WO2005031331A1 - 鋼材の表面品質の検査方法 - Google Patents

鋼材の表面品質の検査方法 Download PDF

Info

Publication number
WO2005031331A1
WO2005031331A1 PCT/JP2004/014568 JP2004014568W WO2005031331A1 WO 2005031331 A1 WO2005031331 A1 WO 2005031331A1 JP 2004014568 W JP2004014568 W JP 2004014568W WO 2005031331 A1 WO2005031331 A1 WO 2005031331A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
hot
voltage
value
measurement terminals
Prior art date
Application number
PCT/JP2004/014568
Other languages
English (en)
French (fr)
Inventor
Hiroki Fujimoto
Kiyoyuki Fukui
Mikiji Suzuki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003337730A external-priority patent/JP2004291088A/ja
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2005031331A1 publication Critical patent/WO2005031331A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/207Welded or soldered joints; Solderability

Definitions

  • the present invention relates to a method for detecting the surface quality of a steel material.
  • the hot press is made from a high-strength steel material by quenching it by performing a hydraulic press using a water-cooled mold on a steel sheet charged to a heating furnace and heated to about 900 ° C.
  • This is a technology for pressing into various parts.
  • this hot press has been applied to various steel materials including thin steel sheets. Thereby, a high-strength hot-pressed member is manufactured.
  • the steel material to be hot pressed is heated to a high temperature of about 900 ° C prior to pressing. For this reason, oxide scale is inevitably generated on the surface of the hot press member due to this heating.
  • hot pressed parts are usually painted after spot welding.
  • the oxide scale separates from the base material after this coating is performed, there is a possibility that a coating defect may occur in which the coating film formed on the oxide scale generator is separated.
  • the hot press member has a three-dimensional shape instead of a flat shape such as a steel plate, for example, the impact force of the shot in the shot blast process varies inevitably depending on the location of the hot press member. For this reason, the degree of removal of the oxide scale by the shot blasting varies depending on the location of the hot pressed member. As a result, even when the shot blasting is performed, the oxide scale may partially remain on the surface of the hot pressed member. Therefore, after the shot blast treatment, it is necessary to check whether the oxide scale has been sufficiently removed from the entire surface of the hot press member.
  • an inspection method for visually evaluating the state of formation of oxide scale on the surface of the hot press member while enlarging it with a magnifying glass or the like.
  • this inspection means inevitably includes variations in the evaluation by the inspecting worker, and the evaluation is not quantitatively performed. Therefore, even with this inspection means, there is a possibility that the defective product that has excessively generated oxide scale on the surface exceeding the reference level may be overlooked.
  • a detection means for extracting and cutting a part of the hot press member after the hot press, and measuring the thickness of the oxide scale generated on the cut surface by using a microscope or the like. According to this inspection method, it is possible to make a quantitative evaluation.
  • this inspection means also requires a considerable amount of man-hour (working time) to cut the hot-pressed member, and that the cut hot-pressed member cannot be flowed to the downstream process.
  • the thickness of the oxide scale actually formed on the surface of the hot pressed member flowing in the downstream process since it is not directly measured, there is still a problem that defective products may be overlooked.
  • An object of the present invention is to provide a method for inspecting the surface quality of a steel material.
  • An object of the present invention is to provide, for example, a state of generation of oxide scale on the surface of a hot-pressed member obtained by hot-pressing a hot-rolled steel plate or a cold-rolled steel plate.
  • Surface quality of steel that can easily, quantitatively, efficiently and predictably determine spot weldability and paintability when painting, without breaking hot press members Is to provide an inspection method.
  • the electrical resistance of iron which is the base material of the hot pressed member, is much higher than the electrical resistance of the oxide scale formed on the surface of the iron. For this reason, for example, if oxide scale is present on the surface of a steel material such as a hot-pressed member, the electric resistance value of the surface of the steel material is significantly increased.
  • the state of oxide scale formation on the steel surface and the spot weldability and paintability of the steel material are predicted and determined. be able to.
  • the present invention measures the voltage between the measurement terminals by applying a current between the two measurement terminals pressed against the steel material at a constant pressing force, and performs post-treatment such as spot welding or painting on the steel material.
  • post-treatment such as spot welding or painting on the steel material.
  • the steel material is a hot-pressed member obtained by hot-pressing a hot-rolled steel sheet or a cold-rolled steel sheet. Welding, etc. Is desirable.
  • the load is applied to the two measurement terminals pressed against the steel material.
  • the pressure is set to a value within the range of 8. 7 ⁇ 2 0 8 N / mm 2 to the value of the current flowing in the measurement of the measuring terminal between voltage 3 OA or less may be desirable to.
  • the weldability is determined to be good.
  • the critical value of the electric resistance is exceeded, the welding is performed. It is desirable to determine the sex as unpleasant.
  • the critical value of the electric resistance the pressure in the case of the P (N / mm 2) 5 8 P- °. 5 5 (m ⁇ ) or more 4 8 OP-. ⁇ 6 6 (m ⁇ ) Rukoto is desirable set the value of the range.
  • the present invention is implemented, for example, through the following steps (a) and (b).
  • steps (a) and (b) Preferably, a current is applied to the hot press member in a state where the electrode is pressed against the descaled hot press member with a predetermined range of pressing force. Measure the electrical resistance at this time, and then perform spot welding and painting. By repeating the above operation, an appropriate range of the electrical resistance value that does not cause a problem in spot weldability or paintability is determined in advance before actual operation.
  • step () During actual operation, measure the electrical resistance of hot-pressed members before spot welding. Then, based on whether or not the measured value of the electric resistance is within an appropriate range of the electric resistance value determined in advance in step (a), the state of formation of the oxide scale on the surface of the hot pressed member is determined. It is also determined by predicting the spot weldability and paintability of steel.
  • this publication predicts, based on the electrical resistance of the oxide scale on the surface of the hot-pressed member, the state of formation of oxide scale on the surface of the hot-pressed member, as well as the spot weldability and paintability of steel. It is not suggested at all to make a judgment.
  • Japanese 2 0 0 0 2 7 3 6 0 9 JP across a pair of electrodes of aluminum plated steel sheet overlapped two 1 2. 6 kgf / mm 2 pressure It is disclosed that the contact resistance value between the electrodes when pressure is applied is 0.05 to 12 m ⁇ , and that this contact resistance value is measured to evaluate weldability. .
  • the present invention actually measures the surface roughness of the aluminum plating layer.
  • the aluminum plating layer itself has conductivity, and various coatings provided on the aluminum plating layer are eventually uniform layers. Therefore, even if the contact resistance between the electrodes is measured according to the present invention, the weldability is not directly evaluated by this measurement.
  • FIG. 1 is an explanatory diagram showing a schematic configuration of a resistance measuring device for performing a method according to the present invention.
  • FIG. 2 is an explanatory diagram showing a situation at the time of resistance measurement by the resistance measurement device.
  • FIG. 3 is an explanatory diagram of a resistance value measured in the method according to the present invention.
  • FIG. 4 is an explanatory diagram showing a schematic configuration of a resistance measuring device for measuring from only one side of a steel material.
  • FIG. 5 is a graph showing an example of the relationship between the welding current value (kA) and the electrical resistance value Rsca1e (m ⁇ ) of only the oxide scale.
  • FIG. 6 is a graph showing an example of the relationship between the electric resistance value ( ⁇ ) and the applied pressure (NZ mm 2 ).
  • two measuring terminals 2 and 3 are attached to a device having a pressure mechanism 1 using a hair cylinder.
  • the pressurizing mechanism 1 may be any mechanism that can apply a constant pressing force, and is not limited to a specific mechanism.
  • Examples of the pressing mechanism 1 include a pressing mechanism using an air cylinder, a pressing mechanism using a servomotor, and a pressing mechanism using a spring.
  • the measuring terminals 2 and 3 may be made of a conductive metal material.
  • a metal material is copper alloy having high electric conductivity and high strength.
  • the shape of the tip of the measuring terminals 2 and 3 is not particularly limited. For example, it may be formed in a flat shape, or may be formed in a curved shape having a radius of 15 R or more, more preferably 40 R or more.
  • the electrical resistance of the front and back surfaces of the hot pressed member 4 can be measured simultaneously. , Desirable.
  • This pressurizing mechanism 1 is connected to an air supply source (not shown). By pressing the switch (not shown), air is supplied from the air supply source to the air cylinder, whereby the portion including the measuring terminal 2 is lowered. As a result, as shown in Fig. 2, the hot press member 4 as a test material is supported in a state where it is sandwiched between the lowered measuring terminal 2 and the fixedly arranged measuring terminal 3. Is done. When the upper and lower measurement terminals 2 and 3 are separated, the measurement terminals 2 and 3 are insulated.
  • the measurement terminals 2 and 3 are connected to the current generator 5.
  • the type of the current generator 5 is not particularly limited, but is preferably a device capable of generating a constant DC current of about 3 OA or less, more preferably 0.5 A to 5 A. If the generated current value is too high, Joule heat will increase. Therefore, the temperature of the hot press member 4 may be increased, which may affect the measured value of the electric resistance, and also increases the possibility of an electric shock accident.
  • a constant current is supplied to the hot press member 4 via the measuring terminals 2 and 3 by the current generator 5.
  • the value of the current supplied to the hot press member 4 is measured by the ammeter 6.
  • the ammeter 6 may be any device that can measure the value of the current generated by the current generator 5. When the current generator 5 is provided with a current measurement function, the ammeter 6 is unnecessary.
  • a small amount of current is applied between the measurement terminals 2 and 3 by the current generator 5 while the hot press member 4 is pressed and supported at a constant pressure by the two measurement terminals 2 and 3.
  • the applied pressure is less than 8.7 N / mm 2 (25 kgf)
  • the contact state between the hot press member 4 and the measuring terminals 2 and 3 tends to change, and the measurement error increases.
  • Pressure is more preferably 3 4. 7 N / mm 2 or more 1 7 3 N / mm 2 or less (1 0 0 kgf or more 5 0 0 kgf or less).
  • a voltage measuring device 7 is connected to the measuring terminals 2 and 3.
  • the electric resistance value of the hot press member 4 is in the range of 0.1 m ⁇ to 100 m ⁇ .
  • the voltage measuring device 7 may be any voltage measuring device or voltmeter that can measure the electric resistance value within this range.
  • the voltage between the measuring terminals 2 and 3 is measured by the voltage measuring device 7.
  • the electric resistance value of the hot press member 4 is calculated from the voltage between the measuring terminals measured by the voltage measuring device 7 and the current value measured by the ammeter 6 described above.
  • the electrical resistance value of the hot pressed member 4 obtained in this way is determined in advance before operation, for example, the electrical resistance value set from the relationship between spot weldability or paintability and the electrical resistance value. By comparing with the critical value, the quality of the surface of the hot press member 4 (remaining state of the oxide scale), the spot weldability or the paintability is judged.
  • the obtained electric resistance value of the hot pressed member 4 is higher than the critical value, the amount of oxide scale remaining on the surface of the hot pressed member 4 is larger than the reference value, and And it is judged that the weldability and paintability are poor.
  • the obtained electric resistance value of the hot pressed member 4 is lower than the critical value, the oxide scale has been sufficiently removed from the surface of the hot pressed member 4, and the spot weldability and the paintability have been improved. Is judged to be good.
  • a method for setting this critical value will be described.
  • a preliminary test for setting the critical value and a main test for predicting and determining the quality are performed.
  • the contact area between the measurement terminals 2 and 3 and the hot press member 4 changes due to the difference in the shape of the tips of the measurement terminals 2 and 3, and the contact area between the measurement terminals 2 and 3 differs depending on the applied pressure. This is because the microscopic contact area with the press member 4 changes, so that both the shapes of the tips of the measuring terminals 2 and 3 and the pressing force may affect the electric resistance value.
  • the shapes of the tips of the measuring terminals 2 and 3 and the pressing force are made constant.
  • the hot pressing member 4 is supported by the measuring terminals 2 and 3 while being sandwiched therebetween.
  • a constant current from the current generator 5 flows between the measurement terminals 2 and 3. Then, the voltage between the measurement terminals is read after the voltage is stabilized.
  • R t . ta i total electrical resistance R t between measurement terminals 2 and 3 as voltage / current between measurement terminals. ta i is obtained.
  • the total electric resistance R t between the measurement terminals 2 and 3. ta ! Can be regarded as the sum of the total electric resistance values from the measuring terminals 2 and 3 to the hot press member 4, and is expressed by the following equation (1).
  • R t . ta 1 R 1 + R 2 + R 3 + R 4 + R 5 (1)
  • R 1 represents the specific resistance of the measuring terminal 2
  • R 2 represents the contact resistance of the surface on the measuring terminal 2 side by the oxide scale
  • R 3 represents the specific resistance of the base material as the test material
  • R 4 indicates the contact resistance due to the oxide scale on the surface on the side of the measurement terminal 3
  • R 5 indicates the specific resistance of the measurement terminal 3.
  • the measured value is expressed by the following equation (2). This is the sum of R 3 and the specific resistances R 1 and R 5 of measurement terminals 2 and 3.
  • the electric resistance value R sc of only the oxide scale determined by this test is The quality of the surface quality of the hot pressed member 4 is determined by comparing aj e with a critical value R sea I e determined by a preliminary test.
  • the surface of the hot press member 4 Predict that the oxide scale has been sufficiently removed and spot weldability and paintability are good.
  • the present invention it is possible to quantitatively measure the residual state of the oxide scale, which adversely affects spot weldability and paintability, and to determine the spot weldability and paintability of the hot press member 4.
  • the quality of sex can be determined.
  • the electric resistance of the measuring terminals 2 and 3 is significantly smaller than the electric resistance of the oxide scale.
  • both the critical value and the measured value include the electric resistances R l and R 5 of the measurement terminals 2 and 3 and the electric resistance R 3 of the hot press member 4.
  • the electrical resistance value of only the oxide scale R sea Although different from the embodiment described below shows a test how by value of e, electric whole from the measurement terminal 2, 3 instead of electric resistance value R s c ae of oxide scale only to hot press member 4 Resistance value R t .
  • the critical value may be set using ta i.
  • the critical resistance of the electric resistance on the surface of the hot pressed It is desirable to set the welding current to a predetermined value in the range from 10 kA to 14 kA.
  • the critical value of the electric resistance is a predetermined value between 5 ⁇ and 25 ⁇ at a pressure of 87 N / mm 2 (250 kgf).
  • the critical value of the electric resistance value ( ⁇ ⁇ ) is equivalent to between 5 Paiiotaomega in pressure 8 7 N / mm 2 (2 5 0 kgf) of 2 5 m Omega
  • the applied pressure P (N / mm 2 ) for evaluation 58 P—. 55 (m ⁇ ) ⁇ R scale ⁇ 4 8 0 P -0-6 6
  • the critical value of the voltage V (V) is 5 8 1? _ '' 5 5 or more and 4 8 0 1?-, Where the measured current is I (A).
  • 'It may be set as a predetermined value within the range of 6 or less.
  • FIG. 4 shows another embodiment of the method according to the invention.
  • the measuring terminals 2 and 3 support the hot press member 4 as the test material in a state sandwiching from both sides.
  • the two measuring terminals 2 and 3 may be arranged at a predetermined distance from each other, and either the front surface or the back surface of the hot press member 4 may be configured to be pressed. .
  • This makes it possible to measure only the electrical resistance of either the front surface or the back surface of the hot press member 4.
  • the specific contents of the measurement operation are substantially the same as those in the above-described embodiment, and therefore, description thereof will be omitted.
  • the same members (devices) as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG.
  • the method according to the present invention was implemented using a stationary spot welding machine as the pressurizing mechanism 1 shown in FIG.
  • the measurement terminals 2 and 3 were insulated by removing the copper cable connecting the measurement terminals 2 and 3 to the transformer (not shown). Then, as shown in FIG. 1, the copper wires of the current generating device 5 and the copper wires of the voltage measuring device 7 were connected to the measuring terminals 2 and 3, respectively.
  • the “critical value”, which is the evaluation criterion for the surface quality of a steel sheet, is determined by using a hot pressed member 4 whose base material is a cold-rolled steel sheet with a thickness of 1.2 mm as the test material. Short circuit without pinching anything between 2 and 3 to determine resistance of measuring terminals 2 and 3; (b) Calculate electrical resistance of base material by hot press member 4 with oxide scale completely removed; (c ) Create multiple test pieces with different surface conditions by changing shot blast conditions and measure the electrical resistance. (D) Investigate the weldability of test pieces with different surface conditions. The weldability is determined to be “OK” when welding is not performed up to 1200 A, and the weldability is determined to be “NG” when welded at less than 1200 A. The critical value at this time was set to 15 m ⁇ in this example by repeatedly performing the operations (a) to (d).
  • the electrical resistance value of the oxide scale was calculated by subtracting the electrical resistance values of the measurement terminals 2 and 3 and the base material from the calculated electrical resistance value.
  • the electrical resistance value of the oxide scale is compared with the critical value. If the electrical resistance value of the oxide scale is equal to or less than the critical value (15 ⁇ ), it is determined that there is no problem with the spot weldability. If the electrical resistance of the oxide scale exceeded this critical value, it was judged that there was a problem in spot weldability.
  • Table 1 shows the results of an investigation of the spot weldability of the hot pressed member 4 whose surface quality was judged.
  • the hot pressed member 4 for which the inspection result was determined to be “NG” was susceptible to welding by spot welding.
  • This embodiment is different from the above-described first embodiment in that a hot-pressed member obtained by hot-pressing a hot-rolled steel sheet having a thickness of 1.4 mm was used as a test material. .
  • the present embodiment is the same as Embodiment 1 except for this point.
  • the hot pressed member 4 whose inspection result was determined to be “NG” was likely to be welded by spot welding. Therefore, it was confirmed that the spot weldability can be accurately detected by the method according to the present invention.
  • the state of scale formation on the surface of a steel material such as a hot-pressed member obtained by hot-pressing a hot-rolled steel plate or a cold-rolled steel plate
  • a steel material such as a hot-pressed member obtained by hot-pressing a hot-rolled steel plate or a cold-rolled steel plate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

鋼材の溶接性、例えば熱間プレス鋼材の酸化スケールの状態を簡便かつ確実に検査する方法を提供する。(i)8.7~208N/mm2の一定の加圧力で押圧することができる2つの測定端子を、熱延鋼板(冷延鋼板)を熱間プレスした部材に押し付け、測定端子間に30A以下の定電流を流して、測定端子間電圧を測定すること、(ii)この鋼材のスポット溶接試験を行うことにより、このスポット溶接の良否を判定すること、(iii)このときに良好と判断された鋼材について測定された測定端子間電圧に基づいて、スポット溶接試験の結果が良好となる測定端子間電圧値あるいは測定端子間抵抗値の範囲を求めること、そして(iv)実操業でのスポット溶接時に、鋼材の測定端子間電圧を測定し、この測定値が上記範囲内にあるか否かによりこの鋼材のスポット溶接性を予測して判定する。

Description

明細書 鋼材の表面品質の検査方法 技術分野
本発明は、 鋼材の表面品質の検查方法に関する。 背景技術
熱間プ レスは、 加熱炉に装入されて約 9 0 0 °Cまで加熱された鋼板 に水冷金型を用いて油圧プレスを行うこ とによって、 焼入れを行いなが ら高強度の鋼材からなる各種部品へプレス加工する技術である。 特に最 近では、 この熱間プレスが、 薄鋼板を含む各種鋼材にまで拡大されて適 用されている。 これにより、 高強度の熱間プレス部材が製造される。 熱間プレスを行われる鋼材は、 プレス に先立って 9 0 0 °C程度の高温 に加熱される。 このため、 熱間プレス部材の表面には、 この加熱に伴つ て酸化スケールが不可避的に生成する。
このように表面に酸化スケールが存在する熱間プレス部材に、 熱間プ レスに引き続いてそのままスポッ ト溶接を行う と、 スポッ ト溶接機の電 極と接触する酸化スケール生成部におけるジュール熱の発生が過大とな る。 このため、 スポッ ト溶接機の電極が熱間プレス部材と溶着し易く な り、 この溶着によ り、 スポッ ト溶接機の電極がスポッ ト溶接機から脱落 する。 特に、 スポッ ト溶接機を保持する溶接ロボッ トを多数配置した口 ボッ ト自動溶接工程では、 スポッ ト溶接機の電極の脱落が原因となって 、 生産ラインの停止が頻発するおそれがある。
さらに、 熱間プレス部材は、 通常、 ス ポッ ト溶接を行われた後に塗装 を行われる。 この塗装を行われた後に酸化スケールが母材から剥離する ことに伴って、 酸化スケール生成部の上に形成された塗膜が剥離する塗 装不良が発生するおそれもある。
そこで、 これまでは、 スポッ ト溶接を行う前に、 熱間プレス部材に例 えばショ ッ トプラス ト処理等の脱スケール処理を行う ことによって、 熱 間プレス部材の表面に存在する酸化スケールを除去していた。 発明の開示
熱間プレス部材は、 例えば鋼板のような平坦な形状ではなく三次元形 状を有するため、 ショ ッ トブラス ト処理におけるショ ッ トの衝突力は、 熱間プレス部材の部位によって不可避的にばらつく。 このため、 ショ ッ トブラス ト処理による酸化スケールの除去の程度は、 熱間プレス部材の 部位によって、 変動する。 これにより、 ショ ッ トブラス ト処理を行って も、 熱間プレス部材の表面には部分的に、 酸化スケールが残存すること がある。 したがって、 ショ ッ トブラス ト処理を行った後には、 熱間プレ ス部材の全面から酸化スケールを十分に取り除く ことができたか否かを 、 検查する必要がある。
しかし、 これまでは、 ショ ッ トブラス ト処理を行われた熱間プレス部 材の表面品質を、 簡便にかつ定量的に評価することができる検查手段は 、 存在しなかった。
例えば、 まず、 熱間プレス部材の表面における酸化スケールの生成状 況を、 拡大鏡等を用いて拡大しながら目視により評価する検査手段が考 えられる。 しかし、 この検查手段では、 検査する作業者による評価のば らつきが不可避的に含まれると ともにその評価も定量的にはなされない 。 したがって、 この検查手段によっても、 表面に酸化スケールが基準レ ベルを超えて過剰に生成した不良品を見落と してしまうおそれがある。 次に、 熱間プレスを終了した熱間プレス部材の一部を抜き出して切断 し、 その切断面に生成する酸化スケールの厚みを顕微鏡等を用いて測定 する検查手段も考えられる。 この検査手段によれば、 定量的な評価を行 う ことが確かに可能になる。 しかし、 この検査手段にも、 熱間プレス部 材を切断することに相当程度の工数 (作業時間) を要すること、 切断し た熱間プレス部材を下流工程に流すことができないこと、 さらには、 下 流工程に流す熱間プレス部材の表面に実際に生成する酸化スケールの厚 さを直接測定するものではないため、 やはり、 不良品を見落と してしま うおそれがあることといった課題がある。
本発明の目的は、 鋼材の表面品質の検査方法を提供することである。 本発明の目的は、 例えば、 熱延鋼板又は冷延鋼板を熱間プレスすること により得られる熱間プレス部材の表面における酸化スケールの生成状態 、 さらには、 この熱間プレス部材にスポッ ト溶接や塗装を行う場合のス ポッ ト溶接性や塗装性を、 簡便に、 定量的に、 高効率で、 かつ熱間プレ ス部材を破壊することなく、 予測して判定することができる鋼材の表面 品質の検査方法を提供することである。
熱間プレス部材の母材である鉄の電気抵抗値は、 この鉄の表面に生成 する酸化スケールの電気抵抗値よ り も極めて高い。 このため、 例えば熱 間プレス部材等の鋼材の表面に酸化スケールが存在すると、 この鋼材の 表面の電気抵抗値は著しく高まる。
したがって、 酸化スケールの電気抵抗値と、 鉄の電気抵抗値との違い を利用すれば、 鋼材の表面における酸化スケールの生成状態、 さらには 鋼材のスポッ ト溶接性や塗装性を予測して判定することができる。
本発明は、 一定の加圧力で鋼材に押.し付けられた 2つの測定端子の間 に通電して測定端子間電圧を測定すること、 この鋼材に例えばスポッ ト 溶接や塗装等の後処理を行って後処理の結果の良否を判定すること、 後 処理の結果が良好であると判定された鋼材についての測定端子間電圧に 基づいて、 良好な後処理の結果を得ることができる測定端子間電圧値又 は測定端子間抵抗値の範囲を求めること、 及び、 このよ うにして求めた 範囲に基づいて、 測定端子間電圧を測定した鋼材に対して行われる後処 理の結果を予測することを特徴とする鋼材の表面品質の検査方法である この本発明では、 鋼材が熱延鋼板又は冷延鋼板を熱間プレスすること により得られる熱間プレス部材であり、 後処理が例えばスポッ ト溶接等 の溶接であることが望ましい。
これらの本発明では、 鋼材に押し付けられた 2つの測定端子に負荷さ れる加圧力を 8. 7〜 2 0 8 N/mm2の範囲内の値と し、 測定端子間電 圧の測定の際に通電する電流の値を 3 O A以下とすることが望ましい。
これらの本発明では、 測定端子間抵抗値が、 予め定めた電気抵抗の臨 界値以下である場合には溶接性を良好と判定し、 一方、 この電気抵抗の 臨界値を超える場合には溶接性を不芳と判定することが望ましい。 この 場合に、 電気抵抗の臨界値を、 加圧力を P (N/mm2) と した場合に 5 8 P— °. 5 5 (m Ω ) 以上 4 8 O P—。■ 6 6 ( m Ω ) 以下の範囲の値に定め ることが望ましい。
本発明は、 例えば、 下記 ( a ) 及び ( b ) の工程を経て実施される。 ( a ) 好ましくは脱スケール処理を行った熱間プレス部材に所定の範囲 の加圧力で電極を押し付けた状態で、 この熱間プレス部材に通電する。 このときの電気抵抗値を測定し、 その後にスポッ ト溶接及び塗装を行う 。 以上の操作を繰り返すことによって、 スポッ ト溶接性又は塗装性に問 題を生じることがない電気抵抗値の適正な範囲を、 実際の操業前に予め 決定しておく。
( ) 実際の操業の際には、 スポッ ト溶接を行う前に熱間プレス部材の 電気抵抗を測定する。 そして、 この電気抵抗の測定値が工程 ( a ) によ り予め決定した電気抵抗値の適正な範囲内にあるか否かに基づいて、 こ の熱間プレス部材の表面における酸化スケールの生成状態、 さらには鋼 材のスポッ ト溶接性や塗装性を予測して判定する。
ところで、 特開平 1 1 一 4 7 9 3 5号公報の請求項 4には、 溶接用部 材の表面における電気抵抗を 1 5 X 1 0—4 Ω以下とすることによって、 溶接箇所に溶接熱を集中させて溶接の効率を高める発明が開示されてい る。 しかし、 この公報には、 熱間プレス部材の表面における酸化スケー ルの電気抵抗に基づいて、 熱間プレス部材の表面における酸化スケール の生成状態、 さらには鋼材のスポッ ト溶接性や塗装性を予測して判定す ることは、 何ら示唆されていなレ、。
また、 特開 2 0 0 0— 2 7 3 6 0 9号公報には、 アルミニウムめっき 鋼板を 2枚重ね合わせて 1対の電極で挟んで 1 2. 6 k g f /mm 2の加 圧力をかけた場合の電極間の接触抵抗値が 0 . 0 5〜 1 2 m Ωであるこ と、 及び、 この接触抵抗値は、 溶接性を評価するために測定することが 、 開示されている。 しかし、 この発明は、 実際には、 アルミニウムめつ き層の表面粗さを測定するものである。 アルミニウムめっき層自体は導 電性を有し、 またこのアルミニウムめっき層の上に設ける各種の皮膜も 結局は均一層である。 このため、 この発明にしたがって電極間の接触抵 抗を測定しても、 この測定によって溶接性を直接的に評価するものでは ない。
なお、 溶接前の接触抵抗値は接合強さには殆ど影響しないことは、 当 業者にとつては周知の事項である。 図面の簡単な説明
図 1は、 本発明に係る方法を実施するための抵抗測定装置の概略の構 成を示す説明図である。
図 2は、 抵抗測定装置による抵抗測定時の状況を示す説明図である。 図 3は、 本発明に係る方法において測定される抵抗値の説明図である 図 4は、 鋼材の片側のみから測定する抵抗測定装置の概略の構成を示 す説明図である。
図 5は、 溶着電流値 ( k A ) と、 酸化スケールのみの電気抵抗値 R s c a 1 e ( m Ω ) との関係の一例を示すグラフである。
図 6は、 電気抵抗値 (ηι Ω ) と、 加圧力 (N Z m m 2 ) との関係の一 例を示すグラフである。 発明を実施するための最良の形態
以下、本発明に係る鋼材の表面品質の検査方法を実施するための 最良の形態を、 添付図面を参照しながら詳細に説明する。 なお、 以降の 説明では、 鋼材が熱間プレス部材である場合を例にとる。 また、 図 2で は、 図 1に示す各部材と同一の部材 (装置) は、 図 1の符号と同一の符 号を付
図 1において、 ェアーシリ ンダによる加圧機構 1を有する装置には、 2つの測定端子 2 、 3が装着される。
この加圧機構 1は、 一定の加圧力を負荷することができる機構であれ ばよく、 特定の機構には限定されない。 加圧機構 1 と して、 例えば、 ェ アーシリ ンダによる加圧機構、 サーボモータによる加圧機構、 さらには スプリ ングを利用した加圧機構等が例示される。 この加圧機構 1 と して 、 対向して配置された一対の電極間を絶縁したスポッ ト溶接機を流用す ることが、 最も簡便である。
測定端子 2 、 3は、 通電可能な金属材料からなるものであればよい。 このような金属材料と して、 電気伝導度が高く、 かつ高強度である銅合 金を例示することができる。
測定端子 2 、 3 の先端の形状は、 特に限定を要するものではない。 例 えば、 平面状に形成されていてもよく、 又は、 1 5 R以上、 よ り望まし くは 4 0 R以上の半径を有する曲面状に形成されていてもよい。
図 2に示すように、 測定端子 2 、 3により熱間プレス部材 4 の両面を 挾んで加圧すれば、 熱間プレス部材 4の表面及ぴ裏面の電気抵抗を同時 に測定することができるため、 望ましい。
この加圧機構 1は、 図示しないエアー供給源に接続される。 図示しな ぃスィ ツチを押すことによって、 エアがェァー供給源からエアシリ ンダ へ供給され、 これにより、 測定端子 2を含む部分が下降する。 これによ り、 図 2に示すように、 供試材である熱間プレス部材 4が、 下降した測 定端子 2 と、 固定して配置された測定端子 3 とによって、 挟まれた状態 で支持される。 なお、 上下の測定端子 2 、 3が離れている場合には測定 端子 2 、 3間は絶縁される。
測定端子 2 、 3は、 電流発生装置 5に接続される。 この電流発生装置 5 の種類は特に限定を要さないが、 3 O A程度以下、 より好適には 0 . 5 Aから 5 Aの一定の直流電流を発生させることができる装置であるこ とが望ましい。 発生する電流値が高過ぎると、 ジュール発熱量の増加に よって熱間プレス部材 4の温度上昇を招き、 電気抵抗の測定値に影響す る可能性があると ともに、 感電事故の可能性も高まるからである。
この電流発生装置 5によ り一定の電流が測定端子 2、 3を介して熱間 プレス部材 4に通電される。
熱間プレス部材 4に通電される電流値は、 電流計 6により測定される 。 電流計 6は、 電流発生装置 5が発生する電流の値を測定することがで きる装置であればよい。 なお、 電流発生装置 5に電流測定機能が与えら れている場合には電流計 6は不要である。
2つの測定端子 2、 3によつて熱間プレス部材 4を一定の加圧力で加 圧して支持しながら、 電流発生装置 5により測定端子 2、 3間に微量の 電流を通電する。
加圧力は、 特に限定を要さないものの、 8. 7 N/mm 2 (先端径 6 m mの測定端子の場合、 2 5 k g f ) から 2 0 8 N/mm 2 (先端径 6 mm の測定端子の場合、 6 0 0 k g f )の間の一定の加圧力とすることが望ま しい。
加圧力が 8. 7 N/mm 2 ( 2 5 k g f ) 未満であると、 熱間プレス部 材 4 と測定端子 2、 3 との接触状態が変わり易くなり、 測定誤差が大き くなる。
一方、加圧力が 2 0 8 N/mm 2 ( 6 0 0 k g f )を越えると、 熱間プレ ス部材 4の表面の圧痕の深さが大きくなって供試材の商品性が低下する とともに、 測定回数の増加に伴って測定端子 2、 3の変形量が過大とな り、 測定値のばらつきが大きくなる。
加圧力は、 より好適には 3 4. 7 N/mm2以上 1 7 3 N/mm 2以下 ( 1 0 0 k g f 以上 5 0 0 k g f 以下) である。
測定端子 2、 3には電圧測定装置 7が接続される。 一般的に、 熱間プ レス部材 4の電気抵抗値は 0. 数 m Ω〜数 1 0 0 m Ωの範囲にある。 こ のため、 電圧測定装置 7は、 この範囲内の電気抵抗値を測定することが できる電圧測定器又は電圧計であればよい。 この電圧測定装置 7によつ て測定端子 2、 3間の測定端子間電圧が測定される。 そして、 電圧測定装置 7により測定された測定端子間電圧と、 上述し た電流計 6により測定された電流値とから、 熱間プレス部材 4の電気抵 抗値を計算する。
こ の よ う に して得られた熱間プレス部材 4の電気抵抗値を、 操業前 に予め決定した、 例えばスポッ ト溶接性又は塗装性と電気抵抗値との関 係から設定した電気抵抗値の臨界値と比較することにより、 この熱間プ レス部材 4 の表面品質 (酸化スケールの残存状況)、 スポッ ト溶接性又は 塗装性の良否を予測して判定する。
具体的には、 得られた熱間プレス部材 4 の電気抵抗値が臨界値より も 高い場合には、 熱間プレス部材 4 の表面に残存した酸化スケールの量が 基準値よ り も多く、 スポッ ト溶接性や塗装性が不芳である、 と予測して 判定する。 一方、 得られた熱間プレス部材 4 の電気抵抗値が臨界値より も低い場合には、 熱間プレス部材 4の表面から酸化スケールが十分に除 去されており、 スポッ ト溶接性や塗装性が良好である、 と予測して判定 する。
こ の よ う にして、熱間プレス部材 4 のスポッ ト溶接性や塗装性の良 否に直接的に影響する酸化スケールの残存状況を、 定量的に測定するこ とができる。
次に、 図 1 に示すこの装置を用いて本発明に係る方法を実施すること により、 熱間プレス部材 4のスポッ ト溶接性を予測して評価する場合を さらに詳細に説明する。 なお、 本発明に係る方法を実施するに際しては 、 熱間プレス部材 4に対する脱スケール処理を行った後でも、 あるいは 行わない場合でも、 検査の操作内容は同じであるため、 以降の説明は、 熱間プレス部材 4に対する脱スケール処理を行わない場合を例にとる。 本発明は、 以下に列記する段階 ( i ) 〜 ( i' v ) により構成される。 ( i ) 8 . 7 N / m m 2〜 2 0 8 N / m m 2の一定の加圧力で押圧するこ とができる 2つの測定端子 2、 3を、 熱間プレス部材 4の両面から押し 付け、 測定端子 2、 3間に 3 0 A以下の定電流を流す。 この際の測定端 子間電圧を測定する。 ( i i ) この熱間プレス部材 4に後処理と してスポッ ト溶接を行い、 ス ポッ ト溶接の結果の良否を判定する。
( i i i ) スポッ ト溶接の結果が良好であると判定された熱間プレス部 材 4について測定された測定端子間電圧に基づいて、 スポッ ト溶接の結 果が良好となる測定端子間電圧値又は測定端子間抵抗値の範囲、 すなわ ちスポッ ト溶接の結果が良好から不芳へと変化する臨界値を求める。
( i V ) スポッ ト溶接の結果が良好となる測定端子間電圧値あるいは測 定端子間抵抗値の範囲、 すなわちスポッ ト溶接の結果が良好から不芳へ の変化する臨界値に基づいて、 測定端子間電圧を測定した熱間プレス部 材 4のスポッ ト溶接の結果を予測して判定する。
この臨界値の設定方法について説明する。 本発明による検査では、 こ の臨界値を設定するための事前試験と、 品質を予測及び判定するための 本試験とを行う。
これら事前試験及び本試験それぞれにおける測定端子 2 、 3の先端の 形状と加圧力とは、 できるだけ同じにすることが望ましい。
測定端子 2 、 3の先端の形状の違いによって測定端子 2 、 3 と熱間プ レス部材 4 との間の接触面積が変化し、 また、 加圧力の違いによって測 定端子 2 、 3 と熱間プレス部材 4 との間の微視的な接触面積が変化する ため、 測定端子 2 、 3の先端の形状と加圧力とはいずれも、 電気抵抗値 へ影響を及ぼすおそれがあるからである。
図 2に示すように、 まず、 測定端子 2 、 3の先端の形状と加圧力とを 一定とする。 次に、 測定端子 2 、 3により熱間プレス部材 4を挟んだ状 態で支持する。 次に、 電流発生装置 5からの定電流を測定端子 2 、 3間 に流す。 そして、 電圧が安定してから測定端子間電圧を読み取る。
ここで、 R tt a i =測定端子間電圧/電流として、 測定端子 2 、 3間 の全体の電気抵抗値 R tt a iが得られる。
図 3に模式的に示すように、 測定端子 2 、 3間の全体の電気抵抗値 R tt a!は、 測定端子 2 、 3から熱間プレス部材 4までの全体の電気抵抗 値の総和と して捉えることができ、 下記 ( 1 ) 式により表される。 R tt a 1 = R 1 + R 2 + R 3 + R 4 + R 5 ( 1 )
( 1 ) 式において、 R 1は測定端子 2の固有抵抗を示し、 R 2は測定 端子 2の側の表面の酸化スケールによる接触抵抗を示し、 R 3は供試材 である母材の固有抵抗を示し、 R 4は測定端子 3の側の表面の酸化スケ ールによる接触抵抗を示し、 さらに、 R 5は測定端子 3の固有抵抗を示 す。
ここで、 事前に紙やすり等を用いて完全に表面の酸化スケールを取り 除いた熱間プレス部材 4の電気抵抗値を計測すると、 この計測値は ( 2 ) 式により示す、 母材の固有抵抗 R 3 と、 測定端子 2、 3の固有抵抗 R 1、 R 5の和である。
R 1 + R 3 + R 5 ( 2 ) そして、 ( 1 ) 式により求められる、 測定端子 2、 3から熱間プレス 部材 4までの全体の電気抵抗値から、 ( 2 ) 式により求められる、 母材の 固有抵抗 R 3 と測定端子 2、 3の固有抵抗 R l、 R 5 との和を差し引く と、 ( 3 ) 式によ り示す、 酸化スケールのみの電気抵抗値 R s e a i eが求 められる。
R s c a l e = R 2 + R 4 ( 3 ) 表面の酸化スケールの生成量が多い熱間プレス部材 4であるほど、 酸 化スケールのみの電気抵抗値 R s e a i eが高くなる。 このため、 上述した 事前試験を行う ことより、 表面状態が異なる多数の熱間プレス部材 4の スポッ ト溶接性や塗装性の良否の程度と、 酸化スケールのみの電気抵抗 値 R s c a i eとの闋係を求め、酸化スケールのみの電気抵抗値 R s c a i eを 臨界値と して、 操業前に事前に設定しておく。
こ の よ う にして、 本試験において熱間プレス部材 4の表面品質を判 断するための事前試験は、 終了する。 .
次に、 本試験を行う こ とによ り 、 表面品質の検查を行おう とする熱 間プレス部材 4について、 上述した操作と同様の操作を行うことによつ て、 酸化スケールのみの電気抵抗値 R s c aeを求める。
そして、 本試験により求められた酸化スケールのみの電気抵抗値 R s c a j eと、 事前試験により定められた臨界値 R s e a I eとを比較することに よって、 熱間プレス部材 4の表面品質の良否を判断する。
すなわち、 本試験により求められた電気抵抗値 R s c a J eが事前試験に より定められた臨界値 R s c a , eより も高い場合には、 熱間プレス部材 4 の表面に残存した酸化スケールが基準値を超えるために、 スポッ ト溶接 性や塗装性が不芳であると、 予測して判定する。
一方、 これとは逆に、 本試験により求められた電気抵抗値 R s e a i eが 事前試験により定められた臨界値 R s c a , eよりも低い場合には、 熱間プ レス部材 4の表面の酸化スケールが十分除去されており、 スポッ ト溶接 性や塗装性は良好であると、 予測して判定する。
このよ う に、 本発明により、 スポッ ト溶接性や塗装性に悪影響を及ぼ す酸化スケールの残存状況を、 定量的に測定することができ、 熱間プレ ス部材 4のスポッ ト溶接性や塗装性の良否を判断することができる。
なお、 一般に、 測定端子 2、 3の電気抵抗、 特に鋼からなる母材の電 気抵抗は、 酸化スケールの電気抵抗に比較して著しく小さい。 また、 臨 界値にも測定値にも、 測定端子 2、 3の電気抵抗 R l、 R 5、 熱間プレ ス部材 4の電気抵抗 R 3が含まれる。
このため、 酸化スケールのみの電気抵抗値 R s e aeの値による検査方 法を示す後述する実施例とは異なるものの、 酸化スケールのみの電気抵 抗値 R s c a eの代わりに測定端子 2、 3から熱間プレス部材 4までの全 体の電気抵抗値 R tt a iを用いて臨界値を設定しても構わない。
一般に、 熱間プレス部材 4 の表面における電気抵抗は、 低ければ低い ほど、 電極と溶着し難くなるために溶接の観点では望ましい。 しかし、 電気抵抗を下げるためには、 熱間プレス部材 4の表面にシヨ ッ トプラス トを長時間強く衝突させる必要がある。 これにより、 生産性の低下や強 く ショ ッ トブラス トが当たることによる部品の変形等の問題を生じる。 このため、 熱間プレス部材 4の表面における電気抵抗の臨界値を下げ過 ぎることは現実的ではない。
このため、 よって、 熱間プレス部材 4の表面における電気抵抗の臨界 値は、 溶着電流を 1 0 k Aから 1 4 k Aまでの範囲の所定の値に設定す ることが望ましい。
図 5にダラフで示すように、電気抵抗の臨界値は加圧力 8 7 N/mm 2 ( 2 5 0 k g f ) において 5 πιΩから 2 5 πι Ωまでの間の所定の値とな る。
なお、 酸化スケールのみの電気抵抗値 R s c aeは絶対的な値ではない
。 図 6にグラフで示すよ うに、 酸化スケールのみの電気抵抗値 R s c a t e
(m Ω ) は加圧力 Pの大小によって変動する値である。 加圧力 P (N/ mm2) の関数と して R s c a l e =A P— Bの式により近似することができ る (ただし、 A、 Bは定数) 。
このため、 測定する加圧力 Pが異なる場合、 電気抵抗値 (ιη Ω) の 臨界値は、 加圧力 8 7 N/mm 2 ( 2 5 0 k g f ) における 5 πιΩから 2 5 m Ωの間に相当する加圧力、 つまり評価を行う加圧力 P (N/mm2 ) の値によって、 5 8 P—。· 55 (m Ω ) ≤ R s c a l e≤ 4 8 0 P- 0- 6 6
(m Ω ) により示される範囲内の所定の値と して設定すればよい。 なお 、 上述したように、 R s c a e R tt a iであるため、 R s c a "の代わ りに R t。 t a iを用いてもよい。
さらに、 測定端子 2、 3に通電する電流値を一定とする場合には、 必 ずしも電気抵抗値を指標とする必要はなく、 電圧が安定した後の測定端 子間電圧を指標.と してもよい。 この場合の電圧 V (V) の臨界値は、 測定 電流を I (A) とすると、 5 8 1 ?_°' 5 5以上4 8 0 1 ?—。' 6 6以下の 範囲内の所定の値と して設定すればよい。
図 4は、 本発明に係る方法の別の実施の形態を示すものである。
すなわち、 これまで説明してきた実施の形態は、 測定端子 2、 3が供 試材である熱間プレス部材 4を両面から挟んだ状態で支持していた。 し かし、 図 4に示すように、 2つの測定端子 2、 3を所定の距離だけ離し て配置し、 熱間プレス部材 4の表面又は裏面のどちらかを加圧するよう に構成してもよい。 これにより、 熱間プレス部材 4の表面又は裏面のど ちらかの電気抵抗のみを測定することが可能となる。 この実施の形態においても、 測定操作の具体的な内容は、 上述した実 施の形態と実質的に同じであるので、 その説明は省略する。 なお、 図 4 においても、 図 1 に示す各部材と同一の部材 (装置) は、 図 1の符号と 同一の符号を付して示してある。
次に、 実施例を参照しながら、 本発明に係る方法をさらに具体的に説 明する。
実施例 1
図 1 に示す加圧機構 1 と して定置式スポッ ト溶接機を用いて、 本発明 に係る方法を実施した。 なお、 測定端子 2、 3 と ト ランス (図示しない ) をつないでいる銅ケーブルを外すことにより、 測定端子 2、 3を絶縁 状態と した。 そして、 図 1に示すよ うに、 測定端子 2、 3に電流発生装 置 5 の銅線と電圧測定装置 7 の銅線とをつないだ。
設定条件
測定端子 : C r 一 C u電極 ドームラジアス型
元直径 1 6 m m 先端直径 6 m m (先端 4 O R ) カロ圧力 : 8 7 N / m m 2 ( 2 5 0 k g f )
ιΑ : [k>流 流 2 A
鋼板の表面品質の評価基準となる 「臨界値」 は、 供試材と して板厚 1 . 2 m mの冷延鋼板を母材とする熱間プレス部材 4を用いて、 ( a ) 測定 端子 2、 3間に何も挟まずに短絡させ、 測定端子 2、 3の抵抗を求める 、 ( b )完全に酸化スケールを除去した熱間プレス部材 4により母材の電 気抵抗を求める、 ( c ) ショ ッ トブラス トの条件を変えることにより、 表 面の状態を変えた複数のテス トピースを作成し、 電気抵抗値を測定する 、 ( d ) 表面の状態を変えたテス トピースの溶接性を調査し、 1 2 0 0 0 Aまで溶着しない場合を溶接性 「O K」 と判断し、 1 2 0 0 0 A未満で 溶着する場合を溶接性 「N G」 と判断する。 このときの臨界値を本例で は 1 5 m Ωに設定する、 という操作 ( a ) 〜 ( d ) を繰り返し行う こと により、 設定した。
次に、 検査が必要な熱間プレス部材 4の溶接予定位置の近傍を測定端 子 2、 3により挟んで電流を流し、 電気抵抗値を算出した。
算出した電気抵抗値より測定端子 2、 3及び母材の電気抵抗値を減算 することにより、 酸化スケールの電気抵抗値を算出した。
そして、 酸化スケールの電気抵抗値と臨界値とを比較し、 酸化スケー ルの電気抵抗値が臨界値 ( 1 5 πιΩ) 以下である場合にはスポッ ト溶接 性は問題がないと判断するとともに、 酸化スケールの電気抵抗値がこの 臨界値を超える場合にはスポッ ト溶接性に問題があると判断した。
確認のため、 検査作業によって、 表面品質を判断した熱間プレス部材 4のスポッ ト溶接性を調査した結果を表 1に示す。 検查結果が 「NG」 判断された熱間プレス部材 4は、 スポッ ト溶接による溶着が発生し易か つた。
このため、 本発明に係る方法により正確にスポッ ト溶接性を検査する ことが可能であることが確認できた。
表 1 供試材の R sea I e 抵抗値による 実際の溶接による
(ηΩ) 検査結果 確認結果
1 111.2 NG NG
2 47.3 NG NG
3 72.3 NG NG
4 34.5 NG NG
5 22.7 NG NG
6 14.5 0Κ 0Κ
7 4.2 0Κ 0Κ
8 0.2 0Κ 0Κ 実施例 2
本実施例が上述した実施例 1 と相違するのは、 供試材として、 板厚が 1 . 4 m mの熱延鋼板を熱間プレスすることにより得られる熱閬プレス 部材を使用した点である。 本実施例は、 この点以外は実施例 1 と同じで ある。
結果を表 2にまとめて示す。
表 2
Figure imgf000017_0001
検査結果が 「N G」 であると判断された熱間プレス部材 4は、 スポッ ト溶接による溶着が発生し易かった。 このため、 本発明に係る方法によ り正確にスポッ ト溶接性を検查することが可能であることが確認できた
産業上の利用の可能性
本発明によ り、 例えば、 熱延鋼板又は冷延鋼板を熱間プレスすること により得られる熱間プレス部材等の、 鋼材の表面におけるスケ一ルの形 成状態、 さらには、 この鋼材にスポッ ト溶接や塗装を行う場合における スポッ ト溶接性や塗装性を、 簡便に、 定量的に、 効率良く、 さらには鋼 材を破壊することなく予測して判定することができるようになった。 特に、 最近のように、 熱間プレスが普及している状況下では、 本発明 は実用性が非常に高い発明であって、 斯界の技術進歩に大き な貢献をす ることができる価値の高い発明である。

Claims

請求の範囲
1. 一定の加圧力で鋼材に押し付けられた 2つの測定端子の間に通電し て測定端子間電圧を測定すること、 当該鋼材に後処理を行って当該後処 理の結果の良否を判定すること、 当該後処理の結果が良好であると判定 された鋼材についての測定端子間電圧に基づいて、 良好な後処理の結果 を得ることができる測定端子間電圧値又は測定端子間抵抗値の範囲を求 めること、 及び、 当該範囲に基づいて前記測定端子間電圧を測定した鋼 材に対して行われる後処理の結果を予測することを特徴 とする鋼材の表 面品質の検査方法。
2. 前記鋼材は熱延鋼板又は冷延鋼板を熱間プレスする ことによ り得ら れる熱間プレス部材であり、 前記後処理は溶接である請求項 1に記載さ れた鋼材の表面品質の検査方法。
3. 前記加圧力を 8. 7〜 2 0 8 N/mm2の範囲内のィ ΪΪと し、 前記電流 の値を 3 0 A以下とする請求項 2に記載された鋼材の表面品質の検查方 法。
4. 前記測定端子間抵抗値が、 予め定めた電気抵抗の臨界値以下である 場合には溶接性良好と判定し、 該電気抵抗の臨界値を超える場合には溶 接性不良と判定する請求項 1から請求項 3までのいずれか 1項に記載さ れた鋼材の表面品質の検査方法。
5. 前記電気抵抗の臨界値は、 前記加圧力を P (N/mm2) と した場合 に 5 8 P—。· 5 5 (m Ω ) 以上 4 8 O P— °· 6 6 (m Ω ) 以下の範囲の値で ある請求項 4に記載された鋼材の表面品質の検査方法。
PCT/JP2004/014568 2003-09-29 2004-09-28 鋼材の表面品質の検査方法 WO2005031331A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-337730 2003-09-29
JP2003337730A JP2004291088A (ja) 2003-03-13 2003-09-29 鋼材の表面品質の検査方法

Publications (1)

Publication Number Publication Date
WO2005031331A1 true WO2005031331A1 (ja) 2005-04-07

Family

ID=34386134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014568 WO2005031331A1 (ja) 2003-09-29 2004-09-28 鋼材の表面品質の検査方法

Country Status (2)

Country Link
CN (1) CN100437099C (ja)
WO (1) WO2005031331A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175948B (zh) * 2013-02-26 2015-01-07 奇瑞汽车股份有限公司 一种钣金件曲面缺陷检查工具
KR101325871B1 (ko) * 2013-05-13 2013-11-05 현대하이스코 주식회사 핫 스탬핑 부품 용접성 개선방법
CN105181757A (zh) * 2015-10-12 2015-12-23 上海电机学院 铜铝搅拌摩擦焊接牢固度检测装置及方法
CN107478529A (zh) * 2017-07-05 2017-12-15 佛山缔乐视觉科技有限公司 一种自动化铝型材落砂检测装置
CN109425698A (zh) * 2017-08-23 2019-03-05 宝山钢铁股份有限公司 一种钢板成形后涂装外观质量的快速预判方法
WO2019124467A1 (ja) * 2017-12-19 2019-06-27 日本製鉄株式会社 抵抗スポット溶接継手の製造方法
KR20210111076A (ko) * 2020-03-02 2021-09-10 주식회사 엘지에너지솔루션 용접 상태 검사 장치
CN117226671B (zh) * 2023-10-13 2024-06-07 浙江晋椿精密工业股份有限公司 一种去除钢卷氧化皮用抛光装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122286A (ja) * 1994-10-01 1996-05-17 Orion Kinzoku Kogyo Kk 電気抵抗溶接のオンライン非破壊検査装置及び方法
JPH11104848A (ja) * 1997-09-29 1999-04-20 Mazda Motor Corp スポット溶接電極の検査方法及びその装置並びにスポット溶接装置
JP2000102879A (ja) * 1998-09-30 2000-04-11 Mazda Motor Corp スポット溶接における品質判定方法およびその装置
JP2003147499A (ja) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd 熱間プレス用鋼板およびその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102192B (zh) * 1986-04-07 1988-05-18 嘉兴市机械研究所 铸铁性能快速测试方法及其测量仪
FR2688887B1 (fr) * 1992-03-20 1996-12-20 Stephanois Rech Mec Appareil de controle d'etat de surface d'une piece metallique par courant photo-electrique en milieu ambiant.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08122286A (ja) * 1994-10-01 1996-05-17 Orion Kinzoku Kogyo Kk 電気抵抗溶接のオンライン非破壊検査装置及び方法
JPH11104848A (ja) * 1997-09-29 1999-04-20 Mazda Motor Corp スポット溶接電極の検査方法及びその装置並びにスポット溶接装置
JP2000102879A (ja) * 1998-09-30 2000-04-11 Mazda Motor Corp スポット溶接における品質判定方法およびその装置
JP2003147499A (ja) * 2001-11-07 2003-05-21 Sumitomo Metal Ind Ltd 熱間プレス用鋼板およびその製造方法

Also Published As

Publication number Publication date
CN100437099C (zh) 2008-11-26
CN1723389A (zh) 2006-01-18

Similar Documents

Publication Publication Date Title
Babu et al. Empirical model of effects of pressure and temperature on electrical contact resistance of metals
Shamsul et al. Study of spot welding of austenitic stainless steel type 304
Florea et al. Welding parameters influence on fatigue life and microstructure in resistance spot welding of 6061-T6 aluminum alloy
EP2326454B1 (en) Resistance welding method, resistance welder, and method and device for evaluating resistance welding
CA2771043C (en) Methods and systems for resistance spot welding using direct current micro pulses
Schmalen et al. Evaluation of laser braze-welded dissimilar Al-Cu joints
Zhao et al. An effective quality assessment method for small scale resistance spot welding based on process parameters
Jiang et al. Quality inspection of clinched joints of steel and aluminum
CN101712096A (zh) 点焊的生产线或装配线方法
WO2005031331A1 (ja) 鋼材の表面品質の検査方法
Mikno Projection welding with pneumatic and servomechanical electrode operating force systems
Zhou et al. Evaluation model of electromagnetic pulse welding effect based on Vc-β trajectory curve
JP2004291088A (ja) 鋼材の表面品質の検査方法
Baskoro et al. Effects of welding time and welding current to weld nugget and shear load on electrical resistance spot welding of cold rolled sheet for body construction
KR20190077503A (ko) Ctod 시험편의 제작 방법 및 소성 변형 조정용 지그
Zhang et al. On-line evaluation of electrode wear by servo gun in resistance spot welding
JP5001049B2 (ja) スポット溶接強度評価方法および装置
Wisnujati et al. Analysis of Mechanical Properties SMAW Welding Joints of Portable Electric Hydraulic Jack Frame
JP2021058829A (ja) 溶接継手の電着塗装性の評価方法、及び溶接継手の電着塗装性評価装置、及び溶接継手の製造方法
JP2011240368A (ja) 溶接の品質判定方法および溶接の品質判定システム
Poggio et al. Resistance spot welding of advanced high strength steel DP600
KR20240038226A (ko) 저항 점 용접의 품질 평가 방법
JP6236610B2 (ja) 鋼板間の接触寸法測定方法および鋼板間の接触寸法測定装置
KR100685015B1 (ko) 표면처리강판의 저항용접성 평가방법
CN109048013B (zh) 一种基于多足连接件的异种材料连接装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20048018090

Country of ref document: CN

122 Ep: pct application non-entry in european phase