WO2005031786A1 - Image display and spacer structural body producing method - Google Patents

Image display and spacer structural body producing method Download PDF

Info

Publication number
WO2005031786A1
WO2005031786A1 PCT/JP2004/013546 JP2004013546W WO2005031786A1 WO 2005031786 A1 WO2005031786 A1 WO 2005031786A1 JP 2004013546 W JP2004013546 W JP 2004013546W WO 2005031786 A1 WO2005031786 A1 WO 2005031786A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
grid
mold
spacers
step portion
Prior art date
Application number
PCT/JP2004/013546
Other languages
French (fr)
Japanese (ja)
Inventor
Ken Takahashi
Satoshi Ishikawa
Masaru Nikaido
Original Assignee
Kabushiki Kaisha Toshiba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Toshiba filed Critical Kabushiki Kaisha Toshiba
Publication of WO2005031786A1 publication Critical patent/WO2005031786A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display
    • H01J9/242Spacers between faceplate and backplate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/028Mounting or supporting arrangements for flat panel cathode ray tubes, e.g. spacers particularly relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/864Spacers between faceplate and backplate of flat panel cathode ray tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/127Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using large area or array sources, i.e. essentially a source for each pixel group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/18Assembling together the component parts of electrode systems
    • H01J9/185Assembling together the component parts of electrode systems of flat panel display devices, e.g. by using spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure
    • H01J2329/8635Spacing members characterised by the form or structure having a corrugated lateral surface

Definitions

  • the present invention relates to an image display device such as a flat display device having a spacer structure, and a method of manufacturing a spacer structure used for the image display device.
  • CTRs cathode ray tubes
  • SEDs surface conduction electron-emitting devices
  • FED field emission display
  • the SED includes a front substrate and a rear substrate that are arranged to face each other at a predetermined interval, and these substrates are connected to each other through rectangular side walls to form a vacuum envelope. Make up. Phosphor layers of three colors are formed on the inner surface of the front substrate, and a large number of electron-emitting devices corresponding to each pixel are arranged on the inner surface of the rear substrate as electron sources for exciting the phosphor.
  • Each electron-emitting device includes an electron-emitting portion, a pair of electrodes for applying a voltage to the electron-emitting portion, and the like.
  • the space between the front substrate and the rear substrate that is, the inside of the vacuum envelope is maintained at a high degree of vacuum. If the degree of vacuum is low, the life of the electron-emitting device and, consequently, the life of the device will be reduced.
  • the space between the front substrate and the rear substrate is empty, atmospheric pressure acts on the front substrate and the rear substrate. Therefore, in order to support the atmospheric pressure load acting on these substrates and maintain the gap between the substrates, a number of plate-shaped or columnar spacers are arranged between the two substrates.
  • US Pat. No. 5,704,820 discloses that a glass mold is filled in a spacer mold made of a material soluble in an acid or a base and cured. Later, a method for dissolving the mold was proposed.
  • the spacer mold is melted after the spacer is molded, and is a so-called disposable mold. Inevitable.
  • the spacer is a component used in a vacuum environment, damage and contamination to the spacer during the melting process of the spacer mold become a serious problem.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide an image display device with improved withstand voltage characteristics and display quality that does not cause damage or contamination of a spacer, and an image display device having the same. It is an object of the present invention to provide a method of manufacturing a spacer structure capable of inexpensively manufacturing a spacer structure used for an image display device.
  • an image display device is arranged such that a first substrate on which an image display surface is formed is opposed to the first substrate with a predetermined gap therebetween.
  • a second substrate provided with a plurality of electron emission sources for exciting the image display surface, and an atmospheric pressure load provided between the first and second substrates and acting on the first and second substrates.
  • the spacer structure faces the first and second substrates, and has a plate-like grid having a plurality of electron beam passage holes facing the electron emission source, and at least one of the grids. And a plurality of spacers erected on the surface of the large-diameter first step portion having a large diameter alternately stacked from the grid toward the extending end. And a second step portion having a smaller diameter than the first step portion.
  • a method of manufacturing a spacer structure includes a plate-like grid having a plurality of beam passage holes, and a grid standing upright on a surface of the grid. And a plurality of spacers having a large-diameter first step portion and a second step portion having a smaller diameter than the first step portion, which are alternately laminated with a force toward the extension end from the first position.
  • a plurality of spacer forming holes and a spacer forming hole which is located around each spacer forming hole and has first and second steps corresponding to the spacers are defined and elastically deformed.
  • a mold having a plurality of hole forming portions formed of a possible ultraviolet transmitting material is prepared, and each spacer forming hole of the mold is filled with a UV-curable spacer forming material. Filling
  • a mold filled with the spacer forming material is brought into close contact with the surface of the grid to form an assembly including the mold and the grid,
  • the mold is released from the grid while elastically deforming the hole forming portion, and the hardened spacer forming material is placed on the grid.
  • FIG. 1 is a perspective view showing an SED according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the SED, taken along a line II II in FIG. 1.
  • FIG. 3 is an enlarged sectional view showing the SED.
  • FIG. 4 is an enlarged perspective view showing a part of the spacer structure.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG.
  • FIG. 6 is a cross-sectional view showing a step of manufacturing the spacer structure.
  • FIG. 7 is a cross-sectional view showing a step of manufacturing a molding die used for manufacturing the spacer structure.
  • FIG. 8 is a cross-sectional view showing an assembly in which a mold and a grid are brought into close contact.
  • FIG. 9 is a cross-sectional view showing a state where the mold is released.
  • FIG. 10 is a cross-sectional view showing a mold and a spacer when the mold is released from the mold.
  • FIG. 11 is a perspective view showing a partly determined SED according to a second embodiment of the present invention.
  • FIG. 12 is a sectional view of an SED according to the second embodiment.
  • the SED includes a first substrate 10 and a second substrate 12 each formed of a rectangular glass plate, and these substrates are spaced apart by about 1.0-2. Opposed.
  • the first substrate 10 and the second substrate 12 are joined to each other via a rectangular frame-shaped side wall 14 made of glass to form a flat vacuum envelope 15 whose inside is maintained in a vacuum. .
  • the side wall 14 functioning as a bonding member is sealed to a peripheral portion of the first substrate 10 and a peripheral portion of the second substrate 12 by a sealing material 20 such as a low-melting glass, a low-melting metal, or the like. Are joined.
  • a phosphor screen 16 functioning as an image display surface is formed.
  • This phosphor screen 16 is configured by arranging phosphor layers R, G, and B that emit red, green, and blue light and a light-shielding layer 11, and these phosphor layers are striped, dot-shaped, or rectangular. Is formed.
  • a metal knock 17 having a force such as aluminum and a getter film 19 are sequentially formed.
  • a large number of surface conduction electron-emitting devices 18 each emitting an electron beam are provided on the inner surface of the second substrate 12.
  • These electron-emitting devices 18 are arranged in a plurality of columns and a plurality of rows corresponding to the pixels.
  • Each electron-emitting device 18 includes an electron-emitting portion (not shown), a pair of device electrodes for applying a voltage to the electron-emitting portion, and the like.
  • a large number of wirings 21 for supplying a potential to the electron-emitting devices 18 are provided in a matrix, and the ends of the wirings 21 are projected outside the vacuum envelope 15 to form a bow. .
  • a spacer structure 22 is provided between the first substrate 10 and the second substrate 12.
  • the spacer structure 22 includes a grid 24 having a rectangular metal plate strength, and a large number of columnar spacers integrally provided on both sides of the grid.
  • the grid 24 has a first surface 24a facing the inner surface of the first substrate 10 and a second surface 24b facing the inner surface of the second substrate 12, It is arranged parallel to these substrates.
  • a large number of electron beam passage holes 26 are formed in the grid 24 by etching or the like. The electron beam passage holes 26 are arranged to face the electron-emitting devices 18, respectively, and transmit the electron beams emitted from the electron-emitting devices.
  • the grid 24 is formed of, for example, a 0.1-0.3 mm thick iron-nickel metal plate.
  • the surface of the grid 24 is covered with an oxide film made of an element constituting the metal plate, for example, an oxide film made of Fe304 or NiFe204.
  • the surfaces 24a and 24b of the grid 24 and the wall surfaces of the respective electron beam passage holes 26 are covered with a high resistance film having a discharge current limiting effect.
  • This high-resistance film is formed of a high-resistance material whose main component is glass.
  • a first spacer 30 a is standing upright, and is located between adjacent electron beam passage holes 26.
  • the tip of the first spacer 30a is in contact with the inner surface of the first substrate 10 via the getter film 19, the metal back 17, and the light shielding layer 11 of the phosphor screen 16.
  • a second spacer 30b is standing upright, and is located between the adjacent electron beam passage holes 26.
  • the tip of the second spacer 30b is in contact with the inner surface of the second substrate 12.
  • the tip of each second spacer 30 b is located on the wiring 21 provided on the inner surface of the second substrate 12.
  • the first and second spacers 30a and 30b are located in alignment with each other, and are formed integrally with the grid 24 with the grid 24 sandwiched from both sides.
  • Each first spacer 30a is formed in a tapered shape having a diameter decreasing from the grid 24 side toward the extending end.
  • Each spacer 30a has a large-diameter first step 50a and a second step 50b having a smaller diameter than the first step 50a, which are alternately stacked with a force from the grid 24 toward the extending end.
  • the surface is formed as an uneven spacer.
  • Each first spacer 30a has two first step portions 50a and one second step portion and is formed in three steps, and the height thereof is, for example, 0.75 mm.
  • the first step portion 50a serving as a convex portion has a substantially elliptical cross-sectional shape, and its diameter is formed to be 1.4 mm X 0.35 mm.
  • the second step portion 50b serving as a concave portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.35 mm ⁇ 0.3 mm.
  • the height of each of the second step portions 50a and 50b is 0.25 mm.
  • the maximum protrusion amount dl of the first step portion 50a with respect to the second step portion 50b is formed to be 100 m or less.
  • Each second spacer 30b is also formed in a tapered taper shape in which the diameter on the grid 24 side also decreases toward the extending end.
  • Each second spacer 30b has a large-diameter first step 51a and a second step 51b smaller in diameter than the first step 51a, which are alternately stacked from the grid 24 toward the extending end.
  • the surface is formed as an uneven spacer.
  • each second spacer 30b has two first step portions 51a and two second step portions 51b and is formed in four steps, and the height thereof is, for example, 1.Omm. ing.
  • the first step portion 51a serving as a convex portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.4 mm X 35 mm.
  • the second step portion 50b serving as a concave portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.35 mm X 0.3 mm.
  • Each height of the first and second steps 51a and 51b is formed to be 0.25 mm.
  • the maximum protrusion amount d2 of the first step portion 51a with respect to the second step portion 51b is formed to be 100 m or less.
  • the spacer structure 22 configured as described above is provided between the first substrate 10 and the second substrate 12.
  • the first and second spacers 30a and 30b contact the inner surfaces of the first substrate 10 and the second substrate 12 to support an atmospheric pressure load acting on these substrates and to set a predetermined distance between the substrates. Maintain to
  • the SED includes a voltage supply unit (not shown) for applying a voltage to the grid 24 and the metal back 17 of the first substrate 10.
  • the voltage supply unit is connected to the grid 24 and the metal back 17, respectively, and applies, for example, a voltage of 12 kV to the grid 24 and a voltage of 10 kV to the metal back 17.
  • an anode voltage is applied to the phosphor screen 16 and the metal back 17, and the electron beam emitted from the electron-emitting device 18 is accelerated by the anode voltage and collides with the phosphor screen 16. Let it. As a result, the phosphor layer of the phosphor screen 16 is excited to emit light, and an image is displayed.
  • a grid 24 having a predetermined dimension is formed.
  • a rectangular plate-shaped upper die 36a and lower die 36b having substantially the same dimensions as the grid are prepared.
  • an electron beam passage hole 26 is formed by etching to form a grid 24.
  • the entire grid 24 is subjected to oxidation treatment, and then an insulating film is formed on the grid surface including the inner surface of the electron beam passage hole 26.
  • a coating liquid containing glass as a main component is applied on the insulating film, dried, and fired to form a high-resistance film.
  • the upper die 36a has a number of spacer forming holes 40a for forming the first spacer 30a.
  • the lower die 36b has a plurality of spacer forming holes 40b for forming the second spacer 30b.
  • the upper die 36a as a molding die includes a die main body 52a formed in a rectangular plate shape from stainless steel, polyethylene terephthalate, or the like. Numerous through holes 54a are formed at positions corresponding to the spacers 30a. Each through hole 54a is formed to have a larger diameter than the spacer forming hole. Each through hole 54a is provided with a hole forming portion 56a made of, for example, silicone resin as an elastically deformable ultraviolet light transmitting material. A bottomed spacer forming hole 40a having a shape corresponding to the first spacer 30a is formed in the hole forming portion 56b. Thus, the periphery of the spacer forming hole 40a is surrounded by the silicone.
  • the elastically deformable ultraviolet transmitting material used for the hole forming portion 56b it is possible to use polycarbonate, acrylic or the like, which is not limited to silicon.
  • a master female mold 60 in which a number of spacer forming holes are formed with high accuracy is prepared.
  • the master female mold 60 is formed by laminating a plurality of, for example, four metal plates, and the metal plates are formed on the metal plates by laser, etching, or the like, in a shape corresponding to the first spacer 30a.
  • the spacer forming hole 61 is formed with high precision.
  • a spacer forming hole 61 of the master female mold 60 is filled with a mold forming material such as silicone, and a large number of spacers corresponding to the spacer forming holes are filled.
  • a master male mold 62 having a convex portion 63 is formed. Note that the master male mold 62 is formed by cutting. Next, as shown in FIG. 7 (c), a mold body 52a having a large number of through holes 54a is prepared. The master male mold 62 is mounted on the mold main body 52a, and the master male mold 62 is positioned so that the respective convex portions 63 are disposed substantially coaxially in the respective through holes 54a of the mold main body.
  • each through-hole 54a of the mold body 52a is filled with a room-temperature curing type silicone. After the silicone has cured, the master male mold 62 is released. As a result, as shown in FIG. 7 (e), an upper die 36a integrally having the hole forming portion 56a defining the spacer forming hole 40a is obtained.
  • the lower mold 36b has the same structure as the upper mold 36a, and has a mold body 52b having a large number of through holes 54b, a hole forming portion 56b formed of silicone and provided in each through hole, and A bottomed spacer forming hole 40b formed in the hole forming portion and corresponding to the second spacer is provided.
  • the lower mold 36b is manufactured in the same manner as the upper mold 36a.
  • the spacer forming hole 40a of the upper die 36a and the spacer forming hole of the lower die 26b is filled in each of the spacers 40b.
  • a glass paste containing at least a UV-curable binder (organic component) and a glass filler is used as the spacer forming material 46. The specific gravity and viscosity of the glass paste are appropriately selected.
  • the upper die 36 a is moved with respect to the grid 24 so that the spacer forming holes 40 a filled with the spacer forming material 46 are located between the electron beam passing holes 26. And make contact with the first surface 24a of the grid 24.
  • the lower die 36b is positioned so that each spacer forming hole 40b is located between the electron beam passing holes 26, and is brought into close contact with the second surface 24b of the grid 24.
  • an assembly 42 including the grid 24, the upper mold 36a and the lower mold 36b is formed.
  • the spacer forming holes 40a of the upper die 36a and the spacer forming holes 40b of the lower die 36b are arranged to face each other with the grid 24 interposed therebetween.
  • the outer surface forces of the upper mold 36a and the lower mold 36b are also changed to ultraviolet (UV) with respect to the filled spacer forming material 46 by using, for example, an ultraviolet lamp or the like.
  • UV ultraviolet
  • the periphery of the spacer forming holes 40a and 40b filled with the spacer forming material 46 is surrounded by hole forming portions 56a and 56b formed of silicone as an ultraviolet transmitting material. Therefore, ultraviolet rays form spacers.
  • the material 46 is irradiated directly and through the hole forming portions 56a and 56b. Therefore, the filled spacer forming material 46 can be surely cured to the inside thereof.
  • the upper mold 36a and the lower mold 36b are released from the grid 24 so that the hardened spacer forming material 46 is left on the grid 24.
  • the hardened spacer forming material 46 that is, the first and second spacers 30a and 30b are formed in an uneven shape having a first step portion and a second step portion, respectively.
  • the hole forming portions 56a and 56b that define the spacer forming holes 40a and 40b are formed of elastically deformable silicone. Therefore, as shown in FIG. 10, when the upper die 36a is released, the hole forming portion 56a is elastically deformed along the unevenness of the hardened first spacer 30a. Therefore, even when the first spacer 30a is formed unevenly, the upper die 36a can be easily released without damaging the first spacer. Similarly, the lower die 36b can be easily released without damaging the formed second spacer 30b.
  • the grid 24 on which the spacer forming material 46 is provided is heat-treated in a heating furnace, and the inner force of the spacer forming material is also reduced by blowing off the binder, and then at about 500-550 ° C. for 30 minutes.
  • the spacer forming material is fully baked and vitrified for 1 hour. As a result, a spacer structure 22 in which the first and second spacers 30a and 30b are formed on the grid 24 is obtained.
  • the second substrate 12 is prepared.
  • the spacer structure 22 obtained as described above is positioned and arranged on the second substrate 12.
  • the first substrate 10, the second substrate 12, and the spacer structure 22 are arranged in a vacuum chamber, and the inside of the vacuum chamber is evacuated. To join.
  • an SED having the spacer structure 22 is manufactured.
  • the first and second spacers 30a and 30b that form the spacer structure are different in diameter from each other in the first and second steps. And the surface is formed unevenly. Therefore, it is possible to suppress the collision of the reflected electrons and the secondary electrons with the spacer surface, and to suppress the reduction of the discharge withstand voltage and the orbital deviation of the electron beam due to the charging of the spacer. Equipped with spacers with the same height and no steps
  • the discharge voltage of the SED according to the present embodiment increased by about 20%.
  • the orbital deviation of the electron beam was reduced by about 30%.
  • the upper mold is elastically deformed by the hole forming portions 56a and 56b. And The lower mold can be released easily and there is no need to dissolve the mold. Therefore, it is possible to prevent the spacer from being damaged or contaminated by the melting of the mold, and at the same time, the mold can be repeatedly used many times. As described above, the spacer structure used for the image display device can be manufactured at low cost.
  • the spacer assembly 22 has a configuration in which the first and second spacers and the grid are integrally provided, but the second spacer is provided on the second substrate 12. It may be configured to be formed. Further, the spacer structure may include only the grid and the second spacer, and the grid may be in contact with the first substrate.
  • the spacer assembly 22 includes a grid 24 having a rectangular metal plate force, and one of the grids.
  • the grid 24 has a first surface 24a facing the inner surface of the first substrate 10 and a second surface 24b facing the inner surface of the second substrate 12, and is arranged in parallel with these substrates.
  • a large number of electron beam passage holes 26 are formed in the grid 24 by etching or the like. The electron beam passage holes 26 are arranged to face the electron-emitting devices 18, respectively, and transmit the electron beams emitted from the electron-emitting devices.
  • the first and second surfaces 24a and 24b of the grid 24 and the inner wall surface of each electron beam passage hole 26 serve as an insulating layer as an insulating material mainly composed of glass, ceramic, or the like, for example, a Li-based alloy. It is covered with a high-resistance film 43 having a thickness of about 10 m, which is also a potassium borosilicate glass.
  • the grid 24 is provided such that the first surface 24a is in surface contact with the inner surface of the first substrate 10 via the getter film, the methanol back 17, and the phosphor screen 16.
  • the electron beam passage holes 26 formed in the grid 24 are provided with phosphor layers R, G, B, and It faces the electron-emitting device 18 on the second substrate 12. Thus, each electron-emitting device 18 faces the corresponding phosphor layer through the electron beam passage hole 26.
  • a plurality of spacers 30 are erected on the second surface 24b of the grid 24.
  • each spacer 30 is in contact with the inner surface of the second substrate 12, here, the wiring 21 provided on the inner surface of the second substrate 12.
  • Each of the spacers 30 is formed in a tapered taper shape in which the diameter of the grid-side power also decreases toward the extending end.
  • Each spacer 30 includes a large-diameter first step 50a and a second step 50b having a smaller diameter than the first step 50a, which are alternately stacked from the grid 24 toward the extending end. And the surface is formed as an uneven spacer.
  • each spacer 30 has two first step portions 50a and two second step portions 50b and is formed in four steps, and the height thereof is, for example, 1.4 mm. I have.
  • the first step portion 50a serving as a convex portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.4 mm x 0.35 mm.
  • the second step portion 50b serving as a concave portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.35 mm X 0.3 mm.
  • Each height of the first and second steps 5 Oa and 50 b is formed to 0.35 mm.
  • the maximum protrusion amount of the first step portion 50a with respect to the second step portion 50b is formed to be 100 m or less.
  • the spacer structure 22 configured as described above has a grid 24 in surface contact with the first substrate 10, and an extended end of the spacer 30 abutting on the inner surface of the second substrate 12. The atmospheric load applied to these substrates is supported, and the distance between the substrates is maintained at a predetermined value.
  • the SED according to the second embodiment and its spacer structure 22 can be manufactured by the same manufacturing method as the manufacturing method according to the first embodiment. Also, in the second embodiment, the same operation and effect as those in the first embodiment can be obtained.
  • an ultraviolet curable material is used as the spacer forming material.
  • a thermosetting type spacer forming material may be used as the spacer forming material 46. That is, as the spacer forming material 46, for example, a glass paste containing a thermosetting binder and a glass filler can be used.
  • the spacer forming material 46 for example, a glass paste containing a thermosetting binder and a glass filler can be used.
  • the spacer forming material 46 for example, a glass paste containing a thermosetting binder and a glass filler can be used.
  • the grid 24 on which the spacer forming material 46 is installed is heat-treated in a heating furnace, and the inner force of the spacer forming material is also reduced by blowing off the binder. Mainly bake the spacer forming material for 1 hour. As a result, a spacer structure 22 in which the first and second spacers 30a and 30b are formed on the grid 24 is obtained.
  • the present invention is not limited to the above-described embodiment as it is, and may be embodied by modifying the constituent elements in an implementation stage without departing from the scope of the invention.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiment. For example, some components, such as all the components shown in the embodiment, may be deleted. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the diameter, height, number of steps, dimensions, materials, and the like of the spacer can be appropriately selected as required without being limited to the above-described embodiment.
  • the present invention is not limited to the one using a surface conduction electron-emitting device as an electron source, but is also applicable to an image display device using another electron source such as a field emission type or a carbon nanotube.
  • the first and second spacers of the spacer structure are each formed into an uneven shape having first and second step portions. Nozomi Only one of them may have an uneven shape.
  • the cross-sectional shape of the first step portion and the second step portion of the spacer is not limited to the elliptical shape, and may be other shapes.Furthermore, the first step portion and the second step portion may be formed in different cross-sectional shapes. Is also good.
  • the present invention it is possible to suppress the collision of the reflected electrons and the secondary electrons with the spacer surface, and to suppress the reduction of the discharge withstand voltage and the shift of the electron beam orbit due to the charging of the spacer. .
  • an image display device with improved withstand voltage characteristics and display quality can be obtained.
  • the mold can be easily released by elastic deformation of the hole forming portion, and the mold is melted. No need. Therefore, a spacer structure used for an image display device which does not cause damage or contamination of the spacer can be manufactured at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

An image display having a spacer structural body (22) between a first substrate (10) provided with a phosphor screen and a second substrate (12) provided with electron emission sources (18) so as to prevent damage to and contamination of the spacer and to enhance the breakdown voltage characteristic and display definition. The structural body (22) has a plate-shaped grid (24) opposed to the first and second substrates (10, 12) and having electron beam passing holes (26) opposed to the respective electron emission sources (18) and spacers (30) erected at least on one side of the grid (24). The spacer (30) has large-diameter first stages and small-diameter second stages alternated and extended from the grid (24) toward the extension end.

Description

明 細 書  Specification
画像表示装置、およびスぺーサ構体の製造方法  Image display device and method of manufacturing spacer structure
技術分野  Technical field
[0001] この発明は、スぺーサ構体を備えた平面表示装置等の画像表示装置、および画像 表示装置に用いるスぺーサ構体の製造方法に関する。  The present invention relates to an image display device such as a flat display device having a spacer structure, and a method of manufacturing a spacer structure used for the image display device.
背景技術  Background art
[0002] 近年、陰極線管(以下、 CRTと称する)に代わる次世代の軽量、薄型の表示装置と して様々な平面型の画像表示装置が注目されている。例えば、平面表示装置として 機能するフィールド'ェミッション 'ディスプレイ(以下、 FEDと称する)の一種として、 表面伝導型電子放出装置 (以下、 SEDと称する)の開発が進められている。  [0002] In recent years, various flat-panel image display devices have been attracting attention as next-generation lightweight and thin display devices replacing cathode ray tubes (hereinafter, referred to as CRTs). For example, surface conduction electron-emitting devices (SEDs) are being developed as a type of field emission display (FED) that functions as a flat panel display.
[0003] この SEDは、所定の間隔をおいて対向配置された前面基板および背面基板を備 え、これらの基板は矩形状の側壁を介して周辺部を互いに接合することにより真空外 囲器を構成している。前面基板の内面には 3色の蛍光体層が形成され、背面基板の 内面には、蛍光体を励起する電子源として、各画素に対応する多数の電子放出素 子が配列されている。各電子放出素子は、電子放出部、この電子放出部に電圧を印 加する一対の電極等で構成されて ヽる。  [0003] The SED includes a front substrate and a rear substrate that are arranged to face each other at a predetermined interval, and these substrates are connected to each other through rectangular side walls to form a vacuum envelope. Make up. Phosphor layers of three colors are formed on the inner surface of the front substrate, and a large number of electron-emitting devices corresponding to each pixel are arranged on the inner surface of the rear substrate as electron sources for exciting the phosphor. Each electron-emitting device includes an electron-emitting portion, a pair of electrodes for applying a voltage to the electron-emitting portion, and the like.
[0004] 前記 SEDにお 、て、前面基板および背面基板間の空間、すなわち真空外囲器内 は、高い真空度に維持されることが重要となる。真空度が低い場合、電子放出素子 の寿命、ひいては、装置の寿命が低下してしまう。また、前面基板と背面基板間は真 空であるため、前面基板、背面基板に対し大気圧が作用する。そこで、これらの基板 に作用する大気圧荷重を支持し基板間の隙間を維持するため、両基板間には、多 数の板状ある 、は柱状のスぺーサが配置されて 、る。  [0004] In the SED, it is important that the space between the front substrate and the rear substrate, that is, the inside of the vacuum envelope is maintained at a high degree of vacuum. If the degree of vacuum is low, the life of the electron-emitting device and, consequently, the life of the device will be reduced. In addition, since the space between the front substrate and the rear substrate is empty, atmospheric pressure acts on the front substrate and the rear substrate. Therefore, in order to support the atmospheric pressure load acting on these substrates and maintain the gap between the substrates, a number of plate-shaped or columnar spacers are arranged between the two substrates.
[0005] スぺーサを前面基板および背面基板の全面に渡って配置するためには、前面基 板の蛍光体、背面基板の電子放出素子に接触しないように、極めて薄い板状、ある いは極めて細い柱状のスぺーサが必要となる。また、これらのスぺーサは、電子放出 素子の極めて近くに設置せざるを得な 、ため、スぺーサとして絶縁体材料を使用し なければならない。同時に、前面基板および背面基板の薄板化を検討した場合、一 層多くのスぺーサが必要となり、更に製造が困難となる。 [0005] In order to dispose the spacer over the entire surface of the front substrate and the rear substrate, it is necessary to use an extremely thin plate or an extremely thin plate so as not to contact the phosphor on the front substrate and the electron-emitting devices on the rear substrate. An extremely thin columnar spacer is required. In addition, since these spacers must be installed very close to the electron-emitting device, an insulator material must be used as the spacer. At the same time, when considering thinning of the front and rear substrates, A large number of spacers are required, which further complicates manufacture.
[0006] このようなスぺーサの製造方法として、米国特許明細書第 5, 704, 820号には、酸 や塩基に可溶な材質のスぺーサ成形型にガラスペーストを充填し硬化した後、成形 型を溶解する方法が提案されて ヽる。  [0006] As a method for producing such a spacer, US Pat. No. 5,704,820 discloses that a glass mold is filled in a spacer mold made of a material soluble in an acid or a base and cured. Later, a method for dissolving the mold was proposed.
[0007] し力しながら、前記の製造方法にお!、て、スぺーサ成形型はスぺーサの成形後に 溶解され、いわゆる使い捨ての成形型であるため、スぺーサの製造コスト上昇が避け られない。また、スぺーサは真空環境で使用する部品であるため、スぺーサ成形型 の溶解過程におけるスぺーサへのダメージや汚染が大きな問題となる。  [0007] In the production method described above, the spacer mold is melted after the spacer is molded, and is a so-called disposable mold. Inevitable. In addition, since the spacer is a component used in a vacuum environment, damage and contamination to the spacer during the melting process of the spacer mold become a serious problem.
[0008] 前面基板と背面基板との間の空間が狭い場合、蛍光面で発生した 2次電子および 反射電子が、基板間に配設されたスぺーサに衝突し、スぺーサが帯電する。この場 合、電子放出素子力も放出された電子ビームはスぺーサに引き付けられ、本来の軌 道からずれてしまう。その結果、蛍光体層に対して電子ビームのミスランディングが発 生し、表示画像の色純度が劣化するという問題がある。また、スぺーサ表面で放電が 発生し、表示装置全体の耐電圧性が低下するという問題もある。  [0008] When the space between the front substrate and the rear substrate is narrow, the secondary electrons and reflected electrons generated on the phosphor screen collide with a spacer provided between the substrates, and the spacer is charged. . In this case, the emitted electron beam is also attracted to the spacer and deviates from the original orbit. As a result, there is a problem that mislanding of the electron beam occurs with respect to the phosphor layer and the color purity of the displayed image is degraded. In addition, there is another problem that a discharge is generated on the spacer surface and the withstand voltage of the entire display device is reduced.
発明の開示  Disclosure of the invention
[0009] この発明は、以上の点に鑑みなされたもので、その目的は、スぺーサのダメージや 汚染を生じるこがなぐ耐電圧特性および表示品位の向上した画像表示装置、およ びこの画像表示装置に用いるスぺーサ構体を安価に製造することが可能なスぺーサ 構体の製造方法を提供することにある。  The present invention has been made in view of the above points, and an object of the present invention is to provide an image display device with improved withstand voltage characteristics and display quality that does not cause damage or contamination of a spacer, and an image display device having the same. It is an object of the present invention to provide a method of manufacturing a spacer structure capable of inexpensively manufacturing a spacer structure used for an image display device.
[0010] 上記目的を達成するため、この発明の態様に係る画像表示装置は、画像表示面が 形成された第 1基板と、前記第 1基板と所定の隙間を置いて対向配置されているとと もに前記画像表示面を励起する複数の電子放出源が設けられた第 2基板と、前記第 1および第 2基板の間に設けられ前記第 1および第 2基板に作用する大気圧荷重を 支持するスぺーサ構体とを備え、  [0010] In order to achieve the above object, an image display device according to an aspect of the present invention is arranged such that a first substrate on which an image display surface is formed is opposed to the first substrate with a predetermined gap therebetween. A second substrate provided with a plurality of electron emission sources for exciting the image display surface, and an atmospheric pressure load provided between the first and second substrates and acting on the first and second substrates. With a supporting spacer structure,
前記スぺーサ構体は、前記第 1および第 2基板に対向しているとともに、それぞれ 前記電子放出源に対向した複数の電子ビーム通過孔を有した板状のグリッドと、前 記グリッドの少なくとも一方の表面上に立設された複数のスぺーサと、を有し、前記ス ぺーサは、前記グリッドから延出端に向かって交互に積層された大径の第 1段部およ び第 1段部よりも径の小さな第 2段部を有している。 The spacer structure faces the first and second substrates, and has a plate-like grid having a plurality of electron beam passage holes facing the electron emission source, and at least one of the grids. And a plurality of spacers erected on the surface of the large-diameter first step portion having a large diameter alternately stacked from the grid toward the extending end. And a second step portion having a smaller diameter than the first step portion.
[0011] この発明の他の態様に係るスぺーサ構体の製造方法は、複数のビーム通過孔を有 した板状のグリッドと、前記グリッドの表面上に立設されているとともに、それぞれ前記 グリッドから延出端に向力つて交互に積層された大径の第 1段部および第 1段部より も径の小さな第 2段部を有した複数のスぺーサと、を備え、画像表示装置に用いられ るスぺーサ構体の製造方法にぉ 、て、 [0011] A method of manufacturing a spacer structure according to another aspect of the present invention includes a plate-like grid having a plurality of beam passage holes, and a grid standing upright on a surface of the grid. And a plurality of spacers having a large-diameter first step portion and a second step portion having a smaller diameter than the first step portion, which are alternately laminated with a force toward the extension end from the first position. The manufacturing method of the spacer structure used in
複数のビーム通過孔が形成された板状のグリッドを用意し、  Prepare a plate-like grid with multiple beam passage holes formed,
複数のスぺーサ形成孔と、各スぺーサ形成孔の周囲に位置し前記スぺーサに対応 した第 1および第 2段部を有したスぺーサ形成孔を規定しているとともに弾性変形可 能な紫外線透過材料で形成された複数の孔形成部と、を備えた成形型を用意し、 前記成形型の各スぺーサ形成孔に紫外線硬化性を有したスぺーサ形成材料を充 填し、  A plurality of spacer forming holes and a spacer forming hole which is located around each spacer forming hole and has first and second steps corresponding to the spacers are defined and elastically deformed. A mold having a plurality of hole forming portions formed of a possible ultraviolet transmitting material is prepared, and each spacer forming hole of the mold is filled with a UV-curable spacer forming material. Filling
前記スぺーサ形成材料が充填された成形型を前記グリッドの表面に密着させて成 形型およびグリッドからなる組立体を形成し、  A mold filled with the spacer forming material is brought into close contact with the surface of the grid to form an assembly including the mold and the grid,
前記組立体の成形型を通して前記スぺーサ形成材料に紫外線を照射し、前記ス ぺーサ形成材料を硬化させ、  Irradiating ultraviolet light to the spacer forming material through a mold of the assembly, and curing the spacer forming material;
前記孔形成部を弾性変形させながら前記成形型を前記グリッドから離型し、前記硬 化したスぺーサ形成材料をグリッド上に設置することを特徴としている。  The mold is released from the grid while elastically deforming the hole forming portion, and the hardened spacer forming material is placed on the grid.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、この発明の第 1の実施の形態に係る SEDを示す斜視図。 FIG. 1 is a perspective view showing an SED according to a first embodiment of the present invention.
[図 2]図 2は、図 1の線 II IIに沿って破断した前記 SEDの斜視図。  FIG. 2 is a perspective view of the SED, taken along a line II II in FIG. 1.
[図 3]図 3は、前記 SEDを拡大して示す断面図。  FIG. 3 is an enlarged sectional view showing the SED.
[図 4]図 4は、前記スぺーサ構体の一部を拡大して示す斜視図。  FIG. 4 is an enlarged perspective view showing a part of the spacer structure.
[図 5]図 5は、図 4の線 V— Vに沿った断面図。  FIG. 5 is a cross-sectional view taken along line VV in FIG.
[図 6]図 6は、前記スぺーサ構体の製造工程を示す断面図。  FIG. 6 is a cross-sectional view showing a step of manufacturing the spacer structure.
[図 7]図 7は、前記スぺーサ構体の製造に用いる成形型の製造工程を示す断面図。  FIG. 7 is a cross-sectional view showing a step of manufacturing a molding die used for manufacturing the spacer structure.
[図 8]図 8は、成形型およびグリッドを密着させた組立体を示す断面図。  FIG. 8 is a cross-sectional view showing an assembly in which a mold and a grid are brought into close contact.
[図 9]図 9は、前記成形型を離型した状態を示す断面図。 [図 10]図 10、前記成形型の離型時における成形型およびスぺーサを示す断面図。 FIG. 9 is a cross-sectional view showing a state where the mold is released. FIG. 10 is a cross-sectional view showing a mold and a spacer when the mold is released from the mold.
[図 11]図 11は、この発明の第 2の実施形態に係る SEDを一部判断して示す斜視図。  FIG. 11 is a perspective view showing a partly determined SED according to a second embodiment of the present invention.
[図 12]図 12は、前記第 2の実施形態に係る SEDの断面図。  FIG. 12 is a sectional view of an SED according to the second embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0013] 以下図面を参照しながら、この発明を、平面型の画像表示装置として SEDに適用 した第 1の実施形態について詳細に説明する。  Hereinafter, a first embodiment in which the present invention is applied to a SED as a planar image display device will be described in detail with reference to the drawings.
図 1ないし図 3に示すように、 SEDは、それぞれ矩形状のガラス板からなる第 1基板 10および第 2基板 12を備え、これらの基板は約 1. 0-2. Ommの隙間をおいて対向 配置されている。第 1基板 10および第 2基板 12は、ガラスからなる矩形枠状の側壁 1 4を介して周縁部同士が接合され、内部が真空に維持された扁平な真空外囲器 15 を構成している。接合部材として機能する側壁 14は、例えば、低融点ガラス、低融点 金属等の封着材 20により、第 1基板 10の周縁部および第 2基板 12の周縁部に封着 され、これらの基板同士を接合している。  As shown in FIGS. 1 to 3, the SED includes a first substrate 10 and a second substrate 12 each formed of a rectangular glass plate, and these substrates are spaced apart by about 1.0-2. Opposed. The first substrate 10 and the second substrate 12 are joined to each other via a rectangular frame-shaped side wall 14 made of glass to form a flat vacuum envelope 15 whose inside is maintained in a vacuum. . The side wall 14 functioning as a bonding member is sealed to a peripheral portion of the first substrate 10 and a peripheral portion of the second substrate 12 by a sealing material 20 such as a low-melting glass, a low-melting metal, or the like. Are joined.
[0014] 第 1基板 10の内面には画像表示面として機能する蛍光体スクリーン 16が形成され ている。この蛍光体スクリーン 16は、赤、緑、青に発光する蛍光体層 R、 G、 B、およ び遮光層 11を並べて構成され、これらの蛍光体層はストライプ状、ドット状、あるいは 矩形状に形成されている。蛍光体スクリーン 16上には、アルミニウム等力もなるメタル ノ ック 17およびゲッタ膜 19が順に形成されている。  [0014] On the inner surface of the first substrate 10, a phosphor screen 16 functioning as an image display surface is formed. This phosphor screen 16 is configured by arranging phosphor layers R, G, and B that emit red, green, and blue light and a light-shielding layer 11, and these phosphor layers are striped, dot-shaped, or rectangular. Is formed. On the phosphor screen 16, a metal knock 17 having a force such as aluminum and a getter film 19 are sequentially formed.
[0015] 第 2基板 12の内面には、蛍光体スクリーン 16の蛍光体層 R、 G、 Bを励起する電子 源として、それぞれ電子ビームを放出する多数の表面伝導型の電子放出素子 18が 設けられている。これらの電子放出素子 18は、画素に対応して複数列および複数行 に配列されている。各電子放出素子 18は、図示しない電子放出部、この電子放出部 に電圧を印加する一対の素子電極等で構成されている。第 2基板 12の内面上には、 電子放出素子 18に電位を供給する多数本の配線 21がマトリック状に設けられ、その 端部は真空外囲器 15の外部に弓 I出されて 、る。  [0015] On the inner surface of the second substrate 12, as an electron source for exciting the phosphor layers R, G, and B of the phosphor screen 16, a large number of surface conduction electron-emitting devices 18 each emitting an electron beam are provided. Have been. These electron-emitting devices 18 are arranged in a plurality of columns and a plurality of rows corresponding to the pixels. Each electron-emitting device 18 includes an electron-emitting portion (not shown), a pair of device electrodes for applying a voltage to the electron-emitting portion, and the like. On the inner surface of the second substrate 12, a large number of wirings 21 for supplying a potential to the electron-emitting devices 18 are provided in a matrix, and the ends of the wirings 21 are projected outside the vacuum envelope 15 to form a bow. .
[0016] 第 1基板 10および第 2基板 12の間にはスぺーサ構体 22が配設されている。スぺー サ構体 22は、矩形状の金属板力もなるグリッド 24と、グリッドの両面に一体的に立設 された多数の柱状のスぺーサと、を備えている。 詳細に述べると、図 2ないし図 5に示すように、グリッド 24は第 1基板 10の内面と対 向した第 1表面 24aおよび第 2基板 12の内面と対向した第 2表面 24bを有し、これら の基板と平行に配置されている。グリッド 24には、エッチング等により多数の電子ビ ーム通過孔 26が形成されている。電子ビーム通過孔 26は、それぞれ電子放出素子 18と対向して配列され、電子放出素子から放出された電子ビームを透過する。 A spacer structure 22 is provided between the first substrate 10 and the second substrate 12. The spacer structure 22 includes a grid 24 having a rectangular metal plate strength, and a large number of columnar spacers integrally provided on both sides of the grid. Specifically, as shown in FIGS. 2 to 5, the grid 24 has a first surface 24a facing the inner surface of the first substrate 10 and a second surface 24b facing the inner surface of the second substrate 12, It is arranged parallel to these substrates. A large number of electron beam passage holes 26 are formed in the grid 24 by etching or the like. The electron beam passage holes 26 are arranged to face the electron-emitting devices 18, respectively, and transmit the electron beams emitted from the electron-emitting devices.
[0017] グリッド 24は、例えば鉄 ニッケル系の金属板により厚さ 0. 1-0. 3mmに形成され ている。グリッド 24の表面は、金属板を構成する元素からなる酸化膜、例えば、 Fe3 04、 NiFe204からなる酸化膜によって被覆されている。グリッド 24の表面 24a、 24b 、並びに、各電子ビーム通過孔 26の壁面は、放電電流制限効果を有する高抵抗膜 により被覆されている。この高抵抗膜は、ガラスを主成分とする高抵抗物質で形成さ れている。 The grid 24 is formed of, for example, a 0.1-0.3 mm thick iron-nickel metal plate. The surface of the grid 24 is covered with an oxide film made of an element constituting the metal plate, for example, an oxide film made of Fe304 or NiFe204. The surfaces 24a and 24b of the grid 24 and the wall surfaces of the respective electron beam passage holes 26 are covered with a high resistance film having a discharge current limiting effect. This high-resistance film is formed of a high-resistance material whose main component is glass.
[0018] グリッド 24の第 1表面 24a上には、第 1スぺーサ 30aがー体的に立設され、隣合う電 子ビーム通過孔 26間に位置している。第 1スぺーサ 30aの先端は、ゲッタ膜 19、メタ ルバック 17、および蛍光体スクリーン 16の遮光層 11を介して第 1基板 10の内面に当 接している。グリッド 24の第 2表面 24b上には、第 2スぺーサ 30bがー体的に立設さ れ、隣合う電子ビーム通過孔 26間に位置している。第 2スぺーサ 30bの先端は第 2 基板 12の内面に当接している。ここで、各第 2スぺーサ 30bの先端は、第 2基板 12の 内面上に設けられた配線 21上に位置している。各第 1および第 2スぺーサ 30a、 30b は互いに整列して位置し、グリッド 24を両面から挟み込んだ状態でグリッド 24と一体 に形成されている。  On the first surface 24 a of the grid 24, a first spacer 30 a is standing upright, and is located between adjacent electron beam passage holes 26. The tip of the first spacer 30a is in contact with the inner surface of the first substrate 10 via the getter film 19, the metal back 17, and the light shielding layer 11 of the phosphor screen 16. On the second surface 24b of the grid 24, a second spacer 30b is standing upright, and is located between the adjacent electron beam passage holes 26. The tip of the second spacer 30b is in contact with the inner surface of the second substrate 12. Here, the tip of each second spacer 30 b is located on the wiring 21 provided on the inner surface of the second substrate 12. The first and second spacers 30a and 30b are located in alignment with each other, and are formed integrally with the grid 24 with the grid 24 sandwiched from both sides.
[0019] 各第 1スぺーサ 30aは、グリッド 24側から延出端に向かって径が小さくなつた先細テ ーパ状に形成されている。各スぺーサ 30aは、グリッド 24から延出端に向力つて交互 に積層された大径の第 1段部 50aおよび第 1段部 50aよりも径の小さな第 2段部 50b を有し、表面が凹凸のスぺーサとして形成されている。各第 1スぺーサ 30aは、 2つの 第 1段部 50aと 1つの第 2段部とを有し 3段に形成され、その高さは、例えば、 0. 75m mに形成されている。凸部となる第 1段部 50aはほぼ楕円状の横断面形状を有し、そ の径は、 1. 4mm X O. 35mmに形成されている。凹部となる第 2段部 50bはほぼ楕 円状の横断面形状を有し、その径は、 1. 35mm X O. 3mmに形成されている。第 1 および第 2段部 50a、 50bの各高さは 0. 25mmに形成れている。第 1スぺーサ 30a の径方向において、第 2段部 50bに対する第 1段部 50aの最大突出量 dlは 100 m 以下に形成されている。 [0019] Each first spacer 30a is formed in a tapered shape having a diameter decreasing from the grid 24 side toward the extending end. Each spacer 30a has a large-diameter first step 50a and a second step 50b having a smaller diameter than the first step 50a, which are alternately stacked with a force from the grid 24 toward the extending end. The surface is formed as an uneven spacer. Each first spacer 30a has two first step portions 50a and one second step portion and is formed in three steps, and the height thereof is, for example, 0.75 mm. The first step portion 50a serving as a convex portion has a substantially elliptical cross-sectional shape, and its diameter is formed to be 1.4 mm X 0.35 mm. The second step portion 50b serving as a concave portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.35 mm × 0.3 mm. First The height of each of the second step portions 50a and 50b is 0.25 mm. In the radial direction of the first spacer 30a, the maximum protrusion amount dl of the first step portion 50a with respect to the second step portion 50b is formed to be 100 m or less.
[0020] 各第 2スぺーサ 30bは、グリッド 24側カも延出端に向力つて径が小さくなつた先細テ ーパ状に形成されている。各第 2スぺーサ 30bは、グリッド 24から延出端に向かって 交互に積層された大径の第 1段部 51aおよび第 1段部 51aよりも径の小さな第 2段部 51bを有し、表面が凹凸のスぺーサとして形成されている。ここでは、各第 2スぺーサ 30bは、 2つの第 1段部 51aと 2つの第 2段部 51bとを有し 4段に形成され、その高さ は、例えば、 1. Ommに形成されている。凸部となる第 1段部 51aはほぼ楕円状の横 断面形状を有し、その径は、 1. 4mm X O. 35mmに形成されている。凹部となる第 2 段部 50bはほぼ楕円状の横断面形状を有し、その径は、 1. 35mm X O. 3mmに形 成されている。第 1および第 2段部 51a、 51bの各高さは 0. 25mmに形成れている。 第 2スぺーサ 30aの径方向において、第 2段部 51bに対する第 1段部 51aの最大突 出量 d2は 100 m以下に形成されている。  [0020] Each second spacer 30b is also formed in a tapered taper shape in which the diameter on the grid 24 side also decreases toward the extending end. Each second spacer 30b has a large-diameter first step 51a and a second step 51b smaller in diameter than the first step 51a, which are alternately stacked from the grid 24 toward the extending end. The surface is formed as an uneven spacer. Here, each second spacer 30b has two first step portions 51a and two second step portions 51b and is formed in four steps, and the height thereof is, for example, 1.Omm. ing. The first step portion 51a serving as a convex portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.4 mm X 35 mm. The second step portion 50b serving as a concave portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.35 mm X 0.3 mm. Each height of the first and second steps 51a and 51b is formed to be 0.25 mm. In the radial direction of the second spacer 30a, the maximum protrusion amount d2 of the first step portion 51a with respect to the second step portion 51b is formed to be 100 m or less.
[0021] 上記のように構成されたスぺーサ構体 22は第 1基板 10および第 2基板 12間に配 設されている。第 1および第 2スぺーサ 30a、 30bは、第 1基板 10および第 2基板 12 の内面に当接することにより、これらの基板に作用する大気圧荷重を支持し、基板間 の間隔を所定値に維持して 、る。  The spacer structure 22 configured as described above is provided between the first substrate 10 and the second substrate 12. The first and second spacers 30a and 30b contact the inner surfaces of the first substrate 10 and the second substrate 12 to support an atmospheric pressure load acting on these substrates and to set a predetermined distance between the substrates. Maintain to
[0022] SEDは、グリッド 24および第 1基板 10のメタルバック 17に電圧を印加する図示しな い電圧供給部を備えている。この電圧供給部は、グリッド 24およびメタルバック 17に それぞれ接続され、例えば、グリッド 24に 12kV、メタルバック 17に 10kVの電圧を印 加する。 SEDにおいて、画像を表示する場合、蛍光体スクリーン 16およびメタルバッ ク 17にアノード電圧が印加され、電子放出素子 18から放出された電子ビームをァノ ード電圧により加速して蛍光体スクリーン 16へ衝突させる。これにより、蛍光体スクリ ーン 16の蛍光体層が励起されて発光し、画像を表示する。  The SED includes a voltage supply unit (not shown) for applying a voltage to the grid 24 and the metal back 17 of the first substrate 10. The voltage supply unit is connected to the grid 24 and the metal back 17, respectively, and applies, for example, a voltage of 12 kV to the grid 24 and a voltage of 10 kV to the metal back 17. When displaying an image in the SED, an anode voltage is applied to the phosphor screen 16 and the metal back 17, and the electron beam emitted from the electron-emitting device 18 is accelerated by the anode voltage and collides with the phosphor screen 16. Let it. As a result, the phosphor layer of the phosphor screen 16 is excited to emit light, and an image is displayed.
[0023] 次に、以上のように構成された SEDの製造方法にっ 、て説明する。始めに、スぺ 一サ構体 22の製造方法にっ 、て説明する。  Next, a method of manufacturing the SED configured as described above will be described. First, a method of manufacturing the spacer structure 22 will be described.
図 6に示すように、スぺーサ構体 22を製造する場合、まず、所定寸法のグリッド 24、 このグリッドとほぼ同一の寸法を有した矩形板状の上型 36aおよび下型 36bを用意す る。 Fe-50%Mからなる板厚 0. 15mmの金属板を脱脂、洗浄、乾燥した後、エッチ ングにより電子ビーム通過孔 26を形成しグリッド 24とする。その後、グリッド 24全体を 酸ィ匕処理した後、電子ビーム通過孔 26の内面を含めグリッド表面に絶縁膜を形成す る。更に、絶縁膜の上に、ガラスを主成分としたコート液を塗布し、乾燥した後、焼成 することにより、高抵抗膜を形成する。 As shown in FIG. 6, when manufacturing the spacer structure 22, first, a grid 24 having a predetermined dimension is formed. A rectangular plate-shaped upper die 36a and lower die 36b having substantially the same dimensions as the grid are prepared. After a 0.15 mm thick metal plate made of Fe-50% M is degreased, washed and dried, an electron beam passage hole 26 is formed by etching to form a grid 24. After that, the entire grid 24 is subjected to oxidation treatment, and then an insulating film is formed on the grid surface including the inner surface of the electron beam passage hole 26. Further, a coating liquid containing glass as a main component is applied on the insulating film, dried, and fired to form a high-resistance film.
[0024] 上型 36aは、第 1スぺーサ 30aを成形するための多数のスぺーサ形成孔 40aを有し ている。同様に、下型 36bは、第 2スぺーサ 30bを成形するための多数のスぺーサ形 成孔 40bを有している。  [0024] The upper die 36a has a number of spacer forming holes 40a for forming the first spacer 30a. Similarly, the lower die 36b has a plurality of spacer forming holes 40b for forming the second spacer 30b.
ここで、上型 36aおよび下型 36bの構成およびその製造方法について、上型 36aを 代表して詳しく説明する。  Here, the configuration of the upper die 36a and the lower die 36b and the method of manufacturing the same will be described in detail with the upper die 36a as a representative.
[0025] 図 6に示すように、成形型としての上型 36aは、ステンレス、ポリエチレンテレフタレ ート等により矩形板状に形成された型本体 52aを備え、この型本体には、第 1スぺー サ 30aと対応した位置に多数の透孔 54aが形成されている。各透孔 54aは、スぺーサ 形成孔よりも大きな径に形成されている。各透孔 54aには、弾性変形可能な紫外線 透過材料として、例えば、シリコーンカゝらなる孔形成部 56aが設けられている。孔形成 部 56bに、第 1スぺーサ 30aに対応した形状を有する有底のスぺーサ形成孔 40aが 形成されている。これにより、スぺーサ形成孔 40aの周囲は、シリコーンによって囲ま れている。なお、孔形成部 56bに用いる弾性変形可能な紫外透過材料としては、シリ コーンに限定されることなぐポリカーボネイト、アクリル等を使用することもできる。  As shown in FIG. 6, the upper die 36a as a molding die includes a die main body 52a formed in a rectangular plate shape from stainless steel, polyethylene terephthalate, or the like. Numerous through holes 54a are formed at positions corresponding to the spacers 30a. Each through hole 54a is formed to have a larger diameter than the spacer forming hole. Each through hole 54a is provided with a hole forming portion 56a made of, for example, silicone resin as an elastically deformable ultraviolet light transmitting material. A bottomed spacer forming hole 40a having a shape corresponding to the first spacer 30a is formed in the hole forming portion 56b. Thus, the periphery of the spacer forming hole 40a is surrounded by the silicone. In addition, as the elastically deformable ultraviolet transmitting material used for the hole forming portion 56b, it is possible to use polycarbonate, acrylic or the like, which is not limited to silicon.
[0026] このような上型 36aを製造する場合、図 7 (a)に示すように、まず、多数のスぺーサ 形成孔が高い精度で形成されたマスタ雌型 60を用意する。このマスタ雌型 60は、複 数枚、例えば、 4枚の金属板を積層して構成され、これらの金属板には、レーザー、 エッチング等により、第 1スぺーサ 30aに対応した形状のスぺーサ形成孔 61が高い 精度で形成されている。続いて、図 7 (a)および 7 (b)に示すように、マスタ雌型 60の スぺーサ形成孔 61にシリコーン等の型形成材料を充填し、スぺーサ形成孔に対応 する多数の凸部 63を有したマスタ雄型 62を形成する。なお、マスタ雄型 62は切削に より形成することちでさる。 [0027] 次に、図 7 (c)に示すように、多数の透孔 54aが形成された型本体 52aを用意する。 型本体 52aにマスタ雄型 62を装着し、マスタ雄型の各凸部 63が型本体の各透孔 54 a内にほぼ同軸的に配置されるように位置合わせする。 When manufacturing such an upper mold 36a, first, as shown in FIG. 7A, a master female mold 60 in which a number of spacer forming holes are formed with high accuracy is prepared. The master female mold 60 is formed by laminating a plurality of, for example, four metal plates, and the metal plates are formed on the metal plates by laser, etching, or the like, in a shape corresponding to the first spacer 30a. The spacer forming hole 61 is formed with high precision. Subsequently, as shown in FIGS. 7 (a) and 7 (b), a spacer forming hole 61 of the master female mold 60 is filled with a mold forming material such as silicone, and a large number of spacers corresponding to the spacer forming holes are filled. A master male mold 62 having a convex portion 63 is formed. Note that the master male mold 62 is formed by cutting. Next, as shown in FIG. 7 (c), a mold body 52a having a large number of through holes 54a is prepared. The master male mold 62 is mounted on the mold main body 52a, and the master male mold 62 is positioned so that the respective convex portions 63 are disposed substantially coaxially in the respective through holes 54a of the mold main body.
この状態で、図 7 (d)に示すように、型本体 52aの各透孔 54aに室温硬化型のシリコ ーンを充填する。シリコーンが硬化した後、マスタ雄型 62を離型する。これにより、図 7 (e)に示すように、スぺーサ形成孔 40aを規定した孔形成部 56aを一体に備えた上 型 36aが得られる。  In this state, as shown in FIG. 7D, each through-hole 54a of the mold body 52a is filled with a room-temperature curing type silicone. After the silicone has cured, the master male mold 62 is released. As a result, as shown in FIG. 7 (e), an upper die 36a integrally having the hole forming portion 56a defining the spacer forming hole 40a is obtained.
一方、下型 36bについても、上型 36aと同様に構成され、多数の透孔 54bが形成さ れた型本体 52b、シリコーンにより形成され各透孔に設けられた孔形成部 56b、およ び孔形成部に形成され第 2スぺーサに対応した有底のスぺーサ形成孔 40bを備えて いる。そして、下型 36bは上記上型 36aと同様の方法で製造される。  On the other hand, the lower mold 36b has the same structure as the upper mold 36a, and has a mold body 52b having a large number of through holes 54b, a hole forming portion 56b formed of silicone and provided in each through hole, and A bottomed spacer forming hole 40b formed in the hole forming portion and corresponding to the second spacer is provided. The lower mold 36b is manufactured in the same manner as the upper mold 36a.
[0028] 上記のように構成された上型 36aおよび下型 36bを用いてスぺーサ構体を作成す る場合、上型 36aのスぺーサ形成孔 40aおよび下型 26bのスぺーサ形成孔 40bにそ れぞれスぺーサ形成材料 46を充填する。スぺーサ形成材料 46としては、少なくとも 紫外線硬化型のバインダ (有機成分)およびガラスフィラーを含有したガラスペースト を用いる。ガラスペーストの比重、粘度は適宜選択する。  When a spacer structure is formed using the upper die 36a and the lower die 36b configured as described above, the spacer forming hole 40a of the upper die 36a and the spacer forming hole of the lower die 26b. The spacer forming material 46 is filled in each of the spacers 40b. As the spacer forming material 46, a glass paste containing at least a UV-curable binder (organic component) and a glass filler is used. The specific gravity and viscosity of the glass paste are appropriately selected.
[0029] 続いて、図 8に示すように、スぺーサ形成材料 46の充填されたスぺーサ形成孔 40a が電子ビーム通過孔 26間に位置するように、上型 36aをグリッド 24に対して位置決 めしグリッド 24の第 1表面 24aに密着させる。同様に、下型 36bを、各スぺーサ形成 孔 40bが電子ビーム通過孔 26間に位置するように位置決めし、グリッド 24の第 2表面 24bに密着させる。これにより、グリッド 24、上型 36aおよび下型 36bからなる組立体 42を構成する。組立体 42において、上型 36aのスぺーサ形成孔 40aと下型 36bのス ぺーサ形成孔 40bとは、グリッド 24を挟んで対向して配列されて 、る。  Subsequently, as shown in FIG. 8, the upper die 36 a is moved with respect to the grid 24 so that the spacer forming holes 40 a filled with the spacer forming material 46 are located between the electron beam passing holes 26. And make contact with the first surface 24a of the grid 24. Similarly, the lower die 36b is positioned so that each spacer forming hole 40b is located between the electron beam passing holes 26, and is brought into close contact with the second surface 24b of the grid 24. Thus, an assembly 42 including the grid 24, the upper mold 36a and the lower mold 36b is formed. In the assembly 42, the spacer forming holes 40a of the upper die 36a and the spacer forming holes 40b of the lower die 36b are arranged to face each other with the grid 24 interposed therebetween.
[0030] 次 、で、図 8に示すように、充填されたスぺーサ形成材料 46に対し、例えば、紫外 線ランプ等を用いて上型 36aおよび下型 36bの外面側力も紫外線 (UV)を照射し、 スぺーサ形成材料を UV硬化させる。その際、スぺーサ形成材料 46が充填されてい るスぺーサ形成孔 40a、 40bの周囲は、紫外線透過材料としてのシリコーンで形成さ れた孔形成部 56a、 56bによって囲まれている。そのため、紫外線は、スぺーサ形成 材料 46に直接、および孔形成部 56a、 56bを透過して照射される。従って、充填され たスぺーサ形成材料 46をその内部まで確実に硬化させることができる。 Next, as shown in FIG. 8, the outer surface forces of the upper mold 36a and the lower mold 36b are also changed to ultraviolet (UV) with respect to the filled spacer forming material 46 by using, for example, an ultraviolet lamp or the like. To cure the spacer forming material by UV. At this time, the periphery of the spacer forming holes 40a and 40b filled with the spacer forming material 46 is surrounded by hole forming portions 56a and 56b formed of silicone as an ultraviolet transmitting material. Therefore, ultraviolet rays form spacers. The material 46 is irradiated directly and through the hole forming portions 56a and 56b. Therefore, the filled spacer forming material 46 can be surely cured to the inside thereof.
[0031] その後、図 9に示すように、硬化したスぺーサ形成材料 46をグリッド 24上に残すよう に、上型 36aおよび下型 36bをグリッド 24から離型する。硬化したスぺーサ形成材料 46、つまり、第 1および第 2スぺーサ 30a、 30bは、それぞれ第 1段部および第 2段部 を有した凹凸状に形成されている。そして、スぺーサ形成孔 40a、 40bを規定してい る孔形成部 56a、 56bは弾性変形可能なシリコーンによって形成されている。そのた め、図 10に示すように、上型 36aの離型時、孔形成部 56aは硬化した第 1スぺーサ 3 Oaの凹凸に沿って弾性変形する。従って、第 1スぺーサ 30aが凹凸に形成されてい る場合でも、これらの第 1スぺーサを損傷することなぐ上型 36aを容易に離型するこ とができる。下型 36bについても同様に、形成された第 2スぺーサ 30bを損傷すること なく容易に離型することができる。  Thereafter, as shown in FIG. 9, the upper mold 36a and the lower mold 36b are released from the grid 24 so that the hardened spacer forming material 46 is left on the grid 24. The hardened spacer forming material 46, that is, the first and second spacers 30a and 30b are formed in an uneven shape having a first step portion and a second step portion, respectively. The hole forming portions 56a and 56b that define the spacer forming holes 40a and 40b are formed of elastically deformable silicone. Therefore, as shown in FIG. 10, when the upper die 36a is released, the hole forming portion 56a is elastically deformed along the unevenness of the hardened first spacer 30a. Therefore, even when the first spacer 30a is formed unevenly, the upper die 36a can be easily released without damaging the first spacer. Similarly, the lower die 36b can be easily released without damaging the formed second spacer 30b.
[0032] 次に、スぺーサ形成材料 46が設けられたグリッド 24を加熱炉内で熱処理し、スぺ ーサ形成材料内力もバインダを飛ばした後、約 500— 550°Cで 30分一 1時間、スぺ ーサ形成材料を本焼成しガラス化する。これにより、グリッド 24上に第 1および第 2ス ぺーサ 30a、 30bが作り込まれたスぺーサ構体 22が得られる。  Next, the grid 24 on which the spacer forming material 46 is provided is heat-treated in a heating furnace, and the inner force of the spacer forming material is also reduced by blowing off the binder, and then at about 500-550 ° C. for 30 minutes. The spacer forming material is fully baked and vitrified for 1 hour. As a result, a spacer structure 22 in which the first and second spacers 30a and 30b are formed on the grid 24 is obtained.
[0033] 一方、 SEDの製造においては、予め、蛍光体スクリーン 16およびメタルバック 17の 設けられた第 1基板 10と、電子放出素子 18および配線 21が設けられているとともに 側壁 14が接合された第 2基板 12と、を用意しておく。  On the other hand, in the manufacture of the SED, the first substrate 10 on which the phosphor screen 16 and the metal back 17 are provided, the electron-emitting device 18 and the wiring 21 are provided in advance, and the side wall 14 is joined. The second substrate 12 is prepared.
[0034] 続いて、上記のようにして得られたスぺーサ構体 22を第 2基板 12上に位置決め配 置する。この状態で、第 1基板 10、第 2基板 12、およびスぺーサ構体 22を真空チヤ ンバ内に配置し、真空チャンバ内を真空排気した後、側壁 14を介して第 1基板を第 2 基板に接合する。これにより、スぺーサ構体 22を備えた SEDが製造される。  Subsequently, the spacer structure 22 obtained as described above is positioned and arranged on the second substrate 12. In this state, the first substrate 10, the second substrate 12, and the spacer structure 22 are arranged in a vacuum chamber, and the inside of the vacuum chamber is evacuated. To join. As a result, an SED having the spacer structure 22 is manufactured.
[0035] 以上のように構成された SEDによれば、スぺーサ構体を構成して 、る第 1および第 2スぺーサ 30a、 30bは、互いに径の異なる第 1段部および第 2段部をそれぞれ有し 、表面が凹凸に形成されている。そのため、スぺーサ表面に対する反射電子、 2次電 子の衝突を抑制し、スぺーサの帯電に起因する耐放電電圧の低下および電子ビー ムの軌道ずれを抑制することができる。高さが同一で段部を持たないスぺーサを備え た SEDと本実施形態に係る SEDと比較したところ、本実施形態に係る SEDは、放電 電圧が約 20%上昇した。また、本実施形態に係る SEDは、電子ビームの軌道ずれ が約 30%低減した。これにより、耐電圧特性および表示品位の向上した画像表示装 置が得られる。 [0035] According to the SED configured as described above, the first and second spacers 30a and 30b that form the spacer structure are different in diameter from each other in the first and second steps. And the surface is formed unevenly. Therefore, it is possible to suppress the collision of the reflected electrons and the secondary electrons with the spacer surface, and to suppress the reduction of the discharge withstand voltage and the orbital deviation of the electron beam due to the charging of the spacer. Equipped with spacers with the same height and no steps When the SED according to the present embodiment was compared with the SED according to the present embodiment, the discharge voltage of the SED according to the present embodiment increased by about 20%. In the SED according to the present embodiment, the orbital deviation of the electron beam was reduced by about 30%. Thus, an image display device with improved withstand voltage characteristics and display quality can be obtained.
[0036] また、上述した製造方法によれば、第 1および第 2段差部を有し表面が凹凸のスぺ ーサを形成する場合においても、孔形成部 56a、 56bの弾性変形により上型および 下型を容易に離型することができ、成形型を溶解する必要がない。そのため、成形型 の溶解に伴うスぺーサのダメージや汚染を生じるこがなぐ同時に、成形型を多数回 、繰り返して使用することができる。以上のことから、画像表示装置に用いるスぺーサ 構体を安価に製造することができる。  Further, according to the above-described manufacturing method, even when a spacer having first and second step portions and having an uneven surface is formed, the upper mold is elastically deformed by the hole forming portions 56a and 56b. And The lower mold can be released easily and there is no need to dissolve the mold. Therefore, it is possible to prevent the spacer from being damaged or contaminated by the melting of the mold, and at the same time, the mold can be repeatedly used many times. As described above, the spacer structure used for the image display device can be manufactured at low cost.
[0037] 前述した実施形態において、スぺーサ構体 22は、第 1および第 2スぺーサおよびグ リツドを一体的に備えた構成としたが、第 2スぺーサは第 2基板 12上に形成する構成 としてもよい。また、スぺーサ構体は、グリッドおよび第 2スぺーサのみを備え、グリッド が第 1基板に接触した構成としてもよい。  In the above-described embodiment, the spacer assembly 22 has a configuration in which the first and second spacers and the grid are integrally provided, but the second spacer is provided on the second substrate 12. It may be configured to be formed. Further, the spacer structure may include only the grid and the second spacer, and the grid may be in contact with the first substrate.
[0038] 図 11および図 12に示すように、この発明の第 2の実施形態に係る SEDによれば、 スぺーサ構体 22は、矩形状の金属板力もなるグリッド 24と、グリッドの一方の表面の みに一体的に立設された多数の柱状のスぺーサ 30と、を有している。グリッド 24は第 1基板 10の内面と対向した第 1表面 24aおよび第 2基板 12の内面と対向した第 2表 面 24bを有し、これらの基板と平行に配置されている。グリッド 24には、エッチング等 により多数の電子ビーム通過孔 26が形成されている。電子ビーム通過孔 26は、それ ぞれ電子放出素子 18と対向して配列され、電子放出素子から放出された電子ビー ムを透過する。  As shown in FIGS. 11 and 12, according to the SED according to the second embodiment of the present invention, the spacer assembly 22 includes a grid 24 having a rectangular metal plate force, and one of the grids. A large number of columnar spacers 30 erected integrally only on the surface. The grid 24 has a first surface 24a facing the inner surface of the first substrate 10 and a second surface 24b facing the inner surface of the second substrate 12, and is arranged in parallel with these substrates. A large number of electron beam passage holes 26 are formed in the grid 24 by etching or the like. The electron beam passage holes 26 are arranged to face the electron-emitting devices 18, respectively, and transmit the electron beams emitted from the electron-emitting devices.
[0039] グリッド 24の第 1および第 2表面 24a、 24b、各電子ビーム通過孔 26の内壁面は、 絶縁層として、ガラス、セラミック等を主成分とした絶縁性物質、例えば、 Li系のアル カリホウ珪酸ガラス力もなる厚さ約 10 mの高抵抗膜 43により被覆されている。そし て、グリッド 24は、その第 1表面 24aが、ゲッタ膜、メタノレバック 17、蛍光体スクリーン 1 6を介して、第 1基板 10の内面に面接触した状態で設けられている。グリッド 24に設 けられた電子ビーム通過孔 26は、蛍光体スクリーン 16の蛍光体層 R、 G、 B、および 第 2基板 12上の電子放出素子 18と対向している。これにより、各電子放出素子 18は 、電子ビーム通過孔 26を通して、対応する蛍光体層と対向している。 [0039] The first and second surfaces 24a and 24b of the grid 24 and the inner wall surface of each electron beam passage hole 26 serve as an insulating layer as an insulating material mainly composed of glass, ceramic, or the like, for example, a Li-based alloy. It is covered with a high-resistance film 43 having a thickness of about 10 m, which is also a potassium borosilicate glass. The grid 24 is provided such that the first surface 24a is in surface contact with the inner surface of the first substrate 10 via the getter film, the methanol back 17, and the phosphor screen 16. The electron beam passage holes 26 formed in the grid 24 are provided with phosphor layers R, G, B, and It faces the electron-emitting device 18 on the second substrate 12. Thus, each electron-emitting device 18 faces the corresponding phosphor layer through the electron beam passage hole 26.
[0040] グリッド 24の第 2表面 24b上には複数のスぺーサ 30がー体的に立設されている。  A plurality of spacers 30 are erected on the second surface 24b of the grid 24.
各スぺーサ 30の延出端は、第 2基板 12の内面、ここでは、第 2基板 12の内面上に設 けられた配線 21上に当接している。スぺーサ 30の各々は、グリッド 24側カも延出端 に向力つて径が小さくなつた先細テーパ状に形成されている。  The extended end of each spacer 30 is in contact with the inner surface of the second substrate 12, here, the wiring 21 provided on the inner surface of the second substrate 12. Each of the spacers 30 is formed in a tapered taper shape in which the diameter of the grid-side power also decreases toward the extending end.
[0041] 各スぺーサ 30は、グリッド 24から延出端に向力つて交互に積層された大径の第 1 段部 50aおよび第 1段部 50aよりも径の小さな第 2段部 50bを有し、表面が凹凸のス ぺーサとして形成されている。ここでは、各スぺーサ 30は、 2つの第 1段部 50aと 2つ の第 2段部 50bとを有し 4段に形成され、その高さは、例えば、 1. 4mmに形成されて いる。凸部となる第 1段部 50aはほぼ楕円状の横断面形状を有し、その径は、 1. 4m m X O. 35mmに形成されている。凹部となる第 2段部 50bはほぼ楕円状の横断面形 状を有し、その径は、 1. 35mm X O. 3mmに形成されている。第 1および第 2段部 5 Oa、 50bの各高さは 0. 35mmに形成れている。第 2スぺーサ 30aの径方向において 、第 2段部 50bに対する第 1段部 50aの最大突出量は 100 m以下に形成されてい る。  Each spacer 30 includes a large-diameter first step 50a and a second step 50b having a smaller diameter than the first step 50a, which are alternately stacked from the grid 24 toward the extending end. And the surface is formed as an uneven spacer. Here, each spacer 30 has two first step portions 50a and two second step portions 50b and is formed in four steps, and the height thereof is, for example, 1.4 mm. I have. The first step portion 50a serving as a convex portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.4 mm x 0.35 mm. The second step portion 50b serving as a concave portion has a substantially elliptical cross-sectional shape, and has a diameter of 1.35 mm X 0.3 mm. Each height of the first and second steps 5 Oa and 50 b is formed to 0.35 mm. In the radial direction of the second spacer 30a, the maximum protrusion amount of the first step portion 50a with respect to the second step portion 50b is formed to be 100 m or less.
[0042] 上記のように構成されたスぺーサ構体 22は、グリッド 24が第 1基板 10に面接触し、 スぺーサ 30の延出端が第 2基板 12の内面に当接することにより、これらの基板に作 用する大気圧荷重を支持し、基板間の間隔を所定値に維持している。  The spacer structure 22 configured as described above has a grid 24 in surface contact with the first substrate 10, and an extended end of the spacer 30 abutting on the inner surface of the second substrate 12. The atmospheric load applied to these substrates is supported, and the distance between the substrates is maintained at a predetermined value.
[0043] 第 2の実施形態において、他の構成は前述した第 1の実施形態と同一であり、同一 の部分には同一の参照符号を付してその詳細な説明は省略する。第 2の実施形態 に係る SEDおよびそのスぺーサ構体 22は前述した第 1の実施形態に係る製造方法 と同様の製造方法によって製造することができる。そして、第 2の実施形態においても 、前述した第 1の実施形態と同様の作用効果を得ることができる。  In the second embodiment, other configurations are the same as those of the above-described first embodiment, and the same portions are denoted by the same reference characters and detailed description thereof will not be repeated. The SED according to the second embodiment and its spacer structure 22 can be manufactured by the same manufacturing method as the manufacturing method according to the first embodiment. Also, in the second embodiment, the same operation and effect as those in the first embodiment can be obtained.
[0044] 上述した実施の形態では、スぺーサ形成材料として紫外線硬化材料を用いたが、 熱硬化型のスぺーサ形成材料を用いることもできる。すなわち、スぺーサ形成材料 4 6として、例えば、熱硬化型のバインダおよびガラスフィラーを含有したガラスペースト を用いることができる。 [0045] この場合、前述した第 1の実施形態と同様に、上型 36aおよび下型 36bのスぺーサ 形成孔にスぺーサ形成材料 46を充填した後、グリッド 24、上型 36aおよび下型 36b を用いて組立体 42を構成する。続いて、組立体 42を加熱してスぺーサ形成材料を 加熱硬化させた後、グリッド 24から上型 36aおよび下型 36bを分離する。 In the above-described embodiment, an ultraviolet curable material is used as the spacer forming material. However, a thermosetting type spacer forming material may be used. That is, as the spacer forming material 46, for example, a glass paste containing a thermosetting binder and a glass filler can be used. In this case, similarly to the above-described first embodiment, after filling the spacer forming material 46 into the spacer forming holes of the upper die 36a and the lower die 36b, the grid 24, the upper die 36a and the lower die 36a are formed. The assembly 42 is formed using the mold 36b. Subsequently, after the assembly 42 is heated to harden the spacer forming material, the upper mold 36a and the lower mold 36b are separated from the grid 24.
[0046] 次に、スぺーサ形成材料 46が設置されているグリッド 24を加熱炉内で熱処理し、ス ぺーサ形成材料内力もバインダを飛ばした後、約 500— 550°Cで 30分一 1時間、ス ぺーサ形成材料を本焼成する。これにより、グリッド 24上に第 1および第 2スぺーサ 3 Oa、 30bが作り込まれたスぺーサ構体 22が得られる。  Next, the grid 24 on which the spacer forming material 46 is installed is heat-treated in a heating furnace, and the inner force of the spacer forming material is also reduced by blowing off the binder. Mainly bake the spacer forming material for 1 hour. As a result, a spacer structure 22 in which the first and second spacers 30a and 30b are formed on the grid 24 is obtained.
[0047] この方式の場合、スぺーサ形成材料 46を加熱硬化する際、グリッド 24、上型 36a、 下型 36bの温度分布、熱膨張率の差から、グリッド表面と上型および下方表面との界 面において面方向の位置ずれが生じ易い。しかしながら、本実施の形態によれば、 上型 36aおよび下型 36bにおいて、スぺーサ形成孔 40a、 40bの周囲に設けられた 孔形成部 56a、 56bは、弾性材料としてのシリコーンにより形成されている。そのため 、グリッドと成形型との間で面方向の位置ずれが生じた場合でも、孔形成部 56a、 56 bが弾性変形することにより、加熱硬化されたスぺーサ形成材料 46に作用する負荷 を吸収することができる。従って、スぺーサ形成材料の加熱硬化を行う際、急加熱お よび急冷却が可能となり、製造効率の向上を図ることができる。  In the case of this method, when the spacer forming material 46 is heated and hardened, the difference between the temperature distribution and the coefficient of thermal expansion of the grid 24, the upper mold 36a, and the lower mold 36b causes a difference between the grid surface, the upper mold, and the lower surface. The surface is likely to be misaligned in the surface direction. However, according to the present embodiment, in upper die 36a and lower die 36b, hole forming portions 56a and 56b provided around spacer forming holes 40a and 40b are formed of silicone as an elastic material. I have. Therefore, even when the grid and the mold are misaligned in the surface direction, the load acting on the heat-cured spacer forming material 46 is reduced by the elastic deformation of the hole forming portions 56a and 56b. Can be absorbed. Therefore, when heating and curing the spacer-forming material, rapid heating and rapid cooling are possible, and the production efficiency can be improved.
[0048] 本発明は上記実施形態そのままに限定されるものではなぐ実施段階ではその要 旨を逸脱しない範囲で構成要素を変形して具体ィ匕できる。また、上記実施形態に開 示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる 。例えば、実施形態に示される全構成要素カゝら幾つかの構成要素を削除してもよい 。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。  [0048] The present invention is not limited to the above-described embodiment as it is, and may be embodied by modifying the constituent elements in an implementation stage without departing from the scope of the invention. In addition, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiment. For example, some components, such as all the components shown in the embodiment, may be deleted. Furthermore, constituent elements over different embodiments may be appropriately combined.
[0049] スぺーサの径、高さ、段数、その他の構成要素の寸法、材質等は上述した実施の 形態に限定されることなぐ必要に応じて適宜選択可能である。この発明は、電子源 として表面伝導型電子放出素子を用いたものに限らず、電界放出型、カーボンナノ チューブ等の他の電子源を用 、た画像表示装置にも適用可能である。  [0049] The diameter, height, number of steps, dimensions, materials, and the like of the spacer can be appropriately selected as required without being limited to the above-described embodiment. The present invention is not limited to the one using a surface conduction electron-emitting device as an electron source, but is also applicable to an image display device using another electron source such as a field emission type or a carbon nanotube.
前述した第 1の実施形態において、スぺーサ構体の第 1および第 2スぺーサはいず れも第 1および第 2段部を有した凹凸形状としたが、第 1および第 2スぺーサのいず れか一方のみを凹凸形状としてもよい。スぺーサにおける第 1段部および第 2段部の 断面形状は楕円形に限らず他の形状としてもよぐ更に、第 1段部および第 2段部は 、互いに異なる断面形状に形成してもよい。 In the above-described first embodiment, the first and second spacers of the spacer structure are each formed into an uneven shape having first and second step portions. Nozomi Only one of them may have an uneven shape. The cross-sectional shape of the first step portion and the second step portion of the spacer is not limited to the elliptical shape, and may be other shapes.Furthermore, the first step portion and the second step portion may be formed in different cross-sectional shapes. Is also good.
産業上の利用可能性 Industrial applicability
この発明によれば、スぺーサ表面に対する反射電子、 2次電子の衝突を抑制し、ス ぺーサの帯電に起因する耐放電電圧の低下および電子ビーム軌道の偏移を抑制す ることができる。これにより、耐電圧特性および表示品位の向上した画像表示装置が 得られる。また、第 1および第 2段差部を有し表面が凹凸のスぺーサを形成する場合 においても、孔形成部の弾性変形により成形型を容易に離型することができ、成形型 を溶解する必要がない。そのため、スぺーサのダメージや汚染を生じるこがなぐ画 像表示装置に用いるスぺーサ構体を安価に製造することが可能となる。  According to the present invention, it is possible to suppress the collision of the reflected electrons and the secondary electrons with the spacer surface, and to suppress the reduction of the discharge withstand voltage and the shift of the electron beam orbit due to the charging of the spacer. . Thereby, an image display device with improved withstand voltage characteristics and display quality can be obtained. Further, even when a spacer having the first and second step portions and having an uneven surface is formed, the mold can be easily released by elastic deformation of the hole forming portion, and the mold is melted. No need. Therefore, a spacer structure used for an image display device which does not cause damage or contamination of the spacer can be manufactured at low cost.

Claims

請求の範囲 The scope of the claims
[1] 画像表示面が形成された第 1基板と、  [1] a first substrate on which an image display surface is formed,
前記第 1基板と所定の隙間を置いて対向配置されているとともに前記画像表示面 を励起する複数の電子放出源が設けられた第 2基板と、  A second substrate provided with a plurality of electron emission sources that are opposed to the first substrate with a predetermined gap therebetween and excite the image display surface;
前記第 1および第 2基板の間に設けられ前記第 1および第 2基板に作用する大気 圧荷重を支持するスぺーサ構体と、を備え、  A spacer structure provided between the first and second substrates and supporting an atmospheric pressure load acting on the first and second substrates,
前記スぺーサ構体は、前記第 1および第 2基板に対向しているとともに、それぞれ 前記電子放出源に対向した複数の電子ビーム通過孔を有した板状のグリッドと、前 記グリッドの少なくとも一方の表面上に立設された複数のスぺーサと、を有し、前記ス ぺーサは、前記グリッドから延出端に向かって交互に積層された大径の第 1段部およ び第 1段部よりも径の小さな第 2段部を有している画像表示装置。  The spacer structure faces the first and second substrates, and has a plate-like grid having a plurality of electron beam passage holes facing the electron emission source, and at least one of the grids. A plurality of spacers erected on the surface of the first and second spacers, wherein the spacers have a large-diameter first step portion and a second spacer that are alternately stacked from the grid toward the extending end. An image display device having a second step portion having a smaller diameter than the first step portion.
[2] 前記グリッドは、前記第 1基板に対向した第 1表面と、前記第 2基板に対向した第 2 表面と、を有し、前記スぺーサは、前記第 1表面上に立設された複数の第 1スぺーサ と、前記第 2表面上に立設された複数の第 2スぺーサと、を含み、前記第 1および第 2 スぺーサの少なくとも一方は、前記第 1および第 2段部を備えている請求項 1に記載 の画像表示装置。 [2] The grid has a first surface facing the first substrate, and a second surface facing the second substrate, and the spacer is erected on the first surface. A plurality of first spacers, and a plurality of second spacers erected on the second surface, wherein at least one of the first and second spacers includes the first and second spacers. 2. The image display device according to claim 1, further comprising a second step portion.
[3] 前記グリッドは、前記第 1基板に当接した第 1表面と、前記第 2基板に対向した第 2 表面とを有し、前記スぺーサは、前記第 2表面上に立設されている請求項 1に記載の 画像表示装置。  [3] The grid has a first surface in contact with the first substrate, and a second surface facing the second substrate, and the spacer is erected on the second surface. The image display device according to claim 1, wherein
[4] 前記スぺーサの径方向において、前記第 1段部に対する第 2段部の最大突出量は 100 m以下に形成されている請求項 1又は 2に記載の画像表示装置。  4. The image display device according to claim 1, wherein a maximum protrusion amount of the second step portion with respect to the first step portion is formed to be 100 m or less in a radial direction of the spacer.
[5] 複数のビーム通過孔を有した板状のグリッドと、前記グリッドの表面上に立設されて いるとともに、それぞれ前記グリッドから延出端に向力つて交互に積層された大径の 第 1段部および第 1段部よりも径の小さな第 2段部を有した複数のスぺーサと、を備え 、画像表示装置に用いられるスぺーサ構体の製造方法にぉ 、て、  [5] A plate-like grid having a plurality of beam passage holes, and a large-diameter second grid erected on the surface of the grid and alternately stacked with a force directed from the grid to an extending end. A plurality of spacers having a first step portion and a second step portion having a smaller diameter than the first step portion, and a method of manufacturing a spacer structure used in an image display device.
複数のビーム通過孔が形成された板状のグリッドを用意し、  Prepare a plate-like grid with multiple beam passage holes formed,
複数のスぺーサ形成孔と、各スぺーサ形成孔の周囲に位置し前記スぺーサに対応 した第 1および第 2段部を有したスぺーサ形成孔を規定しているとともに弾性変形可 能な紫外線透過材料で形成された複数の孔形成部と、を備えた成形型を用意し、 前記成形型の各スぺーサ形成孔に紫外線硬化性を有したスぺーサ形成材料を充 填し、 A plurality of spacer forming holes and a spacer forming hole which is located around each spacer forming hole and has first and second steps corresponding to the spacers are defined and elastically deformed. Yes A mold having a plurality of hole forming portions formed of a functional ultraviolet ray transmitting material is prepared, and each spacer forming hole of the mold is filled with a spacer forming material having ultraviolet curability. And
前記スぺーサ形成材料が充填された成形型を前記グリッドの表面に密着させて成 形型およびグリッドからなる組立体を形成し、  A mold filled with the spacer forming material is brought into close contact with the surface of the grid to form an assembly including the mold and the grid,
前記組立体の成形型を通して前記スぺーサ形成材料に紫外線を照射し、前記ス ぺーサ形成材料を硬化させ、  Irradiating ultraviolet light to the spacer forming material through a mold of the assembly, and curing the spacer forming material;
前記孔形成部を弾性変形させながら前記成形型を前記グリッドから離型し、前記硬 化したスぺーサ形成材料をグリッド上に設置するスぺーサ構体の製造方法。  A method of manufacturing a spacer structure, wherein the mold is released from the grid while elastically deforming the hole forming portion, and the hardened spacer forming material is placed on the grid.
[6] 前記スぺーサ形成材料として、少なくとも紫外線硬化型のノインダおよびガラスフィ ラーを含有したガラスペーストを用いることを特徴とする請求項 5に記載のスぺーサ構 体の製造方法。  6. The method for producing a spacer structure according to claim 5, wherein a glass paste containing at least a UV-curable binder and a glass filler is used as the spacer forming material.
[7] 複数のビーム通過孔を有した板状のグリッドと、前記グリッドの表面上に立設されて いるとともに、それぞれ前記グリッドから延出端に向力つて交互に積層された大径の 第 1段部および第 1段部よりも径の小さな第 2段部を有した複数のスぺーサと、を備え 、画像表示装置に用いられるスぺーサ構体の製造方法にぉ 、て、  [7] A plate-shaped grid having a plurality of beam passage holes, and a large-diameter second grid which is erected on the surface of the grid and alternately stacked with a force directed from the grid to an extending end. A plurality of spacers having a first step portion and a second step portion having a smaller diameter than the first step portion, and a method of manufacturing a spacer structure used in an image display device.
複数のビーム通過孔が形成された板状のグリッドを用意し、  Prepare a plate-like grid with multiple beam passage holes formed,
複数のスぺーサ形成孔と、各スぺーサ形成孔の周囲に位置し前記スぺーサに対応 した第 1および第 2段部を有したスぺーサ形成孔を規定しているとともに弾性変形可 能な材料で形成された複数の孔形成部と、を備えた成形型を用意し、  A plurality of spacer forming holes and a spacer forming hole which is located around each spacer forming hole and has first and second steps corresponding to the spacers are defined and elastically deformed. Prepare a mold having a plurality of hole forming portions formed of a possible material,
前記成形型の各スぺーサ形成孔に熱硬化性を有したスぺーサ形成材料を充填し、 前記スぺーサ形成材料が充填された成形型を前記グリッドの表面に密着させて成 形型およびグリッドからなる組立体を形成し、  Each spacer forming hole of the mold is filled with a thermosetting spacer forming material, and the mold filled with the spacer forming material is brought into close contact with the surface of the grid to form a mold. And an assembly consisting of a grid and
前記充填されたスぺーサ形成材料を加熱して硬化させ、  Heating and curing the filled spacer forming material,
前記孔形成部を弾性変形させながら前記成形型を前記グリッドから離型し、前記硬 化したスぺーサ形成材料をグリッド上に設置するスぺーサ構体の製造方法。  A method of manufacturing a spacer structure, wherein the mold is released from the grid while elastically deforming the hole forming portion, and the hardened spacer forming material is placed on the grid.
[8] 前記成形型を離型した後、前記スぺーサ形成材料を焼成する請求項 5な ヽし 7の V、ずれか 1項に記載のスぺーサ構体の製造方法。 前記グリッドとして、表面に酸化膜が形成された金属板を用いることを特徴とする請 求項 5な!、し 7の!、ずれか 1項に記載のスぺーサ構体の製造方法。 8. The method for producing a spacer structure according to claim 5, wherein the spacer forming material is fired after releasing the mold. The method for producing a spacer structure according to claim 5, wherein a metal plate having an oxide film formed on a surface thereof is used as the grid.
PCT/JP2004/013546 2003-09-25 2004-09-16 Image display and spacer structural body producing method WO2005031786A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003333949A JP2005100843A (en) 2003-09-25 2003-09-25 Image display device, and method for manufacturing spacer structure
JP2003-333949 2003-09-25

Publications (1)

Publication Number Publication Date
WO2005031786A1 true WO2005031786A1 (en) 2005-04-07

Family

ID=34386009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013546 WO2005031786A1 (en) 2003-09-25 2004-09-16 Image display and spacer structural body producing method

Country Status (3)

Country Link
JP (1) JP2005100843A (en)
TW (1) TWI246102B (en)
WO (1) WO2005031786A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311607A (en) * 1999-02-25 2000-11-07 Canon Inc Manufacture of spacer for electron beam device, the spacer, and the electron beam device using the spacer
JP2001266775A (en) * 2000-03-22 2001-09-28 Nippon Sheet Glass Co Ltd Spacer for electron beam excitation display and its production
JP2003031125A (en) * 2001-07-17 2003-01-31 Toshiba Corp Manufacturing method of spacer assembly used for plane display device
JP2003217479A (en) * 2002-01-25 2003-07-31 Canon Inc Electron beam device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311607A (en) * 1999-02-25 2000-11-07 Canon Inc Manufacture of spacer for electron beam device, the spacer, and the electron beam device using the spacer
JP2001266775A (en) * 2000-03-22 2001-09-28 Nippon Sheet Glass Co Ltd Spacer for electron beam excitation display and its production
JP2003031125A (en) * 2001-07-17 2003-01-31 Toshiba Corp Manufacturing method of spacer assembly used for plane display device
JP2003217479A (en) * 2002-01-25 2003-07-31 Canon Inc Electron beam device

Also Published As

Publication number Publication date
TW200514113A (en) 2005-04-16
TWI246102B (en) 2005-12-21
JP2005100843A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
KR100730677B1 (en) Image disply unit and production method for spacer assembly used in image display unit
US20060249734A1 (en) Image display device and method of manufacturing the same
WO2005031786A1 (en) Image display and spacer structural body producing method
WO2006035713A1 (en) Image display
WO2005081282A1 (en) Image display and method for manufacturing same
JPWO2003102999A1 (en) Image display device
JPH11233002A (en) Image forming apparatus and manufacture thereof
TWI291590B (en) Image display device
WO2006019033A1 (en) Method for manufacturing image display and image display
WO2005020271A1 (en) Image display device
WO2005093778A1 (en) Image display and method for manufacturing same
WO2006025454A1 (en) Image display device
JP3984102B2 (en) Image display device and manufacturing method thereof
JP2003257343A (en) Image display
WO2004030010A1 (en) Image-displaying device, method of producing spacer used for image-displaying device, and image-displaying device with the spacer produced by the method
JP2000090830A (en) Manufacture for image display device
WO2005076310A1 (en) Image display device
JP2004319270A (en) Image display device, and forming die used for manufacturing spacer assembly
JP2006086032A (en) Image display device
JP2004303458A (en) Image display device
JP2004296107A (en) Image display device and manufacturing method thereof
JP2004273253A (en) Image display device and its manufacturing method
JP2006073274A (en) Image display device
JP2005011622A (en) Manufacturing method, manufacturing apparatus and forming die for spacer body structure
JP2004319269A (en) Image display device with spacer structure, manufacturing method of spacer structure, and forming die used for manufacture of spacer structure

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase