WO2005028772A1 - Bloc pour mur de construction et mur construit a l'aide de ces blocs - Google Patents

Bloc pour mur de construction et mur construit a l'aide de ces blocs Download PDF

Info

Publication number
WO2005028772A1
WO2005028772A1 PCT/CN2004/000974 CN2004000974W WO2005028772A1 WO 2005028772 A1 WO2005028772 A1 WO 2005028772A1 CN 2004000974 W CN2004000974 W CN 2004000974W WO 2005028772 A1 WO2005028772 A1 WO 2005028772A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
wall
blocks
top surface
adjacent
Prior art date
Application number
PCT/CN2004/000974
Other languages
English (en)
French (fr)
Inventor
Rongxun Wang
Original Assignee
Rongxun Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rongxun Wang filed Critical Rongxun Wang
Priority to US10/571,878 priority Critical patent/US20070199273A1/en
Priority to CA2539329A priority patent/CA2539329C/en
Priority to AU2004274546A priority patent/AU2004274546B2/en
Priority to EP04762110.7A priority patent/EP1669506B1/en
Priority to BRPI0414660-3A priority patent/BRPI0414660A/pt
Publication of WO2005028772A1 publication Critical patent/WO2005028772A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/04Walls having neither cavities between, nor in, the solid elements
    • E04B2/06Walls having neither cavities between, nor in, the solid elements using elements having specially-designed means for stabilising the position
    • E04B2/08Walls having neither cavities between, nor in, the solid elements using elements having specially-designed means for stabilising the position by interlocking of projections or inserts with indentations, e.g. of tongues, grooves, dovetails
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/021Non-undercut connections, e.g. tongue and groove connections of triangular shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0256Special features of building elements
    • E04B2002/0265Building elements for making arcuate walls

Definitions

  • the present invention relates to a building block used to form a building wall, a building roof, and various walls formed in the construction field, and particularly to a block capable of forming a double-wall leak-proof and blocking effect.
  • Leakage parts are mainly: 1 water leaking in the masonry joints of the wall, 2 water leakage between the masonry and the frame column in the frame structure building, 3 water leakage between the masonry and the upper surface of the frame beam in the frame structure building, 4 In the construction of the frame structure, water leaks between the masonry and the lower surface of the frame beam.
  • the application number “00103227.5” is “dry brick type block”, and its claim 1 is “a block for stacking a wall with other same blocks, said block having a roof
  • the front, back, and end faces, the front and back are basically flat, the top surface is ridged, and the bottom is grooved so that the bottom surface is inlaid with the ridge, and the end is cut out to overlap.
  • the ridge 3 preferably has a front slope portion 6 and a rear slope portion 26.
  • the slope portions 6, 26 of the ridge 3 allow water that may enter the brick layer to be drained from the brick layer.”
  • the brick layer is a masonry horizontal joint.
  • the ridges with small protrusions of the block have a leak-proofing effect.
  • the ridges, grooves, and cuts of the block function as "inlay” and "lap” as indicated in claim 1, and do not solve the masonry vertical joints in various meteorological environments.
  • the limited leak-proof effect of the ridge with a small protruding size of this block on the transverse joints of the block is the same as that of the assembled block with the application number 86106157 and the hollow block with the application number 03218670.3. Not much value.
  • Underground building walls are leak-proof.
  • waterproof materials such as waterstops and waterproof pastes are used to seal and prevent leaks in the construction joints and deformation joints of the walls, but the waterstops and waterproof pastes are easy to age.
  • a block used to form a wall in which several similar blocks are continuously displaced in a stack, and the block is a longitudinal profile, which includes: a top surface, a bottom surface, and two end surfaces;
  • the cross section of the block is generally downward-flared;
  • the top surface has a central ridge, and the sides are low to form left and right support slopes;
  • the top and bottom surfaces are formed like this, when the masonry
  • the top surface of the bottom block cooperates with the bottom surface of the block, and the left and right supporting slopes become blocking structures and lock adjacent blocks above and below each other.
  • the vertical profiles referred to are not purely geometrically identical in cross section, but have the same main characteristics of the left and right support slopes, such as the notch on the two end faces or holes in the block, here Still grouped into longitudinal profiles with the same cross section.
  • the cross section referred to is generally a downward-facing flared mouth, which means that the size of the protrusion with the upper, lower, and small, middle ridge is sufficient to cut off the space-time trajectory, and the masonry matching horn notch is also relatively deep.
  • the shoulder platform or the shoulder platform still belongs to the bell-shaped range whose cross section is generally downward.
  • the spatiotemporal trajectory can be calculated according to a given standard of leak-proof or permeable soil, and the protrusion size of the central ridge can be determined according to the calculated spatiotemporal trajectory. Standards for leak-proof or permeable soil retention can be formulated by localities and countries based on weather, experience, and requirements.
  • the middle ridge is not a purely geometric middle.
  • the ridges that can form the left and right supporting slopes are all the central ridges referred to in the present invention, for example, a shoulder with one side or a block with different supporting slopes on both sides.
  • the ridge here is also the middle ridge.
  • the left and right supporting slopes become the blocking structure, and it is emphasized that it becomes a blocking structure that is leakproof or permeable to soil.
  • the coordination refers to the shape and size of the block, which can be formed by the masonry methods such as brickwork, sticking, dry hanging, etc., for example, between adjacent blocks, or between blocks and auxiliary blocks. It can cooperate with each other or between the block and the related components in the wall to form a wall.
  • Bonding refers to the use of cement mortar, mixed mortar, chemical cement, adhesives and other bonding materials for masonry; dry masonry and dry hanging, no bonding material is used.
  • the block has such a shape and size that, when three similar blocks are stacked on top of each other, the vertical distance between the ridge top of the bottom block and the foot of the top block is less than the total of the block. One third of the height.
  • the ridge of the bottom block is higher than the foot of the top block.
  • the wall formed by blocks of this shape and size is most effective in preventing leakage or retaining soil through water.
  • the bottom part mentioned here refers to the lowest point on each side of the block bounded by the middle ridge.
  • the bottom part refers to the part closest to the wall surface formed by the block.
  • a radiation protection plate is added on the top surface, and the radiation protection plate protrudes from the end surface, and the block has the shape and size: when three similar blocks are stacked on top of each other, the ridge of the bottom block is higher than The bottom foot of the top block.
  • This type of block is used to form a wall, and the radiation protection plates of adjacent blocks overlap each other in the longitudinal direction, which has the function of preventing radiation.
  • a block assembly for forming a wall including a block and an auxiliary block, the block is a longitudinal profile, including a top surface, a bottom surface, and two end surfaces; a cross section of the block is generally downward facing Bell-shaped; the top surface has a central ridge and the sides are low to form left and right support slopes; the top and bottom surfaces are formed in such a way that when the block is stacked with a similar block below to form a wall
  • the top surface of the lower block cooperates with the bottom surface of the block, and the left and right supporting slopes become blocking structures and lock up and down adjacent blocks to each other; the auxiliary blocks are in the masonry wall Cooperate with said blocks from time to time.
  • the auxiliary block is composed of three blocks, which are placed at the intersection of the wall and are longitudinally matched with the block. They are stacked in dislocation and are generally applicable to two walls or three blocks. Intersection of walls, or four walls.
  • the auxiliary block is composed of two blocks, which are placed at the intersection of the wall and are longitudinally matched with the block. They are stacked in dislocation and are generally built on two or three walls. Intersection.
  • a wall formed by a block in which a plurality of similar blocks are continuously displaced in a stack, and the block is a longitudinal profile, including a top surface, a bottom surface, and two end surfaces;
  • the cross section is generally downward-flared;
  • the top surface has a central ridge, and the sides are low, forming left and right support slopes;
  • the top and bottom surfaces are formed in this way, when the block When stacked with similar blocks below to form a wall, the top surface of the bottom block cooperates with the bottom surface of the block, and the left and right supporting slopes become blocking structures and lock the adjacent blocks above and below each other;
  • a masonry joint is formed between the adjacent blocks, the top surface and the bottom surface cooperate with the masonry to form a horizontal joint, the end faces meet to form a vertical joint, and the vertical joints adjacent to each other are offset from each other.
  • the misalignment arrangement locks the blocks together to form a solid wall, and prevents the vertical seams between the blocks from leaking or retaining the soil through
  • a side surface of the column is provided with an overhanging block for sealing joint, and the overhanging block and the block can cooperate to prevent water leakage at the joint between the block and the column and make the masonry
  • the block and column are tightly coupled, and the chain is stable.
  • a bump is provided on an upper surface of the beam, and a groove is provided on a lower surface of the beam; a lower bottom surface of the bump and an upper portion of the beam are provided.
  • the surface is hermetically bonded, and the convex block extends to the column at two adjacent beam-column joints and is hermetically bonded to the column; when the block is joined with the upper surface of the beam, the convex The block cooperates with a horn notch on the bottom surface of the block: the groove extends to a post at two adjacent beam-column nodes; when the block is joined to the lower surface of the beam, The groove is matched with the top surface of the block.
  • the arrangement of bumps can prevent water leakage at the joint between the block and the upper surface of the beam.
  • the four-slot arrangement can prevent water leakage at the joint between the block and the lower surface of the beam.
  • the arrangement of the bumps and grooves also makes the block and the beam tight. Combination and chain stability.
  • the masonry joint of the wall When used for the purpose of permeable soil retention, the masonry joint of the wall is provided with a water-permeable channel penetrating through both sides of the wall, and water can pass from one side of the wall to the other side through the water-permeable channel;
  • the pervious channel When masonry vertical joints are dry-built, the pervious channel is larger and the permeation effect is better.
  • a barrier layer is provided on one side of the wall.
  • the barrier layer is composed of a plurality of barrier fabrics. Adjacent barrier fabrics of the same layer are connected end to end, and the barrier fabrics of adjacent upper and lower layers are overlapped.
  • the lower barrier fabric is sandwiched between the adjacent upper barrier fabric and the wall layer; the joint between the upper barrier fabric and the adjacent lower barrier fabric are misaligned with each other.
  • An air layer is formed between the barrier layer and the wall; the barrier layer and the air layer are beneficial to preventing leakage or retaining soil through water.
  • the inclined wall body can be formed by continuously displacing the long plate-shaped blocks; the end faces of the two long plate-shaped blocks are connected to form a vertical seam, and the vertical seams adjacent to each other are displaced from each other. : The end of the long plate-shaped block is added to the support.
  • the invention starts by proposing and analyzing the fourth-dimensional space-time trajectory to solve the problems of leakage prevention and water retention.
  • the theoretical model of leakage prevention is: The water on the wall surface flows into the vertical joint from the masonry horizontal joint, or directly into the vertical joint, and then flows down and inside the wall under the action of its own gravity and certain wind pressure. It usually follows the rule from high to low; at this time, the top of the vertical seam on the wall surface, that is, the foot of the block at the top of the vertical seam, is usually the highest point of the leaking space-time trajectory line: the block is set to block the support slope, The left and right supporting slopes form a central ridge. When the water leakage along its spatio-temporal trajectory approaches the ridge of the block at the bottom of the vertical seam of the wall, the top of the central ridge can cut off the leaking spatio-temporal trajectory. Can reach. Obviously, the larger the ridge protrusion size of the block, the better the leakage prevention effect.
  • the spatio-temporal trajectory of mud water follows the rule of high to low.
  • the theoretical model of permeable soil retention is: set up the supporting slope, the left and right supporting slopes form a central ridge, and the top of the ridge can block the spatio-temporal trajectory of muddy water, so that the water entering the horizontal and vertical joints of the wall can only overflow the ridge of the block Top, water The soil is blocked by the supporting slope; the larger the protrusion size of the central ridge, the greater the blocking effect, and the better the effect of permeable soil retention.
  • the block that conforms to such a theoretical model is a longitudinal profile.
  • the cross section of the block is generally downward-flared; the top surface of the block has a central ridge, and the sides are low.
  • the left and right supporting slopes are formed; the top and bottom surfaces of the block are formed in such a way that when the block is stacked with similar blocks below to form a wall, the top surface of the block below and the bottom surface of the block In cooperation, the left and right supporting slopes become a blocking structure and lock the adjacent blocks above and below each other, and the protrusion size of the middle ridge can cut the space-time trajectory.
  • the spatiotemporal trajectory can be determined, and the size of the protrusion of the ridge that cuts the spatiotemporal trajectory can be determined.
  • the ideal leak-proof or permeable soil retention effect is: The block has such a shape and size that when three similar blocks are stacked on top of each other, the ridge of the bottom block is higher than the foot of the top block unit.
  • the width of the block is 20cm
  • Tx 10 ⁇ Vx in the middle of the width of the block
  • the ridge of the block cuts the leaking spatiotemporal trajectory line to prevent leakage
  • Tx> Ty must be used
  • the horizontal velocity Vx of the raindrops is equal to the wind speed.
  • the blocks are simple and the specifications are small, which is convenient for production, handling and palletizing;
  • the blocks can be of various sizes, either long or short, thick or thin, or large or small;
  • Blocks can be produced using various building materials, such as: silt, clay, concrete, shale, ceramsite, plastic, resin, metal, composite materials and other building materials, coal ash, coal slag, coal gangue, slag, slag, waste ore , Straw, trash Waste and other waste materials can be collected nearby to save costs, turn waste into treasure, and be environmentally friendly;
  • building materials such as: silt, clay, concrete, shale, ceramsite, plastic, resin, metal, composite materials and other building materials, coal ash, coal slag, coal gangue, slag, slag, waste ore , Straw, trash Waste and other waste materials can be collected nearby to save costs, turn waste into treasure, and be environmentally friendly;
  • Suitable for various masonry methods such as sticking, dry-laying and dry-hanging;
  • the formed wall has a wide range of applications, such as for building construction, tunnels, subways, seawalls, mines, underground buildings, etc., for retaining walls, embankments, embankments, river coasts, barges, earth-rock dams, Slope protection, sand blocking dams, underground collection reservoirs, sewage treatment buildings, field cofferdams, etc. are used to build radiation-proof walls, used to form leak-proof slope roofs, used to build bridge deck structure layers, and masonry ground. And other buildings and structures;
  • the formed wall body is seismic and anti-tilt, good in integrity and stability.
  • FIG. 1 is a structure diagram of a thousand brick type building block with an application number of 00103227.5 in the prior art
  • FIG. 2 is a block diagram of a block used to form a dry wall in the prior art with the application number 96194387.4;
  • FIG. 3, FIG. 4, FIG. 5, and FIG. 6 are four types of block diagrams of the block according to the present invention;
  • Figures 7, 8, and 9 are structural diagrams of three types of blocks in which the central ridge has a platform shape
  • Fig. 10, Fig. 11, and Fig. 12 are structural diagrams of three kinds of blocks in which the central ridge is curved;
  • FIG. 13 is a block diagram showing a slanted lateral side
  • FIG. 14 is a block diagram of the uneven height of the bottom of the platform on both sides;
  • 15 is a block diagram of a block provided with a chamfer
  • FIG. 16 is a masonry matching diagram of three blocks arranged in a toothed staircase in a stepped manner
  • Fig. 17 is a masonry matching diagram of three supporting slopes and blocks arranged in a toothed step on the bottom surface:
  • FIG. 18 is a block structure diagram of a curved arc-shaped stepped support slope
  • FIG. 19 is a block diagram showing a curved arc-shaped stepped distribution of the supporting slope and the bottom surface
  • 20 to 23 are structural diagrams of four types of blocks distributed in a corrugated shape
  • FIG. 26 is a structural diagram of a corrugated block with longitudinal small grooves on a slope
  • Figures 27 and 28 are structural diagrams of two types of blocks with rough stripes
  • FIG. 29 is a block diagram of a block provided with rough dots
  • 30 and 31 are structural diagrams of two types of blocks provided with diversion ridges
  • Figures 32 and 33 are structural diagrams of two types of blocks provided with radiation-proof plates on the top surface;
  • Figure 34 ⁇ Figure 38 are the structural diagrams of five types of blocks with holes:
  • 39 ⁇ 42 are structural diagrams of four types of blocks provided with openings
  • Figure 43 is a masonry structure diagram of a block with a sub shoulder
  • Figure 44 and Figure 45 are structural diagrams of two types of blocks with insulation layers
  • Figure 46 is a block diagram of a block with a decorative surface
  • FIG. 47 is a block diagram of a block provided with sound absorption holes and sound absorption openings
  • FIG. 48 is a block diagram of a longitudinal arc-shaped block
  • Figure 49 is a block diagram of a spherical crown-shaped block
  • Figure 50 ⁇ Figure 55 are the masonry cooperation relationship between the block and the six auxiliary blocks;
  • Figure 56 and Figure 57 are schematic diagrams of the structure of two cross-shaped auxiliary blocks
  • Figure 58 and Figure 59 are two L-shaped auxiliary block structure diagrams
  • Figure 60 and Figure 61 are structural diagrams of two T-shaped auxiliary blocks
  • Figures 62 and 63 are schematic diagrams of two structures constructed by using the blocks of the present invention.
  • 64 is a sectional view of the wall shown in FIG. 62;
  • Figure 65 is a sectional view of a wall provided with beams
  • 66 is a schematic diagram of a lateral force of a wall formed by a block of the present invention.
  • Fig. 67 is a sectional view of a wall with the block shown in Fig. 5;
  • Figure 68 and Figure 69 are cross-sectional views of two types of walls with connectors
  • Figure 70 is a block structure diagram formed by the combination of a thin plate and a shoulder
  • Figure 71 and Figure 72 are structural diagrams of two formwork blocks
  • FIG. 73 is a structural diagram of a vertical green wall
  • Figures 74 and 75 are schematic cross-sectional views of two types of radiation protection walls
  • FIG. 76 is a schematic structural diagram of an anti-crack wall
  • Figure 77 is a partially enlarged view of the mortar masonry joint of Figure 76;
  • 78 is a schematic structural diagram of a wall formed by a long plate-shaped block and a column provided with an overhanging block;
  • Figure 79 is a schematic diagram of a tunnel wall structure
  • FIG. 80 is a schematic structural diagram of a barrier layer
  • FIG. 81 is a structural diagram of a wall with an air layer
  • Figures 82 ⁇ 90 are structural diagrams of nine types of retaining walls
  • Figure 91 and Figure 92 are schematic diagrams of two long plate-shaped blocks
  • FIG. 93 is a schematic diagram of a block structure used in conjunction with the block shown in FIG. 92; FIG.
  • Figure 94 is a longitudinal sectional view of the block shown in Figure 93;
  • FIG. 95 is a schematic structural diagram of an inclined wall
  • FIG. 96 is a schematic diagram of a roof structure formed by the blocks of the present invention.
  • FIG. 97 is a schematic view of a ridge structure formed by a block according to the present invention.
  • FIG. 98 is a schematic structural diagram of a bridge deck structural layer formed by a block of the present invention.
  • FIG. 99 is a schematic diagram of the ground structure formed by the blocks of the present invention.
  • Figure 100 is a billet mold
  • FIG. 101 is a schematic diagram of a coding wheel on the printer in FIG. 100.
  • Figure 102 and Figure 103 are two box molds
  • Figure 4 is a basic structural view of the block according to the present invention, the block is a longitudinal profile, the cross section of which is generally downward-flared, including a top surface 1, a bottom surface 2 and two end surfaces 3;
  • the top surface has a middle ridge 4 and the sides are low to form a left support slope 5 and a right support slope 5.
  • the top of the middle ridge is pointed and the top of the bottom is also pointed.
  • the block shown in FIG. 3 is a horizontal plane on both sides of the bottom surface, and the foot portion 6 is at the top surface and the bottom surface meet;
  • FIG. 4 is a block with a lateral connection surface 7, and the foot portion is in the lateral direction. Where the connecting surface meets the bottom surface.
  • the block shown in FIG. 5 is based on FIG. 4 and has a shoulder 8 on one side.
  • the shoulder includes an upper platform 9, a bottom surface 10, and a lateral side 11.
  • the ridge and the supporting slope on the other side form the top surface, and the protrusions formed by the slopes 12 on both sides of the middle ridge cooperate with the horn notch on the bottom surface of the same block during masonry. Where it meets, the other foot meets the bottom surface on the lateral side.
  • the block shown in Fig. 6 is based on Fig. 4 with shoulders 8 on both sides; it can also be said that it is based on Fig.
  • This type of block is a common block that forms a vertical wall.
  • both shoulders can also be different. Shoulders are good for carrying.
  • the blocks shown in Fig. 7, Fig. 8, and Fig. 9 have a platform shape at the top of the middle ridge and a platform shape at the top of the bottom.
  • the block shown in Fig. 10, Fig. 11, and Fig. 12 has a curved arc at the top of the middle ridge and a curved arc at the top of the bottom.
  • the middle ridge is a sharp-angled block, whose sharp corners are easy to break; the top of the middle ridge is a platform, or curved or other gentle-shaped block, the middle ridge is not easy to be damaged, is resistant to handling, and is good for carrying.
  • the sharp-footed foot is easily damaged.
  • the foot of the block shown in FIG. 4 is improved to a flat surface, and the lowest part of the top surface of the masonry is correspondingly changed to a flat surface to form the masonry shown in FIG. 5 and FIG. 6. Piece.
  • the foot part refers to the lowest point on each side of the block bounded by the middle ridge, and the foot part on one side of the block is the lowest part of that side; when the lowest part is a face, the foot part is on the lowest face Intersection with the top surface or lateral connection surface or lateral side.
  • the block shown in FIG. 13 is based on FIG. 6, and the lateral sides are inclined planes parallel to each other and not perpendicular to the horizontal plane.
  • the block shown in Fig. 14 is based on Fig. 9 and the lateral sides of the shoulders on both sides are parallel to each other and perpendicular to the horizontal plane, but the feet on both sides are not on the same plane. Walls formed by blocks with inconsistent footings on both sides can have different functions on both sides. Variations in the horizontal connection surface, or the lateral sides, give the wall a variety of aesthetic effects.
  • the block shown in FIG. 15 is provided with a vertical chamfer 13 at the connection between the upper table, the bottom of the table and the lateral side, and a vertical chamfer 13 at the connection of the end surface and the lateral side; the upper and bottom surfaces are inclined
  • the general situation of tilt is that the lower it is closer to the lateral side, the better it is for drainage.
  • the wall formed by longitudinally chamfered blocks is conducive to the batching of ash when painting.
  • the decorative block with chamfering has a decorative effect. Due to block errors and masonry errors, the lateral sides of adjacent blocks in the wall may not be on the same plane, affecting aesthetics, and chamfers can create a visual illusion at the masonry joints, thereby reducing the feeling of not being on the same plane.
  • the supporting slope of the masonry shown in FIG. 16 is arranged in a toothed step.
  • the supporting slope and bottom surface of the blocks in the masonry combination diagram shown in Fig. 17 are arranged in a toothed step.
  • the supporting slope of the block shown in Fig. 18 is curved and stepped.
  • the block shown in FIG. 19 is based on the block shown in FIG. 18, and the supporting slope and the bottom surface are arranged in a curved arc step.
  • At least one of the supporting slope or bottom surface of the block is arranged stepwise, for example, the supporting slope is stepwise arranged: or the bottom surface is arranged stepwise; or the supporting slope and the bottom surface are arranged stepwise at the same time; the upper slope of the top surface is particularly stepped arrangement.
  • the step shape facilitates the bearing of the supporting slope.
  • Figures 20 to 26 show corrugated blocks.
  • the block shown in Fig. 20 has a toothed corrugated support slope.
  • the block shown in Figure 21 has a toothed corrugated upper slope.
  • the block shown in Fig. 22 is based on Fig. 20, and the bottom surface is also toothed and corrugated.
  • the block shown in Fig. 23 is based on Fig. 21, and the horn recess on the bottom surface is also toothed and corrugated.
  • the block shown in Figure 24 has a curved corrugated slope.
  • the block shown in Fig. 25 is based on Fig. 24, and the horn recess on the bottom surface is also curved and corrugated.
  • the upper slope of the block shown in Fig. 26 is a longitudinal small groove-type corrugated shape.
  • At least one of the supporting slope or horn notch of the block is corrugated, for example, the supporting slope is corrugated; or the horn notch is corrugated; or the supporting slope and the horn notch are corrugated at the same time; the upper slope is particularly corrugated.
  • the corrugated shape is conducive to hanging the mortar during the masonry, or to form an air gap to facilitate drainage.
  • the blocks shown in Figs. 27 and 28 are provided with rough crack resistance.
  • the block shown in Figure 27 is on the upper surface and the bottom of the platform.
  • the surface is provided with horizontal rough stripes.
  • the block shown in FIG. 28 is based on FIG. 27, and the horizontal rough stripes do not reach the lateral side.
  • the block shown in FIG. 29 is provided with rough anti-crack spots on the upper and lower surfaces.
  • At least one of the top or bottom surface of the block is rough.
  • the top and bottom surfaces are rough at the same time. It is particularly emphasized that the upper and bottom surfaces are rough.
  • the purpose of setting the rough shape is to make the masonry surface rough, increase the resistance of the vertical displacement of the blocks adjacent to the upper and lower layers, and improve the crack resistance of the wall.
  • Roughness is also conducive to hanging pulp.
  • the surface change of the block is not limited to corrugated, rough and other forms, but also other shapes.
  • the supporting slope of the block cannot be set in a shape that will cause water accumulation.
  • the slope is flat and the horn notch is a corrugated block. In the case of dry construction, the slope and the horn notch have less adhesion and a large gap, which is conducive to drainage.
  • the block shown in FIG. 30 is provided with a vertical guide rib 14 at the end of the slope, which has the effect of blocking water from flowing to the end face.
  • the block shown in FIG. 31 is provided with a plurality of vertical guiding ribs 14 on the slope, which has better water blocking and leakage prevention effects.
  • the blocks shown in Fig. 32 and Fig. 33 are radiation-proof blocks, and the radiation-proof plate 15 protrudes from the end surface, and is used for building a radiation-proof wall.
  • the top surface of the block shown in Fig. 32 is provided with a radiation prevention plate.
  • a side support slope of the block shown in Fig. 33 is provided with a radiation prevention plate.
  • Figure 34 shows the block shown with a single row of large vertical holes on both sides.
  • the block shown in Figure 35 has two rows of vertical holes on one side.
  • the block shown in Figure 36 has small vertical holes on one side.
  • the block shown in Fig. 37 is provided with large longitudinal holes on both sides.
  • the block shown in Fig. 38 is provided with several small longitudinal holes.
  • the number and shape of the holes can be various, provided on one or both sides of the block, one or more, through holes or blind holes. Holes can be used to reduce weight, or be filled with thermal insulation or poured concrete. Through holes can also be used for pipeline access. Vertical holes can be used to insert steel bars and members to form a concrete core wall.
  • Fig. 39, Fig. 40, Fig. 41 and Fig. 42 are provided with various openings 17.
  • the opening on one end face is a concave opening, and the opening on the other end is a convex convex mouth, similar to a tongue and groove.
  • the vertical openings on the end face can extend the horizontal path of water leakage and help to prevent leakage; the end face openings of adjacent blocks have a chain effect when they cooperate with each other.
  • the block shown in FIG. 40 has a longitudinal opening on the upper surface.
  • the block shown in Fig. 41 is provided with a cutout on the upper table and both end faces.
  • the block shown in Fig. 42 has a lateral opening at one end that penetrates the shoulder on one side and the horn notch on the bottom.
  • the number and shape of the openings are not limited to the type shown.
  • the opening can be used for laying pipelines; it can also be used to install connectors and grids to make the masonry and frame structure firmly connected.
  • the block in the masonry diagram shown in FIG. 43 is based on FIG. 6.
  • the lateral side of the shoulder is further provided with an auxiliary shoulder 1 S.
  • the upper surface of the auxiliary shoulder is lower than the upper surface of the shoulder.
  • the bottom surface of the platform is in the same plane as the bottom surface of the shoulder platform.
  • the block shoulder and sub-shoulder form a decorative effect at the masonry joint.
  • the bottom surface of the sub shoulder can also be lower than the bottom surface of the shoulder.
  • the sub-shoulders can be set on one or both sides, multiple can be set, and different heights, widths, widths, lengths can be set. Holes and openings can also be set on the sub shoulder.
  • the blocks shown in Fig. 44 and Fig. 45 are provided with a thermal insulation layer 19.
  • the block shown in Figure 44 has a single-sided shoulder with insulation.
  • the shoulder on one side of the block is connected to the core insulation layer by a dovetail groove, and the other side of the core insulation layer is generally connected to the decorative surface or the protective surface.
  • the heat-insulating layer may be various kinds of boards having a heat-insulating effect, such as polystyrene boards.
  • the thermal insulation layer and the decorative surface or protective surface connected to the thermal insulation layer can also be regarded as the auxiliary shoulder.
  • the block shown in Fig. 46 has a decorative surface 20 on one lateral side.
  • the decorative surface is generally provided on the lateral connecting surface and lateral sides of the block forming the surface of the wall, and can be of various colors and various patterns.
  • Figure 47 shows a block with a sound-absorbing structure, with sound-absorbing holes 21 and sound-absorbing openings 22 on one side. To the side. The inner wall of the sound absorption hole should try to make the sound reflect and be consumed as many times as possible. The sound absorption port should let the sound enter the sound absorption hole as much as possible. The number of sound absorption holes and sound absorption holes can be set as required.
  • the longitudinal arc-shaped block shown in FIG. 48 has a lateral arc formed by a vertical arc around a vertical central axis on one side of the block.
  • the entire block is longitudinally curved from one end surface to the other end.
  • Figure 49 shows a spherical crown-shaped block. Based on Figure 48, it has a vertical arc from the bottom to the top, and a vertical arc on the lateral side. It has a spherical crown as a whole, and is generally used for masonry domes. , Spherical, hyperbolic wall.
  • All the blocks shown in Figures 3 to 49 are longitudinal profiles with top, bottom, and two end faces; the cross-section is generally downward-flared; the top surface has a central ridge, and the sides are low
  • the left and right supporting slopes are formed; the top and bottom surfaces are formed in such a way that when the block is stacked with a similar block below to form a wall, the top surface of the bottom block is matched with the bottom surface of the block
  • the left and right support slopes become a blocking structure and lock the adjacent blocks above and below each other; the protruding size of the central ridge of the block can cut the space-time trajectory line, and the horn notch is also a matching size.
  • Figure 50 to Figure 55 show the cooperation relationship between some auxiliary blocks and blocks.
  • Figures 56 to 61 show additional auxiliary blocks.
  • the auxiliary block matching the top surface of the block can be called the top auxiliary block, which is generally laid on the top of the wall of the floor.
  • Figure 50, Figure 51, and Figure 52 show the first type of top auxiliary block 23, usually two blocks, which are respectively laid on both sides of the middle ridge of the block, and whose top surface is the same as the top of the ridge of the block on flat surface.
  • Fig. 53, Fig. 54, and Fig. 55 show the second-type top surface auxiliary block 24, and the first-type top surface auxiliary block 23 and the block are integrated into one.
  • the auxiliary block matching the bottom surface of the block can be called the bottom auxiliary block, which is generally used at the bottom of the wall of the floor.
  • the bottom auxiliary block There are usually two types.
  • Fig. 50, Fig. 51, and Fig. 52 show the first type of bottom auxiliary block 25, whose bottom surface is on the same plane as the foot of the block.
  • Fig. 53, Fig. 54, and Fig. 55 show the second type of bottom auxiliary block 26, and the first type of bottom auxiliary block 25 is integrated with the block.
  • the auxiliary blocks shown in Figure 56 and Figure 57 are composed of two blocks that are longitudinally opposed to each other and integrated with the two sides of the other block. They are usually cross-shaped and can be used for two walls or three walls. Or the intersection of four walls. In the auxiliary block shown in Fig. 56, one end face of each of the two blocks coincides with the two side faces of the other block in the same plane.
  • the auxiliary block shown in FIG. 57 is based on FIG. 56, in which one end surface of each of the two blocks projects from the side of the other block.
  • auxiliary blocks shown in Figure 58, Figure 59, Figure 60, and Figure 61 are formed by the vertical connection of one block with one side of the other block. They are usually L-shaped or T-shaped and are used for two walls. Or the intersection of three walls.
  • the auxiliary block shown in FIG. 58 is L-shaped, in which the end of one block and the side end of the other block are integrated with each other, and one end face of the previous block overlaps with one side face of the other block. same plane.
  • the L-shaped auxiliary block shown in FIG. 59 is based on FIG. 58, and the end face of one block projects from the side of the other block. L-shaped auxiliary blocks.
  • the auxiliary blocks shown in Figure 60 and Figure 61 are T-shaped.
  • the end of one block and one side of the other block are integrated with each other, and one end face of the previous block and one side face of the other block coincide on the same plane.
  • the auxiliary block shown in Fig. 61 is based on Fig. 60, and the end face of one block projects from the side of the other block.
  • the wall shown in FIG. 62 includes an auxiliary block 23 and an auxiliary block 25.
  • auxiliary block 26 In the wall shown in FIG. 63, there are an auxiliary block 26, a T-shaped auxiliary block, and a post provided with an overhanging block 27.
  • Fig. 64 is a sectional view of the wall shown in Fig. 62, and an auxiliary block 25 is provided at the lowest level.
  • a bump 28 is provided on the upper surface of the lower beam, and a groove 29 is provided on the lower surface of the upper beam.
  • Several similar blocks are successively displaced and stacked, and adjacent blocks are stacked. Masonry joints are formed between them. The top and bottom surfaces cooperate with the masonry to form horizontal joints. The end faces meet to form vertical joints, and the vertical joints adjacent to each other are offset from each other. The bottom surface of the support is matched, and the left and right supporting slopes become blocking structures and lock the adjacent blocks above and below each other, preventing relative lateral movement and being firm and stable.
  • the leakage prevention process of masonry joints can be seen in Figure 62, Figure 63, Figure 64, and Figure 65:
  • the arrows shown in Figure 63 indicate flowing water. If the water is to penetrate deep through the masonry joints, it is supported by the block. Slope blocking, so as to prevent the leakage of masonry horizontal joints; if the water is to penetrate deep through the vertical joints of the masonry, the space-time trajectory of the leakage is usually from high to low, and the foot of the block at the top of the masonry joint is generally At the highest point of leakage prevention, the leaking water at the bottom of the uppermost layer of the three-story block flows downwards inward, and the protrusions of the ridges of the lowest layer block can cut off the trajectory of the spatiotemporal leakage.
  • the supporting slope of the bottom layer block blocks and cannot leak to the other side of the wall.
  • the ideal leak-proof block has such a shape and size that when three similar blocks are stacked on top of each other, the ridge of the bottom block is higher than the foot of the top block;
  • the mathematical model and calculation method for leak-proof or permeable soil established in accordance with the principles of the present invention can determine the space-time trajectory, thereby determining Block size.
  • the T-shaped auxiliary block perfectly solves the leak-proof problem of the masonry joint at the intersection of the T-shaped wall.
  • the use of L-shaped auxiliary blocks can perfectly solve the leakage problem of the masonry joints at the intersection of two walls;
  • the use of cross-shaped auxiliary blocks can perfectly solve the two walls, or three walls, or four walls Leak-proof problem of masonry joints at the intersection of walls.
  • the use of cross-shaped, L-shaped, and T-shaped auxiliary blocks makes the intersecting walls and adjacent walls interlocked into one, improving the integrity and stability of the wall.
  • the bonding material when bonding, can be covered with all the masonry joints, or only on the shoulders, or only on the supporting slope; dry-drying methods can also be used. No bonding material is needed between the two.
  • the support slope is a thousand-walled wall, and the masonry joint between the slope and the horn notch is an air layer, which is more conducive to drainage.
  • An overhang block 27 is provided on the column in the wall shown in FIG. 63.
  • the overhang block includes a top surface, a bottom surface, and two end surfaces.
  • the cross section of the overhang block is generally a downward-flared bell mouth.
  • the overhang block has a central ridge, which is low on both sides, forming left and right support slopes; one end surface of the overhang block is in sealing engagement with the column, the other end surface of the overhang block is in engagement with the block, and the top surface of the overhang block is in contact with the block.
  • the bottom surface of the upper block is matched, and the bottom surface of the overhang block is matched with the top surface of the lower block.
  • a plurality of overhang blocks are arranged in an orderly space on the stilt column. The blocks are matched with the masonry. The columns are tightly connected to the blocks through the overhanging blocks.
  • the left and right supporting slopes of the overhanging blocks become blocking structures and lock the adjacent blocks above and below each other, which perfectly solves the problem of columns and blocks.
  • Leak-proof problems between the two, and the chain as a whole, improve the integrity and stability of the wall.
  • the shape of the overhanging block can be matched with the block, and its length is generally smaller than the total length of the block.
  • Columns include stilts, sidings or steel columns or other load-bearing parts.
  • the pillars of the frame structure are usually cast with outriggers when pouring concrete; the manufactured outriggers can also be installed on the pillars; if the pillar is a steel structure, the outriggers can be welded.
  • leak-proof sealing measures must be taken between the column and the overhanging block. For example, rubber, grease, glass glue and other waterproof materials are sandwiched between the column and the overhanging block. Watertight welding can be regarded as Sealed joint.
  • the upper surface of the beam at the lower part of the wall is provided with a bump 28, and the lower bottom surface of the bump is tightly combined with the upper surface of the beam; the bump must extend to two adjacent beam-column nodes
  • the convex block cooperates with the horn notch of the block; the cross section of the convex block may be similar to the cross section of the auxiliary block 25.
  • a groove 29 is provided on the lower surface of the upper beam of the wall; the groove must extend to the column at the node of two adjacent beam-columns; when the block is combined with the lower surface of the beam The groove cooperates with the top surface of the block, and the ridge of the block can extend into the groove.
  • the arrangement of the bumps and grooves can prevent water leakage at the joints between the block and the upper and lower surfaces of the beam, and also make the joints tightly coupled and stable.
  • Fig. 66 is a schematic diagram of a lateral force of the wall shown in Fig. 63, and an auxiliary block 26 is provided at the bottom.
  • a lateral force of the wall shown in Fig. 63 and an auxiliary block 26 is provided at the bottom.
  • the thick line shown in Figure 66 is restricted by the ridge and returns to a stable state.
  • the wall will be unstable when the directional force is increased to break the limit and cause more blocks to break, so the overturning resistance and seismic performance are greatly improved.
  • the block shown in Fig. 5 is used to form a gap, so that the floor can be conveniently placed.
  • the wall shown in FIGS. 68 and 69 is connected to the external frame through the connecting member 30.
  • one end of the connector is installed in the masonry joint.
  • one end of the connector is installed in the lateral opening 17 of the block.
  • One end of the connecting piece connected to the wall body is processed into a shape that can be matched with the block, and the other end of the connecting piece can be connected to the external frame by methods such as hooking, bolting, and welding.
  • the connecting member may be steel, aluminum, or the like.
  • the block shown in FIG. 70 is combined with the thin plate 31 based on the shape of the block shown in FIG. 3 and the shoulder.
  • a shoulder can be provided on one or both sides of the thin plate.
  • the material of the thin plate may be a leak-proof plate such as a metal plate or a plastic plate.
  • the thin plates of this block are leak-proof and interlocking, the shoulders are load-bearing and the functions are separated.
  • the material of the thin plate is a radiation protection plate, it can be used for building a radiation protection wall, which has the same radiation protection effect as the blocks shown in Fig. 32 and Fig. 33.
  • the blocks shown in Fig. 71 and Fig. 72 are hollowed out at the middle to form block.
  • the two end faces of the block shown in Fig. 71 are the same as the end faces of the block shown in Fig. 9.
  • One end face of the block shown in FIG. 72 is the same as the end face of the block shown in FIG. 9, and the top and bottom surfaces of the other end face are both flat.
  • the formwork blocks are usually placed at the intersection of the wall for pouring concrete cores.
  • the function of masonry blocks is not only equivalent to building formwork, but also combined with masonry walls.
  • the wall shown in FIG. 73 includes a block similar to that shown in FIG. 34 or FIG. 35 or FIG. 40.
  • a masonry method of widening the vertical seam 32 is adopted. Flowers and plants can be planted in the holes or openings at the widened vertical seam to form Vertical green wall.
  • Figures 74 and 75 show radiation protection walls.
  • the radiation protection wall shown in FIG. 74 uses the radiation protection block shown in FIG. 33.
  • the radiation protection wall shown in FIG. 75 is based on the radiation protection block shown in FIG. 33 and is provided with radiation protection plates on the left and right supporting slopes.
  • the radiation protection function is better than the radiation protection wall shown in FIG. 74. When a radiation protection wall is formed, the radiation protection plates on adjacent radiation protection blocks overlap with each other in the longitudinal direction.
  • the radiation protection plate can be formed into the shape of the top surface of the block and laid in the masonry joint with reference to the above methods and principles, and a radiation protection wall can also be formed.
  • Materials such as radiation-proof concrete can also be used to produce the blocks of the present invention for masonry as radiation-proof walls.
  • the shape and size of the radiation protection block must meet the following conditions: When three similar radiation protection blocks are stacked on top of each other, the ridge of the bottom radiation protection block is higher than the foot of the top radiation protection block. In this case, the vertical joints of the masonry are not penetrated in a straight line and have ideal radiation protection effects.
  • Fig. 76 is a structural schematic diagram of an anti-crack wall.
  • the rough anti-crack block shown in Fig. 27 is adopted and masonry is used.
  • the anti-crack grooves on the top and bottom sides do not need to be built.
  • Figure 77 is a partial enlarged view of the mortar masonry joint shown in Figure 76. It can be seen from the figure that the mortar between A and B enters the rough concave portion of the block during the masonry, and the longitudinal displacement of the block It will be blocked by the mortar between A and B to limit the cracking effect; only when a lot of mortar between B and B are all broken, the block will be dislocated and cracked, so the rough setting has better crack resistance effect. It is recommended to use anti-cracking mortar.
  • Anti-cracking mortar is to mix one or more kinds of silk, thread, fiber, etc. in ordinary mortar, such as hemp, paper bar, plastic wire, etc., which has much greater resistance than ordinary mortar. Tensile and shear strength to further improve crack resistance. In the case of dry masonry, the rough protrusions can fit into the rough depressions of adjacent blocks. The rough texture of the masonry can limit the dislocation cracking.
  • the wall shown in FIG. 78 has a long block, a cross section similar to that shown in FIG. 4, and is provided with a longitudinal hole.
  • the wall is provided with an overhanging block.
  • the function of the overhanging block is the same as that shown in FIG. 63. .
  • Figure 79 shows a tunnel lining wall.
  • the blocks shown in Figures 5 and 6 are used, which are provided with connectors and a barrier layer 33.
  • the barrier layer is located between the wall and the rock or soil or structure.
  • the function is to form an air layer 34 between the barrier layer and the wall.
  • the role of the air layer is to create a leaking environment as shown in Figure 63 to prevent leakage.
  • the principle is the same as that shown in FIGS. 62 and 63.
  • the block wall can be connected to the rock or soil layer or structure with a connector.
  • the connector can also be a shotcrete or the like.
  • the dry tunnel wall has flexibility, and it is not necessary to provide deformation joints, so there are no problems with deformation joints such as aging of water-proof materials, deformation and cracking, simple construction, shortened construction period, and reduced cost.
  • the barrier layer shown in FIG. 80 is composed of a plurality of barrier fabrics 35. Adjacent barrier fabrics on the same layer are connected end to end, and adjacent upper and lower barrier fabrics are overlapped. The upper barrier fabric is stacked to hold the lower barrier. Anti-fabric, the lower barrier fabric is sandwiched between the adjacent upper barrier fabric and the wall; the joint 36 between the upper barrier fabric and the adjacent lower barrier fabric are misaligned with each other . When the adjacent barrier fabrics at the joints overlap each other, the barrier effect is better.
  • the barrier fabric can be sleeve felt, plastic film, plastic sheet, cloth, tinplate, etc., without the need for hot-melt welding.
  • the methods of connecting the barrier fabric to the wall are: rivet the barrier fabric on the wall surface, or tie the barrier fabric to the wall with iron wire, or install the barrier fabric into the wall of the masonry during masonry In the seam.
  • the barrier layer can also be provided in multiple layers.
  • the barrier fabric constituting the barrier layer is a waterproof material, and among the upper and lower three-layer barrier fabrics, the top of the lowermost barrier fabric is higher than the uppermost barrier fabric. At the bottom of the fabric, the barrier layer at this time has an ideal leak-proof effect.
  • the wall shown in Figure S1 uses blocks with different widths. The wide shoulders of the blocks are close to the structure on the side of the wall. An air layer is formed between the wall and the structure.
  • the structure may be a concrete wall or a rock. Soil, etc. The role of the air layer is the same as in Figure 79.
  • the walls shown in Figure 79 and Figure 81 can be used in tunnels, subways, mines, roadways, underground civil air defense, underground warehouses and other buildings to better solve the problem of leakage prevention, and the chain stability.
  • the nine types of walls shown in Figure 82 to Figure 90 can be regarded as retaining walls, all of which have the benefits of permeable soil retention and chain stability. Effect, can be used in retaining walls, dikes, barges, river banks, bank walls, slope protection, embankments, sea walls, cofferdams, earth dams, spur dams, jetties, lock dams, submersible dams, sand dams, underground collection reservoirs, sewage Handle buildings and other related buildings.
  • the ideal effect of permeable soil retention is:
  • the block has such a shape and size that when three similar blocks are stacked on top of each other, the ridge of the bottom block is higher than the foot of the top block. This situation is All muddy water entering the vertical seam is overflow and permeable.
  • each of the masonry joints in the water-retaining retaining wall can be used as an overflow channel, the muddy water reaching the wall anywhere in the soil is the nearest accumulating overflow method, and the drainage is fast and the soil retention is reliable. Due to the rapid drainage, the water pressure in the soil is almost negligible, which greatly improves the anti-overturning ability of the wall. Due to the reliable retention of the soil, the soil behind the wall is stable and difficult to pan, which greatly improves the wall's Stability. Moreover, the blocks are staggered and interlocked, greatly improving the integrity of the wall. Moreover, it is known from Fig. 66 that the resistance of the central ridge greatly improves the anti-overturning capacity of the permeable soil retaining wall.
  • the retaining wall is dry or unsaturated, and the wall is flexible and adapts to deformation such as settlement and expansion. There is no need to set up construction joints and deformation joints, which is conducive to simplifying construction, shortening the construction period, and reducing the cost.
  • the retaining wall shown in Figure 82 is widened on the side facing the soil.
  • the soil is pressed against the wide shoulders of the block.
  • the self-weight of the soil increases the anti-overturning capacity of the wall.
  • the retaining wall shown in FIG. 83 is a kind of embankment wall, and the flat part of the bottom surface of the water-facing side of the block has a wave suppression effect.
  • the wall shown in Fig. 84 adopts a block similar to that in Fig. 5, and the lateral connection surface of the water front side of the block has a wave absorbing effect.
  • Figure 85 can be regarded as a kind of earth-rock dam wall.
  • the upstream dam surface can retain water permeable soil; the inner side of the downstream block dam surface is permeable soil and the outside is leak-proof; the wave-proof wall is leak-proof.
  • the anti-leakage effect of the downstream block dam surface can be used for flood drainage.
  • the wall shown in Figure 85 can also be considered as a dike, embankment, boardwalk, etc.
  • Figure 86 shows the wall of an underground collecting reservoir. Since every masonry joint can be erected as a water-permeable channel, water can be collected quickly; and because each water-permeable channel can be sedimentary overflow, retaining soil Reliable, greatly reducing the mud content of water entering the reservoir.
  • Figure 86 can also be considered as a schematic cross-sectional view of the wall of the catchment well.
  • Figure 87 shows a sand dam wall. The principle is the same as that shown in Figure 86.
  • the wall may be widened or a support body may be provided on the downstream side of the wall.
  • Figure 88 shows a kind of field cofferdam wall.
  • the block shown in Figure 14 is used.
  • the foot on the side facing the weir is high and the height of the supporting slope is relatively small. Part of the water is not blocked by the supporting slope and there is no overflow process, which is beneficial to the rapid inflow of soil-containing water into the weir.
  • Adopting the method of widening vertical seams as shown in Figure 73 to build retaining walls is conducive to water permeable and water permeable, and can reduce the amount of blocks. It also has a beautiful effect; use the blocks shown in Figure 34 or Figure 35 or Figure 40
  • the vertical slits are widened, and the holes and openings can be planted with flowers or plants or inhabited by aquatic animals.
  • the above retaining wall body can also be used in sewage treatment buildings, and its principle is the same as that of permeable soil. For example, if a sewage pond is constructed, the sewage is discharged from the masonry joints of the wall, and solid dirt in the sewage is left behind. For example, if a sewage ditch is constructed, the solid sewage is trapped before flowing into the sewer, the solid dirt in the sewage system is greatly reduced, and the sewer is not easily blocked.
  • an anti-filtration layer can be provided on one side of the wall.
  • the material of the anti-filtration layer can be sand, geonet, filter, etc .: 79.
  • an anti-filter layer can also be provided in the masonry joint; an anti-filter layer can also be set between the upper and lower adjacent barrier fabrics of the barrier layer, and the adjacent barriers at the joints The fabrics can be overlapped and combined with each other.
  • the above-mentioned walls can adopt the methods shown in Figure 63, Figure 65, Figure 68, and Figure 69, and Figure 89, The method shown in Figure 90.
  • the wall shown in FIG. 89 adopts a connector 30 to strengthen the connection between the wall and the soil.
  • One end of the connector is installed in the masonry joint or the opening of the block.
  • the connecting member may be a metal rod, wood, or the like, or a steel wire, a rope, or the like.
  • the wall shown in FIG. 90 adopts a grid mesh 37 to strengthen the connection between the wall and the soil.
  • One end of the grid mesh is connected to the wall and the other end is placed in the soil.
  • the materials of the grid mesh include geonets, plastic nets, metal nets, and woven nets.
  • the long plate-shaped block shown in FIG. 91 is provided with guide ribs at the end of the supporting slope and the ridge.
  • the long plate-shaped block shown in Fig. 92 is provided with guide ribs at the ridge and at both ends of the supporting slope.
  • the function of the flow guiding ridges is the same as that shown in FIG. 30.
  • FIG. 93 is a block matching the masonry of FIG. 91.
  • the top of the horn notch is provided with an upper recess 38 that cooperates with the diversion rib shown in FIG. 92, and is used for laying the masonry shown in FIG. 92.
  • the upper layer of the block covers the vertical seam between the two blocks shown in Figure 92.
  • FIG. 94 is a longitudinal sectional view of FIG. 92.
  • the wall shown in Figure 95, Figure 96, and Figure 97 is a sloping wall, and the principle of leakage prevention is the same as that shown in Figure 63.
  • the structural principle of the plate-type inclined wall can be used for slope roofs.
  • the columns with outriggers can be regarded as roof beams, long plate-shaped blocks can be regarded as roof panels, and the staggered roof panels form leak-proof slope roofs.
  • the end faces of two roof slabs are connected to form a vertical seam, and the vertical seams adjacent to each other are offset from each other.
  • the ends of the roof slab are added to the support.
  • the support is usually a wall or roof beam.
  • the principle of leakage prevention is the same as that in Figure 63.
  • Figure 97 is a schematic diagram of the top structure where two walls intersect, or the top structure of a tunnel lining wall, or the ridge structure.
  • the uppermost layer is the block shown in Figure 93, and the lower layer is shown in Figure 92.
  • the other blocks are similar to those in FIG. 4.
  • the block shown in Fig. 92 is superposed on two walls.
  • the top block shown in Fig. 93 completely covers the vertical seam of the block shown in Fig. 92.
  • the sloping roof of this structure is both leakproof and load bearing, and has simple construction.
  • FIG. 95 Figure 95, Figure 96, and Figure 97 as sloping roofs.
  • Slope roofs often have structural layers such as screeds, insulation layers, and protective layers. It is recommended that a barrier layer be provided between the roof slab and the structural layer.
  • Figures 79 and 80 are the same.
  • Figure 98 shows the deck structure layer, using the block shown in Figure 6.
  • the blocks are continuously staggered from the bridge piers at both ends, and the top and bottom surfaces of adjacent blocks abut each other, which can be dry and glued. Because the blocks are staggered and interlocked with each other, the descent displacements of adjacent blocks are nearly consistent due to mutual restraint.
  • the bridge deck is relatively flat, and the construction and use are safer and more stable.
  • Figure 99 shows the ground structure formed by blocks.
  • the blocks are paved, and the lateral side or lateral connection surface on one side is placed on the ground floor.
  • the top and bottom surfaces of adjacent blocks are interlaced and interlocked. .
  • the overall interlocking action prevents the blocks located in the depression from sinking individually, and the ground deformation is relatively gentle, which is helpful to reduce the bumps of the vehicle.
  • the block ground is especially suitable for places that are frequently maintained and replaced, such as container cargo yards, heavy vehicle parking lots, etc., bridge heads of highways, sharp turns, and road intersections.
  • the airport runway that needs to increase taxi resistance at sharp turning sections of roads and warning slowing down speeds is also very useful.
  • the width of the masonry joints between the blocks and the height of the blocks on both sides of the joints are controlled according to the design. Poor, masonry joints cause predictable bumps for moving vehicles, reminding drivers to slow down; Masonry joints can provide resistance to the rolling of aircraft tires.
  • Adjacent blocks in the ground of the block have a flat surface and the other block has a corrugated, rough, or crevice surface. Adjacent blocks cannot be completely fitted. When there is rain infiltration, the masonry gap below the middle ridge of the block can become a buffer zone. When pedestrians step on, the sewage under the block floor is not easy to wash out of the buffer zone and splash pedestrians.
  • Decorative road blocks are used for paving road traffic signs, which are more durable than paint signs; their decorative surfaces form the surface of bridges and the ground and are decorative.
  • the interface between the block's surface and the surface can be covered with angle steel.
  • Figures 100, 102, and 103 show the molds used to produce the blocks of the present invention.
  • Figure 100 is a billet mold, usually with big and small ends, the big end is connected to the block extruder. When the block material entering the big end comes out from the small end exit, a billet with a cross-sectional shape of the block is formed. The billet is cut into sections with a set length, and finally fired into the block of the present invention.
  • a coder 39 may be provided outside the exit of the billet mold shown in FIG. 100, and the coder should be close to the block billet.
  • Shown in FIG. 101 is a code wheel on the printer 39.
  • the surface of the code wheel is provided with an equal mirror convex code.
  • the code wheel is in close contact with the billet and rotates as the billet is extruded, and the convex code prints text and patterns on the billet.
  • Figure 102 shows a box mold, which is divided into an upper mold, a mold box and a lower mold.
  • the flat lower mold can be used to form one end face of the block;
  • the mold box can be divided into many holes, and the top surface, bottom surface, and lateral sides or lateral connection surfaces of the block can be formed around each hole;
  • the upper mold is provided with a mold
  • the core can be used to form the other end face of the block and the longitudinal holes in the block.
  • a flat upper mold is used to form the other end face of the block.
  • Figure 103 shows another box mold, which is divided into upper mold, mold box and lower mold.
  • the lower mold is provided with concave-convex blocks to form the top surface of the block;
  • the mold box can be divided into a number of holes, and the periphery of each hole can form the end face of the block and the lateral side or the horizontal connecting surface;
  • the upper mold is provided with another type Bumps can form the bottom surface of the block.
  • a mold core capable of forming a vertical hole may be provided on the upper mold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)
  • Retaining Walls (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

用于形成墙体的砌块及其形成的墙体
(一)技术领域
本发明涉及建筑领域的一种用于形成建筑墙体、 建筑屋顶的砌块及其形成的各种墙 体, 尤其是一种能形成双面防漏和阻拦作用的墙体的砌块。
(二)背景技术
墙体的防漏水、 透水留土, 是建筑领域的重大难题。
漏水的部位主要是: ①墙体的砌筑缝漏水, ②框架结构的建筑中, 砌体与框架柱之间 漏水, ③框架结构的建筑中, 砌体与框架梁的上表面之间漏水, ④框架结构的建筑中, 砌 体与框架梁的下表面之间漏水。
建筑墙体的砌筑缝的已有防漏方法主要有两大类, 一类是减轻砌筑缝开裂; 另一类是 采用带凹槽凸榫类砌块的设计, 通过砌块互相砌合使砌体具有一些防漏作用, 但或生产复 杂、 或使用不便、 或功能欠缺, 而且都没能根本解决砌筑缝的防漏问题。
如附图 1所示, 申请号为 00103227.5的 "干砌砖型砌块", 其权利要求 1为 "一种用 于与其它相同砌块叠砌成墙的砌块, 所述砌块有顶面、 底面、 前后面和端面, 前面和后面 基本上是平面, 顶面出脊, 底面有槽以便该底面与脊镶嵌, 同时端部有切口以便搭接。" 在其说明书第 3页详细说明 "脊 3最好具有前坡部 6和后坡部 26。 脊 3的坡部 6、 26使可 能进入砖层间的水从砌砖间排出。 "砖层间为砌筑横缝, 该砌块的突起尺寸很小的脊对其 有防漏作用, 其脊、 槽、 切口如其权利要求 1指出的是起 "镶嵌"、 "搭接"作用, 没有解 决砌筑竖缝在各种气象环境下的整体防漏方案。 这种砌块的突起尺寸很小的脊对砌筑横缝 的有限防漏作用, 同申请号为 86106157的装配式砌块、 申请为 03218670.3的空心砌块等 一样, 就墙体整体防漏应用来说价值不大。
申请号为 96194387.4 的"用于形成干砌墙的砌块",如图 2所示,仅有单面防漏作用, 适宜用干砌方法, 不适合粘砌, 且其干砌墙侧向稳定性差, 也不宜作为承重墙体; 且这种 砌块不便于用坯条式方法烧制生产。 为便于粘砌, 如果将该砌块中起结合作用的小榫、 小 槽改为水平面, 就失去了互相镶嵌作用, 更易侧向失稳; 用砂浆砌筑时, 每一砌块的排水 斜面上的铺浆厚度往往很难一致, 如果向排水斜面垂直施力来调整铺浆厚度、 就容易造成 墙体被推压而侧向失稳;但是如果不调整铺浆厚度,总是会导致砌块不均匀地向外侧突出, 难以砌出表面垂直平整的墙体。
以往解决砌体与框架柱的接合处的漏水问题, 主要是设置拉接钢筋、 有时还浇捣为连 接梁, 以加强砌体与框架柱的接合、 减轻此处的开裂, 但不能根治开裂、 无法彻底防漏。
砌体与框架梁的上表面、 下表面之间, 至今没有防漏的方法。
地下建筑的墙体防漏, 一般采用止水带、 防水油膏等防水材料对墙体的施工缝、 变形 缝进行密封防漏, 但止水带、 防水油膏易老化。 还有在墙体和岩土之间设热熔焊接的防水 层防漏, 但往往有焊接不牢处、 或遗漏未焊处, 防水层因建筑变形而被拉裂, 导致漏水。
挡土墙、 堤防、 路堤等建筑的透水留土是一对互相制约的难题, 现有技术主要是在墙 体上设置若千排水孔,也有采用联锁类砌块的干砌体,但都是不能同时理想地排水和保土。
(三)发明内容 本发明解决现有技术的不足所采用的技术方案是:
用于形成墙体的砌块, 在所述的墙中数个类似的砌块连续的错位叠置, 所述的砌块是 纵向型材, 包括: 顶面、 底面和两个端面; 所述砌块的横截面大致上呈朝下的喇叭口状; 所述的顶面有中部脊, 两侧低, 形成左、 右支承坡; 所述的顶面和底面是这样形成, 当所 述的砌块与下面的类似砌块叠置形成墙体时, 下面砌块的顶面与所述砌块的底面配合, 所 述的左、 右支承坡成为阻拦结构并使上下相邻砌块互相锁定。
所指的纵向型材, 并非为纯几何上的横截面都相同, 而是具有左、 右支承坡的相同主 要特征, 例如在两个端面上设企口或是在砌块内部设孔, 在这里仍然归纳在横截面都相同 的纵向型材之内。
所指的横截面大致上呈朝下的喇叭口状, 指具有上大下小、 中部脊的突起尺寸足以切 断时空轨迹线、 砌筑配合的喇叭凹口也相应较深的特征, 例如不设肩台或设肩台, 在这里 仍然属于横截面大致上呈朝下的喇叭口状的范围之内。 时空轨迹线可以依据给定的防漏或 透水留土的标准计算出来, 所述的中部脊的突起尺寸可以依据计算出来的时空轨迹线来确 定。 防漏或透水留土的标准, 各地、 各国可根据气象、 经验、 要求等来制定。
所述的中部脊, 并非为纯几何上的中部, 能形成左、 右支承坡的脊都是本发明所指的 中部脊, 例如一侧有肩台或两侧支承坡不相同的砌块的脊, 在这里也属中部脊。
所述的左、 右支承坡成为阻拦结构, 强调指出成为防漏或透水留土的阻拦结构。 所指的配合, 指砌块的形状和尺寸能够通过千砌、 粘砌、 干挂等砌筑方法形成所述的 墙体, 例如, 相邻的砌块之间、 或砌块与辅助砌块之间、 或砌块与墙体中的有关构件之间 能互相配合形成墙体。 粘砌, 指用水泥砂浆、 混合沙浆、 化学胶合剂、 粘合剂等粘接材料 砌筑; 干砌、 干挂, 则不采用粘接材料。
所述的砌块具有这样的形状和尺寸, 从而在三块类似的砌块上下叠置时, 最下面砌块 的脊顶部与最上面砌块的底脚部之间的垂直距离小于砌块总高度的三分之一。 具有这样形 状和尺寸的砌块所形成的墙体,当漏水在空气中运动、受垂直于墙体的水平的七级风力时, 其中部脊的突起尺寸可以切断漏水时空轨迹线而防漏。
当所述的砌块具有这样的形状和尺寸, 从而在三块类似的砌块上下叠置时, 最下面砌 块的脊高于最上面砌块的底脚部。 这样形状和尺寸的砌块所形成的墙体, 防漏、 或透水留 土的效果最为理想。
这里所说的底脚部指以中部脊为界的砌块两侧各自的最低处。 当最低处为一个面时, 底脚部所指的是最靠近由该砌块形成墙体表面的部位。
所述的顶面上加设防辐射板, 防辐射板伸出端面, 并且这种砌块具备这样的形状和尺 寸: 在三块类似的砌块上下叠置时, 最下面砌块的脊高于最上面砌块的底脚部。 用这种砌 块形成墙体, 相邻砌块的防辐射板在纵向互相首尾搭接, 具有防辐射作用。
用于形成墙体的砌块组件,包括砌块和辅助砌块,所述的砌块是纵向型材,包括顶面、 底面和两个端面; 所述砌块的横截面大致上呈朝下的喇叭口状; 所述的顶面有中部脊, 两 侧低, 形成左、 右支承坡; 所述的顶面和底面是这样形成, 当所述砌块与下面的类似砌块 叠置形成墙体时, 下面砌块的顶面与所述砌块的底面配合, 所述的左、 右支承坡成为阻拦 结构并使上下相邻砌块互相锁定; 所述的辅助砌块在砌筑墙体时与所述的砌块配合。
所述的辅助砌块由三个所述的砌块组成, 置于所述的墙体的相交处并与所述的砌块纵 向配合, 错位叠置, 一般可通用于两道墙或三道墙、 或四道墙的相交处。 所述的辅助砌块由两个所述的砌块组成, 置于所述的墙体的相交处并与所述的砌块纵 向配合, 错位叠置, 一般砌在两道墙或三道墙的相交处。
用砌块形成的墙体, 在所述的墙中数个类似的砌块连续的错位叠置, 所述的砌块是纵 向型材, 包括顶面、 底面和两个端面; 所述砌块的横截面大致上呈朝下的喇叭口状; 所述 的顶面有中部脊, 两侧低', 形成左、 右支承坡; 所述的顶面和底面是这样形成, 当所述的 砌块与下面的类似砌块叠置形成墙体时, 下面砌块的顶面与所述砌块的底面配合, 所述的 左、 右支承坡成为阻拦结构并使上下相邻砌块互相锁定; 所述的墙体中, 相邻的所述砌块 之间形成砌筑缝, 顶面和底面配合砌筑形成横缝, 端面相接形成竖缝, 上下相邻的所述竖 缝相互错位。 错位布置使砌块互相锁定形成稳固的墙体, 并使砌块间竖缝也能防漏、 或透 水留土。
在所述的墙体中设有柱时, 所述的柱的侧面设有密封接合的外伸块, 外伸块和砌块能 够配合, 能杜绝砌块与柱的接合处漏水, 并使砌块与柱紧密结合、 连锁稳固。
在所述的墙体中设有梁时,所述的梁的上表面设有凸块,所述的梁的下表面设有凹槽; 所述的凸块的下底面与所述梁的上表面密封接合, 所述的凸块延伸至两个相邻的梁柱节点 处的柱上、 并与柱密封接合; 所述的砌块与所述的梁的上表面接合时, 所述的凸块与所述 砌块的底面的喇叭凹口配合: 所述的凹槽延伸至两个相邻的梁柱节点处的柱上; 所述的砌 块与所述的梁的下表面接合时, 所述的凹槽与所述砌块的顶面配合。
凸块的设置能杜绝砌块与梁的上表面的接合处漏水, 四槽的设置能杜绝砌块与梁的下 表面的接合处漏水, 凸块、 凹槽的设置还使砌块与梁紧密结合、 连锁稳固。
用于透水留土的目的时, 所述的墙体的砌筑缝设有贯通墙体两侧的透水通道, 水可以 经过透水通道从墙体的一侧到达另一侧; 当砌筑缝或砌筑竖缝干砌时, 透水通道较大、 透 水作用较好。
在所述的墙体的一侧设有隔防层, 所述的隔防层有若干隔防面料组成, 同一层的相邻 隔防面料首尾相接, 相邻上下层的隔防面料搭接, 下层隔防面料夹于相邻的上层隔防面料 与所述的墙层之间; 上层的隔防面料之间的相接缝和相邻下层的隔防面料之间的相接缝相 互错位; 所述的隔防层与所述的墙体之间形成空气层; 隔防层和空气层利于防漏、 或透水 留土。
用呈长板状的砌块连续的错位叠置可以形成斜墙体; 两块所述的呈长板状的砌块的端 面相接形成竖缝, 上下相邻的所述竖缝相互错位布置: 所述的呈长板状的砌块的端部加设 在支撑体上。
本发明是从提出并分析第四维的时空轨迹线入手, 解决防漏和透水留土问题。
防漏理论模型是: 墙体表面的水从砌筑横缝进入竖缝、 或直接进入竖缝后, 在自身 重力和一定风压力等作用下向墙体内、 下流动, 其漏水时空轨迹线通常遵循由高向低的规 律; 这时, 墙体表面的竖缝顶部, 即竖缝顶部的砌块的底脚部, 通常是漏水时空轨迹线的 最高点: 砌块上设置阻拦支承坡, 左、 右支承坡形成中部脊, 当漏水沿其时空轨迹线接近 墙体竖缝下部的砌块的脊部时, 所述中部脊的顶部的位置能切断漏水时空轨迹线, 防漏的 目的就能够达到。 显然, 砌块的脊部突起尺寸越大, 防漏效果越好。
众所周知, 泥水在流动中, 流速快吋沉积少, 流速慢则沉积多, 泥水的时空轨迹线遵 循由高向低的规律。透水留土的理论模型是: 设置阻拦支承坡, 左、右支承坡形成中部脊, 脊顶部能阻挡泥水时空轨迹线, 使进入墙体横缝、 竖缝的水只能溢过砌块的脊顶部, 水中 的泥土被支承坡阻挡; 中部脊的突起尺寸越大, 阻拦作用越大, 透水留土的效果越好。 符合这样的理论模型的砌块是纵向型材, 须设置顶面、 底面和两个端面, 砌块的横截 面大致上呈朝下的喇叭口状; 砌块顶面有中部脊, 两侧低, 形成左、 右支承坡; 砌块的顶 面和底面是这样形成, 当所述的砌块与下面的类似砌块叠置形成墙体时, 下面砌块的顶面 与所述砌块的底面配合, 所述的左、 右支承坡成为阻拦结构并使上下相邻砌块互相锁定, 所述的中部脊的突起尺寸可以切断时空轨迹线。
当防漏或透水留土的设计标准确定后, 时空轨迹线就可以确定, 切断时空轨迹线的脊 部的突起尺寸也就可以确定。 脊部的突起尺寸越大, 阻拦作用越大, 防漏或透水留土的效 果越好。 理想的防漏或透水留土效果是: 所述砌块具有这样的形状和尺寸, 从而在三块类 似的砌块上下叠置时, 最下面砌块的脊高于最上面砌块的底脚部。
依据防漏理论模型, 例举一种简单的数学模型 1 : 假设风向水平并垂直于墙体表面, 雨点从底脚部、 也即是 [II]竖缝的最高处, 进入竖缝并在空气中向下向内运动; 设底脚部 即是漏水时空轨迹线的最高处, 至竖缝下部的脊顶的水平距离为 Sx、 垂直距离为 Sy; 雨 点水平运动为匀速运动, 水平运动速度为 Vx, 水平位移 Sx的时间为 Tx, Sx=VxTx; 雨点 垂直降落的终极速度 Vy=9m/s,垂直位移 Sy的时间为 Ty,则 Sy=9Ty。设砌块的宽度为 20cm, 尖角脊顶在砌块的宽度的中间时 Sx=10cm, Tx=10÷Vx;砌块的脊部切断漏水时空轨迹线、 能够防漏, 必须 Tx〉Ty; 此处以雨点的水平速度 Vx等于风速来计算。 上述条件时, 不同 风力下的临界 Sy见下表 1, 能够防漏的垂直距离应小于表 1中 Sy数据。
表 1 :
Figure imgf000006_0001
不论实际漏水情况如何复杂, Sy越小, 下层砌块的脊部砌入上层砌块的喇叭凹口内的 尺寸越大, 防漏效果越好。 从表 1中可以推导, Sy<0后, 即在三块类似的砌块上下叠置 时, 最下面砌块的脊高于最上面砌块的底脚部时, 防漏效果最好。
虽然世界各地气象差异很大, 只要建立防漏或透水留土的数学模型, 给定防漏或透水 留土的设计标准, 就可以确定达到设计标准的砌块的有关尺寸。
本发明的目的和有益效果主要有:
彻底解决墙体的砌筑缝的防漏问题, 完美解决砌筑缝的透水留土问题, 还可用长板状 砌块形成防漏屋面, 通过外伸块的设置解决砌块与柱的接合处漏水, 通过凸块的设置解决 砌块与梁的上表面的接合处漏水, 通过凹槽的设置解决砌块与梁的下表面的接合处漏水, 通过隔防层的设置能更好地防漏或透水留土;
砌块简单, 规格少, 便于生产、 搬运、 码垛;
砌块可以是各种尺寸, 或长或短, 或厚或薄, 或大或小;
砌块可以采用各种建筑材料生产, 如: 淤泥、 粘土、 混凝土、 页岩、 陶粒、 塑料、 树 脂、 金属、 复合材料等建筑材料, 煤灰煤渣、 煤矸石、 冶炼渣、 矿渣、 废矿石、 秸杆、 垃 圾等废旧材料, 就近取材, 节省成本, 变废为宝, 绿色环保;
适宜采用粘砌、 干砌、 干挂等各种砌筑方式;
所形成的墙体适用面很广, 如用于房屋建筑、 隧道、 地铁、 防浪墙、 矿井、 地下建筑 等建筑, 用于挡土墙、 堤防、 路堤、 江河海岸、 驳坎、 土石坝、 护坡、 拦沙坝、 地下集水 库、 污水处理建筑、 造田围堰等建筑, 用于砌筑防辐射墙体, 用于形成防漏坡屋面, 用于 砌筑桥面结构层、 砌筑地面, 以及其它建筑物、 构筑物;
所形成的墙体, 抗震抗倾, 整体性、 稳定性好。
(四) 附图说明
图 1是已有技术中申请号为 00103227.5的千砌砖型砌块结构图;
图 2是已有技术中申请号为 96194387.4的用于形成干砌墙的砌块结构图; 图 3、 图 4、 图 5、 图 6是本发明所述的砌块的四种结构图;
图 7、 图 8、 图 9是中部脊呈平台形的三种砌块结构图;
图 10、 图 11、 图 12是中部脊呈曲弧形的三种砌块结构图;
图 13是横向侧面为斜面的砌块结构图;
图 14是两侧台底面不等高的砌块结构图;
图 15是设有倒角的砌块结构图;
图 16是由三块支承坡呈齿形阶梯状排列的砌块的砌筑配合图;
图 17是由三块支承坡和底面呈齿形阶梯状排列的砌块的砌筑配合图:
图 18是支承坡呈曲弧形阶梯状分布的砌块结构图;
图 19是支承坡和底面呈曲弧形阶梯状分布的砌块结构图;
图 20〜图 23是呈齿形瓦楞状分布的四种砌块结构图;
图 26是斜坡上带有纵向小凹沟式瓦楞状的砌块结构图;
图 27、 图 28是设有粗糙状条纹的两种砌块结构图;
图 29是设有粗糙状点纹的砌块结构图;
图 30、 图 31是设有导流凸条的两种砌块结构图;
图 32、 图 33是顶面设有防辐射板的两种砌块结构图;
图 34〜图 38是设有孔的五种砌块结构图:
图 39〜图 42是设有开口的四种砌块结构图;
图 43是带有副肩台的砌块的砌筑结构图;
图 44、 图 45是带有保温层的两种砌块结构图;
图 46是带有装饰面的砌块结构图;
图 47是设有吸音孔和吸音口的砌块结构图;
图 48是纵向弧形的砌块结构图;
图 49是球冠状的砌块结构图;
图 50〜图 55是砌块与六类辅助砌块的砌筑配合关系图;
图 56、 图 57是两种十字形的辅助砌块结构示意图;
图 58、 图 59是两种 L形的辅助砌块结构图;
图 60、 图 61是两种丁字形的辅助砌块结构图;
图 62、 图 63是用本发明砌块砌筑成墙体的两种结构示意图; 图 64是图 62所示的墙体的一种剖面图;
图 65是设有梁的墙体剖面图;
图 66是本发明砌块形成墙体的一种侧向受力的示意图;
图 67是有图 5所示砌块的墙体剖面图;
图 68、 图 69是设有连接件的两种墙体剖面图;
. 图 70是薄板和肩台的结合所形成的砌块结构图;
图 71、 图 72是两种砌模砌块结构图;
图 73是一种垂直绿化墙体的结构图;
图 74、 图 75是两种防辐射墙体的剖面示意图; '
图 76是抗裂墙体的结构示意图;
图 77是图 76的砂浆砌筑缝的局部放大图;
图 78是长板状砌块和设有外伸块的柱形成的墙体结构示意图;
图 79是一种隧道墙体结构示意图;
图 80是隔防层的结构示意图;
图 81是有空气层的墙体结构示意图;
图 82〜图 90是九种挡墙体的结构示意图;
图 91、 图 92是两种长板状的砌块结构示意图;
图 93是用于和图 92所示的砌块配合使用的砌块结构示意图;
图 94是图 93所示砌块的纵向剖面图;
图 95是一种斜墙体的结构示意图;
图 96是本发明砌块形成的一种屋面结构示意图;
图 97是本发明砌块形成的屋脊结构示意图;
图 98是本发明砌块形成的桥面结构层的结构示意图;
图 99是本发明砌块形成的地面结构示意图;
图 100是一种坯条式模具;
图 101是图 100中印码器上的印码轮的示意图; 以及
图 102、 图 103是两种箱式模具;
(五) 具体实施方式
下面结合各个附图对本发明作进一步描述, 但不能将各个附图、 所描述的方法及技术 参数理解为对本发明的限制。
图 3、 图 4是本发明所述的砌块的基本结构图, 砌块是纵向型材, 其横截面大致上呈 朝下的喇叭口状, 包括顶面 1、 底面 2和两个端面 3 ; 顶面有中部脊 4, 两侧低, 形成左支 承坡 5、 右支承坡 5, 其中部脊的顶部呈尖角形, 底面的顶部也呈尖角形。 图 3所示的砌 块, 其底面两侧的平面为水平面, 其底脚部 6在顶面与底面相接处; 图 4是带有横向连接 面 7的砌块, 其底脚部在横向连接面与底面相接处。
图 5所示的砌块以图 4为基础形状, 一侧带有肩台 8, 肩台包括上台面 9、 台底面 10、 横向侧面 11 , 砌块一侧的上台面、 上部斜坡 12、 中部脊与另一侧的支承坡构成顶面, 中部 脊两侧的斜坡 12构成的突起部在砌筑时与相同砌块的底面的喇叭凹口配合, 其一个底脚 部在横向连接面与底面相接处, 另一个底脚部在横向侧面与底面相接处。 图 6所示的砌块以图 4为基础形状, 两侧带有肩台 8; 也可以说是以图 5为基础形状, 另一侧也带有肩台; 上台面与上部斜坡 12及中部脊构成顶面; 台底面为水平面, 其底脚 部在横向侧面与底面相接处; 同侧的肩台的台底面与砌块的底脚部在同一平面上, 两个端 面相互平行, 横向侧面相互平行, 端面、 横向侧面与水平面垂直, 这类砌块是形成垂直 墙体的常用砌块。
两侧肩台的尺寸、 形状也可以各不相同。 肩台有利于承载。
图 7、 图 8、 图 9所示的砌块, 其中部脊的顶部呈平台形、 底面的顶部也呈平台形。 图 10、 图 11、 图 12所示的砌块, 其中部脊的顶部呈曲弧形、底面的顶部也呈曲弧形。 中部脊呈尖角形的砌块, 其尖角易破损; 中部脊的顶部呈平台形、 或曲弧形或其它平 缓形状的砌块, 其中部脊不易破损、 耐搬运, 还有利于承载。
尖角形的底脚部易破损, 把图 4所示的砌块的底脚部改进为平面、 砌筑配合的顶面的 最低部位相应改为平面, 就形成图 5、 图 6所示的砌块。
底脚部指以中部脊为界的砌块两侧各自的最低处, 砌块的一侧的底脚部为该侧的最低 处; 当最低处是一个面时, 底脚部在该最低面与顶面或横向连接面或横向侧面的交接处。
图 13所示的砌块, 以图 6为基础, 横向侧面是相互平行的倾斜面, 与水平面不垂直。 图 14所示的砌块以图 9为基础形状, 两侧肩台的横向侧面相互平行并与水平面垂直, 但 两侧的底脚部不在同一平面。 两侧底脚部高度不一致的砌块所形成的墙体的两侧可以具有 不同的功能。 横向连接面、 或横向侧面的变化使墙体具有多种美观效果。
图 15所示的砌块, 上台面、 台底面与横向侧面的连接处设有纵向倒角 13, 端面与横 向侧面的连接处设有竖向倒角 13 ; 上台面和台底面都呈倾斜状, 倾斜的通常情况是越接近 横向侧面越低, 有利于排水。 设有纵向倒角的砌块形成的墙体, 粉刷时利于批灰挂浆。 设 有倒角的装饰砌块具有装饰效果。 由于砌块误差、 砌筑误差, 墙体中相邻砌块的横向侧面 可能不在同一平面、 影响美观, 倒角可以在砌筑缝处产生视觉错觉、 从而减轻不在同一平 面的感觉。
图 16所示的砌筑配合图中的砌块, 其支承坡呈齿形阶梯状排列。 图 17所示的砌筑配 合图中的砌块, 其支承坡和底面都呈齿形阶梯状排列。
图 18所示的砌块, 其支承坡呈曲弧形阶梯状分布。 图 19所示的的砌块, 以图 18所 示的砌块为基础, 其支承坡和底面都呈曲弧形阶梯状排列。
砌块的支承坡或底面至少一个呈阶梯状排列, 例如支承坡呈阶梯状排列: 或底面呈阶 梯状排列; 或支承坡和底面同时呈阶梯状排列; 特别强调顶面的上部斜坡呈阶梯状排列。 阶梯状有利于支承坡的承载。
图 20〜图 26所示的是设有瓦楞状的砌块。图 20所示的砌块,其支承坡呈齿形瓦楞状。 图 21所示的砌块, 其上部斜坡呈齿形瓦楞状。 图 22所示的砌块, 以图 20为基础, 底面 也呈齿形瓦楞状。 图 23所示的砌块, 以图 21为基础, 底面的喇叭凹口也呈齿形瓦楞状。 图 24所示的砌块, 其斜坡呈曲弧形瓦楞状。 图 25所示的砌块, 以图 24为基础, 底面的 喇叭凹口也呈曲弧形瓦楞状。 图 26所示的砌块, 其上部斜坡呈纵向小凹沟式瓦楞状。
砌块的支承坡或喇叭凹口至少一个呈瓦楞状, 例如支承坡呈瓦楞状; 或喇叭凹口呈瓦 楞状; 或支承坡和喇叭凹口同时呈瓦楞状; 特别强调上部斜坡呈瓦楞状。 瓦楞状有利于砂 浆砌筑时挂浆, 或形成空气间隙而利于排水。
图 27、 图 28所示的砌块, 设有粗糙状的抗裂紋。 图 27所示的砌块, 在上台面、 台底 面设有横向粗糙状条紋。 图 28所示的砌块, 以图 27为基础, 其横向粗糙状的条纹没有到 达横向侧面。 图 29所示的砌块, 在上台面、 台底面上设有粗糙状的抗裂点纹。
砌块的顶面或底面至少一个呈粗糙状, 通常是顶面和底面同时呈粗糙状, 特别强调上 台面和台底面呈粗糙状。 设置粗糙状的目的是使砌筑面毛糙, 增加上下相邻层砌块纵向位 移的阻力, 提高墙体的抗裂能力, 粗糙状的方式可以多种多样。 粗糙状也有利于挂浆。
砌块的表面变化不限于瓦楞状、粗糙状等形式,还可以是其它形状。为了不影响排水, 特别强调砌块的支承坡上不能设置成会导致积水的形状。 斜坡平整、 喇叭凹口为瓦楞状的 砌块, 在干砌情况下, 斜坡与喇叭凹口之间贴合少、 空隙大, 有利于排水。
图 30所示的砌块, 斜坡的端部设有竖向导流凸条 14, 具有阻挡水流往端面的效果。 图 31所示的砌块, 斜坡上设有若干竖向导流凸条 14, 挡水防漏效果更好。
图 32、图 33所示的砌块是防辐射砌块,防辐射板 15伸出端面,用于砌筑防辐射墙体。 图 32所示的砌块的顶面设有防辐射板。 图 33所示的砌块的一侧支承坡设有防輻射板。
图 34、 图 35、 图 36、 图 37、 图 38所示的砌块, 设有各种孔 16。 图 34是所示的砌块, 两侧设有单排大竖向孔。 图 35所示的砌块, 一侧开有双排竖向孔。 图 36所示的砌块, 一 侧设有小竖向孔。 图 37所示的砌块, 其两侧设有大纵向孔。 图 38所示的砌块, 设有若干 纵向小孔。
孔的数量、 形状可以多种多样, 设在砌块的一侧或两侧, 一个或多个, 通孔或盲孔。 孔的作用可减轻重量、 或填注保温隔热材料、 或浇灌混凝土, 通孔也可用于管线通道。 竖 孔可用于插入钢筋、 杆件, 形成混凝土芯墙。
图 39、 图 40、 图 41图 42所示的砌块, 设有各种开口 17。
图 39所示的砌块, 一个端面的开口为内凹开口、 另一个端面的开口相应为外凸幵口, 类似于企口。 端面的竖向开口能延长漏水的水平路径而有利于防漏; 相邻砌块的端面开口 互相配合砌筑时具有连锁作用。
图 40所示的砌块, 上台面设有纵向开口。
图 41所示的砌块, 上台面和两个端面都设有幵口。
图 42所示的砌块, 一端的横向开口贯通一侧的肩台和底面的喇叭凹口。
开口的数量、 形状不限于图示的类型。 开口可用于布设管线; 也可用于安装连接件、 栅网片, 使砌体与框架结构牢固连接。
图 43所示的砌筑示意图中的砌块, 以图 6为基础, 肩台的横向侧面再设有副肩台 1 S, 副肩台的上台面低于肩台的上台面, 副肩台的台底面与肩台的台底面在同一平面。 该砌块 的肩台和副肩台在砌筑缝处形成一种装饰效果。 副肩台的台底面也可低于肩台的台底面。 副肩台可以设在一侧或两侧, 可以设置多个, 还可以是不同的高低、 宽窄、 长短。 副肩台 上也可以设置孔、 开口。
图 44、 图 45所示的砌块, 设有保温层 19。 图 44所示的砌块, 其单侧肩台带有保温 层。 图 45所示的砌块, 其一侧肩台通过燕尾榫槽方式连接夹芯保温层, 夹芯保温层的另 一侧一般连接装饰面或保护面。 保温层可为聚苯板等各种具有保温隔热作用的板材。 保温 层及与保温层连接的装饰面或保护面, 也可以看作为副肩台。
图 46所示的砌块, 其一侧横向侧面带有装饰面 20。 装饰面一般设在形成墙体表面的 砌块的横向连接面、 横向侧面上, 可以是各种颜色、 各种花样。
图 47所示的是设有吸音构造的砌块, 其一侧幵有吸音孔 21和吸音口 22, 吸音口在横 向侧面。 吸音孔的内壁应尽量使声音能多次反射而消耗掉, 吸音口应尽量多地让声音进入 吸音孔, 吸音口、 吸音孔的数量可以根据需要设置。
图 48所示的纵向弧形砌块, 其横向侧面为围绕砌块一侧的竖向中心轴成纵向弧形面, 整个砌块整体上从一个端面到另一个端面呈纵向弧形, 一般用于砌筑弧形墙。 图 49所示 的是球冠状的砌块, 以图 48 为基础, 其从底面到顶面呈竖向弧形、 横向侧面呈竖向弧形 面, 整体上呈球冠状, 一般用于砌筑穹顶、 球面、 双曲面的墙体。
从图 3至图 49所示的全部砌块, 均为纵向型材, 设有顶面、 底面和两个端面; 横截 面大致上呈朝下的喇叭口状; 顶面有中部脊, 两侧低, 形成左、 右支承坡; 其顶面和底面 是这样形成, 当所述的砌块与下面的类似砌块叠置形成墙体时, 下面砌块的顶面与所述砌 块的底面配合, 所述的左、 右支承坡成为阻拦结构并使上下相邻砌块互相锁定; 砌块的中 部脊的突起尺寸可以切断时空轨迹线、 喇叭凹口也为相配合的尺寸。 中部脊的突起尺寸越 大、 喇叭凹口也相应加大, 效果越好; 当具有这样的形状和尺寸, 从而在三块类似的砌块 上下叠置时, 最下面砌块的脊高于最上面砌块的底脚部, 效果最为理想。
图 50〜图 55示出了一些辅助砌块与砌块的配合关系。 图 56〜图 61示出了另一些辅 助砌块。
与砌块的顶面配合的辅助砌块, 可称为顶面辅助砌块, 一般砌在楼层的墙体的顶部, 通常有两类。 图 50、 图 51、 图 52示出了第一类顶面辅助砌块 23 , 通常为两块, 分别砌在 砌块的中部脊的两侧, 其顶面与砌块的脊的顶部在同一平面上。 图 53、 图 54、 图 55示出 了第二类顶面辅助砌块 24, 由第一类顶面辅助砌块 23和所述砌块结合为一体。
与砌块的底面配合的辅助砌块, 可称为底面辅助砌块, 一般用于楼层的墙体的底部, 通常也有两类。 图 50、 图 51、 图 52示出了第一类底面辅助砌块 25, 其底面与砌块的底脚 部在同一平面上。 图 53、 图 54、 图 55示出了第二类底面辅助砌块 26, 由第一类底面辅助 砌块 25和砌块结合为一体。
图 56、 图 57所示的辅助砌块, 由两个砌块纵向相对分别与另一砌块的两侧相互交接 成一体, 通常呈十字形, 可通用于两道墙、 或三道墙、 或四道墙的相交处。 图 56所示的 辅助砌块, 两个砌块的各一个端面分别与另一砌块的两个侧面重合在同一平面。 图 57所 示的辅助砌块, 以图 56为基础, 其中两个砌块的各一个端面伸出于另一砌块的侧面。
图 58、 图 59、 图 60、 图 61所示的辅助砌块, 由一个砌块纵向与另一砌块的一侧相互 交接成一体, 通常呈 L形或丁字形, 分别用于两道墙或三道墙的相交处。
图 58所示的辅助砌块呈 L形, 其中一砌块的端部与另一砌块的一侧端互相交接成一 体, 前一个砌块的一个端面与另一砌块的一个侧面重合在同一平面。 图 59所示的 L形辅 助砌块, 以图 58为基础, 其中一砌块的端面伸出另一砌块的侧面。 L形辅助砌块。
图 60、 图 61所示的辅助砌块呈丁字形。 图 60所示的辅助砌块, 其中一砌块的端部与 另一砌块的一侧互相交接成一体, 前一个砌块的一个端面与另一砌块的一个侧面重合在同 一平面。图 61所示的辅助砌块, 以图 60为基础,其中一砌块的端面伸出另一砌块的侧面。
图 62所示的墙体中, 有辅助砌块 23、 辅助砌块 25。
图 63所示的墙体中, 有辅助砌块 26、 丁字形辅助砌块、 设有外伸块 27的柱。
图 64是图 62所示的墙体的一种剖面图, 最底层设有辅助砌块 25。
图 65所示的墙体中, 下部梁的上表面设有凸块 28, 上部梁的下表面设有凹槽 29。 图 62、 图 63、 图 64、 图 65所示的墙, 数个类似的砌块连续的错位叠置, 相邻的砌块 之间形成砌筑缝, 顶面和底面配合砌筑形成横缝, 端面相接形成竖缝, 上下相邻的竖缝相 互错位; 下面砌块的顶面的左、 右支承坡与上面砌块的底面配合, 左、 右支承坡成为阻拦 结构并使上下相邻砌块互相锁定, 阻止了相对的横向移动, 牢固稳定。
砌筑缝防漏的过程可从图 62、 图 63、 图 64、 图 65中见到: 图 63中所示的箭头表示 流水, 若水欲从砌体横缝处深入, 则被砌块的支承坡阻挡, 从而起到砌筑横缝防漏作用; 若水欲从砌体竖缝处深入, 漏水时空轨迹线通常为由高向低形式, 砌筑竖缝顶部的砌块的 底脚部一般为防漏的最高点, 三层砌块中的最上一层砌块的底脚部的漏水向下向内流动, 最下一层砌块的脊部的突起尺寸可以切断漏水时空轨迹线, 漏水被最下一层砌块的支承坡 阻挡、 而不能漏向墙体另一侧。
以图 63为例设计砌块尺寸,前述的数学模型 1和表 1,砌块总宽度为 20cm,SX = 10cm; 设砌块的总高度为 H, 肩台高度为 10cm; 中部脊正好能切断时空轨迹线时, 砌块的上台面 到脊顶部的临界突起尺寸定为 h, H= 10+h; 上下叠置的三块砌块, 设干砌方法的砌筑横 缝的缝宽为零, 则最上面砌块的底脚部与最下面砌块的上台面的距离等于肩台高度 10cm, h二 10— Sy;当 Sy小于 5.6cm、即 h大于 4.4cm时,能够在 7级风时防漏,此时 H> 14.4cm, Sy÷H<5.6÷ 14.4 = l/2.57; 当 Sy小于 4.7cm、 即 h大于 5.3cm时, 能够在 8级风时防漏, 此时 H> 15.3cm, Sy÷H<4.7÷ 15.3 = l/3.25; 也就是说, 当砌块具有这样的形状和尺寸, 从而在三块类似的砌块上下叠置时, 最下面砌块的脊顶部与最上面砌块的底脚部之间的垂 直距离 Sy小于砌块总高度 H的三分之一, 就能够在七级风时防漏。
继续依上类推计算, 当 Sy小于 2.9cm、 即 h大于 7.1cm时, 能够在 11级风时防漏, 此时 H> 17.1cm, Sy÷H<2.9÷ 17.1 = l/5.9; 也就是说, 垂直距离 Sy逐渐减小, 切断时空 轨迹线的中部脊的突起尺寸 h逐渐增大, 防漏能力也逐渐增大。 当垂直距离 Sy小于零、 h 大于 10cm时, 此时 H>20cm, Sy÷H趋于无穷小, 防漏效果最好。 也就是说, 理想防漏 的砌块具有这样的形状和尺寸, 从而在三块类似的砌块上下叠置时, 最下面砌块的脊高于 最上面砌块的底脚部; 这样的砌块形成的墙体, 其任一侧的水从砌筑横缝或竖缝深入, 总 是被支承坡挡回同一侧、 不能漏向另一侧。
前述的全部砌块, 根据给定的防漏或透水留土的设计标准, 依照本发明的原理而建立 的防漏或透水留土的数学模型和计算方法, 就可以确定时空轨迹线, 从而确定砌块尺寸。
再以图 64结合图 39、 图 41、 数学模型 1和和表 1分析, 竖向开口延长了水从墙体表 面的底脚部沿端面流往脊部的路线 Sx, 水的水平方向的流动时间被延长, 从而能将漏水时 空轨迹线在接近脊部之前下降得较低, 对防漏起有益作用。
从图 62可以发现, 在墙体相交处使用辅助砌块 23、 辅助砌块 25配合砌筑时, 图 62 中的粗线指示出的竖缝处还会漏水, 防漏还不够完善。
从图 63所示的墙体中可以发现, 丁字形辅助砌块完美地解决了该墙体丁字相交处的 砌筑缝防漏问题。 同理, 使用 L形辅助砌块能完美地解决两道墙的相交处的砌筑缝防漏问 题; 使用十字形辅助砌块能完美地解决两道墙、 或三道墙、 或四道墙的墙体相交处的砌筑 缝防漏问题。 同时, 十字形、 L形、 丁字形辅助砌块的使用, 使相交处的墙体与相邻墙体 连锁为一体, 提高墙体的整体性、 稳定性。
图 62、 图 63所示的墙体, 粘砌时, 粘接材料可以满布全部砌筑缝、 或仅布于肩台、 或仅布于支承坡; 也可以采用干砌方式, 砌块之间不用粘接材料。 支承坡为千砌的墙体, 斜坡与喇叭凹口之间的砌筑缝为空气层, 更有利于排水。 图 63所示的墙体中的柱上设置了外伸块 27 , 外伸块包括顶面、 底面和两个端面; 外 伸块的横截面大致上呈朝下的喇叭口状; 外伸块的顶面有中部脊, 两侧低, 形成左、 右支 承坡; 外伸块的一个端面与柱密封接合, 外伸块的另一个端面与所述砌块接合, 外伸块的 顶面与上层砌块的底面配合, 外伸块的底面与下层砌块的顶面配合; 多个外伸块在砼柱上 有序间隔排列, 多个外伸块和与柱相邻的错位叠置的砌块砌筑配合, 柱通过外伸块与砌块 紧密接合, 外伸块的左、 右支承坡成为阻拦结构并使上下相邻砌块与外伸块互相锁定, 完 美解决了柱与砌块之间的防漏问题, 而且连锁为一体, 提高墙体的整体性、 稳定性。
外伸块的的形状可与砌块配合, 其长度一般小于砌块的总长度。 柱包括砼柱、 砼墙或 钢柱或其它承重件。 框架结构的砼柱, 一般在浇混凝土时浇制出外伸块; 也可以把已制造 好的外伸块安装在砼柱上; 若柱为钢结构, 可以把外伸块焊接上去。 安装外伸块时, 须在 柱子与外伸块之间采取防漏密封措施, 如用橡胶、 油膏、 玻璃胶等防水材料夹在柱子与外 伸块之间, 不漏水的焊接可以视为密封接合。
图 65所示的墙体中, 墙体下部的梁的上表面设有凸块 28, 凸块的下底面与梁的上表 面密封结合; 凸块须延伸至两个相邻的梁柱节点处的柱上、 并与柱密封接合; 砌块与梁的 上表面结合时, 凸块与砌块的喇叭凹口配合; 凸块的横截面可以与辅助砌块 25 的横截面 相似。
图 65所示的墙体中, 墙体上部的梁的下表面设有凹槽 29 ; 凹槽须延伸至两个相邻的 梁柱节点处的柱上; 砌块与梁的下表面结合时, 凹槽与砌块的顶面配合, 砌块的脊部能够 伸进凹槽。
凸块的设置方法可以参照上述外伸块的设置方法。 凸块、 凹槽的设置可以杜绝砌块与 梁的上表面、 下表面的接合处漏水, 还使接合处结合紧密、 连锁稳固。
图 66是图 63所示的墙体的一种侧向受力的示意图,底部设有辅助砌块 26。在墙体受 侧向力时, 上层砌块的倾斜趋势被下层砌块的脊部抵挡, 图 66 中所示的粗线的移动趋势 受到脊部的限制, 从而回到稳定状态; 只有当侧向力增大到可以冲破限制、 并使较多砌块 断裂时, 墙体才会失稳, 因此抗倾覆能力、 抗震性能大大提高。
图 67所示的墙体中, 用图 5所示的砌块形成缺口, 便于搁放楼板。
图 68、 图 69所示的墙体, 通过连接件 30与外部框架连接。 图 68所示墙体中, 连接 件的一端安装在砌筑缝内。 图 69所示的墙体中, 连接件的一端安装在砌块的横向开口 17 内。同墙体连接的连接件的一端加工成与砌块可以配合的形状,连接件的另一端可用挂接、 栓接、 焊接等方法与外部框架连接。 连接件可以是钢材、 铝型材等。
图 70所示的砌块, 以图 3所示的砌块形状为基础的薄板 31和肩台结合, 在薄板的一 侧或两侧均可以设置肩台。 薄板的材料可以是金属板、 塑料板等能防漏的板材。 此砌块的 薄板可防漏和连锁, 肩台可承重, 功能分开。 薄板的材料为防辐射板时, 则可用于砌筑防 辐射墙体, 具有图 32、 图 33所示的砌块同样的防辐射效果。
图 71、 图 72所示的砌块, 其中部镂空, 为砌模砌块。 图 71所示的砌块的两个端面与 图 9所示的砌块端面相同。 图 72所示的砌块的一个端面与图 9所示的砌块的端面相同, 另一个端面的顶面和底面都是平面。 砌模砌块一般砌在墙体的相交处用于浇灌混凝土芯 柱。 砌模砌块的作用既相当于建筑模板、 又与砌块墙结合在一起。
图 73所示的墙体包括有类似图 34或图 35或图 40所示的砌块, 采用加宽竖缝 32的 砌筑方法, 加宽竖缝处的孔或开口内可种植花草, 形成垂直绿化墙体。 图 74、 图 75所示的是防辐射墙体。 图 74所示的防辐射墙体采用图 33所示的防辐射 砌块。 图 75所示的防辐射墙体, 采用的防辐射砌块以图 33为基础、 左右支承坡上都设有 防辐射板, 防辐射功能比图 74所示的防辐射墙体更好。 形成防辐射墙体时, 相邻防辐射 砌块上的防輻射板在纵向互相首尾搭接。 把防辐射板制成砌块顶面的形状、 参考上述方法 和原理铺放在砌筑缝中, 也可以形成防辐射墙体。 还可以采用防辐射混凝土等材料生产为 本发明的砌块, 用来砌筑为防辐射墙体。 防辐射砌块的形状和尺寸必须满足下述条件: 当 三块类似的防辐射砌块上下叠置时, 最下面防辐射砌块的脊高于最上面防辐射砌块的底脚 部, 此情况时砌筑竖缝不被直线贯通、 具有理想的防辐射效果。
图 76是抗裂墙体的结构示意图, 采用图 27所示的粗糙状的抗裂砌块, 用砂浆砌筑, 顶面和底面的抗裂凹纹不必砌筑配合。 图 77是图 76所示的砂浆砌筑缝的局部放大图, 从 图中可看出, A、 B之间的砂桨在砌筑时进入砌块的粗糙状凹入部, 砌块的纵向位移会被 A、 B之间的砂浆抵挡而起限制开裂作用; 只有当许许多多八、 B之间的砂浆全部断裂后, 砌块才会错位开裂, 因此粗糙状的设置具有较好的抗裂效果。 建议采用抗裂砂浆, 抗裂砂 桨是在普通砂浆中拌入一种或多种丝、 线、 纤维之类, 如麻丝、 纸筋、 塑料丝等, 具有比 普通砂浆大得多的抗拉、 抗剪强度, 进一步提高抗裂性能。 如果是干砌, 粗糙状的凸出部 应可砌入相邻砌块的粗糙状的凹入部, 砌筑配合的粗糙状纹对错位开裂起到限制作用。
图 78所示的墙体, 其砌块较长、 横截面与图 4所示的砌块相似、 设有纵向孔, 墙体 中设有外伸块, 外伸块的作用同图 63所示。
图 79所示的是一种隧道衬砌墙体, 采用图 5、 图 6所示的砌块, 设有连接件、 隔防层 33。 隔防层设在墙体与岩土或结构体之间, 作用是使隔防层与墙体之间形成空气层 34, 而 空气层的作用是营造如图 63所示的漏水环境, 防漏原理也与图 62、 图 63所示的相同。 为 增强隧道衬砌的强度, 可以用连接件把砌块墙与岩土层或结构体连接起来, 连接件也可以 是喷锚杆之类。 干砌的隧道墙体具有柔性, 可不必设置变形缝, 因此就没有了止水材料老 化、 变形开裂等变形缝的问题, 施工简单、 工期缩短、 造价降低。
图 80所示的隔防层, 有若干隔防面料 35组成, 同一层的相邻隔防面料首尾相接, 相 邻上下层的隔防面料搭接, 上层的隔防面料叠压住下层隔防面料, 下层隔防面料夹于相邻 的上层隔防面料与墙体之间; 上层的隔防面料之间的相接缝 36和相邻下层的隔防面料之 间的相接缝相互错位。 相接缝处的相邻隔防面料互相搭接时, 隔防效果更好。 隔防面料可 以是袖毡、 塑料薄膜、 塑料板、 布料、 白铁皮等, 不必热熔焊接。 因此, 没有已有技术的 防水层熔焊遗漏、 熔焊不牢等问题, 也不必要求隔防层防水, 对隔防面料要求低, 施工简 便。 隔防面料与墙体的连接方法有: 把隔防面料铆钉在墙表面, 或用铁丝系住隔防面料挂 在墙上, 或在砌筑时把隔防面料安装进墙体的砌筑横缝中。 隔防层还可以设置多层。
参考前述的防漏原理, 从图 80可以看出, 当组成隔防层的隔防面料为防水材料, 并 且在上下三层隔防面料中, 最下层隔防面料的顶部高于最上层隔防面料的底部, 此时的隔 防层具有理想的防漏效果。
图 S1 所示的墙体, 采用宽度不同的砌块, 砌块的宽肩台靠近墙体一侧的结构体, 在 墙体与结构体之间形成空气层, 结构体可能是混凝土壁或岩土等, 空气层的作用同图 79。
图 79、 图 81所示的墙体可以用于隧道、 地铁、 矿井、 巷道、 地下人防、 地下仓库等 建筑, 更好地解决防漏问题, 而且连锁稳定。
图 82〜图 90所示的九种墙体都可以视为挡墙体, 都具有透水留土和连锁稳定的有益 效果, 可用在挡土墙、 堤防、 驳坎、 河岸、 岸墙、 护坡、 路堤、 海堤、 围堰、 土石坝、 丁 坝、 突堤、 锁坝、 潜坝、 拦沙坝、 地下集水库、 污水处理建筑等有关建筑上。
结合图 62、 图 63来分析图 82至图 90所示的各种挡墙体的透水留土作用: 当墙体的 砌筑缝为干砌或设有贯通墙体两侧的透水通道时, 土体中的泥水进入墙体一侧的横缝和竖 缝、 被砌块的支承坡阻挡而聚集升高, 泥水的时空轨迹线遵循由高向低的规律, 只有高于 砌块中部脊的水才能溢过中部脊而流往墙体另一侧; 泥水在聚集升高的过程中, 水中的泥 土沉积下来。 中部脊越高, 溢水效果越大, 留土的效果也越好。 理想的透水留土效果是: 砌块具有这样的形状和尺寸, 从而在三块类似的砌块上下叠置时, 最下面砌块的脊高于最 上面砌块的底脚部, 此情形是进入竖缝的泥水全部是溢流透水方式。
上述透水留土的挡墙体, 由于每一处砌筑缝都可以成为溢水通道, 因此土体中到达墙 体任一处的泥水都是就近积升溢出方式, 排水迅速, 留土可靠。 由于排水迅速, 土体中的 水压力降低得几乎可以忽略不计, 大大提高了墙体的抗倾覆能力; 由于留土可靠, 墙体后 面的土体稳定、难以淘空, 大大提高了墙体的稳定能力。 而且, 砌块交错叠置、互相连锁, 大大提高了墙体的整体性。 而且, 从图 66 中知道, 中部脊的抵挡作用又大大提高了透水 留土墙体的抗倾覆能力。
挡墙体干砌或不饱和粘砌, 墙体具有柔性, 适应沉降、 伸缩等形变, 就不必设置施工 缝、 变形缝, 有利于简化施工、 缩短工期、 降低造价。
图 82所示的挡墙在朝向土体的一侧加宽, 泥土压在砌块的宽肩台上, 以泥土的自重 来增加墙体的抗倾覆能力。
图 83所示的挡墙是一种堤防墙体, 砌块临水侧的底面的平面部具有消浪作用。
图 84所示墙体, 采用了与图 5相似的砌块, 砌块临水侧的横向连接面具有消浪作用。 图 85 可视为一种土石坝墙体, 上游坝面能透水留土; 下游砌块坝面的内侧为透水留 土、 外侧为防漏水; 防浪墙为防漏作用。 下游砌块坝面的防漏水作用可以用于泄洪排水。
图 85所示墙体, 也可视为堤防、 路堤、 水中栈道等。
图 86所示的是一种地下集水库的墙体, 由于每一处砌筑缝都可以砌筑为透水通道, 因此集水迅速; 又因为每一处透水通道都可以是沉积溢水, 挡土可靠, 大大减少进入库内 的水的含泥量。 图 86也可视为集水井的墙体剖面示意图。
图 87所示的是一种拦沙坝墙体,原理与图 86所示的相同。为了加强墙体抗水冲能力, 墙体可以加宽, 或在墙体的下游侧设置支挡体。
图 88所示的是一种造田围堰墙体, 采用了图 14所示的砌块, 朝向堰外的一侧的底脚 部较高、 支承坡的高度相对较小, 使堰外竖缝处有一部分水不被支承坡阻挡、 没有溢流过 程, 有利于快速向堰内流入含土的水。
采用图 73 所示的加宽竖缝的方法砌筑挡墙体, 有利于迸水、 透水, 也可减少砌块用 量、 也有美观效果; 采用图 34或图 35或图 40所示的砌块并加宽竖缝, 其孔、 开口可植 花草或给水生动物栖息。
上述挡墙体也可以用于污水处理建筑, 原理'与透水留土相同。 如建造污水池, 污水从 墙体的砌筑缝溢流排出, 污水中的固体污物积留下来。 如建造污水沟, 让固体污物在流入 下水口之前就被截留, 排污系统的固体污物就大大减少, 下水口也不易被堵塞。
为了提高透水留土墙体的留土、 挡土、 留污效果, 可以在墙体的一侧设置反滤层, 反 滤层的材料可以是砂、 土工网、 过滤网等: 还可以采用图 79、 图 80所示的隔防层。 为了提高留土、 留污效果, 在砌筑缝中还可以设置反滤层; 隔防层的上下相邻的隔防 面料之间也可以设置反滤层, 相接缝处的相邻隔防面料互相可以搭接并结合成一体。
为了防漏、 或透水留土、 或提高墙体的抗倾抗震能力和安全稳定, 上述墙体都可以采 用图 63、 图 65、 图 68、 图 69之类的方式, 还可以采取图 89、 图 90所示的方法。
图 89所示的墙体采取连接件 30加强墙体与土体的拉连, 连接件的一端安装在砌筑缝 内或砌块的开口内。 连接件可以是金属杆、 木材等, 或钢丝、 绳索等。
图 90所示的墙体采取栅网片 37加强墙体与土体的拉连, 栅网片的一端与墙体连接, 另一端安置在土体中。 栅网片与墙体连接的方法, 或直接把栅网片压卡在砌筑缝内; 或把 栅网片穿上杆件、梳齿状卡件, 然后将杆件、梳齿状卡件安置在砌筑缝内; 或采用设有孔、 开口的砌块, 把穿上栅网片的杆件、 梳齿卡件嵌入孔、 开口内。 栅网片的材料有土工网、 塑料网、 金属网、 编织网等。
图 91所示的长板状砌块在支承坡端部和脊部设有导流凸条。 图 92所示的长板状砌块 在脊部和支承坡两端设有导流凸条。 导流凸条的作用与图 30所示的相同。
图 93是一种与图 91砌筑配合的砌块, 其喇叭凹口的顶部设有与图 92所示的导流凸 条相配合的上凹 38 , 用于砌在图 92所示的砌块的上层, 盖住两块图 92所示的砌块之间的 竖缝。 图 94是图 92的纵向剖面图。
图 95、 图 96、 图 97所示的墙体为板式斜墙体, 防漏原理同图 63所示的墙体。
图 95所示的斜墙体中, 有图 91所示的砌块和设有外伸块的柱, 防漏效果更好。 图 96所示的斜墙体中, 呈长板状的砌块连续的错位叠置形成斜墙体, 两块砌块的端 面相接形成竖缝, 上下相邻的竖缝相互错位布置, 砌块的端部加设在支撑体上。
板式斜墙体的结构原理可用于坡屋面, 其设有外伸块的柱可视为屋面梁, 长板状的砌 块可视为屋面板, 错位叠置的屋面板形成防漏坡屋面, 两块屋面板的端面相接形成竖缝, 上下相邻的竖缝相互错位布置; 屋面板的端部加设在支撑体上, 支撑体一般是墙体或屋面 梁; 防漏原理同图 63所示的墙体。
图 97 是两道墙体相交的顶部结构示意图, 或是隧道衬砌墙体的顶部结构示意图, 或 是屋脊结构示意图, 最上层采用图 93所示的砌块, 在其下层是图 92所示的砌块, 其它是 与图 4相似的砌块。 图 92所示的砌块骑跨叠置在两道墙体上,最上层的图 93所示的砌块 完全盖住图 92所示的砌块的竖缝。 这种结构的坡屋面既防漏又承重受力, 而且施工简单。
把图 95、 图 96、 图 97视为坡屋面, 坡屋面上往往有找平层、 保温层、 保护层等之类 的构造层, 建议在屋面板和构造层之间设置隔防层, 作用与图 79、 图 80所示的相同。
图 98所示的是桥面结构层, 采用图 6所示的砌块。 砌块从两端桥墩上连续交错靠铺, 相邻砌块的顶面与底面互相靠接, 可以干砌、 粘砌。 因为砌块互相交错连锁, 相邻砌块的 下降位移因互相牵制而接近一致, 桥面比较平整, 施工、 使用也更安全稳定。
图 99所示的是砌块形成的地面结构, 砌块靠铺, 其一侧的横向侧面或横向连接面安 放于地面的基层上, 相邻砌块的顶面与底面互相交错铺砌, 整体连锁。 当基层有较小的凹 陷时, 整体连锁作用使位于凹陷处的砌块不会单独下陷, 地面变形比较平缓, 有利于减轻 车辆行驶的颠簸。 本砌块地面尤其适用于经常维修、 更换的地方, 如集装箱货场、 重型车 辆停车场等, 公路的桥头段、 急转弯、 道路的十字路口等。 在公路的急转弯段、 警示减慢 速度处, 需要增加滑行阻力的机场跑道, 用本砌块也很有益, 按设计控制砌块之间的砌筑 缝的宽度及缝两侧砌块的高差, 砌筑缝使行驶车辆产生可预计的颠簸, 提醒驾驶员减速; 砌筑缝能为飞机轮胎的滚动提供阻力。
砌块地面中的相邻砌块, 其一个砌块的面为平面, 另一个砌块的面有瓦楞状、 或粗糙 状、 或幵口, 相邻砌块不能完全贴合, 当砌筑缝有雨水渗入时, 砌块的中部脊以下的砌筑 缝隙可成为缓冲区, 在行人踩踏时, 砌块地面下的污水不易冲出缓冲区、 溅污行人。
采用装饰性的砌块铺砌道路交通标志线, 比涂料标志线耐久经用;其装饰面形成桥面、 地面的表面, 具有装饰性。
为了提高砌块形成的桥面结构层、 地面的耐用性, 砌块的面与面的交接部, 如横向侧 面与上台面、 台底面的交接部, 可以包角钢。
图 100、 图 102图、 103所示的是生产本发明砌块的模具。
图 100是一种坯条式模具, 通常有大小端, 大端连接在砌块挤压机上, 进入大端的砌 块材料从小端的出口出来时形成了具有砌块横截面形状的坯条, 再按设定的长度把坯条切 段, 最后烧制成本发明的砌块。
在图 100所示的坯条式模具的出口外可以设置印码器 39, 印码器要靠紧砌块坯条。 图 101所示的是印码器 39上的印码轮, 印码轮表面设有等镜像凸码。 印码轮贴紧坯 条、 随着坯条的挤出而转动, 凸码在坯条上印出文字、 图案。
图 102所示的是一种箱式模具, 分为上模具、 模箱和下模具。 平板状的下模具可用于 形成砌块的一个端面; 模箱可分隔成许多孔, 每个孔的四周可形成砌块的顶面、 底面和横 向侧面或横向连接面; 上模具上设有模芯, 可用于形成砌块的另一个端面及砌块内的纵向 孔。 平板状的上模具用于形成砌块的另一个端面。
图 103 所示的是另一种箱式模具, 分为上模具、 模箱和下模具。 下模具设有凹凸块, 可形成砌块的顶面; 模箱可分隔成许多孔, 每个孔的四周可形成砌块的端面和横向侧面或 横向连接面; 上模具上设有另一种凹凸块, 可形成砌块的底面。 在上模具上还可以设置能 形成竖孔的模芯。
虽然以上结合附图对本发明的较佳实施例进行了描述, 但熟悉本领域的普通技术人员 应该可以从以上揭示内容的基础上作出其它等同的改动或变形,例如:脊顶在纵向不等高, 或用薄板制成本发明的形状,或用底面辅助砌块组合成十字砌块,或具有本发明特征的砖、 石块、 预制件、 金属件, 等等; 因此, 本发明的保护范围应由所附权利要求书来限定。

Claims

权 利 要 求
1. 一种用于形成墙体的砌块, 在所述的墙中数个类似的砌块连续的错位叠置, 其特 征在于:
所述的砌块是纵向型材, 包括顶面、 底面和两个端面:
所述砌块的横截面大致上呈朝下的喇叭口状;
所述的顶面有中部脊, 两侧低, 形成左、 右支承坡;
所述的顶面和底面是这样形成, 当所述的砌块与下面的类似砌块叠置形成墙体时, 下 面砌块的顶面与所述砌块的底面配合, 所述的左、 右支承坡成为阻拦结构并使上下相邻砌 块互相锁定。
2. 如权利要求 1所述的用于形成墙体的砌块, 其特征在于:
所述的砌块具有这样的形状和尺寸, 从而在三块类似的砌块上下叠置时, 最下面砌块 的脊顶部与最上面砌块的底脚部之间的垂直距离小于砌块总高度的三分之一。
3. 如权利要求 1所述的用于形成墙体的砌块, 其特征在于:
所述的砌块具有这样的形状和尺寸, 从而在三块类 '似的砌块上下叠置时, 最下面砌块 的脊高于最上面砌块的底脚部。
4. 如权利要求 1所述的用于形成墙体的砌块, 其特征在于:
所述的支承坡的下部带有肩台, 所述的肩台包括上台面、 台底面及横向侧面, 所述的 上台面与上部斜坡及中部脊构成顶面, 当所述的砌块与上面的类似砌块叠置形成墙体时, 两侧斜坡构成的突起部与上面的类似砌块底面的喇叭凹口配合。
5. 如权利要求 2所述的用于形成墙体的砌块, 其特征在于:
所述的支承坡的下部带有肩台, 所述的肩台包括上台面、 台底面及横向侧面, 所述的 上台面与上部斜坡及中部脊构成顶面, 当所述的砌块与上面的类似砌块叠置形成墙体时, 两侧斜坡构成的突起部与上面的类似砌块底面的喇叭 口配合。
6. 如权利要求 5所述的用于形成墙体的砌块, 其特征在于:
同侧的肩台的台底面与砌块的底脚部在同一平面上, 顶面与底面平行, 两个端面相互 平行, 两个横向侧面相互平行, 端面、 横向侧面与水平面垂直。
7. 如权利要求 1所述的用于形成墙体的砌块, 其特征在于:
所述的中部脊的顶部呈尖角形、 平台形、 曲弧形或者它们的组合中的至少一种。
8. 如权利要求 1所述的用于形成墙体的砌块, 其特征在于- 所述的支承坡、 底面或者它们的组合中的至少一种呈阶梯状排列。
9. 如权利要求 1所述的用于形成墙体的砌块, 其特征在于:
所述的支承坡、 喇叭凹口或者它们的组合中的至少一种呈瓦楞状。
10. 如权利要求 1所述的用于形成墙体的砌块, 其特征在于:
所述的顶面、 底面或者它们的组合中的至少一种呈粗糙状。
11 . 如权利要求 3所述的用于形成墙体的砌块, 其特征在于:
所述的顶面上加设防辐射板, 防辐射板伸出端面, 当所述的砌块形成墙体时相邻砌块 的防辐射板在纵向互相首尾搭接。
12. 一种用于形成墙体的砌块组件, 包括砌块和辅助砌块, 其特征在于: 所述的砌块是纵向型材, 包括顶面、 底面和两个端面; 所述砌块的横截面大致上呈朝 下的喇叭口状; 所述的顶面有中部脊, 两侧低, 形成左、 右支承坡; 所述的顶面和底面是 这样形成, 当所述的砌块与下面的类似砌块叠置形成墙体时, 下面砌块的顶面与所述砌块 的底面配合, 所述的左、 右支承坡成为阻拦结构并使上下相邻砌块互相锁定; 所述的辅助砌块在砌筑墙体时与所述的砌块配合。
13. 如权利要求 12所述用于形成墙体的砌块组件, 其特征在于:
所述的辅助砌块由三个所述的砌块组成, 所述的两个砌块纵向相对分别与另一砌块的 两侧相互交接成一体;
所述的辅助砌块置于所述的墙体的相交处并与所述的砌块纵向配合, 错位叠置。
14. 如权利要求 12所述用于形成墙体的砌块组件, 其特征在于:
所述的辅助砌块由两个所述的砌块组成, 所述的一个砌块纵向与另一砌块的一侧相互 交接成一体, 所述的辅助砌块呈 L形或丁字形的一种;
所述的辅助砌块置于所述的墙体的相交处并与所述的砌块纵向配合, 错位叠置。
15. 一种用砌块形成的墙体, 在所述的墙中数个类似的砌块连续的错位叠置, 其特 征在于:
所述的砌块是纵向型材, 包括顶面、 底面和两个端面; 所述砌块的横截面大致上呈朝 下的喇叭口状; 所述的顶面有中部脊, 两侧低, 形成左、 右支承坡; 所述的顶面和底面是 这样形成, 当所述的砌块与下面的类似砌块叠置形成墙体时, 下面砌块的顶面与所述砌块 的底面配合, 所述的左、 右支承坡成为阻拦结构并使上下相邻砌块互相锁定;
所述的墙体中, 相邻的所述砌块之间形成砌筑缝, 顶面和底面配合砌筑形成横缝, 端 面相接形成竖缝, 上下相邻的所述竖缝相互错位布置。
16. 如权利要求 15所述的墙体, 其特征在于:
所述的墙体中设有柱, 所述的柱上设有外伸块:
所述外伸块是纵向型材, 包括顶面、 底面和两个端面; 所述外伸块的横截面大致上呈 朝下的喇叭口状; 所述的顶面有中部脊, 两侧低, 形成左、 右支承坡;
所述外伸块的一个端面与所述的柱密封接合;
所述的外伸块的另一个端面与所述砌块接合, 所述的外伸块的顶面与上层砌块的底面 配合, 所述的外伸块的底面与下层砌块的顶面配合; 多个外伸块在所述的柱上有序间隔排 列, 所述的多个外伸块和与所述的柱相邻的错位叠置的砌块配合; 所述外伸块的左、 右支 承坡成为阻拦结构并使上下相邻砌块与外伸块互相锁定。
17. 如权利要求 15所述的墙体, 其特征在于:
所述的墙体中设有梁;
所述的梁的上表面设有凸块, 所述的凸块的下底面与所述梁的上表面密封接合; 所述 的凸块延伸至两个相邻的梁柱节点处的柱上、 并与柱密封接合; 所述的砌块与所述的梁的 上表面接合时, 所述砌块的底面的喇叭凹口与所述的凸块配合:
所述的梁的下表面设有凹槽; 所述的凹槽延伸至两个相邻的梁柱节点处的柱上; 所述 的砌块与所述的梁的下表面接合时, 所述砌块的顶面与所述的凹槽配合。
】8. 如权利要求 15所述的墙体, 其特征在于:
所述的墙体的一侧设有隔防层, 所述的隔防层有若千隔防面料组成, 同一层的相邻隔 防面料首尾相接, 相邻上下层的隔防面料搭接, 下层隔防面料夹于相邻的上层隔防面料与 所述的墙体之间: 上层的隔防面料之间的相接缝和相邻下层的隔防面料之间的相接缝相互 错位;
所述的隔防层与所述的墙体之间形成空气层。
19. 如权利要求 15所述的墙体, 其特征在于:
所述的砌块呈长板状, 所述的呈长板状的砌块连续的错位叠置形成斜墙体; 两块所述 的呈长板状的砌块的端面相接形成竖缝, 上下相邻的所述竖缝相互错位布置;
所述的呈长板状的砌块的端部加设在支撑体上。
PCT/CN2004/000974 2003-09-23 2004-08-23 Bloc pour mur de construction et mur construit a l'aide de ces blocs WO2005028772A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/571,878 US20070199273A1 (en) 2003-09-23 2004-08-23 Block For Forming Wall And The Wall Thus Formed
CA2539329A CA2539329C (en) 2003-09-23 2004-08-23 Block for forming wall and the wall thus formed
AU2004274546A AU2004274546B2 (en) 2003-09-23 2004-08-23 Block for building wall and the wall built with said blocks
EP04762110.7A EP1669506B1 (en) 2003-09-23 2004-08-23 A wall formed by blocks
BRPI0414660-3A BRPI0414660A (pt) 2003-09-23 2004-08-23 bloco para formação de parede e parede desse modo formada

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN03159561.8 2003-09-23
CN03159561 2003-09-23
CN200410071514.2 2004-07-07
CN200410071514.2A CN1601023A (zh) 2003-09-23 2004-07-07 用于形成墙体的砌块及其形成的墙体以及砌块的用途

Publications (1)

Publication Number Publication Date
WO2005028772A1 true WO2005028772A1 (fr) 2005-03-31

Family

ID=34378749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2004/000974 WO2005028772A1 (fr) 2003-09-23 2004-08-23 Bloc pour mur de construction et mur construit a l'aide de ces blocs

Country Status (8)

Country Link
US (1) US20070199273A1 (zh)
EP (1) EP1669506B1 (zh)
CN (1) CN1601023A (zh)
AU (1) AU2004274546B2 (zh)
BR (1) BRPI0414660A (zh)
CA (1) CA2539329C (zh)
RU (1) RU2349716C2 (zh)
WO (1) WO2005028772A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7610730B2 (en) * 2005-06-22 2009-11-03 O'connor Daniel Stacking masonry block system with locking starter device
US20100043335A1 (en) 2005-06-22 2010-02-25 O'connor Daniel Stacking masonry block system with transition block and utility groove running therethrough
CN100449062C (zh) * 2005-08-08 2009-01-07 汪荣勋 用于形成消浪墙体的消浪砌块及其形成的墙体
CN101353886B (zh) * 2005-08-08 2011-02-02 汪荣勋 用于形成消浪墙体的消浪砌块及其形成的墙体
CO5820228A1 (es) * 2006-05-23 2007-11-30 Martinez Naranjo Jhon Jairo Sistema de ladrillo con varilla
CN100458076C (zh) * 2006-06-02 2009-02-04 孙林柱 多功能异形砌块及其形成的墙体结构
CN101307626B (zh) * 2008-07-09 2012-09-19 王崧骅 一种斜工字型筑砌叠置形成多功能墙体的砌块
US10329911B2 (en) * 2009-09-05 2019-06-25 E. Dillon & Company Mine seal and method of construction for high resistance to transverse loads
WO2011141591A1 (es) * 2010-05-10 2011-11-17 Munoz Saiz Manuel Sistema de construcción modular para muros, tabiques, cerramientos y similares
ES2393030B1 (es) * 2010-05-10 2013-10-23 Manuel Muñoz Saiz Sistema de construccion modular para muros, tabiques, cerramientos y similares
KR101077244B1 (ko) * 2010-08-17 2011-10-27 유흥식 쓰나미 및 홍수 피해 방지를 위한 옹벽 축조시스템 및 그 시공 방법
BE1019706A3 (nl) * 2010-12-16 2012-10-02 Verhaeghe Chalets & Sauna Nv Wandsamenstel.
US9309667B2 (en) * 2011-04-12 2016-04-12 Moss Thompson, Llc Concrete exterior wall system
US8448403B1 (en) * 2012-07-09 2013-05-28 David Wallace Water catchment building block
US9234347B2 (en) 2013-02-04 2016-01-12 Andŕe Cossette Crossed ties for construction block assembly
US9151051B2 (en) * 2013-02-04 2015-10-06 Andre Cossette 65 db sound barrier insulated block
WO2015033161A1 (en) * 2013-09-05 2015-03-12 Tun Abdul Razak Research Centre A rubber part for incorporation into a brick or masonry wall in a reinforced concrete frame to protect against damage caused by seismic activity
US9725154B2 (en) * 2014-05-13 2017-08-08 The Boeing Company Method and apparatus for reducing structural vibration and noise
CN105275121B (zh) * 2014-05-28 2018-06-19 中建五洲工程装备有限公司 三层t型钢空腹梁及其制作方法
CN104234077B (zh) * 2014-09-04 2017-01-25 昆明市东川区泥石流防治研究所 一种挡墙条形砖及挡墙
US9404255B1 (en) * 2015-03-26 2016-08-02 ARCA Global, LLC Light-in-weight concrete blocks and method
CN104818695A (zh) * 2015-05-21 2015-08-05 交通运输部天津水运工程科学研究所 一种生态壅水型护滩结构
WO2017093822A1 (en) * 2015-12-01 2017-06-08 Bharat Petroleum Corporation Limited Process for construction of artificial roads, walk ways, footpaths, etc. from waste plastic, plastic type resins and related polymers
CN106639051B (zh) * 2017-02-20 2022-09-09 哈尔滨达城绿色建筑技术开发股份有限公司 集块建筑外叶墙用钢-砌块组合梁
EP3717088B1 (en) * 2017-11-30 2021-02-24 Massimo Perusi Kit for constructing dry-mounted walls
CN108756047A (zh) * 2018-04-23 2018-11-06 胡成锋 夹心互锁砖
CN110306716A (zh) * 2019-04-12 2019-10-08 深圳全景空间工业有限公司 一种用于装配式住宅的砖块及砖块墙

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2852435A1 (de) * 1977-12-05 1979-08-30 Denereaz Hildegard Baustein zur erbauung von mauern
CN2235991Y (zh) * 1995-12-01 1996-09-25 关鳞童 镶嵌式砌块
JPH1181522A (ja) * 1997-09-08 1999-03-26 Katsuhiko Satoki 構築用ブロック
DE19746346A1 (de) * 1997-10-21 1999-04-22 Fiege & Bertoli Gmbh & Co Kg Mauerstein
JP2001098567A (ja) * 1999-09-30 2001-04-10 Aicello Chemical Co Ltd 擁壁用ブロック及び擁壁施工法
CN1293293A (zh) * 1999-10-13 2001-05-02 托尼·J·阿扎尔 干砌砖型砌块

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190205267A (en) * 1902-03-03 1902-06-12 Frank Russell A Weather Casing Brick for the Casing of Old or New Walls of all Descriptions both Interior and Exterior
US984711A (en) * 1909-01-18 1911-02-21 Charles W Varnum Concrete or cement fence.
US1686270A (en) * 1927-01-11 1928-10-02 Carl A Dwyer Building block
US2074813A (en) * 1936-01-02 1937-03-23 Dale R Rawlings Concrete wall block construction
US2550945A (en) * 1948-03-10 1951-05-01 Living Stone Establishment Building block
US2932745A (en) * 1956-06-07 1960-04-12 Alberti Rudolf Standard radiation-resistant building block
US3355849A (en) * 1965-07-09 1967-12-05 Hancock Norman Lee Building wall and tapered interfitting blocks therefor
FR2221036A5 (en) * 1973-03-06 1974-10-04 Cluzel Entreprise Precast construction blocks and assembly method - blocks fit together by mortice and tenon joints and locking rods
US4193584A (en) * 1978-08-02 1980-03-18 Wieser's Concrete Products, Inc. Livestock fence
EP0828899B1 (en) * 1995-06-02 2003-08-06 Novabrick International Inc. A block for the mortarless construction of a wall
US5623797A (en) * 1995-07-20 1997-04-29 Allan Block Corporation Block structure and system for arranging above-ground fencing, railing and/or sound barriers
US6606835B1 (en) * 2001-02-02 2003-08-19 Augustin J. Bilka Blocks and walls constructed therewith
US6735913B2 (en) * 2002-08-01 2004-05-18 Sanders & Associates Geostructural Engineering, Inc. Block wall system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2852435A1 (de) * 1977-12-05 1979-08-30 Denereaz Hildegard Baustein zur erbauung von mauern
CN2235991Y (zh) * 1995-12-01 1996-09-25 关鳞童 镶嵌式砌块
JPH1181522A (ja) * 1997-09-08 1999-03-26 Katsuhiko Satoki 構築用ブロック
DE19746346A1 (de) * 1997-10-21 1999-04-22 Fiege & Bertoli Gmbh & Co Kg Mauerstein
JP2001098567A (ja) * 1999-09-30 2001-04-10 Aicello Chemical Co Ltd 擁壁用ブロック及び擁壁施工法
CN1293293A (zh) * 1999-10-13 2001-05-02 托尼·J·阿扎尔 干砌砖型砌块

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1669506A4 *

Also Published As

Publication number Publication date
EP1669506A4 (en) 2010-03-31
CA2539329A1 (en) 2005-03-31
RU2006113599A (ru) 2007-11-10
AU2004274546B2 (en) 2009-05-28
US20070199273A1 (en) 2007-08-30
EP1669506A1 (en) 2006-06-14
BRPI0414660A (pt) 2006-11-21
EP1669506B1 (en) 2017-03-08
CA2539329C (en) 2011-05-10
AU2004274546A1 (en) 2005-03-31
RU2349716C2 (ru) 2009-03-20
CN1601023A (zh) 2005-03-30

Similar Documents

Publication Publication Date Title
WO2005028772A1 (fr) Bloc pour mur de construction et mur construit a l&#39;aide de ces blocs
US8974152B2 (en) Polymer grouting method for constructing vertical supporting system
CN104313967B (zh) 排渗水式铺装组合结构
CN109371905B (zh) 堤坝及施工方法
CN207760804U (zh) 一种多功能经济型堤防结构
CN107012871B (zh) 一种悬挂式围护深大长基坑装配式结构的逆作施工方法
CN109750571A (zh) 一种道路塌方应急与永久支挡一体化结构及施工方法
CN212477844U (zh) 一种地下室排水减压抗浮结构
CN210216254U (zh) 一种混凝土护栏结构
CN112813757B (zh) 一种用于桥头过渡处理的泡沫轻质土复合路基施工方法
CN105887804A (zh) 一种高强度预应力混凝土槽形板桩
CN101775858A (zh) 一种砌块形成的墙体结构
CN205062744U (zh) 一种半悬臂半重力式两级景观防洪墙
CN210737589U (zh) 重力式挡墙的墙身单元及重力式挡墙
CN211079770U (zh) 一种无砟轨道高速铁路的抗隆支护结构
CN211571744U (zh) 一种地下水发育地段边坡防护结构
CN101793071B (zh) 用于形成墙体结构的砌块
CN220284873U (zh) 一种挡土墙结构
CN101793066B (zh) 砌块形成的墙体结构
CN214143756U (zh) 一种高灵敏度土基坑支护结构
CN115506360B (zh) 减少地下室肥槽沉降的回填方法
CN219410378U (zh) 岩质斜坡悬挑式道路结构
CN220598508U (zh) 一种人行地下通道结构
CN217811147U (zh) 充砂管袋铺筑结合双层锁扣钢管桩防渗排水系统
CN101775867A (zh) 一种用于形成墙体结构的砌块

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS JP KE KG KP KZ LC LK LR LS LT LU LV MA MD MK MN MW MX MZ NA NI NO NZ PG PH PL PT RO RU SC SD SE SG SK SY TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2539329

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2004762110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004762110

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1552/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2004274546

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2006113599

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2004274546

Country of ref document: AU

Date of ref document: 20040823

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004274546

Country of ref document: AU

WWP Wipo information: published in national office

Ref document number: 2004762110

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0414660

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2007199273

Country of ref document: US

Ref document number: 10571878

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10571878

Country of ref document: US