-03-23 2019-09-26 Thyssenkrupp Fertilizer Technology Gmbh Fluid-bed granulator system with coating material to prevent dust buildup in the air systems of urea granulation plants
WO2019180186A1 (en) 2018-03-23 2019-09-26 Thyssenkrupp Fertilizer Technology Gmbh Divided perforated plate for fluid bed granulator or cooler
EP3560907A1 (de) 2018-04-23 2019-10-30 thyssenkrupp Fertilizer Technology GmbH Harnstoffherstellungsanlage und scheuersystem
WO2019206684A1 (en) 2018-04-23 2019-10-31 Thyssenkrupp Fertilizer Technology Gmbh Urea production plant and scrubbing system
US11958793B2 (en) 2018-04-23 2024-04-16 Thyssenkrupp Fertilizer Technology Gmbh Urea production plant and scrubbing system
WO2019215193A1 (en) 2018-05-08 2019-11-14 Thyssenkrupp Fertilizer Technology Gmbh Internal cooling system for fluid-bed granulation plants
EP3593898A1 (de) 2018-07-13 2020-01-15 thyssenkrupp Fertilizer Technology GmbH Herstellung von düngemittelgranulaten mit einer definierten grössenverteilung

Also Published As

Publication number Publication date
CN1859964A (zh) 2006-11-08
CA2540645A1 (en) 2005-04-14
DE502004010324D1 (de) 2009-12-17
CN100434143C (zh) 2008-11-19
US20070039469A1 (en) 2007-02-22
EP1663455A1 (de) 2006-06-07
DE10346519A1 (de) 2005-05-04
HK1096327A1 (en) 2007-06-01
EP1663455B1 (de) 2009-11-04
RU2006114751A (ru) 2007-11-20
ES2333723T3 (es) 2010-02-26
JP4589927B2 (ja) 2010-12-01
ATE447435T1 (de) 2009-11-15
JP2007507333A (ja) 2007-03-29
RU2345823C2 (ru) 2009-02-10
US7682425B2 (en) 2010-03-23
CA2540645C (en) 2011-04-19

Similar Documents

Publication Publication Date Title
EP1663455B1 (de) Verfahren zur entfernung von ammoniak und staub aus einem abgas, das bei der herstellung von harnstoff anfällt
EP0603919B1 (de) Verfahren und Vorrichtung zur Nassreinigung von Gasen
EP2207611B1 (de) Anlage und verfahren zur reinigung von rauchgasen
DE2705903A1 (de) Horizontale gas-spruehreinigungsvorrichtung
EP2300126A1 (de) Anlage und verfahren zur absorption von schadstoffen in gasen
DE2649180A1 (de) Reinigungsvorrichtung zum reinigen eines loesliche verbindungen enthaltenden gases
WO2018197282A1 (de) Vorrichtung und verfahren zur abgaswäsche sowie harnstoffanlage mit einer abgaswäsche
EP3332859B1 (de) Verfahren und vorrichtung zum reinigen stickoxidhaltiger gasströme
EP0839567B1 (de) Verfahren und Anlage zur Abscheidung feinster Oxidteilchen
DE4015831C1 (en) Washing out acid from dust free gas - by washing gas with aq. soln., removing acid formed, subjecting exhaust gas to droplet removal and adding fresh water
EP1337315B1 (de) Verfahren zur reinigung von abgas aus einer zellstoffabrik
DE3431835A1 (de) Verfahren zur reinigung von rauchgasen und vorrichtung zur durchfuehrung des verfahrens
DE10118961B4 (de) Wäscher und Verfahren zum Reinigen von Gasen
DE19731505A1 (de) Reinigung der bei der Herstellung von Mineraldüngemitteln entstehenden Abgase
EP3513865A1 (de) Vorrichtung zur reinigung von mit staub und organischen als auch anorganischen verbindungen belasteten abgasen aus der holzverarbeitenden industrie
DE4113108A1 (de) Verfahren zur abscheidung von teilchen aus einem staubhaltigen und/oder aerosolhaltigen rohgas
DE3715263A1 (de) Verfahren und vorrichtung zur reinigung von abluft
DE1546653C (de) Vorrichtung zum Trennen von Gasen
DE4345364C2 (de) Vorrichtung zur Behandlung eines Gasstromes mit Waschflüssigkeit
DE2131796A1 (de) Verfahren und Vorrichtung zur Reinigung von hohe Schornsteine passierenden Abgasen
DD151438A5 (de) Verfahren zur rueckgewinnung von stickstoffoxiden aus einem gasgemisch
EP3135364B1 (de) Verfahren zur rauchgasentschwefelung
WO1997034683A1 (de) Verfahren zur entfernung von gasförmigem elementaren quecksilber aus rohgasen in zwei hintereinandergeschalteten stufen
DD142534A2 (de) VERFAHREN ZUR ABSORPTION UND ENDREINIGUNG SCHADSTOF&HALTIGER ABGASE
DE2305366A1 (de) Verfahren zur entfernung von schwefelsaeure und fremdgasen aus abluft

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480028183.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004764837

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006529969

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2540645

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1025/KOLNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006114751

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2007039469

Country of ref document: US

Ref document number: 10574091

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004764837

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10574091

Country of ref document: US