WO2005030394A1 - Klimakammer für mikroskope - Google Patents

Klimakammer für mikroskope Download PDF

Info

Publication number
WO2005030394A1
WO2005030394A1 PCT/EP2004/010531 EP2004010531W WO2005030394A1 WO 2005030394 A1 WO2005030394 A1 WO 2005030394A1 EP 2004010531 W EP2004010531 W EP 2004010531W WO 2005030394 A1 WO2005030394 A1 WO 2005030394A1
Authority
WO
WIPO (PCT)
Prior art keywords
control device
climate
climatic chamber
medium
steam
Prior art date
Application number
PCT/EP2004/010531
Other languages
English (en)
French (fr)
Inventor
Matthias Pirsch
Stefan Hummel
Original Assignee
Evotec Technologies Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10344294A external-priority patent/DE10344294A1/de
Application filed by Evotec Technologies Gmbh filed Critical Evotec Technologies Gmbh
Priority to EP04765416A priority Critical patent/EP1575706B1/de
Priority to DE502004001262T priority patent/DE502004001262D1/de
Priority to JP2006527331A priority patent/JP4694489B2/ja
Priority to US10/571,297 priority patent/US7765868B2/en
Publication of WO2005030394A1 publication Critical patent/WO2005030394A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L1/00Enclosures; Chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/48Holding appliances; Racks; Supports
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/54Constructional details, e.g. recesses, hinges hand portable
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/10Means to control humidity and/or other gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1838Means for temperature control using fluid heat transfer medium

Definitions

  • the invention relates to a climatic chamber which is particularly suitable for chemical and / or biological samples.
  • a climate chamber is known from JP 2003107364, within which a sample holder is arranged.
  • the climate space formed exclusively encloses the sample carrier and has a transparent cover in order to examine or observe the sample with the aid of an examination device, such as a microscope.
  • an examination device such as a microscope.
  • the provision of such a climatic chamber has the disadvantage that the examination device must be at a relatively large distance from the sample. The sample is also observed by a
  • the object of the invention is to create a climatic chamber in which the examination possibilities of a sample are improved.
  • a climatic chamber of the climatic chamber formed by a housing at least partially encloses an examination device such as a microscope or the like.
  • an examination device such as a microscope or the like.
  • the essential components of an examination device for example the optics and the illumination of a microscope, are arranged within the climate space.
  • the optical device or another part of an examination device can thus be brought very close to the sample to be examined without an outer wall falsifying the measurement results or a cover of a climatic chamber having to be arranged between the sample and the examination device.
  • the climatic chamber according to the invention has an inlet opening through which an air-conditioning medium flow can be introduced into the climatic room.
  • an air-conditioning medium flow can be introduced into the climatic room.
  • this involves supplying air with a defined, for example, atmospheric humidity and / or temperature.
  • the component of gases, such as CO 2 can also be defined.
  • the medium flow can in particular have a relatively high air humidity in order to increase the air humidity in the climatic room, there is a risk of condensation on cold components, such as the sample carrier and in particular parts of the examination device. Since the condensation on such components can lead to considerable falsifications of the test results, the medium flow according to the invention is introduced into the climatic space in such a way that at least a part of the medium flow Examination device and / or the sample carrier flows. Both the sample carrier and the critical components of the examination device preferably flow against one another. This prevents condensation in this area.
  • the climatic chamber preferably has an alignment device in order to direct the medium flow onto the corresponding parts of the examination device and / or the sample carrier.
  • the alignment device can be a side wall of the housing which has the inlet opening and is aligned at a specific angle to the parts to be flown. The angle depends on the type of microscope.
  • the angle of attack relative to the sample carrier, preferably against an underside of the sample carrier, is preferably 30 ° -60 °, preferably 40 ° -50 °.
  • the alignment device is preferably adjustable and / or adjustable. This can be achieved by providing a separate alignment device. It is also possible to pivot the position of a supply hose through which the medium flow is supplied to the climatic space with respect to the inlet opening and thus to adjust the angle of flow.
  • the provision of flow guide elements or plates, among other things. is possible.
  • the medium flow is preferably aligned in such a way that 50% -70% of the medium flow flow towards the corresponding parts, ie in particular the optics of the examination device and the sample carrier.
  • heating of the condensate-sensitive components, such as the lenses, and the illumination of the sample holder can be achieved in a preferred manner, and thus condensation of the moisture can be prevented and, in addition, uniform heating of the climate space can be achieved.
  • a temperature sensor is preferably arranged in the vicinity of the sample carrier. With the help of an appropriate control device, the temperature in the area of the sample holder can thus be set very precisely.
  • a moisture sensor, a gas sensor etc. can preferably also be provided in the area of the sample holder.
  • the sensors in particular the temperature sensor, below the sample carrier.
  • the sensors in particular the temperature sensor, below the sample carrier.
  • This is particularly advantageous in the case of titer plates, since the temperature in the vicinity of the titer plate bottom and thus approximately the temperature of the titer plate bottom itself is determined.
  • the sample comes into direct contact with the ground, so that the temperature of the sample can be approximately determined by arranging the temperature sensor near and below the sample carrier. This would not be possible with this accuracy if the temperature sensor were arranged above the sample holder, since, for example, an air cushion is present between a cover of the sample holder and the sample itself, which deteriorates the heat transfer between the sample holder and the sample.
  • the shape of the housing is flow-optimized.
  • a very small amount of condensate is formed on the inside wall of the housing.
  • the flow optimization can preferably be achieved in that adjacent walls are arranged at an angle of at least 90 ° to one another. It is preferred to arrange the housing walls at an angle of more than 90 °, in particular of more than 120 ° to one another. As a result, the medium flow slides along the inside of the housing and hardly any "dead corners" occur.
  • the chamber wall of the climatic chamber according to the invention preferably has one or more openings through which manipulators, for example robot arms, can be introduced into the interior of the climatic chamber. Collar seals or other seals are preferably provided between the manipulators and the chamber wall to seal the opening. If the manipulators are no longer or no longer required, they can be removed through the openings or pulled out of the chamber. The openings can then be closed, for example, with a screw cap or another closure element. Preferably, only the manipulators themselves, ie for example the robot arms, are introduced into the chamber through the openings in the chamber wall. Actuators, motor drives and the like. The manipulators are preferably arranged outside the chamber.
  • a deflection element is provided in the area in which the sample holder, a specimen slide or the like is arranged, through which the media flow is deflected. This can ensure that, for example, the evaporation rate of a liquid sample is as low as possible with a relatively dry media flow.
  • the chamber wall of the climatic chamber is at least partially transparent.
  • the chamber wall can also have windows through which observation of the sample etc. is possible.
  • the windows or the transparent areas of the chamber wall can preferably be darkened or closed. This can be advantageous, for example, when examining photosensitive samples.
  • a sample or an object to be examined which is arranged in the climatic chamber, can only be brought to the desired temperature by feeding a tempered media stream into the climatic chamber. This also applies to the surroundings of the sample or the object or to the entire climate chamber.
  • heating by the provision can also be carried out of heating elements. This can be, for example, electrical heating elements provided directly in the climatic chamber, but also radiators, which may also be arranged outside the climatic chamber. The heating can thus take place on the basis of convection and / or radiation.
  • the housing additionally has an outlet opening, so that the inflowing medium leaves the climatic space not only as a leakage medium.
  • a discharge channel such as a hose or the like, is preferably connected to the outlet opening.
  • This preferably leads to an air conditioning and / or control device, so that the medium flow is pumped in a closed system in a circuit.
  • steam is generated to increase the air humidity and / or the medium flow is heated and / or gases are introduced.
  • the invention thus relates to a climate control device with a climate chamber and a climate control device.
  • climate control device in particular a climate control device
  • the climate control device is preferably connected to the climate chamber.
  • climate control devices in particular incubators, to expose chemical and / or biological samples, such as cells, to a defined climate over a longer period of time.
  • air humidity and the temperature are also important.
  • a humidity control has the disadvantage that the time from the introduction of the sample into the climatic chamber to Reaching the desired moisture level is relatively large. With a required humidity value of 80% and a chamber volume of 50-70 l, the time span in such climate control devices is in the range of about 3-4 minutes.
  • the climate control device has a channel or a room or a chamber through which the gaseous medium to be conditioned flows.
  • the medium is usually air, which may be enriched with gases such as CO 2 .
  • the climate control device has a steam chamber with an inlet opening and an outlet opening connected to the duct. Steam, for example water vapor, is generated in the steam chamber, which is connected to a steam generating device, such as a spraying device or a heater. If a spray device is provided as the steam generating device, an aerosol, ie a fine droplet distribution of the liquid, is produced in a gaseous medium. Evaporation of a liquid is caused by heating. In this case, when a liquid bath is evaporated by heating, the enthalpy of vaporization is already contained, whereas when spraying, it still has to be supplied via a heating device.
  • a regulating device is arranged at the inlet opening and / or the outlet opening of the steam chamber in order to regulate the amount of steam entering the channel from the steam chamber.
  • the steam or an aerosol is therefore not introduced directly into the medium to be conditioned, but is previously stored in a steam chamber. It is therefore possible to generate a supply of steam in the steam chamber, which can be supplied to the medium to be conditioned in a short time.
  • the control device completely opens the inlet and / or outlet opening of the steam chamber so that a maximum volume of steam flow is introduced into the duct from the steam chamber
  • the climate control device according to the invention in less than five minutes , in particular to achieve a humidity of over 80%, in particular over 90% and particularly preferably over 95% in less than three minutes.
  • This can be achieved, for example, with a volume flow of the gaseous medium of approximately 40-50 l / s, a climate chamber volume of 50-80 l and a volume of the steam chamber of approximately II.
  • the steam generating device is preferably a heating device by means of which high atmospheric humidity is generated by the evaporation of water or a fluid. Compared to a spray device that produces an aerosol, this has the advantage that steam does not condense out as easily or is deposited on surfaces as aerosol.
  • the opening cross section of the inlet and / or the outlet opening of the steam chamber can preferably be varied. This is preferably done by means of a displaceable cover element, so that the opening cross section can be varied quickly and easily.
  • the cover element is preferably a proportional slide. If the climate control device according to the invention is to be used, in particular for climate control in incubators for chemical and / or biological samples, the inlet opening of the steam chamber is preferably connected to the channel. This has the advantage that no external air enters the system through the inlet opening, through which contaminants could be supplied.
  • the displaceable cover element can also be a cylindrical element that can be displaced in relation to a slot-shaped outlet opening.
  • the cylindrical element is in arranged according to circular bearings, so that a smooth movement is possible.
  • the shape of the flap is preferably designed such that the opening angle of the flap is directly proportional to the cross-sectional area. This simplifies the control considerably.
  • the climate control device preferably has a filter device through which the impurities, bacteria, etc. contained in the medium to be conditioned can be filtered out.
  • the filter device is preferably arranged in the flow direction in front of the steam chamber, in particular in front of the outlet opening of the steam chamber. The filtering of the medium takes place before the renewed or additional enrichment with steam.
  • the climate control device can have a temperature control for heating and / or cooling the conditioned medium.
  • the temperature control device is preferably arranged downstream of the steam chamber, so that the freshly enriched medium then flows through the temperature control device.
  • the provision of a temperature control device, through which cooling may also be possible, has the advantage that the temperature increase in the medium caused by the introduction of the steam, if this is undesirable, can be reduced again. It is therefore possible to regulate the moisture content of the medium independently of the temperature of the medium within large ranges. The range is essentially only limited by the physical limits, ie in particular the ability of the medium to absorb moisture depending on the temperature (dew point).
  • the fluid which is present in the steam chamber for evaporation is preferably brought to a temperature of 40-65 °, since otherwise the influence on the temperature of the medium to be conditioned is too high and complex cooling would have to take place.
  • the cooling it is also possible to keep the temperature below 30 ° at a high humidity of preferably over 90%.
  • Liquid is preferably provided in the steam chamber and is evaporated by the heating device.
  • the steam chamber is preferably connected to a liquid supply device. This can optionally have an automatic fill level meter, so that an automatic refill of liquid is realized.
  • the climatic chamber according to the invention which is preferably connected to the climatic device described above, is also particularly suitable for skin breeding. If the skin is cultivated in the climatic chamber according to the invention, it is possible to carry out observations and / or examinations during the breeding with the aid of the microscope arranged in the chamber.
  • the skin or other cells can also be grown in a climate chamber connected to the climate control device according to the invention, the climate chamber having no microscope or the like.
  • FIG. 1 is a schematic, partially sectioned side view of the climatic chamber placed on a microscope
  • FIG. 2 is a schematic, partially sectioned sectional view taken along the line II-II in Fig. 1
  • Fig. 3 is a schematic perspective, partially sectioned view of a climate control device
  • FIG. 4 shows a schematic, sectional side view of a further embodiment of a control device that can be provided in the climate control device.
  • a climate chamber consists of a plurality of side walls 12, 14 (FIG. 2), a front wall 16 (FIG. 1), a rear wall 18, a top wall 20 and a bottom wall 22.
  • a housing 24 is formed by the walls 12 - 22, that one Training room 26.
  • the housing 24 has a recess in the bottom wall 22 and in the front wall 16, so that the housing 24 can be placed on a microscope 28.
  • the front wall 16 and the bottom wall 22 have sealing elements 27 which rest against the examination device or the microscope 28 and which essentially seal off the climatic chamber 26 from the outside.
  • Essential components of the examination device which in the exemplary embodiment shown is a microscope 28, are thus arranged within the climatic chamber 26.
  • an optical device 30 which usually has a plurality of lenses, and an illumination device 32.
  • a sample table 34 which is usually displaceable, and a sample holder 36 arranged on the sample table 34, which is in particular a microtiter plate, are arranged within the climatic chamber 26 ,
  • the side wall 14 has an inlet opening 38 which is connected to a hose 40 or another supply device for supplying a medium flow 42.
  • the medium flow 42 is preferably an air flow, in particular the humidity, the temperature and possibly the gas content of individual gases present in the medium flow using a external climate control device is set.
  • the medium flow 42 is oriented such that it is arranged laterally below the sample holder 36 (FIG. 2) in the case of a horizontally arranged sample holder 36.
  • a preferred inflow angle ⁇ here is 30 ° -60 ° compared to the sample carrier 36.
  • the optical device 30 and the illumination device 32 are also located within the medium stream 42.
  • the medium stream 42 flows against an underside 44 of the sample carrier 36, so that the chemical and / or biological sample arranged within the sample carrier is well tempered can.
  • a temperature sensor 46 is arranged below the sample carrier 36.
  • the housing 24 has an outlet opening 48 in the rear wall 18.
  • the outlet opening 48 is also connected to a hose or the like and guides the medium flow back to a climate control device, so that a circulation of the medium flow is ensured.
  • the outlet opening 48 is arranged essentially opposite the inlet opening 38 in order to ensure that the air flow through the climatic space 26 is as uniform as possible.
  • the housing shape of the housing 24 is also designed to be as flow-optimized as possible, the embodiment shown in the drawings being shown in simplified form.
  • adjacent side walls are preferably arranged at an angle of at least 90 °, in particular at least 120 ° to one another. In order to avoid "dead corners", for example, an additional wall running in FIG.
  • the housing 24 preferably has a door so that the sample carrier 36 can be exchanged in a simple manner.
  • the door can, for example, be provided in the front wall 16 and in particular also be lockable.
  • the climatic chamber according to the invention is particularly suitable for confocal microscopes, which can be imaging or non-imaging confocal microscopes.
  • An imaging, in particular confocal, microscope preferably has a CCD array or the like for taking an image of a sample.
  • the climate control device has a channel 110 through which a gaseous medium to be conditioned flows through in the direction of an arrow 112.
  • the medium to be conditioned is sucked into the channel 110 by means of a fan 114 through a filter 116, which is used to clean the gaseous medium from particles, bacteria, etc.
  • the medium is passed through the flow device or the fan 114 through a temperature control device 118, which is a heating and / or cooling device. The medium therefore flows through the climate control device in the flow direction indicated by the arrows 112.
  • a steam chamber 120 is provided below the channel 110.
  • the steam chamber 120 is provided within a common housing 122 together with the channel 110.
  • the interior of the housing 122 is thus divided into the channel 110 and the steam chamber 120 by a partition 124.
  • the steam chamber 120 is connected to a heating element 126 which serves to generate steam.
  • An underside 128 of the housing 122 is heated by the heating element 126.
  • the water 130 or another liquid located in the steam chamber is heated, so that steam 132 forms above the liquid 130.
  • the steam chamber 120 faces an inlet opening 134 connected to the channel 110 in the exemplary embodiment shown.
  • the inlet opening 134 is arranged in the partition 124.
  • a further inlet opening can be provided in a cover 136 of the housing 122.
  • This inlet opening is arranged in the area below the filter 116 in the side wall 136, laterally next to the partition 124.
  • the partition 124 as shown in the figure, does not run continuously parallel to the underside 128 of the housing 122, but is angled on one side by approximately 90 ° and connected to the side wall 136.
  • the steam chamber 120 also has an outlet opening 138 connected to the channel 110. Steam 132 enters channel 110 through outlet opening 138 in order to increase the air humidity of the medium transported by the climate control device.
  • a control device 140 in the form of a slide or a cover element is provided in the area of the outlet opening 138.
  • the slide or the cover element 140 has an opening which usually has at least the dimensions of the outlet opening 138.
  • the slide 140 is displaceable in the direction of an arrow 142. This makes it possible for the outlet opening 138 and the opening of the slide 140 to be arranged so that they overlap completely when the control device is open to the maximum.
  • the slide 140 can be moved in the direction of the arrow 142, so that only part of the outlet opening 138 is still open. By moving the slide 140 in the direction of the arrow, the opening cross section of the outlet opening 138 can thus be varied.
  • a fill level meter can be provided within the steam chamber 120, and the steam chamber 120 can be connected to a storage container.
  • gases for example CO 2
  • a flap 150 (FIG. 4) can also be provided to regulate the opening cross section of the outlet opening 138.
  • the flap 150 is pivotable about an axis 152, a different amount of steam being able to flow out of the steam chamber 120 into the chamber 110 depending on the opening angle of the flap 150.
  • the flap 150 preferably has a flap edge 154 pointing in the direction of the opening 138, which is designed in the form of a web and has an outer contour adapted to the types of the flap. By choosing or designing the outer contour, it is possible to realize a proportionality between the opening angle of the flap 150 and the opening cross section of the outlet opening 138 opened thereby, in order to simplify the control.
  • the climate chamber described with reference to FIGS. 1 and 2 is connected to a climate control device described with reference to FIGS. 3 and 4.
  • an outlet 144 (FIG. 3) can be connected to the hose 40 (FIG. 2).
  • a hose provided at the outlet opening 148 (FIG. 2) can be connected to an inlet 146 of the filter 116 (FIG. 3).
  • the two device elements are thus connected to one another only by two hoses and can be arranged at a distance from one another. Due to this modular structure, it is possible to connect the individual device components with each other in different configurations. Furthermore, the arrangement in a laboratory is advantageously possible, so that, for example, the climate control device (FIG. 3) does not have to be disruptively arranged in the vicinity of the climate chamber.
  • the device according to the invention has a control device.
  • This can with different sensors, actuators and the like. communicate or be connected.
  • the control device and the devices connected to it which are sensors, for example, the medium can be set.
  • the moisture content, the temperature, the CO content, the content of other gas fractions, etc. are set here.
  • the flow angle of the media stream 42 (FIG. 2) can be varied by means of appropriate adjusting devices. This can be done by means of steering elements provided in the media flow, such as steering plates, which can of course also be made of plastic, or by varying the position of the hose 40 or the inlet opening 38.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Eine Klimakammer, die insbesondere für chemische und/ oder biologische Proben geeignet ist, weist einen Klimaraum (26) auf, der durch ein Gehäuse (24) gebildet ist. Innerhalb des Klimaraums (26) ist eine Untersuchungsvorrichtung (28), wie ein Mikroskop, zumindest teilweise angeordnet. Ferner weist das Gehäuse (24) eine Einlassöffnung (38) zum Zuführen eines klimatisierenden Mediumstroms (42) auf. Um ein Kondensieren an kondensatempfindlichen Bauteilen (30, 32, 34) zu verhindern, ist der Mediumstrom (42) derart angeordnet, dass er zumindest teilweise die Untersuchungsvorrichtung (28) und/ oder den Probenträger (36) anströmt.

Description

Klimakammer für Mikroskope
Die Erfindung betrifft eine Klimakammer, die insbesondere für chemische und/ oder biologische Proben geeignet ist.
Bei chemischen und/ oder biologischen Proben, wie beispielsweise Zellen, ist es beispielsweise zum Untersuchen des Zellwachstums oder anderer Reaktionen erforderlich, die Probe über einen längeren Zeitraum einem definierten Klima auszusetzen. Insbesondere ist bei dem Klima die Temperatur und der Feuchtigkeitsgehalt innerhalb eines Klimaraumes, in dem die Probe angeordnet ist, von großer Bedeutung. Ferner können Gasbestandteile, wie die Menge an CO2 etc., relevant sein.
Aus JP 2003107364 ist eine Klimakammer bekannt, innerhalb der ein Probenträger angeordnet ist. Der gebildete Klimaraum umschließt ausschließlich den Probenträger und weist einen transparenten Deckel auf, um mit Hilfe einer Untersuchungsvorrichtung, wie einem Mikroskop, die Probe zu untersuchen bzw. zu beobachten. Das Vorsehen einer derartigen Klimakammer hat den Nachteil, dass die Untersuchungsvorrichtung einen relativ großen Abstand zur Probe aufweisen muss. Ferner erfolgt die Beobachtung der Probe durch einen
transparenten Deckel, so dass auf Grund von Brechungen und dgl. optische Signale verfälscht werden können.
Aufgabe der Erfindung ist es, eine Klimakammer zu schaffen, in der die Untersuchungsmöglichkeiten einer Probe verbessert werden.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.
Erfindungsgemäß umschließt ein durch ein Gehäuse gebildeter Klimaraum der Klimakammer eine Untersuchungsvorrichtung, wie ein Mikroskop oder dgl., zumindest teilweise. Somit sind insbesondere die wesentlichen Bestandteile einer Untersuchungsvorrichtung, beispielsweise die Optik und die Beleuchtung eines Mikroskops, innerhalb des Klimaraums angeordnet. Insbesondere die Optikeinrichtung oder ein anderer Teil einer Untersuchungseinrichtung kann somit sehr nahe an die zu untersuchende Probe herangeführt werden, ohne dass eine die Messergebnisse verfälschende Außenwand oder ein Deckel einer Klimakammer zwischen der Probe und der Untersuchungsvomchtung angeordnet sein muss.
Ferner weist die erfindungsgemäße Klimakammer eine Einlassöffnung auf, durch die ein klimatisierender Mediumstrom in den Klimaraum eingeleitet werden kann. Insbesondere handelt es sich hierbei um das Zuführen von Luft einer beispielsweise definierten Luftfeuchtigkeit und/ oder Temperatur. Ggf. kann auch der Bestandteil von Gasen, wie beispielsweise CO2, definiert sein. Da der Mediumstrom insbesondere eine relativ hohe Luftfeuchtigkeit aufweisen kann, um die Luftfeuchtigkeit in dem Klimaraum zu erhöhen, besteht die Gefahr des Kondensierens an kalten Bauteilen, wie dem Probenträger und insbesondere Teilen der Untersuchungsvorrichtung. Da das Kondensieren an derartigen Bauteilen zu erheblichen Verfälschungen der Untersuchungsergebnisse führen kann, ist der Mediumstrom erfindungsgemäß derart in den Klimaraum eingeleitet, dass zumindest ein Teil des Mediumstroms die Untersuchungsvorrichtung und/ oder den Probenträger anströmt. Vorzugsweise erfolgt sowohl ein Anströmen des Probenträgers als auch der kritischen Bauteile der Untersuchungsvorrichtung. Hierdurch ist ein Kondensieren in diesem Bereich vermieden.
Vorzugsweise weist die Klimakammer eine Ausrichteinrichtung auf, um den Mediumstrom auf die entsprechenden Teile der Untersuchungsvorrichtung und/ oder den Probenträger zu richten. Bei der Ausrichteinrichtung kann es sich um eine Seitenwand des Gehäuses handeln, die die Einlassöffnung aufweist und in einem bestimmten Winkel zu den anzuströmenden Teilen ausgerichtet ist. Hierbei ist der Winkel von der Bauart des Mikroskops abhängig. Vorzugsweise beträgt der Anströmwinkel gegenüber dem Probenträger, vorzugsweise gegenüber einer Unterseite des Probenträgers, 30° - 60°, vorzugsweise 40° - 50°. Bei einem in dem Klimaraum horizontal angeordneten Probenträger, bei dem es sich vorzugsweise um eine Mikrotiterplatte handelt, erfolgt das Anströmen von seitlich unten. Vorzugsweise ist die Ausrichteinrichtung verstell- und/ oder justierbar. Dies kann durch Vorsehen einer gesonderten Ausrichteinrichtung realisiert werden. Es ist auch möglich, die Lage eines Zuführschlauchs, durch den der Mediumstrom den Klimaraum zugeführt wird, bzgl. der Einlassöffnung zu verschwenken und somit den Anströmwinkel einzustellen. Auch das Vorsehen von Strömungsleitelementen bzw. -blechen u.a. ist möglich.
Vorzugsweise ist der Mediumstrom derart ausgerichtet, dass 50% - 70% des Mediumstroms die entsprechenden Teile, d.h. insbesondere die Optik der Untersuchungsvorrichtung und den Probenträger, anströmen. Hierdurch kann in bevorzugter Weise einerseits ein Erwärmen der kondensatempfindlichen Bauteile, wie der Linsen, der Beleuchtung des Probenträgers, realisiert werden und somit ein Kondensieren der Feuchtigkeit verhindert werden und zusätzlich ein gleichmäßiges Erwärmen des Klimaraums erzielt werden. Des Weiteren ist vorzugsweise in der Nähe des Probenträgers ein Temperatursensor angeordnet. Mit Hilfe einer entsprechenden Regelungseinrichtung kann somit die Temperatur im Bereich des Probenträgers sehr genau eingestellt werden. Zusätzlich kann vorzugsweise ebenfalls im Bereich des Probenträgers ein Feuchtigkeitssensor, ein Gassensor etc. vorgesehen sein. Besonders bevorzugt ist es, die Sensoren, insbesondere den Temperatursensor, unterhalb des Probenträgers anzuordnen. Dies ist insbesondere bei Titerplatten vorteilhaft, da somit die Temperatur in der Nähe des Titerplattenbodens und somit annähernd die Temperatur des Titerplattenbodens selbst bestimmt wird. Mit dem Boden kommt die Probe unmittelbar in Kontakt, so dass durch die Anordnung des Temperatursensors nahe und unterhalb des Probenträgers annähernd die Temperatur der Probe bestimmt werden kann. Dies wäre bei dem Anordnen des Temperatursensors oberhalb des Probenträgers nicht in dieser Genauigkeit möglich, da beispielsweise zwischen einem Deckel des Probenträgers und der Probe selbst ein Luftpolster vorhanden ist, das den Wärmeübergang zwischen dem Probenträger und der Probe verschlechtert.
Bei einer besonders bevorzugten Ausführungsform ist die Form des Gehäuses strömungsoptimiert ausgebildet. Dies hat zur Folge, dass sich auf der Gehäuseinnenwand allenfalls eine sehr geringe Menge an Kondensat bildet. Die Strömungsoptimierung kann vorzugsweise dadurch erzielt werden, dass einander benachbarte Wände in einem Winkel von mindestens 90° zueinander angeordnet sind. Bevorzugt ist es, die Gehäusewände in einem Winkel von mehr als 90°, insbesondere von mehr als 120° zueinander anzuordnen. Dies hat zur Folge, dass der Mediumstrom an der Innenseite des Gehäuses entlang gleitet und kaum "tote Ecken" auftreten.
Vorzugsweise weist die Kammerwand der erfindungsgemäßen Klimakammer ein oder mehrere Öffnungen auf, durch die Manipulatoren, beispielsweise Roboterarme, in das Innere der Klimakammer eingeführt werden können. Vorzugsweise sind zwischen den Manipulatoren und der Kammerwand zur Abdichtung der Öffnung Kragendichtungen oder andere Dichtungen vorgesehen. Sofern die Manipulatoren nicht oder nicht mehr benötigt werden, können diese durch die Öffnungen entfernt bzw. aus der Kammer heraus gezogen werden. Die Öffnungen können sodann beispielsweise mit einem Schraubdeckel oder einem anderen Verschlusselement verschlossen werden. Vorzugsweise werden durch die Öffnungen in der Kammerwand nur die Manipulatoren selbst, d. h. beispielsweise die Roboterarme, in die Kammer eingeführt. Betätigungselemente, Motorenantriebe und dgl. der Manipulatoren sind hierbei vorzugsweise außerhalb der Kammer angeordnet.
Bei einer besonders bevorzugten Ausführungsform der Erfindung ist in dem Bereich, in dem der Probenträger, ein Objektträger oder dgl. angeordnet ist, ein Umlenkelement vorgesehen, durch das ein Umlenken des Medienstroms erfolgt. Hierdurch kann sichergestellt werden, dass beispielsweise bei einem relativ trockenen Medienstrom die Verdunstungsrate einer flüssigen Probe möglichst gering ist.
Um beispielsweise beim Handhaben der Manipulatoren oder auch zur sonstigen Beobachtung die Probe auf einfache Weise beobachten zu können, ist die Kammerwand der Klimakammer zumindest teilweise durchsichtig. Ebenso kann die Kammerwand Fenster aufweisen, durch die ein Beobachten der Probe etc. möglich ist. Hierbei sind die Fenster oder die transparenten Bereiche der Kammerwand vorzugsweise abdunkelbar bzw. verschließbar. Dies kann beispielsweise bei der Untersuchung lichtempfindlicher Proben vorteilhaft sein.
Eine Probe bzw. ein zu untersuchendes Objekt, das in der Klimakammer angeordnet ist, kann ausschließlich durch das Zuführen eines temperierten Medienstroms in die Klimakammer auf die gewünschte Temperatur gebracht werden. Dies gilt ebenso für die Umgebung der Probe bzw. des Objekts oder auch für die gesamte Klimakammer. Zusätzlich oder anstatt der Erwärmung der Probe durch den Mediumstrom kann auch eine Erwärmung durch das Vorsehen von Heizelementen erfolgen. Hierbei kann es sich beispielsweise um unmittelbar in der Klimakammer vorgesehenen elektrische Heizelemente, aber auch um Strahler handeln, die ggf. auch außerhalb der Klimakammer angeordnet sind. Die Erwärmung kann somit auf Grund von Konvektion und/ oder Strahlung erfolgen.
Besonders bevorzugt ist es, dass das Gehäuse zusätzlich eine Auslassöffnung aufweist, so dass das einströmende Medium nicht nur als Leckagemedium den Klimaraum verlässt. Dies hat den Vorteil, dass die Menge an zugeführtem Medium sehr hoch sein kann, ohne Druck innerhalb des Klimaraums aufzubauen. Vorzugsweise ist mit der Auslassöffnung ein Abführkanal, wie ein Schlauch oder dgl., verbunden. Dieser führt vorzugsweise zu einer Klimaerzeugungs- und/ oder -regelvorrichtung, so dass der Mediumstrom in einem geschlossenen System im Kreis gepumpt wird. Mit Hilfe der Klimaregelvorrichtung wird beispielsweise Dampf zur Erhöhung der Luftfeuchtigkeit erzeugt und/ oder der Mediumstrom erwärmt und/ oder Gase eingeleitet. Die Erfindung betrifft somit eine Klimaregeleinrichtung mit einer Klimakammer und einer Klimaregelvorrichtung.
Eine derartige Klimaerzeugungs-, insbesondere Klimaregelvorrichtung stellt eine selbstständige Erfindung dar. Vorzugsweise ist die Klimaregelvorrichtung jedoch erfindungsgemäß mit der Klimakammer verbunden.
Es ist bekannt, in Klimaregelvorrichtungen, insbesondere Inkubatoren, chemische und/ oder biologische Proben, wie beispielsweise Zellen, über einen längeren Zeitraum hin einem definierten Klima auszusetzen. Hierbei ist es insbesondere erforderlich, die Luftfeuchtigkeit und die Temperatur innerhalb eines vorgegebenen Bereichs zu halten. Zusätzlich ist die Atmosphäre, beispielsweise der CO2-Gehalt innerhalb des Inkubators, wichtig. Zur Regelung der Feuchtigkeit, insbesondere der Luftfeuchtigkeit, innerhalb eines Inkubators ist es bekannt, einen Schwamm mit Wasser zu beträufeln und mit warmer Luft zu durchströmen. Eine derartige Feuchtigkeitsregelung weist jedoch den Nachteil auf, dass die Zeitspanne vom Einbringen der Probe in die Klimakammer bis zum Erreichen des gewünschten Feuchtigkeitswertes relativ groß ist. Bei einem geforderten Feuchtigkeitswert von 80% und einem Kammervolumen von 50-70 I liegt bei derartigen Klimaregelvorrichtungen die Zeitspanne im Bereich von ca. 3-4 min.. Dies hat insbesondere zur Folge, dass es nicht möglich ist, während der Inkubationszeit beispielsweise für Voruntersuchungen, eine Probe aus der Klimakammer zu entnehmen. Dies wäre, um beispielsweise das Zellwachstum über einen gewissen Zeitraum beurteilen zu können, jedoch wünschenswert, da sodann nicht einzelne Proben über unterschiedliche Zeiträume in gesonderten Inkubatoren inkubiert werden müssen, sondern die gesamte Inkubation in einem Inkubator stattfinden kann.
Die erfindungsgemäße Klimaregelvorrichtung weist einen Kanal bzw. einen Raum oder eine Kammer auf, der von dem zu klimatisierenden gasförmigen Medium durchströmt wird. Üblicherweise handelt es sich bei dem Medium um Luft, die ggf. mit Gasen, wie beispielsweise CO2, angereichert ist. Ferner weist die Klimaregelvorrichtung eine Dampfkammer mit einer Einlassöffnung und einer mit dem Kanal verbundenen Auslassöffnung auf. In der Dampfkammer, die mit einer Dampferzeugungseinrichtung, wie einer Sprühvorrichtung oder einer Heizung, verbunden ist, wird Dampf, beispielsweise Wasserdampf, erzeugt. Ist als Dampferzeugungseinrichtung eine Sprühvorrichtung vorgesehen, wird ein Aerosol, d.h. eine feintröpfige Verteilung der Flüssigkeit, in einem gasförmigen Medium hervorgerufen. Durch eine Heizung wird ein Verdampfen einer Flüssigkeit hervorgerufen. Hierbei ist beim Verdampfen eines Flüssigkeitsbads durch Heizen die Verdampfungsenthalpie bereits enthalten, wohingegen sie beim Versprühen noch über eine Heizeinrichtung zugeführt werden muss.
Erfindungsgemäß ist an der Einlassöffnung und/ oder der Auslassöffnung der Dampfkammer eine Regeleinrichtung angeordnet, um die aus der Dampfkammer in den Kanal gelangende Dampfmenge zu regeln. Erfindungsgemäß wird der Dampf oder ein Aerosol somit nicht unmittelbar in das zu klimatisierende Medium eingebracht, sondern zuvor in einer Dampfkammer gespeichert. Es ist daher möglich, in der Dampfkammer eine Vorratsmenge an Dampf zu erzeugen, die in kurzer Zeit dem zu klimatisierenden Medium zugeführt werden kann. Erfolgt durch die Regeleinrichtung beispielsweise ein vollständiges Öffnen der Ein- und/ oder Austrittsöffnung der Dampfkammer, so dass ein maximaler Dampf-Volumen-Strom aus der Dampfkammer in den Kanal eingleitet wird, so ist es mit der erfindungsgemäßen Klimaregelvorrichtung möglich, in weniger als fünf Minuten, insbesondere in weniger als drei Minuten eine Luftfeuchtigkeit von über 80%, insbesondere über 90% und besonders bevorzugt über 95% zu erzielen. Dies kann beispielsweise bei einem Volumenstrom des gasförmigen Mediums von ca. 40-50 I/Sek., einem Klimakammervolumen von 50-80 I. und einem Volumen der Dampfkammer von ca. II. erzielt werden.
Vorzugsweise handelt es sich bei der Dampferzeugungseinrichtung um eine Heizvorrichtung, durch die durch Verdampfung von Wasser bzw. einem Fluid hohe Luftfeuchtigkeit erzeugt wird. Dies hat gegenüber eine Sprüheinrichtung, die ein Aerosol erzeugt, den Vorteil, dass Dampf nicht so leicht auskondensiert bzw. sich an Oberflächen niederschlägt wie Aerosol.
Mit Hilfe der erfindungsgemäßen Regeleinrichtung kann vorzugsweise der Öffnungsquerschnitt der Einlass- und/ oder der Auslassöffnung der Dampfkammer variiert werden. Dies erfolgt vorzugsweise durch ein verschiebbares Abdeckelement, so dass der Öffnungsquerschnitt auf einfache Weise und schnell variiert werden kann. Vorzugsweise handelt es sich bei dem Abdeckelement um einen Proportional-Schieber. Sofern die erfindungsgemäße Klimaregelvorrichtung, insbesondere zur Klimaregelung in Inkubatoren für chemische und/ oder biologische Proben, eingesetzt werden soll, ist die Einlassöffnung der Dampfkammer vorzugsweise mit dem Kanal verbunden. Dies hat den Vorteil, dass durch die Einlassöffnung keine Fremdluft in das System gelangt, durch die Verunreinigungen zugeführt werden könnten.
Bei dem verschiebbaren Abdeckelement kann es sich auch um ein zylinderförmiges Element handeln, das gegenüber einer schlitzförmigen Auslassöffnung verschiebbar ist. Hierbei ist das zylinderförmig Element in entsprechend kreisringförmigen Lagerungen angeordnet, so dass ein leichtgängiges Verschieben möglich ist.
Ebenso ist es möglich, an der Öffnung eine Klappe vorzusehen, so dass die Größe der Austrittsfläche durch die Stellung der Klappe variiert werden kann. Hierbei ist die Form der Klappe vorzugsweise derart ausgebildet, dass der Öffnungswinkel der Klappe zu der Querschnittsfläche direkt proportional ist. Hierdurch ist die Regelung erheblich vereinfacht.
Vorzugsweise weist die Klimaregelvorrichtung eine Filtereinrichtung auf, durch die die in dem zu klimatisierenden Medium enthaltenen Verunreinigungen, Bakterien etc. ausgefiltert werden können. Vorzugsweise ist die Filtereinrichtung in Strömungsrichtung vor der Dampfkammer, insbesondere vor der Auslassöffnung der Dampfkammer, angeordnet. Das Filtern des Mediums erfolgt somit vor der erneuten oder zusätzlichen Anreicherung mit Dampf.
Ferner kann die erfindungsgemäße Klimaregelvorrichtung eine Temperiereinreichung zum Heizen und/ oder Kühlen des klimatisierten Mediums aufweisen. Die Temperiereinrichtung ist vorzugsweise in Strömungsrichtung nach der Dampfkammer angeordnet, so dass das frisch mit Dampf angereicherte Medium anschließend durch die Temperiereinrichtung strömt. Das Vorsehen einer Temperiereinrichtung, durch die ggf. auch ein Kühlen möglich ist, hat den Vorteil, dass die durch das Einbringen des Dampfes hervorgerufene Temperaturerhöhung des Mediums, sofern diese unerwünscht ist, wieder verringert werden kann. Es ist somit möglich, innerhalb großer Bereiche den Feuchtigkeitsgehalt des Mediums unabhängig von der Temperatur des Mediums zu regeln. Der Bereich ist im Wesentlichen nur durch die physikalischen Grenzen, d.h. insbesondere die Fähigkeit der Feuchtigkeitsaufnahme des Mediums in Abhängigkeit der Temperatur begrenzt (Taupunkt). Versuche haben gezeigt, dass das Fluid, das in der Dampfkammer zur Verdampfung vorhanden ist, vorzugsweise auf eine Temperatur von 40 - 65° gebracht wird, da ansonsten der Einfluss auf die Temperatur des zu klimatisierenden Mediums zu hoch ist und eine aufwändige Kühlung erfolgen müsste. Durch das Vorsehen der Kühlung ist es auch möglich, bei einer hohen Feuchtigkeit von vorzugsweise über 90% die Temperatur unter 30° zu halten.
Vorzugsweise ist in der Dampfkammer Flüssigkeit vorgesehen, die von der Heizeinrichtung verdampft wird. Um die Flüssigkeitsmenge innerhalb eines bestimmten vorgegebenen Bereichs zu halten, ist die Dampfkammer vorzugsweise mit einer Flüssigkeitszuführeinrichtung verbunden. Diese kann ggf. einen automatischen Füllstandsmesser aufweisen, so dass ein automatisches Nachfüllen von Flüssigkeit realisiert ist.
Die erfindungsgemäße Klimakammer, die vorzugsweise mit der vorstehend beschriebenen Klimavorrichtung verbunden ist, ist insbesondere auch zur Hautzucht geeignet. Hierbei ist es, wenn die Hautzucht in der erfindungsgemäßen Klimakammer vorgenommen wird, möglich, mit Hilfe des in der Kammer angeordneten Mikroskops während der Zucht Beobachtungen und/ oder Untersuchungen durch zuführen. Ebenso kann die Hautzucht oder das Züchten anderer Zellen in einer mit der erfindungsgemäßen Klimaregelvorrichtung verbundenen Klimakammer stattfinden, wobei die Klimakammer kein Mikroskop oder dgl. aufweist.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegenden Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 eine schematische, teilweise geschnittene Seitenansicht der auf ein Mikroskop aufgesetzten Klimakammer,
Fig. 2 eine schematische, teilweise geschnittene Schnittansicht entlang der Linie II-II in Fig. 1, Fig. 3 eine schematische perspektivische, teilweise geschnittenen Ansicht einer Klimaregelvorrichtung und
Fig. 4 eine schematische, geschnittene Seitenansicht einer weiteren Ausführungsform einer in der Klimaregelvorrichtung vorsehbaren Regeleinrichtung.
Eine Klimakammer besteht aus mehreren Seitenwänden 12, 14 (Fig. 2), einer Vorderwand 16 (Fig. 1), einer Rückwand 18, einer Deckwand 20 und einer Bodenwand 22. Durch die Wände 12 - 22 ist ein Gehäuse 24 gebildet, dass einen Klimaraum 26 ausbildet. Das Gehäuse 24 weist in der Bodenwand 22 sowie in der Vorderwand 16 eine Ausnehmung auf, so dass das Gehäuse 24 auf ein Mikroskop 28 aufgesetzt werden kann. Die Vorderwand 16 sowie die Bodenwand 22 weisen Dichtelemente 27 auf, die an der Untersuchungsvorrichtung bzw. dem Mikroskop 28 anliegen und den Klimaraum 26 nach außen im Wesentlichen dicht abschließen. Wesentliche Bestandteile der Untersuchungsvorrichtung, bei der es sich im dargestellten Ausführungsbeispiel um ein Mikroskop 28 handelt, sind somit innerhalb des Klimaraums 26 angeordnet. Hierbei handelt es sich insbesondere um eine üblicherweise mehrere Linsen aufweisende Optikeinrichtung 30 sowie eine Beleuchtungseinrichtung 32. Ferner ist ein üblicherweise verschiebbarer Probentisch 34 und ein auf dem Probentisch 34 angeordneter Probenträger 36, bei dem es sich insbesondere um eine Mikrotiterplatte handelt, innerhalb des Klimaraums 26 angeordnet.
Um in dem Klimaraum 26 über einen längeren Zeitraum von mehreren Stunden oder auch mehreren Tagen ein gleichmäßiges Klima erzeugen zu können, weist die Seitenwand 14 eine Einlassöffnung 38 auf, die mit einem Schlauch 40 oder einer anderen Zuführeinrichtung zur Zuführung eines Mediumstroms 42 verbunden ist. Bei dem Mediumstrom 42 handelt es sich vorzugsweise um einen Luftstrom, wobei insbesondere die Feuchtigkeit, die Temperatur und ggf. der Gasgehalt einzelner in dem Mediumstrom vorhandener Gase mit Hilfe einer externen Klimaregeleinrichtung eingestellt wird. Der Mediumstrom 42 ist derart ausgerichtet, dass er bei einem horizontal angeordneten Probenträger 36 seitlich unterhalb des Probenträgers 36 (Fig. 2) angeordnet ist. Ein bevorzugter Anströmwinkel α beträgt hierbei gegenüber dem Probenträger 36 30° - 60°. Innerhalb des Mediumstroms 42 befindet sich neben dem Probenträger 36 auch die Optikeinrichtung 30 sowie die Beleuchtungseinrichtung 32. Insbesondere erfolgt durch den Mediumstrom 42 ein Anströmen einer Unterseite 44 des Probenträgers 36, so dass die innerhalb des Probenträgers angeordnete chemische und/ oder biologische Probe gut temperiert werden kann.
Um die Temperatur im Bereich des Probenträgers 36 und somit annähernd die Temperatur der Probe selbst gut messen zu können, ist unterhalb des Probenträgers 36 ein Temperatursensor 46 angeordnet.
Des Weiteren weist das Gehäuse 24 in der Rückwand 18 eine Auslassöffnung 48 auf. Die Auslassöffnung 48 ist ebenfalls mit einem Schlauch oder dgl. verbunden und leitet den Mediumstrom wieder zurück zu einem Klimaregelgerät, so dass ein Kreislauf des Mediumstroms gewährleistet ist. Die Auslassöffnung 48 ist im Wesentlichen gegenüber der Einlassöffnung 38 angeordnet, um ein möglichst gleichmäßiges Durchströmen des Klimaraums 26 zu gewährleisten. Im Übrigen ist auch die Gehäuseform des Gehäuses 24 möglichst strömungsoptimiert ausgebildet, wobei die in den Zeichnungen dargestellte Ausführungsform vereinfacht dargestellt ist. Insbesondere sind benachbarte Seitenwände vorzugsweise in einem Winkel von mindestens 90°, insbesondere mindestens 120° zueinander angeordnet. Um beispielsweise "tote Ecken" zu vermeiden, könnte zwischen der Rückwand 18 und der Deckwand 20 eine zusätzliche, in Fig. 1 von der Rückwand 18 innerhalb des Klimaraums 26 zur Deckwand 20 verlaufende Wand eingesetzt werden. Hierdurch sind zwischen der Rückwand 18 und der eingesetzten Wand sowie zwischen der Deckwand 20 und der eingesetzten Wand jeweils Winkel von über 90° realisiert. Ferner können die Ecken mit einem Radius versehen werden, um die Bildung von Kondensat in derartigen Ecken zu vermeiden. Vorzugsweise weist das Gehäuse 24 eine Tür auf, um auf einfache Weise den Probenträger 36 austauschen zu können. Die Tür kann beispielsweise in der Vorderwand 16 vorgesehen und insbesondere auch verschließbar sein.
Die erfindungsgemäße Klimakammer ist insbesondere für konfokale Mikroskope geeignet wobei es sich hierbei um bildergebende oder nicht bildgebende konfokale Mikroskope handeln kann. Ein bildgebendes insbesondere konfokales Mikroskop weist vorzugsweise zur Aufnahme eines Bildes einer Probe ein CCD- Array oder dergleichen auf.
Die erfindungsgemäße Klimaregelvorrichtung weist einen Kanal 110 auf, der in Richtung eines Pfeils 112 von einem zu klimatisierenden, gasförmigen Medium durchströmt wird. Hierzu wird das zu klimatisierende Medium mit Hilfe eines Ventilators 114 durch einen Filter 116, der zur Reinigung des gasförmigen Mediums von Partikeln, Bakterien etc. dient, in den Kanal 110 gesaugt. Nach dem Durchströmen des Mediums durch den Filter 116 und den Kanal 110 wird das Medium durch die Strömungseinrichtung bzw. den Ventilator 114 durch eine Temperiereinrichtung 118, bei der es sich um eine Heiz- und/ oder Kühleinrichtung handelt, geleitet. Das Medium strömt somit durch die Klimaregelvorrichtung in die durch die Pfeile 112 angedeutete Strömungsrichtung.
Unterhalb des Kanals 110 ist eine Dampfkammer 120 vorgesehen. Die Dampfkammer 120 ist innerhalb eines gemeinsamen Gehäuses 122 zusammen mit dem Kanal 110 vorgesehen. Durch eine Trennwand 124 ist der Innenraum des Gehäuses 122 somit in den Kanal 110 und die Dampfkammer 120 unterteilt. Die Dampfkammer 120 ist mit einem zur Dampferzeugung dienenden Heizelement 126 verbunden. Durch das Heizelement 126 wird eine Unterseite 128 des Gehäuses 122 erwärmt. Hierdurch wird das sich in der Dampfkammer befindliche Wasser 130 oder eine andere Flüssigkeit erwärmt, so dass sich oberhalb der Flüssigkeit 130 Dampf 132 bildet. Die Dampfkammer 120 weist eine im dargestellten Ausführungsbeispiel mit dem Kanal 110 verbundene Einlassöffnung 134 auf. Die Einlassöffnung 134 ist in der Trennwand 124 angeordnet. Zusätzlich oder anstatt der Einlassöffnung 134 kann in einem Deckel 136 des Gehäuses 122 eine weitere Einlassöffnung vorgesehen sein. Diese Einlassöffnung ist in dem Bereich unterhalb des Filters 116 in die Seitenwand 136, seitlich neben der Trennwand 124 angeordnet. Hierzu verläuft die Trennwand 124, wie in der Figur dargestellt, nicht durchgehend parallel zur Unterseite 128 des Gehäuses 122, sondern ist auf der einen Seite um etwa 90° abgewinkelt und mit der Seitenwand 136 verbunden.
Ferner weist die Dampfkammer 120 eine mit dem Kanal 110 verbundene Auslassöffnung 138 auf. Durch die Auslassöffnung 138 gelangt Dampf 132 in den Kanal 110, um die Luftfeuchtigkeit des durch die Klimaregelvorrichtung transportierten Mediums zu erhöhen.
Im dargestellten Ausführungsbeispiel ist im Bereich der Auslassöffnung 138 eine Regeleinrichtung 140 in Form eines Schiebers oder eines Abdeckelements vorgesehen. Der Schieber bzw. das Abdeckelement 140 weist eine Öffnung auf, die üblicherweise mindestens die Abmessungen der Auslassöffnung 138 aufweist. Der Schieber 140 ist in Richtung eines Pfeils 142 verschiebbar. Hierdurch ist es möglich, dass die Auslassöffnung 138 und die Öffnung des Schiebers 140 bei maximal geöffneter Regeleinrichtung sich vollständig überdeckend angeordnet sind. Zur Regelung der durch die Auslassöffnung 38 in den Kanal 110 strömenden Dampfmenge, kann der Schieber 140 in Richtung des Pfeils 142 verschoben werden, so dass nur noch ein Teil der Auslassöffnung 138 offen ist. Durch Verschieben des Schiebers 140 in Richtung des Pfeils kann somit der Öffnungsquerschnitt der Auslassöffnung 138 variiert werden.
Um den Flüssigkeitsstand der Flüssigkeit 130 über einen langen Zeitraum konstant halten zu können, kann innerhalb der Dampfkammer 120 ein Füllstandsmesser vorgesehen sein, und die Dampfkammer 120 mit einem Vorratsbehälter verbunden werden. Zusätzlich ist es möglich, in den Medienstrom über Zuführdüsen, Einlasse oder dgl. Gase, beispielsweise CO2, einzuleiten.
An Stelle des Schiebers 140 (Fig. 3) kann zur Regelung des Öffnungsquerschnitts der Auslassöffnung 138 auch eine Klappe 150 (Fig. 4) vorgesehen sein. Die Klappe 150 ist um eine Achse 152 schwenkbar, wobei je nach Öffnungswinkel der Klappe 150 eine unterschiedliche Menge an Dampf aus der Dampfkammer 120 in die Kammer 110 ausströmen kann. Vorzugsweise weist die Klappe 150 einen in Richtung der Öffnung 138 weisenden Klappenrand 154 auf, der stegförmig ausgebildet ist und eine der Arte der Klappe angepasste Außenkontur aufweist. Durch Wahl bzw. Ausgestaltung der Außenkontur ist es möglich, eine Proportionalität zwischen dem Öffnungswinkel der Klappe 150 und dem hierdurch geöffneten Austrittsquerschnitt der Auslassöffnung 138 zu realisieren, um die Regelung zu vereinfachen.
Bei einer besonders bevorzugten Ausführungsform ist die an Hand der Figuren 1 und 2 beschriebene Klimakammer mit einer an Hand der Figuren 3 und 4 beschriebenen Klimaregelvorrichtung verbunden. Hierzu kann ein Auslass 144 (Fig. 3) mit dem Schlauch 40 (Fig. 2) verbunden werden. Ein an der Auslassöffnung 148 (Fig. 2) vorgesehener Schlauch kann mit einem Einlass 146 des Filters 116 (Fig. 3) verbunden sein. Die beiden Vorrichtungselemente sind somit nur über zwei Schläuche miteinander verbunden und können in einem Abstand zueinander angeordnet werden. Auf Grund dieses modularen Aufbaus ist es möglich, die einzelnen Vorrichtungsbestandteile in unterschiedlichen Ausgestaltungsformen miteinander zu verbinden. Ferner ist die Anordnung in einem Labor vorteilhaft möglich, so dass beispielsweise die Klimaregelvorrichtung (Fig. 3) nicht störend in der Nähe der Klimakammer angeordnet werden muss.
Des weiteren weist die erfindungsgemäße Vorrichtung eine Steuereinrichtung auf. Diese kann mit unterschiedlichen Sensoren, Stelleinrichtungen und dgl. kommunizieren bzw. verbunden sein. Mit Hilfe der Steuereinrichtung und der mit dieser verbundenen Einrichtungen, bei denen es sich beispielsweise um Sensoren handelt, kann das Medium eingestellt werden. Hierbei erfolgt insbesondere ein Einstellen des Feuchtigkeitsgehalts, der Temperatur, des CO-- Gehalts, des Gehalts anderer Gasanteile etc.. Ferner kann durch entsprechende Stelleinrichtungen der Anströmwinkel des Medienstroms 42 (Fig. 2) variiert werden. Dies kann durch im Medienstrom vorgesehene Lenkelemente, wie Lenkbleche, die selbstverständlich auch aus Kunststoff sein können, erfolgen oder auch durch Variieren der Lage des Schlauchs 40 bzw. der Einrittsöffnung 38.

Claims

Patentansprüche
1. Klimakammer, insbesondere für chemische und/ oder biologische Proben, mit einem einen Klimaraum (26) bildenden Gehäuse (24), einer zumindest teilweise in dem Klimaraum angeordneten Untersuchungsvorrichtung (28) zur Untersuchung der Probe und einer in dem Gehäuse (24) vorgesehenen Einlassöffnung (38) zum Zuführen eines klimatisierenden Mediumstroms (42), wobei der Mediumstrom (42) zumindest teilweise die Untersuchungsvorrichtung (28) und/ oder einen in dem Klimaraum (26) angeordneten Probenträger (36) anströmt.
2. Klimakammer nach Anspruch 1, gekennzeichnet durch eine Ausrichteinrichtung zum Ausrichten des Mediumstroms (42).
3. Klimakammer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Mediumstrom (42) derart ausgerichtet ist, dass der Mediumstrom (42) gegen eine Unterseite (44) des Probenträgers strömt.
4. Klimakammer nach einem der Ansprüche 1 - 3, dadurch gekennzeichnet, dass die Einlassöffnung (38) bei horizontal angeordnetem Probenträger (36) seitlich unterhalb des Probenträgers (36) angeordnet ist.
5. Klimakammer nach einem der Ansprüche 1 - 4, gekennzeichnet durch einen Anströmwinkel (α) von 30° - 60° gegenüber dem Probenträger (36).
6. Klimakammer nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass der Mediumstrom (42) derart ausgerichtet ist, dass mindestens 50% - 70% des Mediumstroms (42) die Untersuchungsvorrichtung (28) und/ oder den Probenträger (36) anströmen.
7. Klimakammer nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass kondensatempfindliche Bauteile (30, 32, 34) der Untersuchungsvorrichtung (28) in dem Mediumstrom (42) angeordnet sind.
8. Klimakammer nach einem der Ansprüche 1 - 7, gekennzeichnet durch einen nahe des Probenträgers (36), insbesondere nahe der Unterseite (44) des Probenträgers (36) angeordneten Temperatursensor (46).
9. Klimakammer nach einem der Ansprüche 1 - 8, gekennzeichnet durch eine im Gehäuse (24) vorgesehene Auslassöffnung (48), die vorzugsweise im Wesentlichen der Einlassöffnung (38) gegenüberliegend angeordnet ist.
10. Klimakammer nach einem der Ansprüche 1 - 9, dadurch gekennzeichnet, dass die Gehäuseform strömungsoptimiert ausgebildet ist.
11. Klimakammer nach einem der Ansprüche 1 - 10, dadurch gekennzeichnet, dass benachbarte Gehäusewände (12, 14, 16, 18, 20, 22) einen Winkel von mindestens 90°, vorzugsweise mindestens 120° zueinander aufweisen.
12. Klimaregeleinrichtung mit einer Klimakammer nach einem der Ansprüche 1 - 11, wobei mit der Einlassöffnung (38) eine Klimaregelvorrichtung verbunden ist, mit einem von einem zu klimatisierenden gasförmigen Medium durchströmten Kanal (110), einer Dampfkammer (120) mit einer Einlassöffnung (134) und einer mit dem Kanal verbundenen Auslassöffnung (138), einer mit der Dampfkammer (120) verbundenen Dampferzeugungseinrichtung (126) und einer an der Einlassöffnung (134) und/ oder der Auslassöffnung (138) angeordneten Regeleinrichtung (140) zur Regelung der von der Dampfkammer (120) in den Kanal (110) gelangenden Dampfmenge.
13. Klimaregeleinrichtung nach Anspruch 12, dadurch gekennzeichnet, dass durch die Regeleinrichtung (140) der Öffnungsquerschnitt der Einlassöffnung (134) und/ oder der Auslassöffnung (138) regelbar ist.
14. Klimaregeleinrichtung nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Einlassöffnung (134) mit dem Kanal (110) verbunden ist, so dass ein Teil des zu klimatisierenden Mediums in die Dampfkammer (120) strömt.
15. Klimaregeleinrichtung nach einem der Ansprüche 12 - 14, dadurch gekennzeichnet, dass die Dampferzeugungseinrichtung (126) eine Heizeinrichtung zum Erwärmen des zu verdampfenden Mediums aufweist.
16. Klimaregeleinrichtung nach einem der Ansprüche 12 - 15, gekennzeichnet durch eine Strömungseinrichtung (114) zur Erzeugung des Mediumstroms in dem Kanal (110).
17. Klimaregelvorrichtung nach einem der Ansprüche 12 - 16, gekennzeichnet durch eine mit dem Kanal (110) verbundene Filtereinrichtung (116).
8. Klimaregelvorrichtung nach einem der Ansprüche 12 - 17, gekennzeichnet durch eine mit dem Kanal (110) verbundene Temperiereinrichtung (118).
PCT/EP2004/010531 2003-09-23 2004-09-20 Klimakammer für mikroskope WO2005030394A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP04765416A EP1575706B1 (de) 2003-09-23 2004-09-20 Klimakammer für mikroskope
DE502004001262T DE502004001262D1 (de) 2003-09-23 2004-09-20 Klimakammer für mikroskope
JP2006527331A JP4694489B2 (ja) 2003-09-23 2004-09-20 顕微鏡用環境室及び環境制御手段
US10/571,297 US7765868B2 (en) 2003-09-23 2004-09-20 Climate chamber for microscopes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10344295.2 2003-09-23
DE10344294.4 2003-09-23
DE10344294A DE10344294A1 (de) 2003-09-23 2003-09-23 Klimakammer
DE10344295 2003-09-23

Publications (1)

Publication Number Publication Date
WO2005030394A1 true WO2005030394A1 (de) 2005-04-07

Family

ID=34395043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/010531 WO2005030394A1 (de) 2003-09-23 2004-09-20 Klimakammer für mikroskope

Country Status (6)

Country Link
US (1) US7765868B2 (de)
EP (1) EP1575706B1 (de)
JP (1) JP4694489B2 (de)
AT (1) ATE337092T1 (de)
DE (1) DE502004001262D1 (de)
WO (1) WO2005030394A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180038A2 (de) * 2008-10-27 2010-04-28 Société J.F. Cesbron Holding Anlage zur Erzeugung einer klimatischen Umgebung, die mindestens eine Zelle zu Umgebungsstudienzwecken enthält, in die eine Probe zur Untersuchung gegeben werden kann
DE102008053942A1 (de) 2008-10-30 2010-05-12 Olympus Soft Imaging Solutions Gmbh Inkubatorvorrichtung und Verfahren
CN101982780A (zh) * 2010-09-03 2011-03-02 长春理工大学 机器人微纳混合生物活体细胞实时检测、操纵及诊断技术与系统
AT516382A4 (de) * 2015-03-13 2016-05-15 Anton Paar Gmbh Konditionieren eines Probenbehälters mittels Konditionierfluid zum Fördern von Wärmekopplung und zum Unterdrücken von Beschlagen
EP3978984A1 (de) * 2021-04-23 2022-04-06 Leica Microsystems CMS GmbH Mikroskop

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4845450B2 (ja) * 2005-08-08 2011-12-28 オリンパス株式会社 麻酔ケース
WO2007145198A1 (ja) * 2006-06-16 2007-12-21 Sanyo Electric Co., Ltd. 培養物観察システム
US8582113B2 (en) 2007-02-13 2013-11-12 Kla-Tencor Mie Gmbh Device for determining the position of at least one structure on an object, use of an illumination apparatus with the device and use of protective gas with the device
DE102007049133A1 (de) * 2007-02-13 2008-08-21 Vistec Semiconductor Systems Gmbh Vorrichtung zur Bestimmung der Position mindestens einer Struktur auf einem Objekt, Verwendung einer Beleuchtungseinrichtung für die Vorrichtung und Verwendung von Schutzgas für die Vorrichtung
CN102439414B (zh) * 2009-04-28 2014-09-10 爱斯佩克株式会社 结露试验装置及结露试验方法
EP2418472B1 (de) * 2010-08-13 2013-08-07 Berthold Technologies GmbH & Co. KG Vorrichtung zur Anordnung wenigstens eines Probengefäßes in einem optischen Messgerät, optisches Messgerät mit einer solchen Vorrichtung und Verwendung eines solchen optischen Messgerätes
CH703700A2 (de) 2010-09-08 2012-03-15 Tecan Trading Ag Kontrolle der Gasatmosphäre in Mikroplatten-Readern.
US9322784B2 (en) 2010-09-08 2016-04-26 Tecan Trading Ag Microplate-reader with a controlled gas atmosphere, corresponding method and use of same
DE102010043522A1 (de) * 2010-11-05 2012-05-10 Dürr Ecoclean GmbH Vorrichtung und Anlage zum Temperieren von Gegenständen
CN103884637B (zh) * 2012-12-21 2016-06-01 鞍钢股份有限公司 试样腐蚀形貌原位显微观察装置及方法
US20160166455A1 (en) * 2014-12-12 2016-06-16 Roger F. Steinert Self-contained sterile surgical environment
WO2017012708A1 (en) * 2015-07-22 2017-01-26 Universität Basel Top-cover for a controlled environmental system, top-cover-set and controlled environ-mental system compatible with probe based techniques and procedure to control the en-vironment for a sample
US10351812B2 (en) 2015-08-28 2019-07-16 Axion Biosystems, Inc. Device and system for creating and maintaining a localized environment for a cell culture plate
US20170139195A1 (en) * 2015-11-14 2017-05-18 Guy Kennedy Microscopy Safety Dome
US10613020B2 (en) * 2017-08-10 2020-04-07 The Boeing Company Burr detection systems and methods
EP3904939A1 (de) * 2020-04-28 2021-11-03 Leica Microsystems CMS GmbH Mikroskop und system mit einem solchen mikroskop zur untersuchung einer inkubierten probe und entsprechendes verfahren
EP4063933A1 (de) * 2021-03-25 2022-09-28 Leica Microsystems CMS GmbH Mikroskop zur untersuchung einer probe und zugehöriges verfahren zum betrieb solch eines mikroskops
EP3984637B1 (de) 2021-05-03 2024-05-08 Leica Microsystems CMS GmbH Laborsystem, insbesondere zur verwendung in der mikroskopie
EP4123355A1 (de) * 2021-07-19 2023-01-25 Leica Microsystems CMS GmbH Mikroskop
EP4123356A1 (de) * 2021-07-19 2023-01-25 Leica Microsystems CMS GmbH Mikroskop

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3607575A1 (de) * 1986-03-07 1987-09-10 Draegerwerk Ag Inkubator fuer kleinkinder
US4696902A (en) * 1984-06-06 1987-09-29 Institut National De La Sante Et De La Recherche Medicale (Inserm) Modular apparatus for cell culture
JP2003107364A (ja) * 2001-09-27 2003-04-09 Tokai Hit:Kk 顕微鏡観察用培養器

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3393032A (en) * 1964-12-21 1968-07-16 Navy Usa Corrosive-resistant and hermetically sealed controlled atmosphere microscope box andmicroscope
DE10136481A1 (de) * 2001-07-27 2003-02-20 Leica Microsystems Anordnung zum Mikromanipulieren von biologischen Objekten
US3907389A (en) * 1973-12-12 1975-09-23 Marion E Cox Glove box chamber
US3984678A (en) * 1974-04-05 1976-10-05 Nippon Jido Seigyo Ltd. Apparatus for automatically adjusting a microscope in focus
JPS526539A (en) * 1975-07-05 1977-01-19 Kawano Rinshiyou Igaku Kenkyusho Observation recorder for live cells and others
US4301252A (en) * 1980-04-04 1981-11-17 Baker Fraser L Controlled environment incubator for light microscopy
US4405202A (en) * 1981-03-30 1983-09-20 Kimball Leonard L Protective microscope container with remote control mechanism
DE3331193C1 (de) * 1983-08-30 1984-12-13 C. Reichert Optische Werke Ag, Wien Aufrechtes Kompaktmikroskop
CA1250762A (en) * 1983-11-30 1989-03-07 Iwasaki Electric Co Ltd PRELIMINARY TEST METHOD, AND WEATHER TESTING DEVICE
US4629862A (en) * 1984-03-28 1986-12-16 Olympus Optical Company Ltd. Sample heater for use in microscopes
JPS61105444A (ja) * 1984-10-30 1986-05-23 Suga Shikenki Kk 試料の表面温度を均一にした耐光試験機
JPS61252437A (ja) * 1985-05-02 1986-11-10 Mitsubishi Electric Corp 温風暖房機の加湿装置
JPH0664238B2 (ja) * 1985-05-24 1994-08-22 宏 木村 高温顕微鏡
US4667522A (en) * 1985-11-01 1987-05-26 Express Test Corporation Humidity testing apparatus
JPS62297744A (ja) * 1986-06-17 1987-12-24 Dainippon Plastics Co Ltd 耐候性試験機
FR2606149B1 (fr) * 1986-10-30 1989-01-27 Jls Ste Civile Brevets Procede et dispositif d'analyse spectrometrique automatique d'un liquide, notamment du lait
US4892830A (en) * 1987-04-02 1990-01-09 Baylor College Of Medicine Environmentally controlled in vitro incubator
US4843893A (en) * 1987-12-10 1989-07-04 Atlas Electric Devices Co. Weathering testing system
JPH0652234B2 (ja) * 1989-08-17 1994-07-06 スガ試験機株式会社 促進耐光試験方法
US5595707A (en) * 1990-03-02 1997-01-21 Ventana Medical Systems, Inc. Automated biological reaction apparatus
JPH0480541A (ja) * 1990-07-24 1992-03-13 Matsushita Seiko Co Ltd 加湿機
JPH0499838U (de) * 1991-02-08 1992-08-28
US5285672A (en) * 1991-12-13 1994-02-15 Shell Oil Company Multipurpose dynamic controlled atmosphere chamber
JPH07240543A (ja) * 1994-02-25 1995-09-12 Sumitomo Electric Ind Ltd 成膜用基板に段差を形成する方法
US6318864B1 (en) * 1994-11-15 2001-11-20 Olympus Optical Co., Ltd. Sterile instruments cover for use on surgical microscopes
US5503032A (en) * 1995-02-23 1996-04-02 Atlas Electric Devices Co. High accuracy weathering test machine
US6490913B1 (en) * 1995-05-19 2002-12-10 The United States Of America As Represented By The Secretary Of Commerce Humidity chamber for scanning stylus atomic force microscope with cantilever tracking
JPH0921960A (ja) * 1995-07-05 1997-01-21 Olympus Optical Co Ltd 顕微鏡用保温装置
US6051825A (en) * 1998-06-19 2000-04-18 Molecular Imaging Corporation Conducting scanning probe microscope with environmental control
FR2790406B1 (fr) * 1999-03-01 2001-06-01 Jouan Centrifugeuse a entrainement pneumatique et a filtration de l'atmosphere de son enceinte
EP1407213A2 (de) * 2000-10-24 2004-04-14 L'air Liquide Verfahren und vorrichtung zur rückführung von kryogen-flüssigkeiten oder -gasen aus einer testkammer
US6788385B2 (en) * 2001-06-21 2004-09-07 Nikon Corporation Stage device, exposure apparatus and method
US6674077B1 (en) * 2001-07-02 2004-01-06 Brian E. Joseph Microelectromechanical system assembly and testing device
US6590212B1 (en) * 2001-07-02 2003-07-08 Brian E. Joseph Microelectromechanical system assembly and testing device
JP3581840B2 (ja) * 2001-07-13 2004-10-27 有限会社トッケン 顕微鏡観察用培養装置
JP4116780B2 (ja) * 2001-10-12 2008-07-09 泰榮電器株式会社 生細胞観察用顕微鏡温度制御装置
WO2003093760A1 (en) * 2002-04-11 2003-11-13 Gintic Institute Of Manufacturing Technology Systems and methods for deformation measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4696902A (en) * 1984-06-06 1987-09-29 Institut National De La Sante Et De La Recherche Medicale (Inserm) Modular apparatus for cell culture
DE3607575A1 (de) * 1986-03-07 1987-09-10 Draegerwerk Ag Inkubator fuer kleinkinder
JP2003107364A (ja) * 2001-09-27 2003-04-09 Tokai Hit:Kk 顕微鏡観察用培養器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 08 6 August 2003 (2003-08-06) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2180038A2 (de) * 2008-10-27 2010-04-28 Société J.F. Cesbron Holding Anlage zur Erzeugung einer klimatischen Umgebung, die mindestens eine Zelle zu Umgebungsstudienzwecken enthält, in die eine Probe zur Untersuchung gegeben werden kann
FR2937653A1 (fr) * 2008-10-27 2010-04-30 J F Cesbron Holding Soc Installation de generation d'un environnement climatique comportant au moins une cellule d'etude environnementale apte a recevoir un echantillon a etudier
EP2180038A3 (de) * 2008-10-27 2010-09-29 Société J.F. Cesbron Holding Anlage zur Erzeugung einer klimatischen Umgebung, die mindestens eine Zelle zu Umgebungsstudienzwecken enthält, in die eine Probe zur Untersuchung gegeben werden kann
DE102008053942A1 (de) 2008-10-30 2010-05-12 Olympus Soft Imaging Solutions Gmbh Inkubatorvorrichtung und Verfahren
US9353346B2 (en) 2008-10-30 2016-05-31 Olympus Soft Imaging Solutions Gmbh Incubator device and method
CN101982780A (zh) * 2010-09-03 2011-03-02 长春理工大学 机器人微纳混合生物活体细胞实时检测、操纵及诊断技术与系统
AT516382A4 (de) * 2015-03-13 2016-05-15 Anton Paar Gmbh Konditionieren eines Probenbehälters mittels Konditionierfluid zum Fördern von Wärmekopplung und zum Unterdrücken von Beschlagen
AT516382B1 (de) * 2015-03-13 2016-05-15 Anton Paar Gmbh Konditionieren eines Probenbehälters mittels Konditionierfluid zum Fördern von Wärmekopplung und zum Unterdrücken von Beschlagen
EP3978984A1 (de) * 2021-04-23 2022-04-06 Leica Microsystems CMS GmbH Mikroskop
WO2022223181A1 (en) * 2021-04-23 2022-10-27 Leica Microsystems Cms Gmbh Microscope

Also Published As

Publication number Publication date
EP1575706A1 (de) 2005-09-21
DE502004001262D1 (de) 2006-10-05
US20070234829A1 (en) 2007-10-11
JP4694489B2 (ja) 2011-06-08
ATE337092T1 (de) 2006-09-15
EP1575706B1 (de) 2006-08-23
JP2007506147A (ja) 2007-03-15
US7765868B2 (en) 2010-08-03

Similar Documents

Publication Publication Date Title
EP1575706B1 (de) Klimakammer für mikroskope
DE3511165C2 (de)
DE3886483T2 (de) Zellkulturkolben mit einer Membranbarriere.
EP1552888B1 (de) Klimagerät mit keimdicht abgetrennten Bereichen
AT522439B1 (de) Inkubator für biologisches Material
DE10259251B4 (de) Kultivierkammer an einem Mikroskopgestell
DE1928939B2 (de) Klimakammer
EP2418472A1 (de) Vorrichtung zur Anordnung wenigstens eines Probengefäßes in einem optischen Messgerät, optisches Messgerät mit einer solchen Vorrichtung und Verwendung eines solchen optischen Messgerätes
DE102010060824A1 (de) Vorrichtung zur Handhabung von Objektträgern
DE69517602T2 (de) Therapeutischer atemluftanfeuchter mit heizvorrichtung
DE102006022652B4 (de) Inkubator und Verfahren zur geregelten Befeuchtung und Temperierung
DE69634765T2 (de) Zytogenetische Kammer und Verfahren für seine Anwendung
WO2004033617A1 (de) Zellkulturkammer für ein zellkultursystem
AT500473B1 (de) Inkubator
DE102004043909A1 (de) Erwärmungsvorrichtung für Proben auf dem Gebiet der Life-Science
DE19536373C1 (de) Sterile Kammer, insbesondere für Inkubationszwecke
DE202007005865U1 (de) Inkubator zur geregelten Befeuchtung und Temperierung
DE102005037186A1 (de) Test-Applikationseinrichtung, insbesondere Simulations-Einrichtung
DE202007002538U1 (de) Begasungsvorrichtung und -system
EP3444329B1 (de) Vorrichtung zur anfeuchtung eines gasgemisches für die zellinkubation
DE102006043656B4 (de) Begasungsvorrichtung und- System
CH700034A2 (de) Inkubations- und Trockenlagervorrichtung.
DE10128810B4 (de) Einrichtung zur Kultivierung von Zellen, insbesondere menschlicher oder tierischer Zellen
AT522506B1 (de) Mehrfachinkubator für biologisches Material
EP4172675A1 (de) Inverses mikroskop

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2004765416

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2004765416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006527331

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2004765416

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10571297

Country of ref document: US

Ref document number: 2007234829

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10571297

Country of ref document: US