WO2005028548A1 - 樹脂成分の分解方法及び分解装置、並びに触媒添加方法及び触媒添加装置 - Google Patents

樹脂成分の分解方法及び分解装置、並びに触媒添加方法及び触媒添加装置 Download PDF

Info

Publication number
WO2005028548A1
WO2005028548A1 PCT/JP2004/010404 JP2004010404W WO2005028548A1 WO 2005028548 A1 WO2005028548 A1 WO 2005028548A1 JP 2004010404 W JP2004010404 W JP 2004010404W WO 2005028548 A1 WO2005028548 A1 WO 2005028548A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
chamber
oil
resin component
steam
Prior art date
Application number
PCT/JP2004/010404
Other languages
English (en)
French (fr)
Inventor
Mitsuo Kuwabara
Norio Tajima
Toshio Kazami
Shoichirou Negishi
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004078609A external-priority patent/JP2005263978A/ja
Priority claimed from JP2004078611A external-priority patent/JP2005263979A/ja
Priority claimed from JP2004078622A external-priority patent/JP4460927B2/ja
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Publication of WO2005028548A1 publication Critical patent/WO2005028548A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/10Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal from rubber or rubber waste
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2200/00Details of gasification apparatus
    • C10J2200/15Details of feeding means
    • C10J2200/156Sluices, e.g. mechanical sluices for preventing escape of gas through the feed inlet
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0953Gasifying agents
    • C10J2300/0973Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • Resin component decomposition method and decomposition apparatus Resin component decomposition method and decomposition apparatus, and catalyst addition method and catalyst addition apparatus
  • the present invention relates to a method for decomposing a resin component, and more particularly, to a method for decomposing a resin component for separating waste plastics mixed into industrial waste and an apparatus for the same, and
  • the present invention relates to a catalyst addition method and a catalyst addition device used during a waste treatment process.
  • Industrial waste is a state in which various types of substances such as resin, metal, glass, earth and sand, wood chips, and oil are mixed. From the viewpoint of cost and labor, waste can be disposed of in landfill without separation. Dependent processing methods were mainstream. Recently, awareness of recycling has been increasing, and there has been a demand for new treatment methods for hard-to-decompose organic substances.
  • the resin component is made of an organic material, it is easy to conclude that the resin component may be separated and dissolved in an organic solvent to separate it.
  • the crushed dust is usually obtained in a state where various kinds of materials such as heat insulating material, wood chips, glass flakes harness, PVC coated wire, earth and sand are mixed in a complicated manner, and the resin component itself also has heat resistance and oil resistance.
  • additives are often used for the resin component, or surface treatment is performed, and the component composition is often complicated. In order to separate only the resin, a number of procedures corresponding to each of these must be performed.
  • the current mainstream is shifting to a method of incineration after a plurality of treatment steps.
  • the waste oil component obtained by steam-decomposing the pulverized waste and the decomposition residue when the solids are decomposed by the catalytic action It is a common treatment method to incinerate such as by burning to complete the treatment.
  • Patent Document 2 removes chlorine components from plastic waste by gasification of chlorine components under heating conditions of 250 to 300 ° C, and then removes the remaining chlorine components. Pyrolysis of plasticizers at 300-370 ° C for wastes of
  • the conventional treatment method for the waste oil component obtained during the above-mentioned treatment step is to treat, for example, an organic waste composed of heavy oil as an object to be decomposed, and to deal with this, iron hydroxide, triiron tetroxide, A catalytic cracking reaction with steam is performed using an iron-based compound such as diiron as a catalyst.
  • an iron-based compound such as diiron as a catalyst.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-55498 (Pages 2-5, FIG. 1)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 9-310077 (page 3)
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2002-129171 (page 4)
  • Patent Document 1 uses high-temperature steam, and thus may generate chlorine gas originating from PVC resin in the residue, If left untreated, dioxin may occur.
  • the upper limit of the steam temperature range of this product is as high as about 600 ° C. To provide a heat-resistant structure that can withstand this high temperature, there is a problem that equipment costs increase.
  • the temperature range of the first removal step in Patent Document 2 is higher than the temperature at which flammable unburned gas such as methane gas and propane gas is generated (generally 240 ° C or higher). Gas measures are required.
  • the subsequent pyrolysis process requires a high-temperature heat source, but if methane gas or propane gas is ignited for any reason, the temperature range of these removal processes and decomposition processes cannot be controlled.
  • an object of the present invention is to provide a method capable of reliably and efficiently decomposing a resin component including a dioxin prevention measure without requiring a heavy apparatus configuration.
  • Patent Document 3 the catalytic reaction of Patent Document 3 generally requires a high temperature (400 to 700 ° C) and a high pressure (25 MPa), and thus requires an apparatus having a structure that can withstand this. It is inevitable that this will become complicated.
  • Patent Document 3 targets liquid heavy oil for decomposition, it is difficult to ascertain whether it is effective against decomposition targets composed of various types of components including solids as it is. Difficult to recognize.
  • reaction participants such as steam and a catalyst introduced during the decomposition treatment can uniformly contact a liquid such as heavy oil, and an efficient reaction can be expected.
  • the situation is different when things are included. That is, in order to give priority to treatment efficiency, even if the supply frequency and supply amount of steam and catalyst are controlled per unit time, assuming a certain range of weight and shape of the decomposition target, preparation is performed in a state where solid matter is included. Decomposition materials transported to the decomposition process as they are may not be processed as expected.
  • the present invention provides a catalyst addition method capable of reliably performing a decomposition treatment on a decomposition target containing solids, and a catalyst addition apparatus to which this method can be applied. It is intended to be.
  • a resin component decomposition method provides a method for decomposing a resin component by contact reaction with water vapor, wherein the partial pressure of water vapor is set to a total pressure of 1.01-1.
  • the catalytic cracking reaction proceeds under the reaction conditions of 0.01-0.3 atm with respect to pressure and steam temperature of 390 ° C or less.
  • a catalyst may be added during the catalytic cracking reaction with steam. It is preferable to use Fe 2 O powder as the catalyst. According to this, the oxygen atoms contained in the FeO molecules are activated on the catalyst surface, and these active oxygen atoms form active hydroxyl groups and the like, and break the bonds between carbon atoms in the hydrocarbon compound as the resin component. And the decomposition reaction is further promoted.
  • the above-mentioned resin component decomposition step can be regarded as a pretreatment step for a residue burning step or an incineration ash melting step performed using decomposition residues generated from the decomposition step.
  • the amount of the catalyst FeO powder to be added is desirably 5% by weight or less based on the whole resin-containing mixture (decomposition target). It is recognized that the catalytic effect is saturated at about 5% by weight, and even if the catalyst FeO powder having a weight exceeding 5% by weight is added, the effect corresponding to the increase in the catalyst cannot be obtained, or excessive catalyst powders may be mixed. Coagulation may occur and the reaction may be performed unevenly. In addition, undesired results are caused, such as an increase in the work required for catalyst replacement when the catalyst is deactivated.
  • the method for decomposing a fat component of the present invention comprises the first step of immersing the fat component-containing waste in oil heated to 170 to 240 ° C to remove the chlorine-containing component from the fat.
  • the method includes a step and a second step of decomposing a resin component by introducing steam while heating the waste after the first step at 280 to 390 ° C.
  • the immersion in the heated oil is ensured to reach the inside of the waste, and the chlorine atom in the chlorine component is reduced to a lower temperature range of 170 to 240 ° C. It can be removed in the form of raw gas.
  • This temperature range is lower than the temperature at which flammable unburned gas such as methane gas and propane gas is generated (generally 240 ° C or higher). The degree control anxiety can be removed.
  • the resin component is decomposed in a heated state of 280 to 390 ° C with respect to the waste after the first step by using a hydration reaction by introducing steam.
  • the temperature range of the second step is the one that undergoes thermal decomposition including the unburned gas of concern in the first step, and is well below the dioxin generation temperature range (400-650 ° C). . Therefore, it can be said that this decomposition method takes into account preventive measures against dioxin and unburned gas generation.
  • a liquid tank filled with oil for immersing the resin component-containing waste a first heating means for heating the oil in the liquid tank, and a second heating means for heating the waste returned to the outside of the oil.
  • a decomposition apparatus is provided with a heating means and a steam introduction means for introducing steam to the waste being heated by the second heating means.
  • the decomposition apparatus may further include a catalyst addition means for adding a catalyst to the waste returned to the outside of the oil component.
  • the present invention provides a method for adding a catalyst when decomposing a resin component, wherein the surface of the object to be decomposed containing the resin component is made a wet surface, and the catalyst powder is added to the wet surface.
  • the catalyst powder adheres to and is held on the wet surface, so that the entire surface to be decomposed is covered with the catalyst powder. For this reason, even if the decomposition target is composed of miscellaneous components, the addition of the catalyst spreads throughout, and a reliable catalytic action can be obtained during the reaction. This can be easily compared to the case where the surface of the object to be decomposed remains uncovered without being covered with the wet surface. That is, even if the catalyst powder is added to the surface of the decomposition target in the bare state, a part of the added catalyst often falls without being held by the decomposition target. For this reason, the balance of the reaction balance cannot be obtained, and the catalyst tends to be in a shortage state.
  • the wetted surface can be easily formed as compared with, for example, a method using coating.
  • a catalyst is added to the oil immersed in the decomposition target, there is a concern that the unreacted catalyst in a floating state may lower the yield.
  • a liquid tank filled with an oil for immersing the decomposition object an indentation means for allowing the decomposition object to appear on the liquid surface of the oil in the liquid tank, and a catalyst for the decomposition object
  • the catalyst addition method can be easily carried out by a catalyst addition device having a structure provided with a catalyst addition means for adding the catalyst.
  • the object to be decomposed is immersed in oil and returned from the oil by means of an inclined conveyer or the like, which is capable of appearing in and out of the oil in the liquid tank, so that the entire surface is wetted. Can be easily formed.
  • the catalyst is added by the catalyst adding means while the wet surface is formed, so that the catalyst powder adheres to the entire surface of the decomposition target. By doing so, the obtained catalytic action becomes good.
  • the catalyst addition device with means for preventing floating of the decomposition target immersed in oil, even if the specific gravity of the decomposition target is small, the oil immersion is insufficient and a wet surface is thereby formed. Insufficient parts can be limited.
  • the reaction is carried out by a catalytic decomposition reaction using water vapor at a substantially normal pressure and at a relatively low temperature.
  • Component decomposition can be performed reliably.
  • the apparatus configuration is premised on the steam contact reaction under normal pressure, it is possible to reduce the load on equipment required for the pressure resistance and heat-resistant structure.
  • another resin component decomposition method of the present invention comprises a first step for removing chlorine components and a second step for thermal decomposition of resin components, each of which comprises 170- Since it is carried out in the temperature range of 240 ° C and 280-390 ° C, dioxin and flammable unburned gas are not generated!
  • the thermal decomposition in the second step proceeds by a hydration reaction in which water molecules in the steam cut the hydrocarbon skeleton (resin component), but the reaction is performed by adding FeO powder as a catalyst.
  • the yield is improved. This is because, as described in detail later, the hydration reaction mechanism based on the introduction of water vapor depends on the active oxygen atoms generated by the addition of the catalyst as compared with the case where the polarity depends only on the polarity of the oxygen atoms in the water molecules. Is presumed to be due to high reaction efficiency.
  • the catalyst addition method of the present invention by making the surface of the decomposition object a wet surface, the catalyst powder to be added is kept in an adhered state, thereby preventing a reduction in the yield of the catalytic action. be able to. Then, the heating condition can be easily controlled by forming a wet surface by the oil immersion method, and by incorporating this in the catalytic reaction process, the applicable range of the processing process design is expanded. That is, temperature control for the purpose of the preheating step and prevention of unburned gas generation becomes possible.
  • FIG. 1 is a schematic diagram of a steam cracking reaction vessel 1 to which the first embodiment of the method of the present invention can be applied.
  • the vessel 1 has a hollow cylindrical shape with a diameter of 600 mm, a chimney structure 2 with a spire structure is provided at the top of the cylinder at a height of about 50 Omm, and an electric heater 3 is connected to the bottom. are doing.
  • the crushed filler 7 is shredder dust obtained by crushing waste from vehicle scrap and filling the inside of the container, and the contents thereof are urethane resin, PVC resin, and PP resin. , ABS resin, PE resin, and other resin components, BR, SBR, etc. rubber components, wires, harnesses, bolts, nuts, nails, wire and other metallic iron components, PVC coated conductors, electrode terminals, brass, etc. It is composed of a mixture of metallic copper components and the balance of sediment. The breakdown is about 50% for the resin component including rubber component, about 12% for metallic iron component, about 8% for metallic copper component, and about 30% for earth and sand component.
  • A, B, C, and D shown in the container 1 are thermocouples provided inside for temperature measurement. It is installed at the height of 300mm, 150mm, 40mm, 280mm.
  • heat is transferred from the electric heater 3 to the outer peripheral portion of the crushed filler 7 via the metal container 1, and the inner portion of the crushed filler 7 is transferred to the inner portion of the crushed filler 7 via the iron or copper rod 4.
  • the heat is transferred from the electric heater 3.
  • heating is performed so as to maintain the reaction temperature condition over the whole of the crushed filler 7 as described above, and under this condition, the resin component in the crushed filler 7 undergoes a hydration reaction with water vapor to cause the carbonization thereof.
  • the hydrogen skeleton is decomposed, and the decomposed resin component is released as a gas via the chimney 2. Detected in the waste oil component obtained by distilling the released gas It emits organic acids such as alcohols and carboxylic acids, esters, ketones, and saturated hydrocarbons, and no harmful substances such as dioxin are found.
  • an FeO powder catalyst further improves the cracking efficiency.
  • Oxygen atoms contained in FeO molecules are activated on the catalyst surface, and these active oxygen atoms form active hydroxyl groups, etc., and break the bonds between carbon atoms in hydrocarbon compounds as resin components to decompose.
  • the reaction is further accelerated.
  • the heat of reaction such as the heat of decomposition and the heat of hydration accelerates the reaction.However, when the reaction is stirred, the catalyst powder agglomerates and the reaction becomes uneven. May be caused. Therefore, no mechanical operation such as stirring or shaking is required, which is good as it is when the catalyst is sprayed on the surface layer of waste and organic solvent.
  • the heating mechanism of the present apparatus is of two types: heat transfer along the side wall of the container 1 and heat transfer along the internal copper rod 4 by the electric heater 3 at the bottom of the container 1.
  • a common electric heater 3 is used as a heat source.
  • the above-mentioned resin component decomposition step can be regarded as a pretreatment step for a residue burning step or an incineration ash melting step performed using decomposition residues generated from the decomposition step.
  • the partial process in the pretreatment process of a resin-containing mixture such as shredder dust (hereinafter referred to as an object to be decomposed) can be composed of seven main processes sequentially performed as follows. .
  • First step Isolation between the input decomposition target and outside air.
  • Second step Relaxation of the state of fixation on the consolidation part in the decomposition target and fragmentation of the fragile part.
  • Third step Adjustment of the decomposition target to approximately uniform dimensions.
  • Fourth step immersing the entire object to be decomposed in oil at the first preheating temperature.
  • Step 6 Second preheating for the decomposition target.
  • Step 7 Water vapor catalytic reaction on the decomposition target.
  • First step The supply of oxygen during the step is controlled based on isolation of the decomposition target substance after being charged from the outside air. This prevents spontaneous ignition of the combustible gas expected in each of the fourth, fifth, sixth, and seventh steps, and can reliably perform the decomposition reaction under heating conditions.
  • Second step Preliminary partial disassembly is performed on the decomposition target in which the consolidated part and the fragile part are mixed, and the subsequent substantially uniform size in the third step is facilitated.
  • Step 3 In the central steam contact reaction (Steps 5 and 7), the best reaction is achieved by adjusting the size of the decomposition target to the optimum reaction size so that the introduced water vapor contacts all the details of the target. Get the yield.
  • Step 4 In the preheating step, a complete immersion step is performed on the oil at the first preheating temperature (approximately 170-240 ° C) that is milder than the steam temperature introduced during the central steam contact reaction. Chlorine atoms derived from PVC resin contained in the resin component are combined and almost completely consumed. The compound product, Shiridani hydrogen, undergoes a gas phase transition at the preheating temperature (about 170-240 ° C), that is, it is obtained in the state of Shiridani hydrogen gas, so it is an efficient exhaust gas. Can be removed. In addition, raising the temperature to the preheating temperature has the effect of shortening the heating time required to reach the high temperature state (about 280 to 390 ° C) required in the central seventh step to be performed later.
  • the first preheating temperature approximately 170-240 ° C
  • Chlorine atoms derived from PVC resin contained in the resin component are combined and almost completely consumed.
  • the compound product, Shiridani hydrogen undergoes a gas phase transition at the preheating
  • Step 6 After passing through the preheating step at the second preheating temperature (about 280 to 390 ° C), which is about the temperature of steam introduced during the central steam contact reaction, the residual salts that have been vigorously removed will be removed. It promotes the gasification of hydrogen chloride to nitrogen and thoroughly removes chlorine components derived from PVC resin. If the process directly goes to the steam contact reaction under high temperature conditions (about 280-390 ° C) without passing through this preheating step, the sudden rise in temperature will cause an exceptional overheating condition, resulting from residual chlorine atoms. May cause dioxin generation.
  • the desired fat component decomposition treatment can be performed by the steam contact reaction.
  • Step 7 With the preheating temperature maintained and by introducing steam at about 280-390 ° C, the catalyst FeO powder is roughly evenly attached to the entire surface after being finely divided into optimal sizes.
  • the steam catalytic cracking reaction is carried out in every corner of the decomposition target, and the resin component is finally converted into decomposition product gas and discharged.
  • the components of the cracked gas are hydrocarbon gas, water and nitrogen gas as the main components, and oxygen gas as the minor component.
  • the dioxin generation temperature about 400 to 650 ° C.
  • the residue of the decomposition reaction is dried and then treated in a subsequent combustion step.
  • a shredder for performing a resin component decomposition step as a pre-treatment step prior to a residue burning step or incineration ash melting step of a resin-containing contaminant (hereinafter referred to as a decomposition target) such as shredder dust.
  • Fig. 2 shows an outline of the resin component decomposer 100 for dust.
  • the inside of the disassembly device 100 is partitioned by partitioning plates 101, 102, 103, 104, 105, 106, 107 consisting of an opening and closing shutter force, and a double shutter room 108, a partially disassembled body room 109, a size adjustment room 110 and oil immersion.
  • a chamber 111, a catalyst addition chamber 112 and a preheating chamber 113, a steam contact reaction chamber 114, a residue treatment chamber 115, and a residue recovery chamber 116 are configured. That is, after the decomposition object 118a input from the hopper 117 having the double shutter chamber 108 is supplied to the decomposition reaction via the above-mentioned chambers, the decomposition object 118a is reacted on the floor / shutter 119 of the residue recovery chamber 116. The residue is collected, and is opened and closed by the ceiling shutter 121 of the transport vehicle 120 and the shutter for dual use of the floor 119, and is carried out to the transport vehicle 120 to be taken into a subsequent process.
  • a certain flow rate of inert (nitrogen) gas is introduced into the apparatus 100 through the gas inlets 123 and 124, and the gas is blown out. Forces such as holes 125, 126, and 127 also purge each chamber.
  • the catalyst addition chamber 112 A first exhaust port 128, a second exhaust port 129, and a third exhaust port 130 are installed in each of the pre-heating chamber 113, the steam contact reaction chamber 114, and the residue treatment chamber 115, and the generation generated in each chamber Discharge gas and purge gas.
  • exhaust ports 132 and 133 connected to an exhaust vent 131 are installed in the double shutter chamber 108 and the decomposition chamber 109 in the hopper 117, and a gas inlet 134 is also provided in the double shutter chamber 108.
  • an inert gas nitrogen
  • the outside air especially oxygen in the outside air
  • a stainless steel belt such as SUS316 is used to prevent corrosion due to a chlorine-based gas (hydrogen chloride gas or chlorine gas) that is expected to be generated.
  • the second and third conveyors 136, 137 used under high temperature conditions are provided with drums 136a, 136b, 136c, 136d and 137a, 137b, etc., which feed conveyor belts to prevent heating of each conveyor. While a water-cooled type is used, the lower surface of the second comparator 136 having a long path is covered with a water-cooled jacket 138 along the belt extending direction.
  • the second conveyor 136 is heated by the heaters 139 and 140 from the bottom surface of the benoleto.
  • the double shutter room 108 constitutes a main part of a hopper 117 that stores shredder dust in a miscellaneous waste state as an object to be decomposed. That is, the ceiling shutter 101 and the floor shutter 102 are provided so as to be independently openable and closable. Then, an inert (nitrogen) gas can be introduced from the gas inlet 134 and the gas can be exhausted from the gas outlet 132. Therefore, the inside of the double shutter chamber 108 can be purged with the outside air shut off.
  • the partial disassembly chamber 109 has a rotating wheel wheel 141 and a first conveyor 135 mounted thereon.
  • the rotating wheel wheel 141 continuously contacts the non-rotating force S to give an impact to the decomposition object 118a carried in by opening and closing the shutter 102, or during subsequent transportation by the first conveyor. Vibration is given continuously. Also, in the partial decomposition chamber 109, exhaust from the gas exhaust port 133 is possible, and by introducing inert (nitrogen) gas from the gas inlet port 134 when the shutter 102 is opened, gas purging inside the chamber can be reduced. It is possible.
  • the space partitioned by the vertical opening / closing shutters 103 and 104 also serves as a dimension adjustment chamber 110 and an oil immersion chamber 111, and is provided with a second and a third space provided with a constant vertical spacing.
  • the three conveyors 136 and 137 are provided so as to be able to synchronize. Then, the two conveyors 136 and 137 are immersed in the oil in the processing tank 142 while keeping the gap.
  • the treatment tank 142 is composed of a pair of inclined surfaces sandwiching the deepest part of the installation position of the drain 143.
  • the second conveyor is laid along both inclined surfaces, so that the second It becomes a form to do. The amount of oil in the treatment tank 142 can be adjusted by the drain 143.
  • the height of the disassembled object transported in the gap formed by both conveyors 136 and 137 is regulated. Therefore, if it is relatively fragile, its shape will be lost during transportation, and it will be immersed in the oil in the processing tank 142 with the dimensions in the height direction being substantially uniform. Note that the small pieces that have collapsed during transportation on both conveyors 136 and 137 are collected by a tray 144.
  • a blowout hole 127 is provided for the dimension adjusting chamber 110 and the oil immersion chamber 111, and an inert (nitrogen) gas from the gas inlet 124 is replenished as a purge gas.
  • the space partitioned by the up-down opening / closing shutters 104 and 105 also serves as a catalyst-added chamber 112 and a preliminary heating chamber 113. That is, the catalyst such as FeO powder is supplied by the catalyst supply device 145 provided immediately above the second conveyor 136. Further, a plurality of heaters 139 are provided along the second conveyor 136 below. Further, a first exhaust port 128 is provided in the ceiling portion of the room to discharge generated gas and to supply inert (nitrogen) gas for purging through a blowing hole 126.
  • the space partitioned by the vertical opening and closing shutters 105 and 106 is a steam reaction chamber 114. That is, the steam from the steam introduction pipe 146 is jetted out above the second conveyor 136. Also, a plurality of heaters 140 are installed along the second conveyor 136 and below the second conveyor 136. To ensure the reaction temperature conditions. Further, a second exhaust port 129 is provided in the ceiling portion of the room to discharge generated gas and to replenish inert (nitrogen) gas for purging through the outlets 125 and 126.
  • the space after the open / close shutter 106 in the vertical direction is a residue processing chamber 115. That is, at the position of the second conveyor 136 immediately after the emergency shutter 122 (usually in the open state), the blade 147 for detaching the attached matter is attached to the conveyor 136 in a pressure-contact state. The residue separated by the cutting tool 147 is placed on the shutter 107. Note that, even after being carried out of the steam reaction chamber 114, it is expected that the generation of gas from the decomposition object gas will continue for a while, so the third exhaust port 130 is provided in the ceiling of the residue processing chamber 115. Replenishment of inert gas (purging with nitrogen) from the outlet 125 is the same as in other rooms.
  • the collection chamber 116 collects the residue that falls when the shutter 107 is opened and closed.
  • nitrogen gas used as the purge gas
  • the nitrogen gas has the same specific gravity as air, and the nitrogen purge may not always be performed completely. Therefore, an inert (nitrogen) gas for purging is also introduced into the apparatus 100 from the gas introduction port 123 on the lower surface.
  • the shredder dust as the decomposition target is previously reduced to 1 mm as in the first embodiment.
  • the content of these shredders in the crushed state is approximately 50% of resin components including rubber components, approximately 12% of metallic iron components, approximately 8% of metallic copper components, and approximately 30% of sediment components. .
  • the purpose of the gas purge is to shut off the inflow of outside air, that is, the supply of oxygen, to prevent ignition of the high-temperature combustible gas generated during the subsequent high-temperature reaction, and to continue the desired decomposition reaction (first step).
  • the shutter 102 is opened, and the shredder dust 118a is moved to the partial disassembly chamber 109. Then, due to the continuous impact of the fins of the rotating wheel wheel 141 in this room, the solidified portion of the shredder dust 118a is loosened, or a partially disassembled body such as a fragile portion thereof is made smaller.
  • the vibration during the subsequent transportation on the first conveyor 135 also promotes the preliminary partial disassembly, such as promoting the uniformization of the shredder dust 118a being transported.
  • the shirt 102 is opened, the inert (nitrogen) gas is introduced from the gas inlet 134, and the gas is discharged from the gas outlet 133, so that the inside of the partial decomposition chamber 109 is in a steady gas purge state ( 2nd step).
  • the shutter 103 is opened, and the shredder dust 118a conveyed by the first conveyor 135 is transferred onto the second conveyor 136 in the size adjustment chamber 110.
  • the second conveyor 136 and the third conveyor 137 provided with a constant vertical gap from the second conveyor 136 operate synchronously.
  • the shape of the shredder dust 118a collapses in accordance with the regulated conveyance height, and the dimensions in the height direction are substantially uniform.
  • the rotating drums 137a and 136d operate synchronously, and in particular, the rotating drum 137a functions as a conveyance height regulating unit having a function of feeding in the conveyance direction.
  • the shredder dust 118a is immersed in the oil in the processing tank 142 in the oil immersion chamber 111 while being sandwiched by the gaps between the two conveyors 136 and 137.
  • the processing tank 142 is constituted by a pair of inclined surfaces sandwiching the deepest portion at the position of the drain 143. Further, the second conveyor 136 is laid along both inclined surfaces and projects with respect to oil in the processing tank 142. Therefore, the shredder dust 118a also appears in the oil during transportation.
  • the depth of the deepest part of the processing tank 142 can be adjusted by the drain 143. By setting the depth to be equal to or larger than the gap between the two conveyors 136 and 137, the entire shredder dust 118a being conveyed is contained in the oil. Completely soak.
  • the relatively small specific gravity component of shredder dust 118a may float in the oil. Since it is in contact with the third conveyor 137 forming the ceiling, it is possible to prevent a situation in which it comes off the transport path and floats freely.
  • the oil in the treatment tank 142 has been heated to a first preheating temperature of about 170 to 240 ° C. Therefore, from the shredder dust 118a completely immersed in the heated oil, chlorine contained in the PVC resin component contained therein is desorbed and combined with the surrounding hydrogen atoms to generate chlorine gas.
  • FIG. 3 shows that the PVC polymer in the oil combines with the minute amount of moisture contained in the shredder dust 118a to generate polybutyl alcohol as a polymer component and chlorine atom as chlorine gas. Shows a reaction in which is removed.
  • the shutter 104 is opened and exhausted from the first exhaust port 128.
  • the oil in the treatment tank 142 is an oil that does not evaporate in the above first preheating (fourth step).
  • the shutter 104 is opened, the shredder dust 118a is carried out to the catalyst addition chamber 112 outside the oil by the second conveyor 136, and the shutter 104 is closed after being carried out.
  • a wet surface with oil is formed on the entire surface of the shredder dust 118a.
  • an FeO powder catalyst equivalent to approximately 5% by weight of the shredder dust 118a is sprayed from the catalyst feeder 145 to the shredder dust 118a in this state.
  • the catalytic FeO powder adheres to the wet surface of the shredder dust 118a, and this is held for a long time. Therefore, the possibility that the catalytic FeO powder is missing before the start of the subsequent steam contact reaction is reduced.
  • the FeO powder a powder obtained by exposing chips generated during cutting to air for a long time and oxidizing the same may be used.
  • FeO powder a powder obtained by exposing chips generated during cutting to air for a long time and oxidizing the same may be used.
  • FeO Fe 0
  • the shredder dust 118a with the FeO powder attached is moved to the preheating chamber 113 while being conveyed on the second conveyor 136, and the heater 139 below the conveyor 136 is used to move the shredder dust 118a to a temperature of about 280 to 390 ° C. Heat to heating temperature. This includes the purpose of raising the temperature to a temperature close to the high temperature in the next steam contact reaction, and increasing the temperature. The purpose is to thoroughly remove the residual chlorine component that has been reinforced.
  • the hydrogen salt gas generated at this time is discharged from the first exhaust port 128 (sixth step).
  • the shutter 105 is opened, and the shredder dust 118 a heated at about 280-390 ° C.
  • FIG. 4 schematically shows the progress of the steam catalytic cracking reaction under the FeO catalyst.
  • the introduction of water vapor causes water molecules to surround the hydrocarbon skeleton (water vapor contact).
  • the FeO catalyst acts on water molecules in the surrounding water vapor to generate active oxygen atoms.
  • the active oxygen atoms combine with the hydrogen atoms of the hydrocarbon skeleton and are released from the hydrocarbon skeleton as water molecules (hydration reaction).
  • the main chain of the hydrocarbon skeleton is fragmented and decomposition occurs (see FIG. 4 (d)).
  • FIG. 5 schematically shows the progress of the steam catalytic cracking reaction without using the FeO catalyst.
  • the introduction of steam causes water molecules to surround the hydrocarbon skeleton (steam contact).
  • the oxygen atoms in the water molecule and the hydrogen atoms in the hydrocarbon skeleton approach each other due to their polarities, and combine to separate the hydrocarbon skeleton force as a water molecule ( Hydration reaction).
  • the main chain of the hydrocarbon skeleton is fragmented and decomposition occurs (see FIG. 5 (c)).
  • the main gas such as hydrocarbon gas, water, and nitrogen generated during the decomposition and the trace gas such as oxygen are exhausted through the second exhaust port 129 (seventh step).
  • the heavy oil component obtained by distillation is At about (170-240 ° C), it keeps a stable state without volatilization, so it can be reused as oil in the processing tank 142. As a result, it is possible to omit the work required for obtaining the oil content and disposing of heavy oil, which helps to improve the efficiency.
  • the light oil fraction obtained by fractionation with the heavy oil fraction at the same time is often volatile. It is believed that there is.
  • a decomposition residue 118b remains.
  • the shutter 106 is opened, and the decomposition residue 118b is moved to the residue processing chamber 115 by the second conveyor 136.
  • the decomposition residue adheres to the belt on the conveyor at a high temperature during the steam reaction, and is separated by the cutting tool 147.
  • the unreacted hydrocarbon component and the like may come into contact with the water vapor residue to generate product gas, this is exhausted through the third exhaust port 130.
  • the residue 118b peeled off by the blade tool 147 is collected and dried on the floor shutter 107 of the processing chamber 115, and after a certain amount of accumulation, the shutter 107 is opened and stored in the collection chamber 116.
  • the residue 118b is moved to the carrier 120 by opening and closing the floor shutter 119 of the collection chamber 116 and the ceiling shutter 121 of the carrier 120.
  • the residue 118b stored in the transport vehicle 120 is transported as a residue to a separately installed incinerator, and is subjected to a subsequent combustion process.
  • reaction temperature was kept at a maximum of 390 ° C throughout the above-mentioned steps was that it was assumed that complete removal of chlorine components from shredder dust 118a would not be achieved. Even in this case, the dioxin generation temperature (about 400 to 650 ° C) is surely lower, and the unexpected situation of dioxin generation is avoided.
  • the reaction vessel 1 in Fig. 1 was made of stainless steel, and steam was introduced for 6 hours while being heated by the electric heater 3 under the conditions shown in the above embodiment to cause a contact reaction with the crushed packing 7.
  • the measured temperatures of the thermocouples A, B, C, and D installed in the container 1 showed the results shown in FIG. In both cases, it is shown that the catalytic cracking reaction was performed at 300 ° C., that is, at a steam temperature lower than the dioxin generation temperature of about 400 to 650 ° C. for the ground packing 7.
  • FIG. 7 shows changes in the cumulative values of the amount of introduced steam and the amount of recovered distillate at this time.
  • the pure amount (recovered distillate amount—introduced steam amount) obtained as distillate is 8 L.
  • the packing material is reduced by 1.2 kg from the original 16 kg, which is equivalent to the decomposition amount. This amount corresponds to 15% of the original resin component amount.
  • the obtained recovered distillate contains a large amount of alcohols, carboxylic acids, and saturated hydrocarbons. This is presumed to be due to the decomposition of the urethane resin component and the PVC resin component originating from end-of-life vehicles.
  • This amount corresponds to 40% of the original resin component amount. It is considered that the reason why the recovered amount increased was that the nickel-copper alloy used for the material of the bottom of the reaction vessel 1 functioned as a catalyst, and the reaction efficiency of the catalytic cracking reaction by steam increased. .
  • the resin decomposition method of the present invention enables decomposition of a resin component at a relatively low temperature. For this reason, even when used for polyvinyl chloride resin, which may generate harmful substances such as dioxin at high temperatures, the generation can be prevented.
  • by positioning it as a pretreatment method for separating resin components in waste treatment methods that contain resin components such as waste plastic It can be used as an important process to improve.
  • the catalyst addition method of the present invention improves the efficiency of waste treatment by positioning it as a pretreatment method for separating resin components in a waste treatment method containing resin components such as waste plastic. It can be used as an important process.
  • FIG. 1 Schematic diagram of a reaction vessel used for decomposing fat components
  • FIG. 3 A schematic diagram showing a reaction in which chlorine atoms are removed from a PVC polymer as hydrogen chloride gas.
  • FIG. 4 is a schematic diagram showing a steam catalytic cracking reaction under an FeO catalyst.
  • FIG. 5 is a schematic diagram showing a steam catalytic cracking reaction without using an FeO catalyst.
  • FIG. 6 is a graph showing a temperature change of each thermocouple in a container.
  • FIG. 7 is a graph showing a correlation between the amount of introduced steam and the amount of recovered distillate (Example 1)
  • FIG. 8 is a graph showing the correlation between the amount of introduced steam and the amount of recovered distillate (Example 2)
  • FIG. 9 is a graph showing the amount of introduced steam and the decomposition rate of waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

【課題】重厚な装置構成を要さずに、ダイオキシン予防対策を含め確実かつ効率良く樹脂成分を分解し得る方法を提供する。 【解決手段】二重シャッター室108と部分解体室109と寸法調整室110と加熱油分浸漬室111と触媒添加室112と予備加熱室113と水蒸気接触反応室114とを備えた樹脂成分分解装置100を用い、投入したシュレッダーダスト118aを二重シャッター室108内で外気と隔絶する第1工程と、部分解体室109内でシュレッダーダスト118aの部分解体を行う第2工程と、寸法調整室110内でシュレッダーダスト118aの高さ寸法均一化を行う第3工程と、加熱油分浸漬室111内で約170°C油分中へのシュレッダーダスト118aの浸漬を行う第4工程と、触媒添加室112内でシュレッダーダスト118aに対するFeO粉末触媒の添加を行う第5工程と、予備加熱室113内でシュレッダーダスト118aに対して約300°Cの予備加熱を行う第6工程と、水蒸気接触反応室114内でシュレッダーダスト118aに対して水蒸気接触反応を行う第7工程とを順次行う。

Description

明 細 書
樹脂成分の分解方法及び分解装置、並びに触媒添加方法及び触媒添 加装置
技術分野
[0001] 本発明は、榭脂成分の分解方法に関し、特に、産業廃棄物中に混入する廃プラス チック類を分離するためにその榭脂成分を分解する方法及びこのための装置に関し 、さらに、廃棄物処理工程中に用いる触媒添加方法及び触媒添加装置に関する。 背景技術
[0002] 産業廃棄物は、榭脂、金属、ガラス、土砂、木片及び油分などの多種類のものが混 入した状態であり、費用と手間の観点から、分別処理を行うことなく埋立処分に依存 する処理方法が主流であった。し力しながら、最近はリサイクル意識が高まり、難分解 性の有機物の新 、処理方法が要望されて ヽる。
[0003] 上記のように榭脂成分は有機物を原料とするため、有機溶剤に選別溶解させて分 離すれば良いとの結論に陥り易いが、例えば、廃車起源の榭脂集中部分を多く含む 粉砕ダストは、通常、断熱材や木屑、ガラス片ゃハーネス、塩ビ被覆線、土砂等の多 種類のものが複雑に混入した状態で得られ、また、榭脂成分そのものも、耐熱性や 耐油性などの機能性付加のため、榭脂成分に添加剤を使用したり、表面処理を行つ たりして成分組成が複雑であることが多い。そして、榭脂だけを分離するには、これら にそれぞれ対応した数多くの手順を経ねばならず、現実的な処理方法とは言 、難 ヽ
[0004] このような事情から、現在の主流は、複数の処理段階を経た後に焼却処分する方 法に移行しつつある。即ち、榭脂成分の処理に際して、廃棄物中の榭脂集中部分を 粉砕した後に、粉砕状態の廃棄物を水蒸気分解して得られる廃油成分や、固形物を 触媒作用により分解した際の分解残渣などを燃焼により焼却することで処理の完結と するのが一般的な処理方法となっている。
[0005] 上記の水蒸気分解による廃棄物処理に関し、従来の方法では、 250°C— 600°Cの 水蒸気を接触反応させている (例えば、特許文献 1参照)。このものでは、高温水蒸 気による接触分解で、特に熱硬化性榭脂の分解に対して効果があることを示してい る。
[0006] ところで、榭脂成分中に含まれる塩ビプラスチックを 400— 650°C範囲以上で焼却 すると、ダイォキシンが発生することが懸念され、これの発生対策が要望される。
[0007] そこで、例えば特許文献 2に示すものは、プラスチック廃棄物に対して、最初に 250 一 300°Cの加熱条件下で塩素成分を塩ィ匕水素ガス化して除去し、次に、残りの廃棄 物に対して 300— 370°Cで可塑剤の熱分解を行う。
[0008] そして、上記処理段階中に得られる廃油成分に対する従来の処理方法は、例えば 重質油から成る有機廃棄物を分解対象として、これに対して水酸化鉄、四酸化三鉄 、三酸化二鉄などの鉄系化合物を触媒として水蒸気による接触分解反応を行う。(例 えば特許文献 3参照。 )
特許文献 1:特開 2003- 55498号公報 (第 2 - 5頁、図 1)
特許文献 2:特開平 9-310077号公報 (第 3頁)
特許文献 3:特開 2002- 129171号公報 (第 4頁)
発明の開示
発明が解決しょうとする課題
[0009] ところが、廃車体中の榭脂成分の分解処理に関し、特許文献 1に示す方法では高温 の水蒸気を用いるため、残渣物中の塩ビ榭脂を起源とする塩素ガスを生じるおそれ があり、対策を取らぬまま放置しておくとダイォキシンを生じる可能性もある。また、こ のものの水蒸気温度範囲の上限は約 600°Cと高ぐこの高温に耐え得る耐熱構造を 備えるためには、設備コストが増大する不具合もある。
[0010] また、特許文献 2の最初の除去工程の温度範囲は、メタンガスやプロパンガスなど の可燃性の未燃ガス発生温度 (概ね 240°C以上)以上であるため、発生するメタンガ スゃプロパンガス対策が必要となる。即ち、これに続く熱分解工程は高温熱源が必要 であるが、何らかの原因でメタンガスやプロパンガスに引火すると、これらの除去工程 や分解工程の温度範囲を制御できなくなる。
[0011] そこで、未燃ガスの検知センサを設けるなどして、これの検知のたびに温度範囲を 制御することが考えられるが、温度範囲制御を頻繁に行うことになると昇温に要する 時間などを長期に要し、タクトタイム短縮の阻害要因となる。
[0012] 本発明は、上記問題点に鑑み、重厚な装置構成を要さずに、ダイォキシン予防対 策を含め確実かつ効率良く榭脂成分を分解し得る方法を提供することを目的として いる。
[0013] さらに、特許文献 3の触媒反応は、一般的に、高温 (400— 700°C)及び高圧(25 MPa)が必要であるため、これに耐え得る構造の装置が必要となり、装置構成の複雑 化は避けられない。
[0014] また、特許文献 3のものは、液体重質油を分解対象としているため、このままでは、 固形物を含む雑多な種類の成分から成る分解対象物に対して効果的であるかの確 認が困難である。
[0015] 例えば、分解処理時に導入する水蒸気や触媒などの反応関与物は、重質油など の液体に対して均一に接触可能であり、効率的な反応を期待できるが、対象物に固 形物を含む場合は状況が異なる。即ち、処理効率優先のため、一定範囲の重量や 形状の分解対象物を想定して、水蒸気や触媒の時間当たりの供給頻度や供給量を 制御しても、固形物を含んだ状態で調製を経な ヽまま分解工程に搬送された分解対 象物は、所期通りの分解処理が行われないおそれがある。
[0016] 本発明は上記問題点に鑑み、固形物を含む状態の分解対象物に対して確実な分 解処理を行!ヽ得る触媒添加方法及びこの方法の適用が可能な触媒添加装置を提供 することを目的としている。
課題を解決するための手段
[0017] 上記課題を解決するため、本発明の榭脂成分分解方法は、水蒸気との接触反応 により榭脂成分を分解する方法において、水蒸気分圧として、全圧 1. 01-1. 3気 圧に対して 0. 01-0. 3気圧、及び、水蒸気温度として 390°C以下の反応条件下で 接触分解反応が進行するものである。
[0018] これによれば、ほぼ常圧条件下で、し力も、水蒸気温度を 390°C以下としても、榭 脂成分を構成する炭化水素化合物に対する水蒸気の水和反応が生じ、これにより必 要な接触分解反応を行うことができる。このため、耐圧などの点で装置の簡易化が可 能になる。そして、この温度範囲は、ダイォキシン発生温度 (約 400— 650°C)を確実 に下回っているため、所望の榭脂成分分解を得ることができる。
[0019] また、水蒸気との接触分解反応に際して触媒を添加しても良い。この触媒として Fe O粉末を用いるのが良い。これによれば、 FeO分子中の含有酸素原子が、触媒表面 で活性化され、この活性酸素原子が活性水酸基等を形成し、榭脂成分たる炭化水 素化合物中の炭素原子間の結合を切断し、分解反応がさらに促進される。
[0020] また、榭脂成分全体で接触分解反応を進行するためには、これに対して水蒸気温 度を効果的に保つ必要があり、このために、反応容器の内外両側から加熱を行うの が良い。
[0021] そして、その際には、内外両側力 の加熱を可能とする同一加熱源を共通して用い るのが良い。これにより、装置構成がさらに簡易になり、また、温度管理も容易になる
[0022] そして、上記した榭脂成分分解工程を、この分解工程カゝら発生した分解残渣を用 いて行う残渣燃焼工程や焼却灰溶融工程に対する前処理工程と位置付けることが できる。
[0023] また、触媒 FeO粉末の添加量は、榭脂含有混在物 (分解対象物)全体に対して 5重 量%以下であることが望ましい。触媒効果は、この 5重量%程度で飽和することが認 められ、 5重量%を越える重量の触媒 FeO粉末を添加しても触媒増量に見合う効果 が得られず、あるいは過剰の触媒粉末同士が凝集して反応が不均一に行われるお それがある。また、触媒が失活した際などの触媒交換に要する作業が多くなるなど、 かえって望ましくない結果を招くことになる。
[0024] あるいは、本発明の榭脂成分分解方法は、 170— 240°Cに加熱した油分に榭脂成 分含有廃棄物を浸潰して、該榭脂中の塩素含有成分を除去する第 1工程と、該第 1 工程後の廃棄物を 280— 390°Cに加熱した状態で水蒸気を導入して、榭脂成分を 分解する第 2工程とを含むものとした。
[0025] このものの第 1工程によれば、加熱油分に対する浸漬により、廃棄物内部まで確実 に行われ、より低温の 170— 240°Cの温度範囲で塩素成分中の塩素原子を塩ィ匕水 素ガスの形態で除去できる。この温度範囲は、メタンガスやプロパンガスなどの可燃 性の未燃ガス発生温度 (概ね 240°C以上)を下回るため、これらのガス発生による温 度制御不安を取り除くことができる。
[0026] そして、これに続く第 2工程において、水蒸気の導入による水和反応を利用し、第 1 工程後の廃棄物に対して 280— 390°Cの加熱状態で榭脂成分を分解する。第 2ェ 程の温度範囲は、第 1工程で懸念された未燃ガスを含めて熱分解するものであり、ま た、ダイォキシン発生温度範囲(400— 650°C)を充分に下回るものである。したがつ て、ダイォキシンや未燃ガス発生の予防対策を考慮した分解方法と言える。
[0027] なお、水蒸気を導入する際に、前記第 1工程後の廃棄物に対して FeO粉末を触媒 として添加することにより、水蒸気を利用した榭脂成分の炭化水素骨格に対する水和 反応の収率が向上し、工程全体の歩留り改善が得られる。
[0028] また、榭脂成分含有廃棄物を浸漬する油分を湛えた液槽と、この液槽中の油分を 加熱する第 1加熱手段と、油分の外部に戻した廃棄物を加熱する第 2加熱手段と、こ の第 2加熱手段により加熱中の廃棄物に対して水蒸気を導入する水蒸気導入手段と を備えて分解装置を構成する。これを用いることにより、液槽中に浸漬した廃棄物に 対して 170— 240°Cの加熱条件とした第 1工程と、第 1工程を経た後の廃棄物に対し て 280— 390°Cの加熱状態で水蒸気を導入する第 2工程とを行うことができる。
[0029] この分解装置は、油分の外部に戻した廃棄物に対して触媒を添加する触媒添加手 段をさらに搭載するものとしても良 、。
[0030] さらに、本発明は、榭脂成分を分解する際に触媒を添加する方法において、榭脂 成分を含む分解対象物表面を濡れ面とし、この濡れ面に対して触媒粉末を添加する ものとした。
[0031] これによれば、濡れ面に対して触媒粉末が付着し保持されるため、分解対象表面 全体が触媒粉末に覆われる。このため、雑多な成分から成る分解対象物であっても、 触媒添加が全体に行き渡り、反応中に確実な触媒作用が得られる。このことは、分解 対象物表面が濡れ面に被覆されず剥き出し状態のままである場合に比較し易い。即 ち、剥き出し状態のままの分解対象物表面に触媒粉末を添加しても、添加触媒の一 部は、分解対象物に保持されず落下することが多い。このため、反応収支の均衡が 得られず、触媒不足の状態となり易い。
[0032] これに対して、分解対象物を濡れ面とすると、触媒粉末が濡れ面に効果的に保持 されるので、所期通りの触媒作用を得ることができる。
[0033] この場合、油分中に浸漬させた分解対象物を油分の外部に戻すことで、例えば、 塗布による手法に比べ、容易に濡れ面形成を行うことができる。これに対して、例え ば分解対象物の浸漬油分に触媒を添加する場合に、浮遊状態の未反応触媒が歩 留り低下を招くことが懸念される。しかし、上記方法によれば、濡れ面形成とこれによ る触媒の付着力強化により、触媒添加の歩留り低下を防止することができる。
[0034] さらに、上記の浸漬油分を、少なくとも分解対象物の浸漬時間中に加熱することに より、分解対象物全体への熱伝達が確実に行われ、高温条件を要する触媒反応の 予備加熱などへ簡単に転用できる。なお、油分の加熱は、分解対象物の浸漬前から 行っても良い。
[0035] また、加熱時の油分の温度範囲を、 170— 240°Cとすることで、分解対象物が榭脂 成分などの炭化水素骨格を持つものである場合、ダイォキシン発生防止はもちろん のこと、メタンガスやプロパンガスなどの可燃性の未燃ガス発生を未然に防止すること ができる。これにより、自己発火などの不測の事態を回避しつつ、その後の処理工程 へ進むことができる。
[0036] さらに、分解対象物を浸漬する油分を湛えた液槽と、分解対象物を前記液槽の油 分の液面に対して出没可能とした出没手段と、分解対象物に対して触媒を添加する 触媒添加手段とを備えた構成の触媒添加装置により、触媒添加方法を容易に実施 できる。
[0037] 即ち、液槽中の油分への出没を可能にした傾斜式コンベアなどの出没手段により、 分解対象物を油分に対して浸漬し、また、油分から戻すことにより、表面全体に濡れ 面を簡易に形成できる。そして、濡れ面を形成した状態で触媒添加手段により触媒を 添加することにより、触媒粉末が分解対象物の表面全体に付着する。このようにする ことで、得られる触媒作用が良好なものとなる。
[0038] さらに、触媒添加装置に、油分中に浸漬させた分解対象物の浮上防止手段を備え ることにより、分解対象物の比重が小さい場合でも、油分浸漬が不十分でこれにより 濡れ面形成が不足した部分を限定的に留めることができる。
発明の効果 [0039] 本発明の榭脂成分分解方法によれば、ほぼ常圧でしかも比較的低い温度の水蒸 気による接触分解反応により行うため、ダイォキシン予防対策を備えたうえで、簡易 的な榭脂成分分解を確実に行うことができる。また、装置構成においても常圧下での 水蒸気接触反応を前提とするので、耐圧及び耐熱構造に要する設備負担を抑制す ることがでさる。
[0040] また、本発明の別の榭脂成分分解方法は、塩素成分の除去を目的とする第 1工程 と、榭脂成分の熱分解を目的とする第 2工程とを、それぞれ、 170— 240°C及び 280 一 390°Cの温度範囲で行うため、ダイォキシン及び可燃性未燃ガスを発生させな!/ヽ 点で効果的である。
[0041] また、第 2工程の熱分解は、水蒸気中の水分子が炭化水素骨格 (榭脂成分)を切 断する水和反応により進行するが、触媒として FeO粉末を添加することで、反応収率 が向上する。これは、後に詳述するように水蒸気の導入による水和反応機構では、水 分子中の酸素原子の極性だけに依存する場合に比べ、触媒添加で発生する活性酸 素原子に依存する場合の方が反応効率が高いためと推測される。
[0042] また、本発明の触媒添加方法によれば、分解対象物の表面を濡れ面とすることで、 添加する触媒粉末が付着状態で保持されるため、触媒作用の歩留り減少を防止す ることができる。そして、油分浸漬の手法により、濡れ面形成を行うことで加熱条件な どを容易に制御でき、これを触媒反応の工程に組み入れることで、処理工程設計の 適用範囲が広がる。即ち、予備加熱工程や未燃ガス発生防止などを目的とする温度 制御が可能となる。
発明を実施するための最良の形態
[0043] 図 1は、本発明方法の第 1態様を適用し得る水蒸気分解用反応容器 1の概略図で ある。本容器 1は、直径 600mmの中空構造の円筒形状であり、また、円筒の高さ 50 Omm程度のところから上部に尖塔構造のチムニ一 2が設けられ、さらに、底部に電 熱ヒータ 3を接続している。
[0044] 容器 1の内部には、 5本 (うち 2本のみ図示)の鉄または銅製ロッド 4が等間隔で立設 されている。そして、水蒸気導入管 5を容器 1の外部から挿入して設けた。この水蒸気 導入管 5の下端部分は直径 10mm程度の管状に形成され、管状下端部分には直径 lmm程度の多数の通孔 6が下方に穿設されている。導入管 5の上端部分力 移送さ れた水蒸気は、通孔 6からシャワー状に噴出する際に、対向する電熱ヒータ 3により加 熱された状態で、容器 1内の粉砕充填物 7の間隙を通過する。そして、その際に粉砕 充填物 7と接触し、水和反応により、これに含有する榭脂成分を分解する。分解され た粉砕充填物 7中の榭脂成分は、気化した状態でチムニー 2内を上昇し、図外の蒸 留器へ誘導される。
[0045] この粉砕充填物 7は、上記したように、廃車起源の廃棄物を粉砕して容器内に充填 したシュレッダーダストであり、その内容物は、ウレタン榭脂、 PVC榭脂、 PP榭脂、 A BS榭脂、 PE榭脂などの榭脂成分、 BR、 SBRなどのゴム成分、ワイヤ、ハーネス、ボ ルト、ナット、釘、針金などの金属鉄成分、 PVC被覆導線、電極端子、真鍮などの金 属銅成分や残部土砂分などが混在した状態で構成されている。この内訳は、ゴム成 分を含む榭脂成分として約 50%、金属鉄成分約 12%、金属銅成分約 8%、及び、 土砂成分など約 30%である。なお、容器 1内に図示した A、 B、 C、 Dはいずれも温度 測定用に内部に設けた熱電対であり、深さが 320mm程度になるように充填された粉 砕物の表面から、それぞれ 300mm、 150mm, 40mm, 280mmの高さ位置に設置 されている。
[0046] 図 1の反応容器 1を用いてプラスチック含有廃棄物中の榭脂成分を分解するに際し ては、あら力じめ、 lmm— 200mm角程度に粉砕した上記内容物から成る廃棄物片 を容器 1内に充填する。このときの充填物の重量は概ね 16kg程度である。さらに、電 熱ヒータ 3により加熱を行いながら、水蒸気導入管 5より、 110°Cの水蒸気を分圧 0. 1 5気圧 (全圧 1. 15気圧)、流量 20L/秒で連続的に導入する。このとき、電熱ヒータ 3 による加熱温度を調整して、容器 1の内部を 390°C以下に抑制する。また、粉砕充填 物 7の外周部分に対して、金属製容器 1を介して電熱ヒータ 3から熱伝達されると共 に、粉砕充填物 7の内側部分に対して、鉄または銅製ロッド 4を介して電熱ヒータ 3か ら熱伝達される。そして、このように粉砕充填物 7全体に反応温度条件を保つように 加熱が行き届き、この条件下で、粉砕充填物 7中の榭脂成分に対して水蒸気による 水和反応が進行してその炭化水素骨格が分解され、分解された榭脂成分は気体と なってチムニー 2経由で放出される。放出気体を蒸留して得られる廃油成分内に検 出されるのは、アルコール類、カルボン酸等の有機酸類、エステル類、ケトン類、飽 和炭化水素類であり、ダイォキシンなどの有害物質は認められない。
[0047] なお、水蒸気による接触分解反応の際に、 FeO粉末触媒を添加するとさらに分解 効率が向上する。 FeO分子中の含有酸素原子が、触媒表面で活性化され、この活 性酸素原子が活性な水酸基等を形成し、榭脂成分たる炭化水素化合物中の炭素原 子間の結合を切断し、分解反応がさらに促進される。そして、 FeO触媒存在下の水 蒸気接触反応は、分解熱や水和熱などの反応熱が反応を促進するものであるが、反 応時に撹拌を行うと触媒粉末が凝集して反応の不均一化を招くおそれがある。した がって、廃棄物の表層部分や有機溶媒に触媒を散布した当初の状態のままで良ぐ 撹拌や振盪などの機械的操作は不要である。
[0048] なお、本装置の加熱機構は、容器 1の底部の電熱ヒータ 3により、容器 1の側壁に沿 つた熱伝達と、内部の銅製ロッド 4に沿った熱伝達との二方式であるが、装置簡略ィ匕 や温度管理の便宜のために、ともに共通の電熱ヒータ 3を熱源として 、る。
[0049] 本形態中で用いた数値はその一例を示したもので本発明を限定するものでなぐ 同様の効果を得ることができれば、適宜変更することができるのは言うまでもない。
[0050] また、上記した榭脂成分分解工程を、この分解工程カゝら発生した分解残渣を用い て行う残渣燃焼工程や焼却灰溶融工程に対する前処理工程と位置付けることができ る。
[0051] 即ち、シュレッダーダストなどの榭脂含有混在物(以下、分解対象物と記す。 )の前 処理工程における部分工程は、下記にしたがって順次行う主要 7工程で構成するこ とが可能である。
[0052] 第 1工程:投入した分解対象物と外気との隔絶。
第 2工程:分解対象物中の固結部分に対する固着状態の緩和及び脆弱部分に対す る小片化。
第 3工程:分解対象物の略均一寸法への調整。
第 4工程:第 1予備加熱温度の油分中への分解対象物全体の浸漬。
第 5工程:上記油分外に戻した後の分解対象物全体に対する FeO粉末から成る触 媒の添加。 第 6工程:分解対象物に対する第 2予備加熱。
第 7工程:分解対象物に対する水蒸気接触反応。
[0053] この際に、各部分工程が担う役割は以下の通りである。
[0054] 第 1工程:投入後の分解対象物を外気と隔絶することにより工程中の酸素供給を抑 制基調とする。これにより、第 4、第 5、第 6及び第 7の各工程で想定される可燃ガスの 自然発火が防止され、加熱条件下での分解反応を確実に行うことができる。
第 2工程:固結部分と脆弱部分とが混在する分解対象物に対して予備的に部分解体 を行 、、その後の第 3工程における寸法略均一化を容易にする。
第 3工程:中枢の水蒸気接触反応 (第 5及び第 7の各工程)において、導入水蒸気が 対象物の細部全体に亘つて接触するように分解対象物寸法を反応最適サイズに揃 えて最良の反応収率を得る。
第 4工程:中枢の水蒸気接触反応時に導入する水蒸気温度と比べて温和な第 1予備 加熱温度 (約 170— 240°C)の油分に対する完全浸漬工程を経ることにより、この予 備加熱段階で、榭脂成分に含まれる塩ビ榭脂起源の塩素原子が化合されてほぼ完 全に消費される。化合生成物たる塩ィ匕水素は、予備加熱温度 (約 170— 240°C)に おいて気相転移するものであり、即ち、塩ィ匕水素ガスの状態で得られるので排出ガス として効率的に除去できる。また、予備加熱温度に昇温しておくことで、その後に控 える中枢第 7工程で必要な高温状態 (約 280— 390°C)到達に要する昇温時間短縮 を助長する効果がある。
第 5工程:浸漬溶媒カゝら溶媒液外に戻された後でも、浸漬していた溶媒により、分解 対象物の表面全体が濡れて被覆された状態となる。この濡れ面に FeO粉末から成る 触媒を添加すると、触媒 FeO粉末が付着状態で保たれることになり、その後の第 6及 び第 7工程中に亘つて反応系に留まることが可能になる。即ち、所望の水蒸気接触 反応が開始されるまでの間に触媒 FeO粉末が欠落するおそれが少なく確実な反応 関与が可能となる。なお、添加する触媒として、 FeO以外にも Fe 0、 FeOを用いて
2 3 も後の水蒸気接触分解反応に対する触媒作用を同様に得られる。
第 6工程:中枢の水蒸気接触反応時に導入する水蒸気温度程度の第 2予備加熱温 度 (約 280— 390°C)の予備加熱工程を経ることにより、除去に至らな力つた残留塩 素の塩化水素ガス化を促進し、塩ビ榭脂起源の塩素成分の徹底除去を行う。この予 備加熱工程を経ずに、高温 (約 280— 390°C)条件下での水蒸気接触反応に直接 至る場合、急激な昇温により例外的な過熱状態が生じ、残留塩素原子に由来するダ ィォキシン発生を招くおそれがある。塩素成分の徹底除去と段階的な昇温とを兼ね た予備加熱工程を経ることで、水蒸気接触反応により所期の榭脂成分分解処理を行 うことができる。
第 7工程:予備加熱温度を維持したまま、約 280— 390°Cの水蒸気を導入することに より、最適サイズに細分化された後の表面全体に触媒 FeO粉末が概ね均等に付着し た状態の分解対象物の隅々で水蒸気接触分解反応が行われ、最終的に榭脂成分 が分解生成ガスに変換して排出される。分解ガスの成分は、主成分たる炭化水素ガ ス、水分及び窒素ガスと、僅小成分たる酸素ガスなどである。また、水蒸気温度を 39 0°C以下に設定することにより、ダイォキシン発生温度 (約 400— 650°C)を確実に下 回り、所望の榭脂成分分解を得ることができる。なお、分解反応の残渣分は、乾燥し た後に、その後の燃焼工程により処理される。
[0055] そして、シュレッダーダストなどの榭脂含有混在物(以下、分解対象物と記す。 )の 残渣燃焼工程や焼却灰溶融工程に先立つ前処理工程としての榭脂成分分解工程 を行うためのシュレッダーダスト用榭脂成分分解装置 100の概略を図 2に示す。分解 装置 100内は、開閉シャッター力ら成る仕切り板 101、 102、 103、 104、 105、 106 、 107で仕切られて、二重シャッター室 108、部分解体室 109、寸法調整室 110兼油 分浸漬室 111、触媒添加室 112兼予備加熱室 113、水蒸気接触反応室 114、残渣 処理室 115、残渣回収室 116が構成される。即ち、二重シャッター室 108を備えるホ ッパー 117から投入された分解対象物 118aが、上記各室を経由して分解反応に供 された後、残渣回収室 116の床面兼用シャッター 119上に反応残渣物が回収され、 搬送車 120の天井シャッター 121及び上記床面兼用シャッター 119の開閉により、搬 送車 120に搬出されて、その後の工程に持ち込まれる構成となっている。
[0056] また、装置内で発生が予想される可燃ガスの発火を防ぐため、装置 100内部には、 ガス導入口 123、 124を介して一定流量の不活性 (窒素)ガスが導入され、吹き出し 孔 125、 126、 127など力も各室をパージする構造としている。また、触媒添加室 112 兼予備加熱室 113、水蒸気接触反応室 114、残渣処理室 115の各室には、第 1排 気口 128、第 2排気口 129、第 3排気口 130が設置され、各室で発生する生成ガス やパージガスの排出を行う。さらに、ホッパー 117内の二重シャッター室 108及び部 分解体室 109には、排気ベント 131に連なる排気口 132、 133が設置され、また、二 重シャッター室 108にもガス導入口 134が設けられ、導入口 134から導入される不活 性 (窒素)ガスにより室内パージを行うとともに、流入する外気 (特に外気中の酸素)の 排出を行う。
[0057] また、装置 100内の分解対象物は、装置内各室に搬出入されるが、それを可能に するため搬送機構が設置されている。この搬送機構は、具体的に、部分解体室 109 内の搬送用第 1コンベア 135と、寸法調整室 110兼油分浸漬室 111、触媒添加室 1 12兼予備加熱室 113、水蒸気反応室 114、残渣処理室 115の各室に亘つて渡設さ れ、これら各室の床面を兼ねて敷設される搬送用第 2コンベア 136と、寸法調整室 1 10兼油分浸漬室 111の天井面を兼ねて架設されるレベル調整用第 3コンベア 137と から構成される。
[0058] そして、これら各コンベアには、発生が予想される塩素系ガス (塩化水素ガスや塩 素ガス)による腐食を防ぐため、例えば SUS316などのステンレス製ベルトが用いら れる。また、特に、高温条件下で用いられる第 2及び第 3の両コンベア 136、 137は、 各コンベア加熱防止のため、コンベアベルトを送出するドラム 136a、 136b, 136c, 1 36d及び 137a、 137bなどに水冷式のものを用いるとともに、経路の長い第 2コンペ ァ 136の下面は、ベルト延長方向に沿って水冷式ジャケット 138により覆われる。な お、触媒添加室 112兼予備加熱室 113、水蒸気接触反応室 114においては、第 2コ ンベア 136は、ベノレト下面力らヒータ 139、 140によりカロ熱される。
[0059] 次に、装置 100内の各室の構成を詳説する。
[0060] 二重シャッター室 108は、雑多な廃棄物状態のシュレッダーダストを分解対象物と して収容するホッパー 117の主要部分を構成する。即ち、天井シャッター 101と床面 シャッター 102とは夫々独立して開閉可能に設けられている。そして、ガス導入口 13 4から不活性 (窒素)ガスを導入し、ガス排気口 132から排気を行うことができる。した がって、外気と遮断して二重シャッター室 108内をガスパージすることができる。 [0061] 部分解体室 109は、回転板車 141と第 1コンベア 135とを搭載する。即ち、シャツタ 一 102の開閉により搬入される分解対象物 118aに対して、回転板車 141が回転しな 力 Sら連続的に接触して衝撃を与えたり、その後の第 1コンベアによる搬送中に継続的 に振動を与えたりする。また、部分解体室 109においても、ガス排気口 133からの排 気が可能であり、シャッター 102の開放時にガス導入口 134からの不活性 (窒素)ガ ス導入を行うことにより、室内のガスパージが可能である。
[0062] 上下方向の開閉シャッター 103、 104で仕切られた空間は、寸法調整室 110と油 分浸漬室 111とを兼ねており、上下方向の間隔を一定に保って設置された第 2及び 第 3の両コンベア 136、 137が同期可能に設けられている。そして、両コンベア 136、 137は間隙を保ったまま、処理槽 142の油分中に没入する。処理槽 142は、ドレン 1 43の設置位置の最深部を挟む一対の傾斜面により構成され、第 2コンベアは、両傾 斜面に沿って敷設されるため、処理槽 142中の油分に対して出没する形態となる。 処理槽 142中の油分量は、ドレン 143により調整可能である。
[0063] なお、両コンベア 136、 137で形成される間隙を搬送される分解対象物は、搬送高 さが規制されている。したがって、比較的脆弱なものであれば、搬送中に形状が崩れ 、高さ方向の寸法が概ね揃った状態で、処理槽 142の油分中に没入することになる 。なお、両コンベア 136、 137での搬送中に崩壊した小片は、トレイ 144により回収さ れる。また、寸法調整室 110と油分浸漬室 111に対して、吹き出し孔 127が設けられ 、ガス導入口 124からの不活性(窒素)ガスがパージガスとして補充される。
[0064] 上下方向の開閉シャッター 104、 105で仕切られた空間は、触媒添カ卩室 112と予 備加熱室 113とを兼ねている。即ち、第 2コンベア 136の直上位置に設置された触媒 供給器 145により、 FeO粉末などの触媒が供給される。また、第 2コンベア 136に沿 つて、その下方にヒータ 139が複数設置される。さらに、室内天井部分に第 1排気口 128が設けられ、生成ガスの排出を行うとともに、吹き出し孔 126からパージ用の不 活性 (窒素)ガス補充を行う。
[0065] 上下方向の開閉シャッター 105、 106で仕切られた空間は、水蒸気反応室 114で ある。即ち、水蒸気導入管 146からの水蒸気が第 2コンベア 136の上方に沿って噴 出される。また、また、第 2コンベア 136に沿って、その下方にヒータ 140が複数設置 され、反応温度条件を確保する。さらに、室内天井部分に第 2排気口 129が設けられ 、生成ガスの排出を行うとともに、吹き出し孔 125、 126からパージ用の不活性 (窒素 )ガス補充を行う。
[0066] 上下方向の開閉シャッター 106以降の空間は、残渣処理室 115である。即ち、緊 急シャッター 122 (通常は開放状態)直後の第 2コンベア 136位置に、付着物剥離用 の刃具 147が圧接状態でコンベア 136に取付けられる。そして、刃具 147により剥離 された残渣物は、シャッター 107上に載置される。なお、水蒸気反応室 114から搬出 された後も、分解対象物カゝらガス生成がしばらく継続することが予想されるため、残渣 処理室 115の天井部分に第 3排気口 130が設けられる。吹き出し孔 125からのパー ジ用不活性 (窒素)ガス補充を行うことは他室と同様である。
[0067] シャッター 107の下方は、残渣回収室 116である。回収室 116は、シャッター 107 の開閉により落下する残渣物を回収するものである。なお、パージガスとして窒素ガ スを用いる場合、窒素ガスは空気と同程度の比重であり、必ずしも窒素パージが完全 に行われないこともある。このため、装置 100内部には、下面部分のガス導入口 123 からもパージ用不活性 (窒素)ガスの導入を行う。
[0068] そして、上記構成の分解装置 100を用いて、本発明の第 2態様による榭脂成分の 分解を行うに際しては、第 1態様同様に、あらかじめ、分解対象物たるシュレッダーダ ストを lmm— 200mm角程度に粉砕して用意する。これら粉砕した状態のシュレッダ 一ダストの内容内訳が、概ね、ゴム成分を含む榭脂成分約 50%、金属鉄成分約 12 %、金属銅成分約 8%、及び、土砂成分など約 30%である。
[0069] そして、一定量の粉砕シュレッダーダストを、天井シャッター 101が開放され、床面 シャッター 102が閉鎖された状態のホッパー 117中の二重シャッター室 108に投入 する。投入後、天井シャッター 101が閉鎖し、ガス導入口 134からパージ用不活性( 窒素)ガスを導入すると共に、ガス排気口 132に連なる排気ベント 131により排気を 行う。これにより、シュレッダーダスト 118aを収容した二重シャッター室 108内は定常 的に窒素によるパージ状態となる。ガスパージの目的は、外気流入、即ち、酸素供給 を遮断し、その後の高温反応時に発生する高温可燃ガスへの引火を防止し、所望の 分解反応を継続することにある(第 1工程)。 [0070] 二重シャッター室 108がガスパージされた定常状態となった後に、シャッター 102を 開放し、シュレッダーダスト 118aを部分解体室 109に移動する。そして、この室内の 回転板車 141のフィンによる連続的な打撃により、シュレッダーダスト 118aの固結部 分がほぐされ、あるいは、その脆弱部分が小片化されるなどの部分解体が進行する。 さらに、その後の第 1コンベア 135上で搬送される際の振動も、搬送中のシュレッダー ダスト 118aの略均一化を促進するなど予備的な部分解体を助長する。なお、シャツ ター 102を開放し、ガス導入口 134からの不活性 (窒素)ガス導入と、ガス排気口 133 力ものガス排出とにより、部分解体室 109内は、定常的なガスパージ状態である(第 2 工程)。
[0071] 次に、シャッター 103を開放して、第 1コンベア 135で搬送されて来たシュレッダー ダスト 118aを、寸法調整室 110内の第 2コンベア 136上に移載する。そして、第 2コ ンベア 136と、これと上下方向の間隙を一定に保って設けられた第 3コンベア 137と が同期運転する。部分解体されて脆弱化が進んだシュレッダーダスト 118aは、この 間隙を搬送される際に、規制された搬送高さに応じて形状が崩れ、高さ方向の寸法 が概ね揃った状態となる。このとき、回転ドラム 137aと 136dとが同期的に作動し、特 に、回転ドラム 137aは、搬送方向への送り出し機能を備えた搬送高さ規制手段とし て機能する。また、第 2コンベア 136と第 3コンベア 137とを同一速度で作動させるこ とで、シュレッダーダスト 118aの搬送障害発生を防ぐことができる。なお、崩壊してコ ンベア 136外に落下したシュレッダーダスト小片は、回収トレィ 144に捕捉される(第 3工程)。
[0072] そして、シュレッダーダスト 118aは、両コンベア 136、 137の間隙に挟まれながら、 油分浸漬室 111内の処理槽 142の油分中に没入する。処理槽 142は、ドレン 143の 位置の最深部を挟む一対の傾斜面により構成され、さらに、第 2コンベア 136は、両 傾斜面に沿って敷設されて処理槽 142中の油分に対して出没するため、搬送中にシ ュレッダ一ダスト 118aも油分に出没する。なお、処理槽 142の最深部の深さは、ドレ ン 143により調整可能であり、その深さを両コンベア 136、 137の間隙以上とすること により、搬送中のシュレッダーダスト 118a全体が油分中に完全浸漬する。なお、シュ レッダ一ダスト 118a中の比較的小比重の成分は油分内に浮遊するおそれがあるが、 天井部を形成する第 3コンベア 137に当接されているため、搬送路を外れ、自由浮 遊するような事態は防止されて 、る。
[0073] また、処理槽 142中の油分は、あら力じめ、約 170— 240°C程度の第 1予備加熱温 度に加熱されている。このため、加熱状態の油分中に完全浸漬したシュレッダーダス ト 118aからは、これに含まれる塩ビ榭脂成分の塩素が脱離し、周囲の水素原子とィ匕 合して塩素ガスが生成する。
[0074] 図 3は、油分中の塩ビポリマーが、シュレッダーダスト 118aに含有される周囲の微 量水分と化合し、ポリマー成分としてポリビュルアルコールを生成すると共に、塩ィ匕水 素ガスとして塩素原子が除去される反応を示す。生成される塩化水素ガスを排気す るため、シャッター 104を開放して、第 1排気口 128から排出する。なお、処理槽 142 内の油分は、上記の第 1予備加熱で気化しない油分とする(第 4工程)。
[0075] 次に、シャッター 104を開放し、第 2コンベア 136によりシュレッダーダスト 118aを油 分外の触媒添加室 112に搬出し、搬出後にシャッター 104を閉鎖する。このとき、シ ュレッダ一ダスト 118aの表面全体に油分による濡れ面が形成されている。そして、こ の状態のシュレッダーダスト 118aに対して、触媒供給器 145からシュレッダーダスト 1 18aの概ね 5重量%に相当する FeO粉末触媒を散布する。このとき、シュレッダーダ スト 118aの濡れ面に触媒 FeO粉末が付着し、これが長期間保持される。したがって 、その後の水蒸気接触反応が開始されるまでの間に触媒 FeO粉末が欠落するおそ れが少なくなる。なお、 FeO粉末としては、切削加工時に発生する切粉を長期間空 気に曝して酸ィ匕させたものを用いても良い。あるいは、 FeO以外にも Fe 0
2 、 FeOを
3 用いても後の水蒸気接触分解反応に対する触媒作用を同様に得られる (第 5工程)。
[0076] さらに、 FeO粉末付着状態のシュレッダーダスト 118aを第 2コンベア 136上で搬送 させながら予備加熱室 113に移動させ、コンベア 136下方のヒータ 139により、約 28 0— 390°Cの第 2予備加熱温度まで加熱する。これには、次の水蒸気接触反応時の 高温に近い温度まであら力じめ昇温させておぐという目的にカ卩え、それまでの塩ィ匕 水素ガスを生成する反応で消費し切れな力つた残留塩素成分を徹底除去するという 目的がある。この際に生成する塩ィ匕水素ガスは、第 1排気口 128から排出される (第 6 工程)。 [0077] 次に、シャッター 105を開放し、約 280— 390°C〖こカロ熱されたシュレッダーダスト 11 8aを第 2コンベア 136により水蒸気反応室 114に移動する。そして、シュレッダーダス ト 118aに対して、水蒸気導入管 146から約 280— 390°Cの水蒸気を吹き付ける。ヒ ータ 140も同温度に加熱され、水蒸気反応の温度条件を確保する。このとき、 FeO触 媒下での水和反応により、シュレッダーダスト 118a中の榭脂成分の炭化水素骨格が 分解される。
[0078] 図 4は、 FeO触媒下での水蒸気接触分解反応の進行を模式的に示すものである。
図 4 (a)に示すように、水蒸気導入により、炭化水素骨格の周囲を水分子が包囲する (水蒸気接触)。しかし、図 4 (b)に示すように、周囲の水蒸気中の水分子に対して Fe O触媒が作用して活性酸素原子が生成する。そして、図 4 (c)に示すように、この活性 酸素原子が炭化水素骨格の水素原子と化合して水分子として炭化水素骨格から脱 離する (水和反応)。そして、この際に、炭化水素骨格の主鎖が分断されて分解が生 じる(図 4 (d)参照)。
[0079] これに対して、図 5は、 FeO触媒によらない水蒸気接触分解反応の進行を模式的 に示すものである。図 5 (a)に示すように、水蒸気導入により、炭化水素骨格の周囲を 水分子が包囲する(水蒸気接触)。そして、図 5 (b)に示すように、この水分子中の酸 素原子と炭化水素骨格の水素原子とがお互いの極性により接近し、化合して水分子 として炭化水素骨格力も脱離する (水和反応)。そして、この際に、炭化水素骨格の 主鎖が分断されて分解が生じる(図 5 (c)参照)。
[0080] いずれの場合も、熱分解を導く水和反応を得ることはできる。しかし、図 4と図 5との 比較から明らかなように、炭化水素骨格の水素原子とィ匕合するものが、活性酸素(図 4)と、水分子中の負極性酸素原子(図 5)とである点で異なる。そして、相対的に高い 反応エネルギーを保持する活性酸素による反応、即ち、 FeO触媒下での水蒸気接 触分解反応が、炭化水素骨格の分離に有効であることが分る。
[0081] そして、分解時に生成された炭化水素ガス、水、窒素などの主成分ガスや、酸素な どの微量成分ガスの排気を第 2排気口 129により行う(第 7工程)。
[0082] なお、第 2排気口 129に蒸留器を取付けることにより、排気生成ガスの成分ごとに分 留し、回収することができる。そして、蒸留して得られる重質油成分は、第 1予備加熱 (約 170— 240°C)程度では揮発することなく安定状態を保つので、処理槽 142中の 油分として再利用することが可能である。これにより、油分の入手や重質油廃棄に要 する作業省略ができ、効率向上の一助となる。なお、反応生成ガスの蒸留に際して、 重質油留分と分留されて同時に得られる軽質油留分は揮発性であることが多ぐカロ 熱を伴う第 4工程用の浸漬油分としては不向きであると考えられる。
[0083] ところで、水蒸気導入を停止し、水蒸気接触反応が小康状態になった後は、分解 残渣 118bが残る。シャッター 106を開放し、第 2コンベア 136により分解残渣 118bを 残渣処理室 115に移動する。分解残渣は、水蒸気反応時の高温でコンベア上のベ ルトに付着した状態となるが、これを刃具 147で剥離する。このとき、未反応の炭化水 素成分などが水蒸気残分と接触して生成ガスが発生することもあるため、これを第 3 排気口 130により排気する。
[0084] 刃具 147により剥離された残渣 118bは、処理室 115の床面シャッター 107上に集 積して乾燥され、一定量の集積後、シャッター 107を開放して回収室 116内に所蔵 する。この残渣 118bがさらに一定量に集積されたら、回収室 116の床面シャッター 1 19及び搬送車 120の天井シャッター 121の開閉により、残渣 118bを搬送車 120に 移動させる。搬送車 120中に収容された残渣 118bは、残渣分として、別設置の焼却 炉に運搬され、その後の燃焼工程に供される。
[0085] なお、上記した全工程に亘つて反応温度を最大で 390°Cに留めたのは、シュレッダ 一ダスト 118a中からの塩素成分完全除去が達成されない場合を想定したためである 。この場合でも、ダイォキシン発生温度 (約 400— 650°C)を確実に下回るため、ダイ ォキシン発生という不測の事態は回避される。
実施例 1
[0086] 図 1の反応容器 1をステンレス製とし、上記形態中に示すような条件で電熱ヒータ 3 により加熱しながら水蒸気を 6時間導入して粉砕充填物 7と接触反応させた。このとき 、容器 1内に設置した熱電対 A、 B、 C、 Dでの測定温度は、図 6に示すような結果を 示した。いずれも、粉砕充填物 7に対して 300°C、即ち、ダイォキシンの発生温度た る約 400— 650°Cを下回る水蒸気温度で接触分解反応が行われたことを示す。
[0087] また、この際の導入水蒸気量及び回収蒸留物量の累積値の推移を図 7に示す。図 7より、蒸留物として得られるものの純量(回収蒸留物量—導入水蒸気量)は、 8Lであ ることが分かる。そして、充填物は当初の 16kgより 1. 2kg減少し、これが分解量に相 当する。この量は当初の榭脂成分量の 15%に相当する。得られた回収蒸留物の成 分は、アルコール類やカルボン酸類、飽和炭化水素類が多ぐこれは、廃車起源のゥ レタン樹脂成分や PVC榭脂成分が分解したものと推測される。
実施例 2
[0088] 反応容器 1の底部の材質をステンレス力 ニッケル 銅系合金に変更し、水蒸気温 度を 150°C、水蒸気分圧を 0. 18気圧 (全圧 1. 18気圧)に変更した以外は [実施例 1]と同様の条件で、廃棄物片から成る粉砕充填物に対して水蒸気による接触反応を 行った。このときの導入水蒸気量及び回収蒸留物量の累積値の推移を図 8に示す。 図 8より、蒸留物として得られるものの純量(回収蒸留物量—導入水蒸気量)は 16Lで あり、 [実施例 1]の 8Lより回収量が増大したことが分る。そして、充填物は当初の 16 kgより 3. 2kg減少し、これが分解量に相当する。この量は当初の榭脂成分量の 40% に相当する。このように、回収量が増大したのは、反応容器 1の底部材質に用いた- ッケル-銅系合金が触媒として機能し、水蒸気による接触分解反応の反応効率が増 大したためであると考えられる。
実施例 3
[0089] 導入する水蒸気温度を変更した以外は [実施例 2]と同様の条件とし、種々の水蒸 気温度条件で廃棄物片から成る粉砕充填物に対して水蒸気による接触反応を行つ た。このときの廃棄物片の分解率と水蒸気温度との相関を図 9に示す。図 9より、水蒸 気温度の上昇に伴って分解量が増大する力 分解量の増加は 350°Cに近づき、これ を越えるにつれて鈍化し、飽和状態になることが分る。このことから、本接触分解反応 に適した水蒸気温度は 390°C以下であることが分る。
産業上の利用可能性
[0090] 本発明の榭脂分解方法は、比較的低温での榭脂成分の分解を可能とする。このた め、高温でダイォキシンなどの有害物質を発生するおそれがある塩ビ榭脂に対して 用いてもこの発生を防止できる。特に、廃プラスチックなどの榭脂成分を含む廃棄物 処理法中で、榭脂成分を分離する前処理方法と位置付けることにより、処理効率を 向上させる重要工程として活用できる。
[0091] 本発明の触媒添加方法は、廃プラスチックなどの榭脂成分を含む廃棄物処理法中 で、榭脂成分を分離する前処理方法と位置付けることにより、廃棄物処理の効率を向 上する重要工程として活用できる。
図面の簡単な説明
[0092] [図 1]榭脂成分分解に用いる反応容器の概略図
[図 2]シュレッダーダスト用の榭脂成分分解装置の概略図
[図 3]塩ビポリマーから塩ィ匕水素ガスとして塩素原子が除去される反応を示す模式図
[図 4]FeO触媒下での水蒸気接触分解反応を示す模式図
[図 5]FeO触媒によらない水蒸気接触分解反応を示す模式図
[図 6]容器中の各熱電対の温度変化を示すグラフ図
[図 7]導入水蒸気量と回収蒸留物量との相関を示すグラフ図(実施例 1)
[図 8]導入水蒸気量と回収蒸留物量との相関を示すグラフ図(実施例 2)
[図 9]導入水蒸気量と廃棄物分解率とを示すグラフ図
符号の説明
[0093] 1 反応容器
2 チムニー
3 電熱ヒータ
4 ロッド、
5 水蒸気導入管
6 通孔
7 充填廃棄物(シュレッダーダスト)
A B C D 熱電対
100 シュレッダーダスト用榭脂成分分解装置
101 天井シャッター(第 2シャッター)
102 床面シャッター(第 1シャッター)
108 二重シャッター室
109 部分解体室 110 寸法調整室
111 油分浸漬室
113 予備加熱室
114 水蒸気接触反応室
117 ホッパ1 ~~
118a シュレッダーダスト (榭脂含有混在物)
118b 分解残渣
135 第 1コンベア
136 第 2コンベア
137 第 3コンベア
139 加熱ヒータ
141 回転板車
142 処理槽
145 触媒供給器
146 水蒸気導入管

Claims

請求の範囲
[I] 水蒸気との接触反応により榭脂成分を分解する方法において、水蒸気分圧として、 全圧 1. 01-1. 3気圧に対して 0. 01-0. 3気圧、及び、水蒸気温度として 390°C 以下の反応条件下で行われることを特徴とする榭脂成分の分解方法。
[2] 前記水蒸気との接触分解反応に際して触媒を添加することを特徴とする請求項 1に 記載の榭脂成分の分解方法。
[3] 前記触媒として、 FeO粉末を用いることを特徴とする請求項 2に記載の榭脂成分の 分解方法。
[4] 前記水蒸気温度を保っために、反応容器の内外両側から加熱を行うことを特徴とす る請求項 1乃至 3のいずれ力 1項に記載の榭脂成分の分解方法。
[5] 前記反応容器の内外両側力もの加熱に、同一の加熱源を用いることを特徴とする請 求項 4に記載の榭脂成分の分解方法。
[6] 前記 FeO粉末の添加量を、前記榭脂含有混在物に対して 5重量%以下とすることを 特徴とする請求項 3乃至 5のいずれ力 1項に記載の榭脂成分の分解方法。
[7] 170— 240°Cに加熱した油分に榭脂成分含有廃棄物を浸漬して、該榭脂中の塩素 含有成分を除去する第 1工程と、該第 1工程後の廃棄物を 280— 390°Cに加熱した 状態で水蒸気を導入して、榭脂成分を分解する第 2工程とを含むことを特徴とする榭 脂成分の分解方法。
[8] 前記水蒸気を導入する際に、前記第 1工程後の廃棄物に対して FeO粉末を触媒とし て添加することを特徴とする請求項 7に記載の榭脂成分の分解方法。
[9] 榭脂成分含有廃棄物を浸漬する油分を湛えた液槽と、該液槽中の油分を加熱する 第 1加熱手段と、該油分の外部に戻した廃棄物を加熱する第 2加熱手段と、該第 2加 熱手段により加熱中の廃棄物に対して水蒸気を導入する水蒸気導入手段とを備えた ことを特徴とする榭脂成分の分解装置。
[10] 前記油分の外部に戻した廃棄物に対して触媒を添加する触媒添加手段をさらに備 えることを特徴とする請求項 9に記載の榭脂成分の分解装置。
[II] 榭脂成分を分解する際に触媒を添加する方法において、榭脂成分を含む分解対象 物表面を濡れ面とし、該濡れ面に対して触媒粉末を添加することを特徴とする触媒 添加方法。
[12] 前記濡れ面を、油分中に浸漬させた前記分解対象物を該油分の外部に戻すことに より形成することを特徴とする請求項 11に記載の触媒添加方法。
[13] 前記浸漬油分を、少なくとも前記分解対象物の浸漬時間中に加熱することを特徴と する請求項 12に記載の触媒添加方法。
[14] 前記加熱時の油分の温度範囲を、 170— 240°Cとすることを特徴とする請求項 13に 記載の触媒添加方法。
[15] 前記分解対象物を浸漬する油分を湛えた液槽と、該分解対象物を前記液槽の油分 の液面に対して出没可能とした出没手段と、該分解対象物に対して触媒粉末を添加 する触媒添加手段とを備えたことを特徴とする触媒添加装置。
[16] 前記液槽に、さらに、油分中に浸漬させた分解対象物の浮上防止手段を備えたこと を特徴とする請求項 15に記載の触媒添加装置。
PCT/JP2004/010404 2003-09-17 2004-07-22 樹脂成分の分解方法及び分解装置、並びに触媒添加方法及び触媒添加装置 WO2005028548A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-324522 2003-09-17
JP2003324522 2003-09-17
JP2004-078609 2004-03-18
JP2004-078611 2004-03-18
JP2004078609A JP2005263978A (ja) 2004-03-18 2004-03-18 触媒添加方法及び触媒添加装置
JP2004078611A JP2005263979A (ja) 2004-03-18 2004-03-18 樹脂成分の分解方法及び分解装置
JP2004-078622 2004-03-18
JP2004078622A JP4460927B2 (ja) 2003-09-17 2004-03-18 樹脂成分の分解方法

Publications (1)

Publication Number Publication Date
WO2005028548A1 true WO2005028548A1 (ja) 2005-03-31

Family

ID=34382098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010404 WO2005028548A1 (ja) 2003-09-17 2004-07-22 樹脂成分の分解方法及び分解装置、並びに触媒添加方法及び触媒添加装置

Country Status (1)

Country Link
WO (1) WO2005028548A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141655A1 (en) * 2007-05-17 2008-11-27 Nordbiochem OÜ A process of conversion of waste polymeric materials into hydrocarbon fractions
CN108101250A (zh) * 2018-02-22 2018-06-01 叶丛杰 一种新型造纸污染减排装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836276A (ja) * 1971-09-13 1973-05-28
JPH0881685A (ja) * 1994-09-14 1996-03-26 Mitsui Sekitan Ekika Kk 廃プラスチックスの処理方法
WO1996040839A1 (fr) * 1995-06-07 1996-12-19 Ngk Insulators, Ltd. Procede de production de petrole a bas point d'ebullition a partir de residus de matieres plastiques contenant du polyester phtalique et/ou du chlorure de polyvinyle
JP2000086807A (ja) * 1998-09-14 2000-03-28 Nkk Corp 大型プラスチック含有廃棄物の処理装置及び処理方法
JP2000256687A (ja) * 1999-03-11 2000-09-19 Kawasaki Steel Corp プラスチックの処理方法および該処理方法で得られる固体燃料、鉱石用還元剤
JP2001089595A (ja) * 1999-09-27 2001-04-03 Kubota Corp プラスチック溶融脱塩素装置
JP2003019474A (ja) * 2001-07-06 2003-01-21 Nkk Corp 樹脂被覆金属管の処理方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4836276A (ja) * 1971-09-13 1973-05-28
JPH0881685A (ja) * 1994-09-14 1996-03-26 Mitsui Sekitan Ekika Kk 廃プラスチックスの処理方法
WO1996040839A1 (fr) * 1995-06-07 1996-12-19 Ngk Insulators, Ltd. Procede de production de petrole a bas point d'ebullition a partir de residus de matieres plastiques contenant du polyester phtalique et/ou du chlorure de polyvinyle
JP2000086807A (ja) * 1998-09-14 2000-03-28 Nkk Corp 大型プラスチック含有廃棄物の処理装置及び処理方法
JP2000256687A (ja) * 1999-03-11 2000-09-19 Kawasaki Steel Corp プラスチックの処理方法および該処理方法で得られる固体燃料、鉱石用還元剤
JP2001089595A (ja) * 1999-09-27 2001-04-03 Kubota Corp プラスチック溶融脱塩素装置
JP2003019474A (ja) * 2001-07-06 2003-01-21 Nkk Corp 樹脂被覆金属管の処理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008141655A1 (en) * 2007-05-17 2008-11-27 Nordbiochem OÜ A process of conversion of waste polymeric materials into hydrocarbon fractions
CN108101250A (zh) * 2018-02-22 2018-06-01 叶丛杰 一种新型造纸污染减排装置
CN108101250B (zh) * 2018-02-22 2018-11-13 江山宏力产品设计有限公司 一种造纸污染减排装置

Similar Documents

Publication Publication Date Title
US8828191B2 (en) Process and apparatus for decomposition of polymer products including those containing sulphur such as vulcanised rubber tyres and recovery of resources therefrom
US20120289753A1 (en) Method and installation for complete recycling through depolymerisation
AU2001281198A1 (en) Low energy method of pyrolysis of hydrocarbon materials such as rubber
WO2002014742A1 (en) Low energy method of pyrolysis of hydrocarbon materials such as rubber
US7802528B2 (en) Pyrolysis apparatus
US20080081935A1 (en) Method and apparatus for continuous decomposing waste polymeric materials
KR20110054019A (ko) 전기전자장비의 폐기
KR101685033B1 (ko) 인쇄회로기판 처리용 폐기물처리 시스템
EP0653252B1 (en) Process and system for the remediation of soil containing waste material
WO2003042289A1 (en) Method and apparatus for the processing of carbon-containing polymeric materials
WO2020237393A1 (en) Thermal remediation system and process
WO2005028548A1 (ja) 樹脂成分の分解方法及び分解装置、並びに触媒添加方法及び触媒添加装置
US7147681B1 (en) Method and device for removing recoverable waste products and non-recoverable waste products
KR100868725B1 (ko) 환경친화적 폐기물 처리 및 청정 합성가스 생산 방법
CA2684383A1 (en) Method and device for the thermal decomposition of an initial material with foreign particles
JP2006321851A (ja) 熱分解油化装置及び方法、熱分解廃棄物処理装置、有価金属回収装置
JP4460927B2 (ja) 樹脂成分の分解方法
KR100695457B1 (ko) 폐유와 슬러지로부터 청정 개질가스 및 재활용 자재제조방법 및 장치
JP2004010673A (ja) 炭化システム
JP4247789B2 (ja) 樹脂成分の分解方法
PL199261B1 (pl) Sposób ciągłego przetwarzania odpadów organicznych, zwłaszcza silnie zanieczyszczonych odpadowych tworzyw sztucznych oraz zużytych opon pojazdów mechanicznych oraz urządzenie do ciągłego przetwarzania odpadów organicznych, zwłaszcza silnie zanieczyszczonych odpadowych tworzyw sztucznych oraz zużytych opon pojazdów mechanicznych
RU2391359C1 (ru) Способ термической переработки изношенных шин
JP2013103998A (ja) 廃プラスチック接触分解油化装置及び接触分解油化方法
JP2005306974A (ja) プラスチック油化装置及び方法
JP2005263978A (ja) 触媒添加方法及び触媒添加装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NA NI NO NZ OM PG PL PT RO RU SC SD SE SG SK SL SY TM TN TR TT TZ UA UG US UZ VC YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IT MC NL PL PT RO SE SI SK TR BF CF CG CI CM GA GN GQ GW ML MR SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase