WO2005024807A1 - ディスク原盤の製造方法、ディスク原盤の製造装置、ディスク原盤の移動距離差検出方法、およびディスク原盤の移動距離差検出装置 - Google Patents

ディスク原盤の製造方法、ディスク原盤の製造装置、ディスク原盤の移動距離差検出方法、およびディスク原盤の移動距離差検出装置 Download PDF

Info

Publication number
WO2005024807A1
WO2005024807A1 PCT/JP2004/013180 JP2004013180W WO2005024807A1 WO 2005024807 A1 WO2005024807 A1 WO 2005024807A1 JP 2004013180 W JP2004013180 W JP 2004013180W WO 2005024807 A1 WO2005024807 A1 WO 2005024807A1
Authority
WO
WIPO (PCT)
Prior art keywords
master
disk
moving
disc
movement
Prior art date
Application number
PCT/JP2004/013180
Other languages
English (en)
French (fr)
Inventor
Masahiko Tsukuda
Shinya Abe
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2005513723A priority Critical patent/JPWO2005024807A1/ja
Priority to US10/570,962 priority patent/US7361456B2/en
Priority to EP04772919A priority patent/EP1667130A4/en
Publication of WO2005024807A1 publication Critical patent/WO2005024807A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/085Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam into, or out of, its operative position or across tracks, otherwise than during the transducing operation, e.g. for adjustment or preliminary positioning or track change or selection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S430/00Radiation imagery chemistry: process, composition, or product thereof
    • Y10S430/146Laser beam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49769Using optical instrument [excludes mere human eyeballing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/53039Means to assemble or disassemble with control means energized in response to activator stimulated by condition sensor
    • Y10T29/53061Responsive to work or work-related machine element

Definitions

  • the present invention relates to a method of manufacturing a disk master, which is useful when a signal is spirally recorded on a master such as an optical disk with high precision, a method of detecting a moving distance difference of the disk master, an apparatus for manufacturing a disk master, and a disk master.
  • the present invention relates to a device for detecting a difference in the moving distance of a disc, a method for inspecting a master disc, and an apparatus for inspecting a master disc.
  • the manufacturing process of an optical disc involves exposing a master disc coated with photoresist using a master disc recording device using a laser or electron beam as a source, and developing the exposed master disc.
  • a process of manufacturing an optical disc master with an uneven pattern such as information pits and grooves formed on the surface, a process of manufacturing a metal mold called a stamper to which the uneven pattern is transferred from the optical disc master, and a process of manufacturing a resin using the stamper
  • FIG. 17 shows a general example of an electron beam recording apparatus using an electron beam as a recording beam as an example of a master recording apparatus for recording a pattern such as information pits and grooves of an optical disc.
  • the electron beam recording device has an electron beam source 201 for generating an electron beam, And an electron optical system 202 for recording an information pattern on the resist master 210 in accordance with an input information signal.
  • the electron column 203 has a structure provided in the vacuum chamber 211.
  • the electron beam source 201 has a filament that emits electrons by passing a current, an electrode that confines the emitted electrons, an electrode that extracts and accelerates the electron beam, and emits electrons from one point. Can be.
  • the electron optical system 202 includes a lens 204 for converging the electron beam, an aperture 205 for determining the beam diameter of the electron beam, and an electrode 206 for deflecting the electron beam according to an input information signal. 207, a shielding plate 208 for shielding the electron beam directed by the electrode 206, and a lens 209 for converging the electron beam on the surface of the resist master 210.
  • the resist master disk 210 is held on the rotation device 211, and is horizontally moved by the horizontal movement device 211 together with the rotation device 211. By rotating the resist master 210 horizontally while rotating it, it becomes possible to irradiate the resist master 210 spirally with the electron beam, and the information signal of the optical disk can be spirally recorded on the master. .
  • a focus adjusting dalid 214 is provided at about the same height as the surface of the resist master 210. This is provided to adjust the focal position of the lens 209 in order to converge the electron beam on the surface of the resist master 210.
  • An electron beam is irradiated on the focus adjustment grid 214, and the detector detects reflected electrons reflected by the focus adjustment grid 214 and secondary electrons emitted by the detector.
  • the grid 214 monitors the grid image, and the focal position of the lens 209 can be adjusted according to the appearance of the image.
  • the electrode 206 moves the electron beam horizontally and is almost perpendicular to the moving direction of the device 212. It is provided to deflect in the direction. Depending on the signal input to the electrode 206, the electrode 206 deflects the electron beam toward the shield plate 208, thereby irradiating the resist master 210 with the electron beam. It is possible to select whether or not to do so, and record information pit patterns and the like on the resist master 210.
  • the electrode 207 is provided so as to deflect the electron beam in a direction substantially perpendicular to the electrode 206, and in accordance with a signal inputted to the electrode, deflects the electron beam to the horizontal movement device 212. It is possible to deflect in substantially the same direction as the moving direction.
  • the moving direction of the horizontal moving device 212 corresponds to the radial direction of the resist master disk 210 to be recorded, and the signal input to the electrode 207 can correct the fluctuation of the track pitch of the optical disk, etc. It becomes possible.
  • Screw feed type that sends 3 or a swing arm that sends with a curvature by arm 4 3 while rotating the resist master 4 2 around one point 4 1 as shown in Fig. 19
  • Some have structures such as formulas.
  • a position detecting device of the horizontal moving device 212 used for improving the accuracy and the like a length measuring device such as a laser interferometer is mainly used.
  • a laser interferometer or the like is used to irradiate a laser from outside to the target provided on the horizontally moving device 212, and to interfere with the reflected light.
  • the position of the horizontally moving device 211 is measured from a pattern or the like, and the amount of deviation from the desired position is detected.
  • the trajectory of the electron beam accompanying the movement of the horizontal movement device 2 12 is a dotted line shown in FIG. Since this trajectory has an arc shape centered on the point 401, the trajectory deviates from a radial line of the resist master 402. The larger this deviation, the larger the deviation of the track pitch.
  • the track pitch is narrower at the edge of the resist master disc 402 than near the center.
  • the track pitch may fluctuate due to vibration or the like. Fluctuations have also been a problem when creating large-capacity next-generation optical discs.
  • FIG. 20 shows a cross section of an electron beam recording apparatus including the screw feed type horizontal movement device 2 12 shown in FIG. A horizontal moving device 2 1 for the part where the laser interferometer 3 05 is fixed (for example, in the case of an electron beam recording device, the bottom of the vacuum chamber 300 where the horizontal moving device 2 12 base is fixed).
  • the position correction of 2 is possible, the relative positional relationship between the recording beam focusing device (for example, an electron column in the case of an electron beam recording device, the electron column) and the horizontal movement device 211 that actually focuses the recording beam is corrected. It may not be possible to do so. In that case, it is not sufficient to improve the feeding accuracy of a spiral pattern such as an optical disk formed by irradiating the resist master 210 with a recording beam. Disclosure of the invention
  • the present invention provides a method of manufacturing a master disk, a manufacturing apparatus of a master disk, and a moving distance of the master disk, which realizes accurate master disk feed accuracy using a horizontally moving device that moves with a curvature. It is an object of the present invention to provide a difference detection method, a disk master moving distance difference detection device, a disk master inspection method, and a disk master inspection device.
  • Another object of the present invention is to provide a method of manufacturing a master disk, a manufacturing apparatus of a master disk, and an inspection of a master disk, which can grasp a relative positional relationship between a horizontally moving device and a recording beam focusing device. ⁇ Method, It is intended to provide an inspection device for the master disk.
  • a first aspect of the present invention provides a step of rotating a disk master, Moving the disk master,
  • a second invention of the present invention is the method of manufacturing a master disk according to the first invention, wherein the movement of the master disk is a revolution around a rotation center different from a center point of the master disk.
  • the rotation of the disk master is performed at one end of an arm having a longitudinal shape, and the revolution of the disk master is a revolution around a rotation center of the arm.
  • a second method according to the present invention for producing a disk master of the present invention wherein the reading of the movement distance on the locus of the center point of the disk master is performed using a predetermined pattern provided on an end face of the firmware.
  • the movement distance on the locus of the center point of the disc master is read by applying a laser beam to a hologram pattern provided on the end face of the arm and having a shape similar to the locus of the center point.
  • a third method of manufacturing a master disc according to the present invention which is performed by counting the interference fringes of the diffraction light by irradiation.
  • the movement distance on the locus of the center point is read by counting a magnetic pattern provided on an end face of the arm with a magnetic head. This is a method for manufacturing a master.
  • a linear hologram pattern provided on an end face of the arm is formed by a laser beam.
  • a third method of manufacturing a master disc according to the present invention which is performed by measuring the interval between interference fringes of the diffracted light by irradiating the master disc.
  • a seventh aspect of the present invention is the method of manufacturing a master disk according to the sixth aspect of the present invention, wherein the measurement of the interval between the interference fringes is performed based on a limit point of rotation of the arm.
  • An eighth aspect of the present invention is the method for manufacturing a master disc according to the first aspect of the present invention, wherein the step of controlling the predetermined manufacturing parameter is a step of controlling a position of beam irradiation on the master disc.
  • a ninth aspect of the present invention is the method for manufacturing a master disc according to the eighth aspect of the present invention, wherein the control of the beam irradiation position is performed by deflecting an electron beam by an electric field.
  • a tenth aspect of the present invention is the manufacturing method of the master disc according to the eighth aspect of the present invention, wherein the control of the beam irradiation position is performed by deflecting the laser beam using AOD.
  • An eleventh aspect of the present invention is the method for manufacturing a master disc of the eighth aspect of the present invention, wherein the control of the beam irradiation position is performed by deflecting the laser light using EOD.
  • the beam irradiation position is controlled by deflecting a laser light emitted from the laser light source by deflecting the laser light source using a piezoelectric element.
  • a thirteenth aspect of the present invention is the method of manufacturing a master disc according to the first aspect, wherein the step of controlling the predetermined production parameter is a step of controlling the moving speed.
  • the step of controlling the predetermined manufacturing parameter is a step of controlling the rotation speed. Is the way.
  • a fifteenth aspect of the present invention is the method of manufacturing a master disc according to the fifteenth aspect of the present invention, wherein the rotation speed is controlled based on a measured value of an interval between interference fringes of the diffracted light, a recording linear velocity, and a feed pitch. It is.
  • a sixteenth aspect of the present invention provides a rotation device for rotating a disk master
  • a moving distance reading device for reading a moving distance on a trajectory of a center point of the disk master accompanying the movement
  • a detecting device for detecting a difference between a moving distance on the locus of the center point read by the moving distance reading device and a moving distance on a straight line of the center point of the disk master accompanying the movement;
  • control device for controlling a predetermined manufacturing parameter based on the detection result.
  • An eighteenth aspect of the present invention provides a rotation device for rotating a disk master, a moving device for moving the disk master,
  • a moving distance reading device for reading a moving distance on a locus of a center point of the disk master accompanying the movement
  • a moving distance difference detecting device for a master disc comprising: a detecting device for detecting a difference from the moving distance.
  • a nineteenth aspect of the present invention provides a step of rotating the disk master
  • a method of manufacturing a master disk comprising controlling predetermined manufacturing parameters based on the read movement distance of the master disk.
  • a twenty-fifth aspect of the present invention is the method for manufacturing a master disc of the nineteenth aspect, wherein the reference is provided on the beam irradiation device.
  • a twenty-first aspect of the present invention provides a rotating device for rotating a disk master, a moving device for moving the disk master,
  • a beam irradiation device for irradiating the disk master with a beam a movement distance reading device for reading a movement distance of the disk master, and a reference for reading the movement distance having a predetermined relationship with the beam irradiation device.
  • the reading of the moving distance is performed by reading a distance between the reference and the master disc.
  • a disk master manufacturing apparatus wherein a predetermined manufacturing parameter is controlled based on the read distance of the read disk master.
  • a twenty-second aspect of the present invention includes a step of rotating the disk master
  • a method for inspecting a master disc comprising: a step of comparing a distance to be moved by the master disc with a movement distance read in the reading step in a predetermined period.
  • a twenty-third aspect of the present invention provides a rotating device for rotating a disk master, a moving device for moving the disk master,
  • a beam irradiation device that irradiates the beam onto the disc master
  • a movement distance reading device that reads a movement distance of the disc master from a reference having a predetermined relationship with the beam irradiation device
  • An apparatus for inspecting a master disk comprising: a comparison device that compares a distance to be moved by the master disk with the read movement distance during a predetermined period.
  • a twenty-fifth aspect of the present invention provides a rotation device for rotating a disk master, a moving device for moving the disk master,
  • An apparatus for manufacturing a master disc comprising: a controller that controls a predetermined manufacturing parameter based on a position of the master disc.
  • a method for manufacturing a master disk which realizes accurate feeding accuracy of a master disk using a horizontal movement device that moves with a curvature, a manufacturing apparatus for a master disk, a method for detecting a difference in moving distance of a master disk, Device for detecting difference in moving distance of disk master, inspection method of disk master, and disk A master disc inspection apparatus can be provided.
  • FIG. 1 is a diagram showing an example of a master disc manufacturing apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view of a horizontally moving device, which is a part of the disk master manufacturing apparatus of the present invention, as viewed from the recording beam focusing device side.
  • FIG. 3 is a schematic diagram showing Embodiment 1 of a recording point fluctuation detection device which is a part of the disk master manufacturing apparatus of the present invention.
  • FIG. 4 is a diagram illustrating the irradiation position of the recording beam on the master and the trajectory of the recording point to be measured in the method of manufacturing a master disk according to the present invention.
  • FIG. 5 is a diagram showing an example of a recording point fluctuation detecting device which is a component of the disc master manufacturing apparatus of the present invention.
  • FIG. 6 is a diagram showing an example of a recording point fluctuation control device which is a part of the disk master manufacturing apparatus of the present invention.
  • FIG. 7 is a diagram showing an example of a laser recording apparatus which is a part of the disc master manufacturing apparatus of the present invention.
  • FIG. 8 is a diagram showing the operation of AOD which is a part of the disk master manufacturing apparatus of the present invention.
  • FIG. 9 is a diagram showing the operation of EOD which is a part of the disk master manufacturing apparatus of the present invention.
  • FIG. 10 is a diagram showing a structure of a semiconductor laser light source which is a part of the disk master manufacturing apparatus of the present invention.
  • FIG. 11 is a diagram showing an example of a recording point fluctuation detecting device which is a part of the disk master manufacturing apparatus according to the second embodiment of the present invention.
  • FIG. 12 is an enlarged view showing the movement of the master moving amount detection device in the method of manufacturing a master disk according to the present invention.
  • FIG. 13 is a diagram showing an example of a recording point fluctuation detecting device provided with a plurality of scales and a scale information detecting device, which is a part of the disk master manufacturing apparatus of the present invention.
  • FIG. 14 is an enlarged view of a master disk moving amount detection device which is a part of the disk master manufacturing apparatus of the present invention.
  • FIG. 15 is a diagram showing an example of a recording point fluctuation detecting device in a horizontally moving horizontal moving device which is a part of the disk master manufacturing apparatus of the present invention.
  • FIG. 16 is a cross-sectional view of a disk master manufacturing apparatus according to Embodiment 3 of the present invention.
  • Fig. 17 is a diagram showing the configuration of a conventional disk master manufacturing apparatus.
  • Fig. 18 is a diagram showing an example of a horizontally moving device that moves linearly in a conventional disk master manufacturing apparatus.
  • Fig. 19 shows an example of a horizontally moving device that moves with curvature in a conventional disk master manufacturing device.
  • Figure 20 is a cross-sectional configuration diagram of a conventional disk master manufacturing apparatus that uses a horizontally moving device that moves linearly.
  • FIG. 1 shows an electron beam recording device 500 as an example of a disc master manufacturing apparatus according to the first embodiment.
  • the electron beam recording device 500 converges the electron beam source 501 for generating an electron beam, and the emitted electron beam to a resist master 510 corresponding to the disk master of the present invention as an example, and is input.
  • An electron column 503 including an electron optical system 502 for recording an information pattern on a resist master 5101 in accordance with an information signal is provided in a vacuum chamber 513. Structure.
  • the electron beam source 501 has a filament that emits electrons by passing an electric current, an electrode that confines the emitted electrons, an electrode that draws out and accelerates the electron beam, and can emit electrons from a single point. it can.
  • the electron optical system 502 includes a lens 504 that converges the electron beam, an aperture 505 that determines the beam diameter of the electron beam, and an electron according to an input information signal. Electrodes 506, 507 that deflect the beam, a shielding plate 508 that shields the electron beam deflected by the electrode 506, a lens 509 that focuses the electron beam on the surface of the resist master 510 have.
  • the resist master 5110 is held on the rotation device 511 and is horizontally moved together with the rotation device 511 by the horizontal movement device 512 corresponding to the movement device of the present invention as an example.
  • the resist master 5110 By rotating the resist master 5110 horizontally while rotating it, it becomes possible to irradiate the resist master 5110 spirally with an electron beam, and the information signal of the optical disk is spirally transferred to the resist master 5110. Can be recorded.
  • the electrode 506 is provided so as to deflect the electron beam in a direction substantially perpendicular to the direction of movement of the horizontally moving device 512.
  • the electrode 506 deflects the electron beam to the shielding plate 508 side in accordance with the signal input to the electrode 506, thereby determining whether or not to irradiate the resist master 510 with the electron beam. It is possible to record information pit patterns and the like on the resist master 510.
  • the electrode 507 is provided so as to deflect the electron beam in a direction substantially perpendicular to the electrode 506, and according to a signal input to the electrode, deflects the electron beam horizontally. It is possible to deflect in substantially the same direction as the moving direction.
  • the moving direction of the horizontal moving device 512 corresponds to the radial direction of the resist master 510 to be recorded, and the signal input to the electrode 507 corrects the deviation or fluctuation of the track pitch of the optical disk. It becomes possible.
  • a recording point fluctuation detecting device 514 (which corresponds to the moving distance reading device of the present invention as an example) for measuring a relative positional relationship between the electronic column 503 and the horizontal moving device 512 is an electronic column. 503 (beam irradiation device).
  • the horizontal movement device 5 1 2 is connected to the electron column 5 0 3 side as shown in Fig. 2.
  • the arm 602 extends around the center axis 601, the rotation device 603 is held at one end of the arm 602, and the arm 602 A weight 604 having substantially the same mass as the rotation device 603 is placed on the opposite end of the rotation device 603 of No. 2 and a weight balance is taken like a balance.
  • the position where the electron beam of the resist master 510 is irradiated by the rotation of the arm 602 around the center axis 601 is sent. That is, the resist master 5101 revolves around the central axis 6101 while rotating by the rotation device 603.
  • the center position 606 of the electron column 503 (the position where the electron beam is irradiated) is indicated by a dotted line in FIG. Thus, it moves along an arc centered on the central axis 601 through the center point of the rotation device 603.
  • the recording point change detection device 5 14 for measuring the relative positional relationship between the electron column 503 and the horizontally moving device 5 12 is shown in FIG. Show.
  • the recording point fluctuation detection device 5 14 is a master disk movement amount detection device 104 having a laser light source 101, a laser light receiving unit 102, and an interference pattern measuring device 103, and a predetermined pattern of the present invention. It has a scale 105 on which a hologram pattern, which is an example of the above, is formed.
  • the master moving amount detecting device 104 is connected to the electronic column 503, and the scale 105 is connected to the horizontal moving device 106.
  • the resist master disk 108 is held on the rotation device 109, and the rotation device 109 is provided on the horizontal movement device 106.
  • the horizontal movement device 106 rotates about the rotation center 107 and moves the rotation device 109 with a curvature.
  • the scale 105 is provided on the surface of the side surface portion 111 having a shape similar to the rotation trajectory 110 of the horizontal movement device 106. That is, the side part 1 1 1 is formed on an arc concentric with the rotation trajectory 110 around the rotation center 107.
  • the hologram pattern provided on the scale 105 is irradiated with laser light, and horizontal movement is performed by counting the light and dark patterns of interference fringes generated by causing the reflected diffracted light to interfere with the interference pattern measuring device 103.
  • the position of device 106 can be detected.
  • Information from the master moving amount detecting device 104 corresponding to the detecting device of the present invention as an example is input to the recording point moving amount correcting device 112.
  • the recording point change detection device 5 14 operates as follows. That is, the moving distance difference detection method of the resist master 108 is performed by the following operation.
  • FIG. 4 shows the trajectory of the position to be irradiated with the recording beam on the master and the trajectory of the recording point accompanying the movement of the resist master 701 having the curvature.
  • the track pitch of the optical disk recorded on the resist master 70 1 is
  • the position on orbit 705 By irradiating a laser beam to 5 and measuring its interference pattern, the position on orbit 705 can be measured. From the measured position on the orbit 705, the position on the linear trajectory 702 to be actually measured can be obtained from the rotation center 703 on the trajectory 705 and the linear trajectory 702. Needs to be corrected.
  • the rotation of the horizontal movement device 106 is performed.
  • the distance from the center of rotation 107 to the irradiation position of the recording beam is r (m), and the distance from the center of rotation 107 of the horizontal movement device 106 to the scale 105 as shown by reference numeral 114.
  • R (m) and assuming that the horizontal moving device 106 moves by the minimum unit that the scale 105 can detect as shown by reference numeral 115, the moving angle when the moving device 106 moves is 0 (rad), the scale 1
  • the position where the recording beam is actually irradiated is a position of 2 rcos [( ⁇ ) / 2] from the center of the master, which is different from the measured value of the scale 105. Therefore, the shift amount is corrected in the recording point movement amount correction depth 1-2.
  • the moving distance can be measured at equal intervals by R0.
  • the interference fringes are counted each time the scale moves by R ⁇ .
  • the position where the recording beam is irradiated is 2 rc os [( ⁇ - ⁇ ) / 2] from the center of the master. ⁇ ( ⁇ - ⁇ ) / 2 ⁇ -cos ⁇ [ ⁇ - ( ⁇ -1) ⁇ ] / 2 ⁇ ]. Therefore, the shift amount can be corrected by calculating these ratios in the recording point movement amount correction device 112.
  • a reference point (origin) must be provided in order to correct the shift amount with the recording point movement amount correction device 112.
  • the reference point can be determined in the following way.
  • the range in which the horizontal movement device 106 can move is mechanically limited by, for example, a limit 116.
  • the origin of the recording point movement amount correction device 112 is checked each time, and if the origin is shifted, the origin is reset and the interference pattern from that position is counted.
  • a laser interferometer for measuring the reference point is installed in the vacuum chamber, It is arranged so that the distance to the side surface of the flat moving device can be measured. Measure the distance from the horizontal moving device when the horizontal moving device moves to the reference point. When the specified distance is reached, the origin of the recording point movement amount correction depth is checked each time, and if the origin is deviated, the origin is reset and the interference pattern from that position is counted.
  • the movement distance of the horizontal movement device can be measured more accurately.
  • the origin is off, reset the origin, and if this configuration is adopted, the distance from the rotation center 1 07 of the horizontal movement device 106 to the scale 105 and the rotation center 107 will be recorded.
  • the resolution of the scale 105 can be improved by the distance r to the irradiation position of the beam and itR / r.
  • the track pitch fluctuation of the recorded resist master 108 can be monitored, so that the quality of the recorded master can be determined during recording.
  • the quality of the master optical disc can be determined as follows.
  • the interval between the interference fringes detected by the laser receiving unit 102 is determined by the wavelength of the laser beam and the lattice interval of the hologram pattern formed on the scale 105. Since the interval between adjacent fringes determines the resolution of the measurable recording point fluctuation, if the fringe interval is set so as to be less than the allowable track pitch deviation, the track pitch deviation Is less than or equal to the allowable value. If the difference signal between the position information of the recording point fluctuation detecting device 5 14 when actually recording the resist master 1 08 and the desired position information is continuously monitored, the resist master 1 0 8 It is possible to estimate the judgment as to whether or not the track pitch deviation can be manufactured within the allowable value.
  • a hologram scale is used to detect the amount of master movement.
  • a similar effect can be obtained by using a scale 805 as a magnetically recorded pattern and using a magnetic head 801 to read the magnetization pattern of the scanneret 805.
  • Figure 6 shows an example.
  • the difference between the actual relative position between the electron column 903 and the horizontal moving device 912 detected by the recording point fluctuation detection device 914 and the desired relative position when recorded on the master. Is calculated by the error signal detection device 915 corresponding to the comparison unit of the present invention as an example. That is, the difference between the moving distance of the center point of the resist master 910 on the trajectory and the moving distance of the center point of the resist master 910 on the straight line is determined. Since the difference between the two can be determined in advance, the distance on the trajectory may be determined, and the correspondence may be tabulated in advance to determine the difference. The information of the track pitch observed from this error signal is fed back to the electron beam deflection electrode 907.
  • the electron beam deflecting electrode 907 can deflect the electron beam passing through the center of the electrode in the same direction as the direction of movement of the horizontal displacement device 912, which was measured by the error signal detection device 915.
  • the error is offset by deflecting the electron beam.
  • FIG. 7 shows an example of the laser recording apparatus 1500.
  • Laser light source 1
  • the laser beam emitted from 501 is transmitted through an AOD (acousto-optic deflector) 1502, and then the beam is bent by a mirror 1503 toward a resist master 1507, resulting in a recording beam.
  • the focusing device 1504 narrows down the resist on the master master 1507.
  • the resist master 1507 is held by the rotation device 1508.
  • the recording beam focusing device 1504 is fixed to a swing arm 1509, and by rotating the swing arm 1509 about the rotation axis 15010, the resist master 1505 is formed. The position relative to 7 is moved with a curvature.
  • a scale 1505 is provided on the side surface of the recording beam focusing device 1504, and the scale information detecting device 1506 detects the information of the scale 1505.
  • the scale 1505 and the scale information detecting device 1506 detects the information of the scale 1505.
  • the AOD 1502 is capable of deflecting the laser light in the feed direction of the swing arm 1509.
  • Figure 8 shows the structure of AOD.
  • a ⁇ D element 1 A ⁇ D element 1
  • Ultrasonic waves are input to transducer 61 from transducer 1602.
  • the ultrasonic waves generate a refractive index distribution in the element, forming a diffraction grating.
  • laser light 1603 is input there, diffraction occurs. Since the diffraction angle of the diffracted light 1605 changes depending on the signal input to the AOD element 1601, the laser beam 1603 can be deflected according to the input signal. The laser beam thus deflected is used as a recording beam.
  • the actual relative positional relationship between the laser beam measured by the scale 1505 and the scale information detecting device 1506 and the resist master 1507, and AOD 1502 is driven when an error occurs with the positional relationship of This makes it possible to correct the error.
  • an AOD as shown in FIG. 8 but also an EOD element 1701 as shown in FIG. 9 can be used as a recording beam deflecting device.
  • the refractive index distribution in the EOD element 1701 can be controlled by a signal input from the controller 1702 to the EOD element 1701, and the laser beam 1703 can be deflected in the direction 1704.
  • the direction 1803 of the laser beam may be deflected in the direction 1804 by moving the direction of the semiconductor laser 1801 used as a light source with a piezoelectric element 1802 or the like.
  • FIG. 11 shows an example of a recording point fluctuation detecting device which constitutes a part of a disk master manufacturing apparatus according to Embodiment 2 of the present invention.
  • the resist master 1006 is held on a rotation device 1007, and the rotation depice 1007 is provided on a horizontal movement device 1004.
  • the horizontal movement device 1004 rotates about the rotation center 1005, and moves the rotation device 1007 with a curvature.
  • a scale 1001 that is linear and has a longitudinal direction substantially the same as the circumferential direction of the resist master 1006, and a hologram grid engraved at substantially the same interval is used as a side surface 1003 having a shape similar to the rotation orbit 1008 of the horizontal movement device 1004. It is provided to be in contact with.
  • the contact point between the scale 1001 and the horizontal movement device 10.04 is provided on a straight line connecting the rotation center 1005 of the horizontal movement device and the rotation center 1013 of the resist master 1006 as shown in FIG.
  • the scale 1001 is provided with a scale information detection device 1002 having a laser light source, a laser light receiving unit, and an interference pattern measuring device on the rotation device 1007 so as to face the surface of the scale 1001.
  • a scale information detection device 1002 having a laser light source, a laser light receiving unit, and an interference pattern measuring device on the rotation device 1007 so as to face the surface of the scale 1001.
  • scale 1001 and scale information detection device 10.02 1 One master disc movement amount detection device is formed.
  • the output signal of the master disc displacement detection device is a recording point displacement compensation device 1
  • the scale information detecting device 1002 is connected to the electronic column 503, and the scale 1001 is connected to the horizontal moving device 1004.
  • the scale information detection device 1002 irradiates a hologram pattern provided on the scale 1001 with a laser beam, and interferes the reflected diffracted light to obtain a light-dark pattern of interference fringes, which is used as an interference pattern measurement device.
  • the position can be detected by counting with.
  • Fig. 12 is an enlarged view of the movement of the master disc movement detection device.
  • a lattice-shaped hologram pattern is formed on the scale 1101, and the scale information detection device 1102 irradiates a laser beam and causes the diffracted light to interfere, thereby causing interference fringes to be generated. Detected by the laser receiving unit in 02.
  • the position of the horizontal movement device 1004 is measured by counting the brightness of the interference fringes.
  • the scale information detection device 1102 moves to the position 1105. To go. At this time, the scale information detection device 1102 at the scale 111 and the position 1105 oppose each other at an angle as shown in FIG.
  • the rotation center of the resist master 106 is indicated by reference numeral 1108, which is the direction indicated by the radial direction 1106 of the resist master 106.
  • the track pitch needs to be recorded at equal intervals in this direction. However, since the trajectory of the recording beam irradiated on the resist master 1106 passes through the trajectory 1107, correction is required.
  • the scale 1101 is approximately on a straight line connecting the rotation center 1108 of the resist master 1006 and the rotation center 1109 of the horizontal movement device 1004.
  • the position of the laser beam applied to the scale 1101 is also the orbit of the horizontal movement device 1004, as shown in the orbit 1110. Since it moves with the curvature of a locus similar to that of 1103 or the recording beam locus 1107, the interval between the interference fringes also increases as the inclination between the scale 1101 and the scale information detecting device 1102 increases. , It is getting wider.
  • the rate at which the interference fringes become wider is the same as the rate of change in the amount of movement of the resist master disk 106 in the radial direction 1106 due to the curvature due to the curvature of the recording beam.
  • the horizontal moving device 100 4. is driven as described above, the track pitch of the optical disk is also recorded at equal intervals. '
  • the reference point (origin) of the scale can be determined by the following method.
  • the range in which the horizontal movement device 104 can move is mechanically limited, and the origin is set at the limit point of the movement range.
  • a laser interferometer for measuring the reference point, etc. will be provided in the vacuum chamber and arranged so that the distance to the side surface of the horizontal moving means can be measured. Measure the distance from the horizontal moving device when the horizontal moving device moves to the reference point, and use it as the origin when it reaches the specified distance.
  • the scale 1101 moves in the direction of the scale information detecting device 1102 as shown in the position 1105. Because of the inclination, the length and width of the scale 1101 are physically restricted. In addition, if the inclination between the grating pattern and the laser and the laser light receiving portion is too large, interference fringes cannot be detected, which is also restricted.
  • the distance from the center of rotation 1 1 0 9 of the horizontal movement device 1 0 4 to the contact point between the scale 1 1 0 1 and the horizontal movement depth 1 0 4 0 is 50 cm, and the distance from the center of rotation 1 1 0 9 is registered.
  • Master 1 0 0 6 Rotation center 1 1 0 8 Assuming that the distance is 40 cm and the recording radius of the optical disk to be recorded on the resist master 1006 is from 0 mm to 60 mm, the size required for the scale 1101 is the same as the horizontal movement device 1004 as the length. Approximately 7.5 cm is required from the point of contact, and the minimum width is 5.5 mm.
  • the scale information detecting device 1102 needs a stroke to detect the 5.5 mm-wide scale information. Also, the slope for detecting the information of the scale 1101 by the scale information detecting device 1102 must allow 0.15 rad.
  • measurement can be performed by providing a plurality of scales 1201, 1202 and scale information detection devices 1203, 1204.
  • the resist master 1208 is held on a rotation device 1209, and the rotation device 1209 is provided on a horizontal movement device 1206.
  • the horizontal movement device 1206 rotates around the rotation center 1207, and moves the rotation device 1209 with a curvature.
  • the scale 1201 and the scale 1202, which are linear and have the same direction as the surface of the resist master 1208 and the hologram gratings are engraved at almost the same interval, are used as horizontal movement devices 1206. It is provided so as to be in contact with a side surface portion 1255 having substantially the same curvature as the rotational orbit 1 2
  • the point of contact between the scale 1 201 and the horizontal movement device 1 206 is as shown in Fig.
  • the rotation center 1 207 of the horizontal movement device 1 206 and the rotation center 1 2 16 of the resist master 1 208 are connected as shown in Fig. 13. It is provided on the connecting straight line.
  • scale 1 202 is scale 1 201 It is provided at a position shifted in the R direction, and is provided at a position also shifted in the moving direction of the horizontal movement device 126.
  • Each scale is provided so that a part of each scale overlaps when viewed from the surface of the master. How to overlap the two scales is such that the length of the scale 1201 extends to the straight line connecting the point of rotation of the scale 122 and the contact point of the side surface 125 and the center of rotation 127.
  • a scale information detection device 123 having a laser light source, a laser light receiving unit, and an interference pattern measuring device is provided so as to face the surface of the scale 1201.
  • the scale 122 is provided with a scale information detecting device 124.
  • the scale 1 and the scale information detection device 1 and 2 form a master movement amount detection device, and the scale 1 and the scale information detection device and the scale information detection device do the master movement. It forms a mass detection device.
  • the output signal of each master moving distance detection device is input to the master moving distance detection signal selection device 1 2 1 1 and one of the output signals of each master moving distance detecting device is selected, and the recording point moving amount is selected. Input to the correction device 1 2 1 2.
  • the scale information detection devices 1 203 and 1 204 are connected to the electron column 503, and the scales 1 201 and 1 202 are connected to the horizontal movement device 1 206. I have.
  • the scale information detection devices 1203 and 1204 irradiate the hologram patterns provided on the scales 1201 and 1222 with laser light and interfere with the reflected diffracted light.
  • the position of the horizontal movement device 126 can be detected by counting the bright pattern of the generated interference fringes with an interference pattern measuring device.
  • the recording point variation detection method using the master disc movement amount detection device consisting of the scale 1 201 and the scale information detection device 1 203 is as described above. is there.
  • Figure 14 shows an enlarged view of the master disc movement detection device.
  • the recording beam is moved from the rotation center 13 08 of the resist master 12 08 to the rotation center 13 0 9 of the horizontal movement device 12 06, the scale 13 05 and the horizontal movement depth 12 06. While moving to the position 1 3 1 4 that intersects the straight line connecting the contacts 1 3 1 3 and the locus 1 3 0 7, the master movement amount detection consisting of the scale 1 3 0 1 and the scale information detection device 1 3 0 2
  • the amount of movement of the resist master 1208 is detected by the device. This is because, as described above, the interval between the interference fringes obtained by the scale information detection device 1302 is proportional to the movement interval in the radial direction 1106 that must be measured on the resist master 1208. Because of this relationship, if the horizontal movement device 1206 is driven so that the intervals between the interference fringes are equal, the track pitches recorded on the resist master 128 will also be equal.
  • the measured interval between the interference fringes and the reference interval determined from the recording linear velocity and the feed pitch to the resist master 1208 are compared.
  • the horizontally moving device 122 is driven so as to eliminate the difference between the tracks, the track pitches recorded on the resist master disk 122 are also at equal intervals.
  • calculating the difference between the measured interference fringe interval and the reference interval associated with the rotation of the horizontal movement device 1206 is, in the end, the register associated with the rotation of the horizontal movement device 1206. This is equivalent to calculating the difference between the moving distance on the locus of the center point of the master 1208 and the moving distance on the straight line.
  • the recording beam When the recording beam reaches position 1 3 1 4, it is switched to a master movement amount detection device consisting of scale 1 3 0 5 and scale information detection device 1 3 1 1.
  • a master movement amount detection device consisting of scale 1 3 0 5 and scale information detection device 1 3 1 1.
  • half of the scale 135 is used as a part of the contact point 1313 between the scale 1305 and the side surface. In this way, the spread of the feed interval in the direction 1306 that must be measured and the spread of the interval of the interference fringes output from the scale 135 become proportional to each other. Correction becomes easy.
  • the interval between the interference fringes detected by the scale information detecting device 1 3 1 1 1 is proportional to the moving interval on the resist master 1 2 0 8 in the direction 1 3 0 6 to be measured. However, since the output is different from that of the scale information detection device 1302, a correction is required to match the two outputs.
  • position detection is performed using a scale having a hologram grating.
  • the scale is formed as a magnetically recorded pattern, and a magnetic head is used.
  • a similar effect can be obtained by using a method of reading a scale magnetization pattern (corresponding to another example of the predetermined pattern of the present invention).
  • the horizontally moving device has been described as the long arm, but other shapes such as a circle may be used. In this case as well, the center of the disc master and the rotation center of the horizontal moving device are different, and if the moving distance of the center point of the disc master can be read at the end of the horizontal moving device, the same as above The effect of can be obtained.
  • the detected recording point variation information to drive the recording beam deflecting device, it is possible to suppress the recording point variation and reduce the track pitch unevenness of the pattern recorded on the resist master.
  • the interval between the interference fringes is read from the linear hologram pattern, and the spread of the interval between the interference fringes is fitted to the rotational speed of the master disk, instead of the case of the first embodiment.
  • a feed pack method for beam control can be considered. In such a case, the same effect as above can be obtained.
  • each resist master has been described as a revolution by an arm, but other movement methods may be used.
  • the moving distance of the locus of the center point of the resist master If the difference from the moving distance can be detected, the same effect as described above can be obtained.
  • the predetermined pattern of the present invention is a hologram pattern or a magnetic pattern, but other patterns may be formed. In such a case, if the moving distance of the locus of the center point can be calculated from the pattern, the same effect as described above can be obtained.
  • FIG. 16 shows an apparatus for manufacturing a master disc according to Embodiment 3 of the present invention.
  • the same components as those of the device shown in FIG. 20 are denoted by the same reference numerals.
  • the difference between the disc master manufacturing apparatus of the present embodiment and the apparatus shown in FIG. 20 is that a laser interferometer which is an example of the moving distance reading device of the present invention.
  • the control device 13 16 By controlling the position, it is possible to correct a beam shift due to vibration, shift, or the like of the electron column 203, and to form a more accurate track pitch on the resist master 210.
  • the control device 13 16 for example, a horizontal movement device at a predetermined time
  • a control operation such as detecting a beam shift can be considered by comparing the distance of the horizontal movement device 211 moved in a predetermined time.
  • the laser interferometer 1325 may not necessarily be fixed to the electronic column 203. That is, even if the laser interferometer 1325 is installed at a distance from the electron column 203, the distance between the laser interferometer 1325 and the electron column 203 and the variation in the distance If can be measured, the same effect as above can be obtained.
  • the standard of the present invention also corresponds to the laser interferometer 1325.
  • the reference and the electronic column 203 have a predetermined relationship (that is, a fixed relationship or a relationship from which the distance between the two can be read), the same effect as above can be obtained. it can.
  • the recording point fluctuation detecting devices 5 14 and 9 14 have been described as being fixed to the electronic columns 503 and 90 3, but as described above, The recording point fluctuation detecting devices 5 14 and 9 14 and the electronic rams 5 03 and 9 03 may be installed so that the distance between them can be read.
  • controlling the predetermined manufacturing parameter means controlling the irradiation of the beam onto the master disk, controlling the moving speed of the horizontally moving device, or controlling the rotating speed of the rotating depice. Corresponding to that.
  • the recording point fluctuation detection devices 5 14 and 9 14 it has been assumed that a high-density optical disc master such as a next-generation recording medium is to be manufactured.
  • the invention may be used in some cases.
  • the recording point fluctuation detection devices 5 14 and 9 14 if the accuracy of the motor driving the horizontally moving device is sufficient, the moving distance of the horizontally moving device can be calculated, for example, by monitoring the output of an encoder provided on the rotation axis of the arm. it can.
  • the absolute position of the horizontal movement device corresponding to the elapsed time is stored in a table in advance, and the stored absolute position is compared with the encoder output by the comparison device, and the controller determines the deviation of the beam irradiation position.
  • the manufacturing apparatus of the master disc and the manufacturing method of the master disc using the same have been described.
  • the present invention can be applied to the inspection of the master disc.
  • It can also be an apparatus, a method of inspecting a master disc, a device for detecting a difference in moving distance of a master disk, and a method of detecting a moving distance difference of a master disk.
  • the manufacturing method of the master disk according to the present invention it is possible to achieve accurate feeding accuracy of the master master using a horizontal moving device that moves with a curvature.
  • the relative positional relationship can be grasped, and the disc master manufacturing equipment, the disc master disc travel distance difference detection method, the disc master disc travel distance difference detection device, the disc master disc inspection method, and the disc master disc inspection device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Moving Of The Head For Recording And Reproducing By Optical Means (AREA)

Abstract

曲率をもって移動する水平移動デバイスを使用して正確なディスク原盤の送り精度を実現する、ディスク原盤の製造方法を提供すること。 レジスト原盤108を自転させる工程と、前記レジスト原盤108を移動させる工程と、前記移動に伴う前記レジスト原盤108の中心点の軌跡上の移動距離を読みとる工程と、前記中心点の軌跡上の移動距離と、前記移動に伴う前記レジスト原盤108の中心点の直線上の移動距離との差を検出する工程と、前記検出結果に基づいて、所定の製造パラメータを制御する工程とを備える、ディスク原盤の製造方法。

Description

明 細 書 ディスク原盤の製造方法、 ディスク原盤の製造装置、 ディスク原盤の 移動距離差検出方法、 およびディスク原盤の移動距離差検出装置 技術分野
本発明は、 光ディスクなどのように原盤上に螺旋状に信号を精度良く 記録する場合に有用であるディスク原盤の製造方法、 ディスク原盤の移 動距離差検出方法、 ディスク原盤の製造装置、 ディスク原盤の移動距離 差検出装置、 ディスク原盤の検査方法、 ディスク原盤の検査装置に関す る。 背景技術
一般的に、 光ディスクの製造工程は、 レーザや電子線などを源とした 光ディスク原盤記録装置を使用してフォトレジストが塗布されたデイス ク原盤を露光し、 露光されたディスク原盤を現像することによって表面 に情報ピットゃ溝などの凹凸パターンが形成された光ディスク原盤を作 製する工程と、 光ディスク原盤から凹凸パターンを転写したスタンパと 呼ばれる金属金型を作製する工程と、 スタンパを使用して樹脂製の成形 基板を作製する工程と、 成形基板に記録膜や反射膜などを成膜し、 貼り あわせる工程とを備える。
光ディスクの情報ピットや溝などのパターンを記録するための原盤記 録装置の一例として、 記録ビームとして電子線を用いる電子線記録装置 の一般例を図 1 7に示す。
電子線記録装置は、 電子線を発生させる電子線源 2 0 1と、 放出され た電子線をレジスト原盤 2 1 0に収束させ、 入力される情報信号に応じ てレジス ト原盤 2 1 0上に情報パターンを記録するための電子光学系 2 0 2とを備えて構成されている電子カラム 2 0 3が、 真空槽 2 1 3内に 設けられた構造となっている。
電子線源 2 0 1は、 電流を流すことで電子を放出ざせるフィラメント や、 放出された電子を閉じ込める電極、 電子線を引き出し、 加速する電 極などを有し、 電子を一点から放出することができる。
電子光学系 2 0 2は、 電子線を収束させるレンズ 2 0 4、 電子線のビ 一ム径を決定するアパーチャ 2 0 5、 入力される情報信号に応じて電子 線を偏向させる電極 2 0 6、 2 0 7、 電極 2 0 6で傭向された電子線が 遮蔽される遮蔽板 2 0 8、 レジスト原盤 2 1 0表面に電子線を収束させ るレンズ 2 0 9を有している。
レジスト原盤 2 1 0は、 自転デバイス 2 1 1上に保持されており、 水 平移動デバイス 2 1 2によって、 自転デバイス 2 1 1ごと水平移動され る。 レジスト原盤 2 1 0 回転させながら、 水平移動させると、 電子線 をレジスト原盤 2 1 0に螺旋状に照射することが可能となり、 光デイス クの情報信号を原盤に螺旋状に記録することができる。
レジスト原盤 2 1 0の表面と略同じ高さには焦点調整用ダリッド 2 1 4が設けられている。 これは、 レジスト原盤 2 1 0の表面に電子線を収 束させるため、 レンズ 2 0 9の焦点位置を調整するために設けられてい る。 電子線が焦点調整用グリッド 2 1 4上に照射され、 焦点調整用グリ ッド 2 1 4で反射する反射電子や、 放出される 2次電子などを検出器で 検出することによって、 焦点調整用グリッド 2 1 4は、 グリッド像をモ ユタし、 像の見え方によって、 レンズ 2 0 9の焦点位置を調整すること ができる。
電極 2 0 6は、 電子線を水平移動デバィス 2 1 2の移動方向と略垂直 方向に偏向するように設けられている。 電極 2 0 6に入力される信号に 応じて、 電極 2 0 6が電子線を遮蔽板 2 0 8の方に偏向することによつ て、 電子線をレジスト原盤 2 1 0に照射するか、 しないかを選択するこ とができ、 レジスト原盤 2 1 0に情報ピットパターンなどを記録するこ とができる。
電極 2 0 7は、 電極 2 0 6に対して略垂直方向に電子線を偏向するよ うに設けられており、 電極に入力される信号に応じて、 電子線を水平移 動デバイス 2 1 2の移動方向と略同じ方向に偏向することができる。 水 平移動デバイス 2 1 2の移動方向は、 記録されるレジス ト原盤 2 1 0の 半径方向に相当し、 電極 2 0 7に入力する信号によって、 光ディスクの トラックピッチの変動などを補正することが可能となる。
水平移動デバイス 2 1 2としては、 例えば図 1 8に示すように、 ネジ
3 0 1をモータ 3 0 2で回転させ、 レジスト原盤 3 0 3を保持したステ ージ 3 0 4に刻まれたネジピッチによって、 直線的にレジスト原盤 3 0
3を送るネジ送り式のものや、 あるいは図 1 9に示すように一点 4 0 1 を中心とし、 レジスト原盤 4 0 2を回転させながらアーム 4 0 3によつ て曲率を持って送るスィングアーム式などの構造を持つものがある。 水 平移動デバイス 2 1 2の送り.精度などを高めるために用いられる水平移 動デバイス 2 1 2の位置検出装置としては、 レーザ干渉測長計などの測 長装置が主に用いられる。 図 1 8のような直線的な り構造を持つもの では、 レーザ干渉測長計などによって、 外部からレーザを水平移動デバ イス 2 1 2に設けられたターゲットに照射し、 その反射光などによる干 渉パターンなどから水平移動デバイス 2 1 2の位置を測長し、 所望の位 置からのずれ量を検出する。 そして、 検出されたずれを補正するように 水平移動デバイス 2 1 2を駆動させたり、 また電極 2 0 7などを駆動さ せ電子ビームの照射位置を制御することによって捕正することが可能で ある (例えば特開 2 0 0 2— 1 4 1 0 1 2号公報参照) 。
図 1 9に示すようなスィングアーム式の水平移動デバイス 2 1 2では 、 位置測定点が曲率をもって動く特性から、 直線的な送りの場合とは異 なり レーザ干渉測長計などを用いることが困難である。 じ0ゃ0 0程 度の情報密度を有する光ディスクを作成する場合、 そのトラックピッチ の変動量の許容値は大きく、 スィングアーム式のような曲率を持って移 動する水平移動デバイス 2 1 2を用いても、 レーザ干渉計などの測長器 を用いることなく、 アームを駆動するモータの精度や、 回転軸に設けら れているエンコーダなどの出力のモニタだけで十分な精度で記録するこ とが可能であった。 . しかし、 デジタルハイビジョン情報などの大容量を記録する次世代光 ディスクにおいては、 そのトラックピッチも D V Dに比べ、 約半分程度 となり、 トラックピッチ変動量の許容値も非常に小さくなつてきている。 そのため、 スィングアーム式などのように曲率をもって移動するような 水平移動デバイス 2 1 2においても、 正確な位置検出をし、 サーボによ つて位置制御をするシステムの導入が必要となった。
すなわち、 スイングアーム式の場合、 水平移動デバイス 2 1 2の移動 に伴う電子線の軌跡は、 図 1 9に示す点線となる。 この軌跡は、 点 4 0 1を中心とする円弧状であるため、 レジスト原盤 4 0 2の半径方向の直 線とずれを生じる。 このずれが大きくなる程、 トラックピッチのずれが 大きくなつてしまう。 上記大容量の次世代光ディスクを作成する場合は 、 このようなトラックピッチのずれが問題となっていた。 例えば、 図 1 9に示す例では、 レジスト原盤 4 0 2の縁部の方が中心付近よりも トラ ックピッチが狭くなっていた。
また、 このようにトラックピッチが狭くなる領域において、 振動等に より、 トラックピッチが変動することもあり、 このようなトラックピッ チの変動も、 大容量の次世代光ディスクを作成する際に問題となってい た。
また、 図 2 0は、 図 1 8に示すネジ送り式の水平移動デバイス 2 1 2 を備える電子線記録装置の断面を示す。 レーザ干渉測長計 3 0 5を固定 している部分 (例えば電子線記録装置の場合、 水平移動デバイス 2 1 2 のベースが固定されている真空槽底面 3 0 6など) に対する水平移動デ バイス 2 1 2の位置補正は可能であるが、 実際に記録ビームを集束させ る記録ビーム集束デバイス (例えば電子線記録装置の場合、 電子カラム ) と水平移動デバイス 2 1 2との相対的な位置関係を補正するまでには 至らない場合がある。 その場合、 記録ビームがレジスト原盤 2 1 0に照 射されることによって形成される光ディスクなどの螺旋状パターンの送 り精度を向上させるためには不充分であった。 発明の開示
本発明は、 従来の課題に鑑み、 曲率をもって移動する水平移動デバィ スを使用して正確なディスク原盤の送り精度を実現する、 ディスク原盤 の製造方法、 ディスク原盤の製造装置、 ディスク原盤の移動距離差検出 方法、 ディスク原盤の移動距離差検出装置、 ディスク原盤の検査方法、 およびディスク原盤の検査装置を提供することを目的とする。
また、 本発明の別の目的は、 水平移動デバイスと記録ビーム集束デバ イスとの相対的な位置関係を把握することができる、 ディスク原盤の製 造方法、 ディスク原盤の製造装置、 ディスク原盤の検查方法、 ディスク 原盤の検査装置を提供することを目的とする。
上記課題を解決するために、 第 1の本発明は、 ディスク原盤を自転さ せる工程と、 前記デイスク原盤を移動させる工程と、
前記移動に伴う前記ディスク原盤の中心点の軌跡上の移動距離を読み とる工程と、
前記中心点の軌跡上の移動距離と、 前記移動に伴う前記ディスク原盤 の中心点の直線上の移動距離との差を検出する工程と、
前記検出結果に基づいて、 所定の製造パラメータを制御する工程と、 を備える、 ディスク原盤の製造方法である。
第 2の本発明は、 前記ディスク原盤の移動は、 前記ディスク原盤の中 心点とは異なる回転中心のまわりに回転する公転である、 第 1の本発明 のディスク原盤の製造方法である。
第 3の本発明は、 前記ディスク原盤の自転は、 長手形状を有するァー ムの一端で行い、 前記ディスク原盤の公転は、 前記アームの回転中心の 廻りの公転であり、
前記ディスク原盤の中心点の軌跡上の移動距離の読みとりは、 前記ァ 一ムの端面に設けられた所定のパターンを利用して行う、 第 2の本発明 ディスク原盤の製造方法である。
第 4の本発明は、 前記ディスク原盤の中心点の軌跡上の移動距離の読 みとりは、 前記アームの端面に設けられた、 前記中心点の軌跡に相似す る形状のホログラムパターンにレーザ光を照射することにより、 その回 折光の干渉縞を計数することにより行う、 第 3の本発明のディスク原盤 の製造方法である。
第 5の本発明は、 前記中心点の軌跡上の移動距離の読みとりは、 前記 アームの端面に設けられた磁気パターンを磁気へッドにより計数するこ とにより行う、 第 3の本発明のディスク原盤の製造方法である。
第 6の本発明は、 前記中心点の軌跡上の移動距離の読みとりは、 前記 アームの端面に設けられた、 直線形状のホログラムパターンにレーザ光 を照射することにより、 その回折光の干渉縞の間隔を計測することによ り行う、 第 3の本発明のディスク原盤の製造方法である。
第 7の本発明は、 前記干渉縞の間隔の計測は、 前記アームの回転の限 界点を基準としてなされる、 第 6の本発明のディスク原盤の製造方法で ある。
第 8の本発明は、 前記所定の製造パラメータを制御する工程は、 前記 ディスク原盤へのビーム照射の位置を制御する工程である、 第 1の本発 明のディスク原盤の製造方法である。
第 9の本発明は、 前記ビーム照射の位置の制御は、 電子線を電界によ り偏向させることにより行う、 第 8の本発明のディスク原盤の製造方法 である。
第 1 0の本発明は、 前記ビーム照射の位置の制御は、 レーザ光を A O Dを用いて偏向することにより行う、 第 8の本発明のディスク原盤の製 造方法である。
第 1 1の本発明は、 前記ビーム照射の位置の制御は、 レーザ光を E O Dを用いて偏向することにより行う、 第 8の本発明のディスク原盤の製 造方法である。
第 1 2の本発明は、 前記ビーム照射の位置の制御は、 レーザ光源を圧 電素子を用いて偏向することにより、 前記レーザ光源から照射されるレ 一ザ光の偏向を行うものである、 第 8の本発明のディスク原盤の製造方 法である。
第 1 3の本発明は、 前記所定の製造パラメータを制御する工程は、 前 記移動速度を制御する工程である、 第 1の本発明のディスク原盤の製造 方法である。
第 1 4の本発明は、 前記所定の製造パラメータを制御する工程は、 前 記自転速度を制御する工程である、 第 6の本発明のディスク原盤の製造 方法である。
第 1 5の本発明は、 前記回折光の干渉縞の間隔の計測値、 記録線速度 、 および送りピッチに基づいて、 前記自転速度を制御する、 第 1 4の本 発明のディスク原盤の製造方法である。
第 1 6の本発明は、 ディスク原盤を自転させる自転デバイスと、
'前記ディスク原盤を移動させる移動デバイスと、
前記移動に伴う前記ディスク原盤の中心点の軌跡上の移動距離を読み とる移動距離読みとりデバイスと、 を備え、
前記移動距離読みとりデバイスにより読みとられた前記中心点の軌跡 上の移動距離と、 前記移動に伴う前記ディスク原盤の中心点の直線上の 移動距離との差を検出する検出デバイスと、
前記検出結果に基づいて、 所定の製造パラメータを制御する制御デバ イスと、 を備える、 ディスク原盤の製造装置である。
第 1 7の本発明は、 ディスク原盤を自転させる工程と、
前記デイスク原盤を移動させる工程と、
前記移動に伴う前記ディスク原盤の中心点の軌跡上の移動距離を読み とる工程と、
前記中心点の軌跡上の移動距離と、 前記移動に伴う前記ディスク原盤 の中心点の直線上の移動距離との差を検出する工程と、 を備える、 ディ スク原盤の移動距離差検出方法である。
第 1 8の本発明は、 ディスク原盤を自転させる自転デバイスと、 前記デイスク原盤を移動させる移動デパイスと、
前記移動に伴う前記ディスク原盤の中心点の軌跡上の移動距離を読み とる移動距離読みとりデバイスと、
前記移動距離読みとりデバイスにより読みとられた前記中心点の軌跡 上の移動距離と、 前記移動に伴う前記ディスク原盤の中心点の直線上の 移動距離との差を検出する検出デバイスと、 を備える、 ディスク原盤の 移動距離差検出装置である。
第 1 9の本発明は、 ディスク原盤を自転させる工程と、
前記デイスク原盤を移動させる工程と、
前記ディスク原盤にビームを照射するビーム照射デバイスから、 前記 ディスク原盤にビームを照射する工程と、
前記ビーム照射デパイスと所定の関係にある基準からの前記デイスク 原盤の移動距離を読みとる工程と、 を備え、
前記読みとつた前記ディスク原盤の移動距離に基づいて、 所定の製造 パラメータを制御する、 ディスク原盤の製造方法である。
第 2 0の本発明は、 前記基準は、 前記ビーム照射デバイス上に設けら れたものである、 第 1 9の本発明のディスク原盤の製造方法である。 第 2 1の本発明は、 ディスク原盤を自転.させる自転デバイスと、 前記ディスク原盤を移動させる移動デバイスと、
前記ディスク原盤にビームを照射するビーム照射デパイスと、 前記ディスク原盤の移動距離を読み取る移動距離読み取りデバイスと 前記ビーム照射デバイスと所定の関係にある、 前記移動距離の読み取 りのための基準と、 を備え、
前記移動距離の読み取りは、 前記基準と前記ディスク原盤との距離を 読み取ることにより行われ、
前記読みとつた前記ディスク原盤の移動距離に基づいて、 所定の製造 パラメータが制御される、 ディスク原盤製造装置である。
第 2 2の本発明は、 ディスク原盤を自転させる工程と、
前記デイスク原盤を移動させる工程と、
前記デイスク原盤にビームを照射するビーム照射デバイスから、 前記 ディスク原盤にビームを照射する工程と、
前記ビーム照射デバイスと所定の関係にある基準からの前記ディスク 原盤の移動距離を読みとる工程と、 '
所定の期間において、 前記ディスク原盤が移動すべき距離と、 前記読 み取り工程において読みとられた移動距離とを比較する工程と、 を備え る、 ディスク原盤の検査方法である。
第 2 3の本発明は、 ディスク原盤を自転させる自転デバイスと、 前記ディスク原盤を移動させる移動デバィスと、
前記ディスク原盤にビームを照射するビーム照射デバイスと、 前記ビーム照射デバイスと所定の関係にある基準からの前記ディスク 原盤の移動距離を読みとる移動距離読み取りデバイスと、
所定の期間において、 前記ディスク原盤が移動すべき距離と、 前記読 みとられた移動距離とを比較する比較デバイスと、 を.備える、 ディスク 原盤の検査装置である。
第 2 4の本発明は、 ディスク原盤を自転させる工程と、
前記デイスク原盤を移動させる工程と、
前記ディスク原盤の位置に基づいて、 所定の製造パラメータを制御す る工程と、 を備える、 ディスク原盤の製造方法である。 ' 第 2 5の本発明は、 ディスク原盤を自転させる自転デバイスと、 前記ディスク原盤を移動させる移動デバイスと、
前記ディスク原盤の位置に基づいて、 所定の製造パラメータを制御す る制御器と、 を備える、 ディスク原盤の製造装置である。
本発明によれば、 曲率をもって移動する水平移動デバイスを使用して 正確なディスク原盤の送り精度を実現する、 ディスク原盤の製造方法'、 ディスク原盤の製造装置、 ディスク原盤の移動距離差検出方法、 デイス ク原盤の移動距離差検出装置、 ディスク原盤の検査方法、 およびデイス ク原盤の検査装置を提供することができる。
また、 別の本発明によれば、 水平移動デバイスと記録ビーム集束デパ イスとの相対的な位置関係を把握することができる、.ディスク原盤の製 造方法、 ディスク原盤の製造装置、 ディスク原盤の検査方法、 ディスク 原盤の検査装置を提供することができる。 図面の簡単な説明 '
図 1は、 本発明の実施の形態 1におけるディスク原盤製造装置の一例 を示す図
図 2は、 本発明のディスク原盤製造装置の一部である水平移動デパイ スを記録ビーム集束デパイス側から見た模式図
図 3は、 本発明のディスク原盤製造装置の一部である記録点変動検出 デパイスの実施の形態 1を示す模式図
図 4は、 本発明のディスク原盤製造方法において原盤上の記録ビーム の照射位置と測定したい記録点の軌道を説明する図
図 5は、 本発明のディスク原盤製造装置の構成要素である記録点変動 検出デバイスの一例を示す図
図 6は、 本発明のディスク原盤製造装置の一部である記録点変動制御 装置の一例を示す図
図 7は、 本発明のディスク原盤製造装置の一部であるレーザ記録装置 の一例を示す図
図 8は、 本発明のディスク原盤製造装置の一部である A O Dの動作を 示す図
図 9は、 本発明のディスク原盤製造装置の一部である E O Dの動作を 示す図 図 1 0は、 本発明のディスク原盤製造装置の一部である半導体レーザ 光源の構造を示す図
図 1 1は、 本発明の実施の形態 2のディスク原盤製造装置の一部であ る記録点変動検出デバイスの一例を示す図
図 1 2は、 本発明のディスク原盤製造方法において原盤移動量検出デ パイスの動きを拡大して示した図
図 1 3は、 本発明のディスク原盤製造装置の一部である、 複数のスケ ールとスケール情報検出デバイスを設けた記録点変動検出デバイスの一 例を示す図
図 1 4は、 本発明のディスク原盤製造装置の一部である原盤移動量検 出デバイスの拡大図
図 1 5は、 本発明のディスク原盤製造装置の一部である、 直線的な動 きをする水平移動デバイスにおける記録点変動検出デバイスの一例を示 す図
図 1 6は、 本発明の実施の形態 3のディスク原盤製造装置の断面構成 図
図 1 7は、 従来のディスク原盤製造装置の装置構成を示す図 図 1 8は、 従来のディスク原盤製造装置における、 直線的な動きをす る水平移動デバイスの一例を示す図
図 1 9は、 従来のディスク原盤製造装置における、 曲率を持って動く 水平移動デバイスの一例を示す図
図 2 0は、 直線的な動きをする水平移動デバイスを利用した従来のデ イスク原盤製造装置の断面構成図
(符号の説明)
1 0 1 レーザ光源 2 レーザ受光部
3 干渉パターン計測装置
4 原盤移動量検出デバイス
5 スケール
6 水平移動デパイス
8 原盤
9 自転デバィス
2 記録点移動量補正デバイス
1 電子線源
2 電子光学系
3 電子力ラム
4 レンズ
5 アパーチャ
6、 2 0 7電極
0 レジス ト原盤
1 自転デバイス
2 水平移動デバィス
3 真空槽
4 焦点調整用ダリッド
1 ネジ
2 モータ
3 スイングアーム
4 記録点変動検出デバイス 錘
3 原盤の自転中心
原盤の自転軌道 7 0 5 原盤の公転軌道
1 5 0 2 記録ビーム偏向デバイス (A O D )
1 5 0 4 記録ビーム集束デバイス
1 6 0 2 トランスデューサ
1 6 0 4 0次透過レーザ光
1 6 0 5 1次回折レーザ光
1 7 0 1 記録ビーム偏向デバイス (E O D )
1 7 0 2 コントローラ
1 8 0 2 圧電素子 発明を実施するための最良の形態
以下に、 本発明の実施の形態について説明する。
(実施の形態 1 )
図 1に本実施の形態 1におけるディスク原盤の製造装置の一例として 電子線記録装置 5 0 0を示す。 電子線記録装置 5 0 0は、 電子線を発生 させる電子線源 5 0 1と、 放出された電子線を本発明のディスク原盤に 一例として対応するレジスト原盤 5 1 0に収束させ、 入力される情報信' 号に応じてレジスト原盤 5 1 0上に情報パターンを記録するための電子 光学系 5 0 2を備えて構成されている電子カラム 5 0 3が、 真空槽 5 1 3内に設けられた構造となっている。
電子線源 5 0 1は、 電流を流すことで電子を放出させるフィラメント や、 放出された電子を閉じ込める電極、 電子線を引き出し、 加速する電 極などを有し、 電子を一点から放出することができる。
電子光学系 5 0 2は、 電子線を収束させるレンズ 5 0 4、 電子線のビ 一ム径を決定するアパーチャ 5 0 5、 入力される情報信号に応じて電子 線を偏向させる電極 5 0 6、 5 0 7、 電極 5 0 6で偏向された電子線が 遮蔽される遮蔽板 5 0 8、 レジスト原盤 5 1 0表面に電子線を収束させ るレンズ 5 0 9を有している。
また、 レジス ト原盤 5 1 0は自転デバイス 5 1 1上に保持されており 、 本発明の移動デバイスに一例として対応する水平移動デバイス 5 1 2 によって、 自転デバイス 5 1 1ごと水平移動される。 レジス ト原盤 5 1 0を回転させながら、 水平移動させると、 電子線をレジスト原盤 5 1 0 に螺旋状に照射することが可能となり、 光ディスクの情報信号をレジス ト原盤 5 1 0に螺旋状に記録することができる。
電極 5 0 6は、 電子線を水平移動デバィス 5 1 2の移動方向と略垂直 方向に偏向するように設けられている。 電極 5 0 6に入力される信号に 応じて、 電極 5 0 6が電子線を遮蔽板 5 0 8側に偏向することによって 、 電子線をレジス ト原盤 5 1 0に照射するか、 しないかを選択すること ができ、 レジスト原盤 5 1 0に情報ピッ トパターンなどを記録すること ができるようになっている。
電極 5 0 7は、 電極 5 0 6に対して略垂直方向に電子線を偏向するよ うに設けられており、 電極に入力される信号に応じて、 電子線を水平移 動デパイス 5 1 2の移動方向と略同じ方向に偏向することができる。 水 平移動デバイス 5 1 2の移動方向は、. 記録されるレジスト原盤 5 1 0の 半径方向に相当し、 電極 5 0 7に入力する信号によって、 光ディスクの トラックピッチのずれや変動などを補正することが可能となる。 また、 電子カラム 5 0 3と水平移動デバイス 5 1 2との相対的な位置関係を測 定する記録点変動検出デバイス 5 1 4 (本発明の移動距離読み取りデバ イスに一例として対応) が電子カラム 5 0 3 (ビーム照射装置) に設け られている。
水平移動デバイス 5 1 2は、 図 2に示すように電子カラム 5 0 3側か ら見ると、 中心軸 6 0 1を中心として、 アーム 6 0 2が延びた構造とな つており、 自転デバイス 6 0 3がアーム 6 0 2の一先端部に保持されて おり、 またアーム 6 0 2の自転デバイス 6 0 3の反対側先端部には自転 デバイス 6 0 3と略同じ質量の錘 6 0 4を載せ、 天秤のように重量パラ ンスを取っている。 自転デバイス 6 0 3上において、 中心軸 6 0 1を中 心としてアーム 6 0 2が回転することによってレジスト原盤 5 1 0の電 子線が照射される位置が送られる。 すなわち、 レジスト原盤 5 1 0は自 転デバイス 6 0 3により 自転しながら、 中心軸 6 0 1を中心として公転 する。 そのため、 水平移動デバイス 5 1 2によって自転デバイス 6 0 3 の水平位置が動かされると、 電子カラム 5 0 3の中心位置 6 0 6 (電子 線が照射される位置) は、 図 2の点線に示すように、 自転デバイス 6 0 3の中心点を通り、 中心軸 6 0 1を中心とする円弧にそって動く。
図 1、 図 2に示す電子線記録装置 5 0 0において、 電子カラム 5 0 3 と水平移動デバイス 5 1 2との相対的な位置関係を測定する記録点変動 検出デバイス 5 1 4を図 3に示す。
記録点変動検出デバイス 5 1 4は、 レーザ光源 1 0 1 とレーザ受光部 1 0 2と干渉パターン計測装置 1 0 3とを有する原盤移動量検出デバィ ス 1 0 4と、 本発明の所定のパターンの一例であるホログラムパターン が形成されたスケール 1 0 5を備える。 原盤移動量検出デバイス 1 0 4 は、 電子カラム 5 0 3に接続されており、 スケール 1 0 5は、 水平移動 デバイス 1 0 6に接続されている。 レジス ト原盤 1 0 8は自転デバィス 1 0 9上に保持されており、 自転デバイス 1 0 9は水平移動デバイス 1 0 6上に設けられている。 水平移動デバイス 1 0 6は回転中心 1 0 7を 中心に回転し、 自転デバイス 1 0 9を曲率をもって移動させる。 スケー ル 1 0 5は、 水平移動デバイス 1 0 6の回転軌道 1 1 0と相似する形状 を有した側面部 1 1 1の表面に設けられている。 すなわち、 側面部 1 1 1は、 回転中心 1 0 7を中心とした回転軌道 1 1 0と同心の円弧上に形 成される。 スケール 1 0 5に設けられたホログラムパターンにレーザ光 を照射し、 反射してくる回折光を干渉させることによって生じる干渉縞 の明暗パターンを干渉パターン計測装置 1 0 3で計数することで水平移 動デバイス 1 0 6の位置を検出することができる。 本発明の検出デパイ スに一例として対応する原盤移動量検出デバイス 1 0 4からの情報は記 録点移動量補正デバイス 1 1 2に入力される。
この記録点変動検出デバイス 5 1 4は、 次のように動作を行う。 すな わち、 レジスト原盤 1 0 8の移動距離差検出方法は次の動作により行う。 図 4に原盤上の記録ビームが照射されるべき位置の軌道と、 レジスト 原盤 7 0 1の曲率を有した移動に伴う記録点の軌道を示す。 レジスト原 盤 7 0 1上に記録される光ディスクのトラックピッチは、 直線軌道 7 0
2の矢印が示すように、 レジスト原盤 7 0 1の回転中心 7 0 3を通り、 本来、 レジスト原盤 7 0 1の自転軌道 7 0 4と垂直に交わる方向に等間 隔に直線的に記録される必要がある。 しかし、 レジスト原盤 7 0 1が曲 率を持って移動させられると、 実際に記録ビームが照射される位置は軌 道 7 0 5上を通る。 この軌道 7 0 5は、 レジスト原盤 7 0 1を回転中心
1 0 7を中心に回転 (すなわち公転) させたときのレジスト原盤 7 0 1 の回転中心 7 0 3の軌跡でもある。 図 3に示す、 水平移動デバイス 1 0
6の側面部 1 1 1に設けられた等間隔に格子を設けられたスケール 1 0
5に、 レーザを照射してその干渉パターンを計測すると、 軌道 7 0 5上 の位置を測定できる。 測定された軌道 7 0 5上の位置から、 実際に測定 したい直線軌道 7 0 2上の位置を求めるためには、 軌道 7 0 5上および 直線軌道 7 0 2上の、 回転中心 7 0 3からの距離のずれを補正する必要 がある。
図 3における符号 1 1 3に示すように、 水平移動デバイス 1 0 6の回 転中心 1 0 7から記録ビームの照射位置までの距離を r (m) 、 符号 1 1 4に示すように、 水平移動デバィス 1 06の回転中心 1 07から、 ス ケール 1 0 5までの距離を R (m) とし、 符号 1 1 5に示すようにスケ ール 1 0 5が検出できる最小単位だけ水平移動デバイス 1 0 6が移動し たときの移動角度を 0 (r a d) とすると、 スケール 1 0 5で測定され る原盤中心からの移動距離は n R Θ (m) で表される (n = 0, 1, 2, 3, · · ·) 。 しかし、 実際に記録ビームが照射されている位置は、 原 盤中心から、 2 r c o s [ (π— η Θ) /2] の位置となり、 スケール 1 0 5の測定値からずれが生じる。 そのため、 記録点移動量補正デパイ ス 1 Γ2においてずれ量を補正する。
スケール 1 0 5では R 0ずつ等間隔に移動距離を計測できる。 つまり 等速で水平移動デバイスが回転すると、 スケールが R Θずつ移動する毎 に干渉縞が計数されていく。 しかし、 記録ビームが照射される位置は、 原盤中心から 2 r.c o s [ ( π - η θ ) / 2] となるため、 スケールで R 0ずつ等間隔に移動しても、 実際は、 2 r [c o s { (π— η θ ) / 2 } - c o s { [π - (η - 1 ) θ ] / 2 } ] ずつ移動していることに なる。 そのため、 これらの比を、 記録点移動量補正デバイス 1 1 2にお いて計算することでずれ量を補正できる。 また、 記録点移動量補正 デバイス 1 1 2でずれ量を補正するためには、 基準点 (原点) を設け る必要がある。 基準点は、 次のような方法で決定できる。 例えば、 水 平移動デバイス 1 0 6が移動できる範囲を例えばリミット 1 1 6で機 械的に制限する。 移動範囲の限界点において記録点移動量補正デバィ ス 1 1 2の原点をその都度確認し、 もし原点がずれていれば原点を再 設定し、 その位置からの干渉パターンを計数していく。
また、 基準点測定用のレーザ干渉測長器などを真空槽内に設け、 水 平移動デバイスの側面部との距離を測定できるように配置する。 水平 移動デパイスが基準点に移動したときの水平移動デバィスとの距離を 計測する。 決められた距離に来たときに記録点移動量補正デパイスの 原点をその都度確認し、 もし原点がずれていれば原点を再設定し、 そ の位置からの干渉パターンを計数していく。
このように原点をその都度確認することにより、 より正確な水平移動 デバイスの移動距離が計測できる。
もし原点がずれていれば原点を再設定し、 このような構成を取ると 、 水平移動デバイス 1 0 6の回転中心 1 0 7からスケール 1 0 5までの 距離 と、 回転中心 1 0 7から記録ビームの照射位置までの距離 r との it R / rだけ、 スケール 1 0 5の分解能を向上させることができる。
また、 この機能を用いることによって、 記録したレジスト原盤 1 0 8 のトラックピッチ変動をモニタすることができるため、 記録した原盤の 良否を記録中に判断することが可能となる。
例えば、 次のようにして光ディスク原盤の良否を判断できる。
レーザ受光部 1 0 2で検出される干渉縞の間隔は、 レーザ光の波長、 スケール 1 0 5上に形成されているホログラムパターンの格子間隔によ つて決定される。 この隣接している干渉縞の間隔が、 測定できる記録点 変動の分解能を決定することとなるため、 許容される トラックピッチの ずれ以下となるように干渉縞間隔を設定すれば、 トラックピッチのずれ が許容値以下かどうかを判断することができる。 レジスト原盤 1 0 8を 実際に記録しているときの記録点変動検出デバイス 5 1 4の位置情報と 、 所望の位置情報との差分信号をモニタしつづけていれば、 このレジス ト原盤 1 0 8のトラックピッチのずれが許容値以内で作製できているか どうかの判断を見積もることが可能となる。
また、 ここでは原盤移動量の検出ために、 ホログラムスケールを用い た例を説明したが、 図 5に示すように、 スケール 8 0 5を磁気記録した パターンとし、 磁気へッド 8 0 1で、 スケーノレ 8 0 5の磁化パターンを 読みとる方法でも同様の効果が得られる。
また、 次の方法により検出した記録点変動を抑制し、 原盤に記録する パターンのトラックピッチムラを低減することが可能である。 図 6にそ の一例を示す。
記録点変動検出デバイス 9 1 4で検出される、 電子カラム 9 0 3と水 平移動デバイス 9 1 2との間の実際の相対位置と, 原盤へ記録される際 の所望の相対位置との差分を、 本発の比較部に一例として対応する、 誤 差信号検出デバイス 9 1 5によって計算する。 すなわち、 レジスト原盤 9 1 0の中心点の軌跡上の移動距離と、 レジスト原盤 9 1 0の中心点の 直線上の移動距離との差を求める。 両者の差は、 あらかじめ決定してお くことができるので、 軌跡上の距離を求めた後、 あらかじめ対応関係を 表にしておいてそこから求めてもよい。 この誤差信号から観測されるト ラックピッチム の情報を、 電子線偏向電極 9 0 7にフィードバックす る。 電子線偏向電極 9 0 7では、 電極中心を通過する電子線を水平移動 デパイス 9 1 2の移動方向と略同じ方向に偏向することが可能であり、 誤差信号検出デバイス 9 1 5で計測された誤差分を電子線を偏向させる ことによって相殺する。 この構成によりレジスト原盤 9 1 0に記録され る光ディスクのトラックピッチの変動などを補正することが可能となる。 上記のようなディスク原盤の製造方法によれば、 曲率をもって移動す る水平移動デパイスと記録ビーム収束デバィスとの相対的な位置情報を 正確に計測することができる。 そして、 この相対的な位置情報に基づい て、 送りピッチのずれや変動を制御することにより、 ディスクの送りパ ターンの精度を向上することがで.きる。
また、 上記では電子線記録装置 5 0 0を使用する例を示したが、 レー ザを光源としたレーザ記録装置を使用しても同様の記録点変動検出が可 能である。 図 7にレーザ記録装置 1 5 0 0の一例を示す。 レーザ光源 1
5 0 1から出射されたレーザ光は、 A O D (音響光学偏向器) 1 5 0 2 を透過した後、 ミラー 1 5 0 3によって、 レジスト原盤 1 5 0 7の方に ビームが曲げられ、 記録ビーム集束デバイス 1 5 0 4によってレジス ト 原盤 1 5 0 7上に絞り込まれる。 レジスト原盤 1 5 0 7は自転デバイス 1 5 0 8によって保持されている。 記録ビーム集束デパイス 1 5 0 4は 、 スイングアーム 1 5 0 9に固定されており、 回転軸 1 5 1 0を中心と してスイングアーム 1 5 0 9を回転させることによって、 レジスト原盤 1 5 0 7との相対的な位置が曲率を持って動かされる。 記録ビーム集束 デバイス 1 5 0 4の側面部にはスケール 1 5 0 5が設けられており、 ス ケール情報検出デバイス 1 5 0 6によって、 スケール 1 5 0 5の情報を 検出する。 スケール 1 5 0 5、 スケール情報検出デバイス 1 5 0 6は、 レーザの干渉を用いて測定するものや、 磁気記録パターンを読みとつて 測定するものなどが用いられる。
A O D 1 5 0 2は、 レーザ光をスィングアーム 1 5 0 9の送り方向に 偏向することが可能である。 図 8に A O Dの構造を示す。 A〇D素子 1
6 0 1にトランスデューサ 1 6 0 2から超音波を入力する。 その超音波 によって素子内に屈折率分布が生じ、 回折格子を構成する。 そこにレー ザ光 1 6 0 3を入力すると回折が生じる。 回折光 1 6 0 5は、 A O D素 子 1 6 0 1に入力する信号によってその回折角が変化するので、 入力信 号に応じてレーザ光 1 6 0 3を偏向することが可能となる。 このように 偏向されたレーザ光を記録ビームとして使用する。 このような動作によ り、 スケール 1 5 0 5とスケール情報検出デバイス 1 5 0 6によって測 定されるレーザ光とレジス ト原盤 1 5 0 7との実際の相対的な位置関係. と、 所望の位置関係とに誤差が生じた場合、 A O D 1 5 0 2を駆動する ことで誤差を補正することが可能である。
また、 記録ビームの偏向デバイスとしては、 図 8に示すような AO D だけでなく、 図 9に示すような EOD素子 1 701も用いることができ る。 図 9では、 コントローラ 1 702から E OD素子 1 701に入力す る信号によって EOD素子 1 701内の屈折率分布をコントロールし、 レーザ光 1 703を方向 1 704に偏向させることができる。 また、 図 10に示すように光源として使用する半導体レーザ 1801の向きを圧 電素子 1 802などで動かすことによってレーザ光の方向 1 803を方 向 1 804に偏向させてもよい。
(実施の形態 2)
図 1 1に本発明の実施の形態 2のディスク原盤の製造装置の一部を構 成する記録点変動検出デバイスの一例を示す。
レジスト原盤 1 006は自転デバイス 1007上に保持されており、 自転デパイス 1 007は水平移動デバイス 1004上に設けられている。 水平移動デバイス 1004は回転中心 1 005を中心に回転し、 自転デ パイス 1 007を曲率をもって移動させる。 直線状でその長手方向がレ ジスト原盤 1006の周方向と略同じであり、 略同じ間隔でホログラム 格子が刻まれたスケール 1001が、 水平移動デバイス 1004の回転 軌道 1008と相似形状を有する側面部 1003に接するように設けら れている。 スケール 1001と水平移動デバイス 10.04との接点は、 図 1 1に示すように水平移動デバイスの回転中心 1005とレジス ト原 盤 1006の回転中心 101 3とを結ぶ直線上に設けられている。 また スケール 1 001には、 レーザ光源とレーザ受光部と干渉パターン計測 装置とを有するスケール情報検出デパイス 1 002が、 スケール 1 00 1の表面と対向するように自転デバイス 1007上に設けられている。 このようにスケール 1001とスケール情報検出デバイス 10.02で 1 つの原盤移動量検出デバイスを形成している。
原盤移動量検出デバイスの出力信号は、 記録点移動量補正デバイス 1
00 9に入力される。
スケール情報検出デバイス 1 00 2は電子カラム 5 0 3に接続されて おり、 スケール 1 00 1は水平移動デバイス 1 004に接続されている。 スケール情報検出デバイス 1 00 2では、 スケール 1 00 1に設けら れたホログラムパターンにレーザ光を照射し、 反射してくる回折光を干 渉させることによって生じる干渉縞の明暗パターンを干渉パターン計測 装置で計数することで位置を検出することができる。
原盤移動量検出デバイスの動きを拡大して示した図が図 1 2である。 スケール 1 1 0 1には格子状のホログラムパターンが形成されており、 スケール情報検出デバイス 1 1 0 2から、 レーザ光を照射し、 回折光を 干渉させて、 干渉縞をスケール情報検出デバイス 1 1 0 2内のレーザ受 光部で検出する。 その干渉縞の明喑を計数することによって水平移動デ パイス 1 0 04の位置を測定する。 水平移動デバイス 1 004が回転軌 道 1 1 0 3にそって、 曲率を持って方向 1 1 04に移動したとき、 スケ ール情報検出デバイス 1 1 0 2は、 位置 1 1 0 5に移動していく。 この とき、 スケール 1 1 0 1と位置 1 1 0 5におけるスケール情報検出デバ イス 1 1 0 2は、 図 1 2に示されるとおり角度を持って対向する。
レジスト原盤 1 0 0 6の回転中心を符号 1 1 0 8に示すと、 レジスト 原盤 1 00 6の半径方向 1 1 0 6に示される方向である。 レジスト原盤
1 006には、 この方向に等間隔にトラックピッチが記録される必要が ある。 しかし、 レジスト原盤 1 00 6上に照射される記録ビームの軌跡 は軌道 1 1 0 7を通るため、 補正が必要となってくる。
しかしながら、 図 1 2のようにレジスト原盤 1 00 6の回転中心 1 1 0 8と水平移動デバイス 1 004の回転中心 1 1 0 9を結ぶ直線上と略 垂直に交わるようにスケール 1 1 0 1を設けた場合、 スケール 1 1 0 1 に照射されるレーザ光の位置も軌道 1 1 1 0に示すように、 水平移動デ パイス 1 0 0 4の回転軌道 1 1 0 3や記録ビームの軌跡 1 1 0 7と相似 する軌跡の曲率を持って動くため、 干渉縞の間隔もスケール 1 1 0 1と スケール情報検出デバイス 1 1 0 2との傾きが大きくなるほど、 広くな つてくる。 この干渉縞の広くなる割合は、 記録ビームの照射位置が曲率 によるレジスト原盤 1 0 0 6の半径方向 1 1 0 6の移動量の変化の割合 と同じであるため、 干渉縞の間隔が等しくなるように水平移動デバイス 1 0 0 4.を駆動すると、 光ディスクのトラックピッチも等間隔に記録さ れることになる。 '
また、 スケールの基準点 (原点) 位置は、 次のような方法で決定で きる。 例えば、 水平移動デバイス 1 0 0 4が移動できる範囲を機械的 に制限し、 移動範囲の限界点において原点とする。 また、 基準点測定 用のレーザ干渉測長器などを真空槽内に設け、 水平移動手段の側面部 との距離を測定できるように配置する。 水平移動デバイスが基準点に 移動したときの水平移動デパイスとの距離を計測して、 決められた距 離に来たときに原点とする。
スケール 1 1 0 1は、 水平移動デバィス 1 0 0 4によってレジスト原 盤 1 0 0 6が移動するにつれ、 スケール情報検出デバイス 1 1 0 2に対 する向きが、 位置 1 1 0 5に示すように傾いていくため、 スケール 1 1 0 1の長さや幅は物理的な制約を受ける。 また、 格子パターンとレーザ およびレーザ受光部との傾きが大きくなりすぎると、 干渉縞が検出でき なくなるため、 その点でも制約を受ける。
例えば、 水平移動デバイス 1 0 0 4の回転中心 1 1 0 9からスケール 1 1 0 1と水平移動デパイス 1 0 0 4との接点までの距離を 5 0 c m、 回転中心 1 1 0 9からレジス ト原盤 1 0 0 6の回転中心 1 1 0 8までの 距離が 40 cm、 レジスト原盤 1 00 6に記録する光ディスクの記録半 径が 0 mmから 6 0 mmまでとすると、 スケール 1 1 0 1に必要な大き さは、 長さとして水平移動デバイス 1 004との接点から約 7. 5 c m が必要であり、 幅は最低でも 5. 5mmが必要となる。 そして、 スケー ル情報検出デバイス 1 1 0 2はこの 5. 5 mm幅のスケール情報を検出 するようなストロークが必要となる。 またスケール情報検出デバイス 1 1 0 2がスケール 1 1 0 1の情報を検出するための傾きとしては 0. 1 5 r a dを許容するものでなければならない。
また、 レジス ト原盤 1 0 06上に記録されるパターンの記録領域が大 きくなったり、 またスケール情報検出デバイス 1 1 0 2とスケール 1 1 0 1 との傾きの許容値が小さい場合などは、 ひとつのスケール 1 1 0 1 とスケール情報検出デバイス 1 1 0 2だけでは、 記録点変動を検出でき ない場合が考えられる。 その場合、 図 1 3に示すように複数のスケール 1 20 1、 1 20 2とスケール情報検出デパイス 1 20 3、 1 204を 設けることによつて測定が可能となる。
レジスト原盤 1 20 8は自転デバイス 1 2 0 9上に保持されており、 自転デバイス 1 20 9は水平移動デバイス 1 20 6上に設けられている。 水平移動デバイス 1 206は回転中心 1 20 7を中心に回転し、 自転デ バイス 1 20 9を曲率をもって移動させる。 直線状で表面がレジス ト原 盤 1 20 8の表面と略同じ向きをもち、 略同じ間隔でホログラム格子が 刻まれたスケール 1 2 0 1 とスケール 1 20 2とが、 水平移動デバイス 1 20 6の回転軌道 1 2 1 0と略同じ曲率を持った側面部 1 20 5に接 するように設けられている。 スケール 1 20 1 と水平移動デバイス 1 2 06との接点は、 図 1 3に示すように水平移動デバイス 1 206の回転 中心 1 20 7とレジス ト原盤 1 20 8の回転中心 1 2 1 6とを結ぶ直線 上に設けられている。 また、 スケール 1 20 2は、 スケール 1 20 1 と R方向にずれた位置に設けられ、 水平移動デバイス 1 2 0 6の移動方向 にもずれた位置に設けられている。
また各スケールは原盤表面側からみて互いの一部が重なり合うように 設けられている。 2つのスケールの重ね方は、 スケール 1 2 0 1の長さ が、 スケール 1 2 0 2と側面部 1 2 0 5の接点と回転中心 1 2 0 7とを 結ぶ直線の所まで至るような長さに設定している。 また、. レーザ光源と レーザ受光部と干渉パタ一ン計測装置とを有するスケール情報検出デバ イス 1 2 0 3が、 スケール 1 2 0 1の表面と対向するように設けられて いる。
また、 スケール 1 2 0 2には、 同様にスケール情報検出デバイス 1 2 0 4が設けられている。 このようにスケール 1 2 0 1 とスケール情報検 出デバイス 1 2 0 3で 1つの原盤移動量検出デバイスを形成し、 スケー ル 1 2 0 2とスケール情報検出デバイス 1 2 0 4で 1つの原盤移動量検 出デバイスを形成している。 それぞれの原盤移動量検出デパイスの出力 信号は、 原盤移動量検出信号選択装置 1 2 1 1に入力され、 各原盤移動 量検出デバイスの出力信号のうち、 どちらか一方を選択し、 記録点移動 量補正デバイス 1 2 1 2に入力する。 また、 スケール情報検出デパイ ス 1 2 0 3、 1 2 0 4は電子カラム 5 0 3に接続されており、 スケール 1 2 0 1、 1 2 0 2は水平移動デバイス 1 2 0 6に接続されている。 ス ケール情報検出デバィス 1 2 0 3、 1 2 0 4では、 スケール 1 2 0 1、 1 2 0 2に設けられたホログラムパターンにレーザ光を照射し、 反射し てくる回折光を干渉させることによって生じる干渉縞の明喑パターンを 干渉パターン計測装置で計数することで水平移動デバイス 1 2 0 6の位 置を検出することができる。
スケール 1 2 0 1 とスケール情報検出デバイス 1 2 0 3で構成される 原盤移動量検出デバイスでの記録点変動検出方法は、 先に述べた通りで ある。
次に、 スケール 1 2 0 1 とスケール情報検出デバイス 1 2 0 3で構成 される原盤移動量検出デバイスから、 スケール 1 2 0 2とスケール情報 検出デバイス 1 2 0 4で構成される原盤移動量検出デバイスへの切替動 作時の動きを説明する。
図 1 4に原盤移動量検出デバイスの拡大図を示す。 記録ビームがレジ ス ト原盤 1 2 0 8の回転中心 1 3 0 8から、 水平移動デバイス 1 2 0 6 の回転中心 1 3 0 9とスケール 1 3 0 5と水平移動デパイス 1 2 0 6と の接点 1 3 1 3とを結ぶ直線と軌跡 1 3 0 7と交わる位置 1 3 1 4まで 移動する間は、 スケール 1 3 0 1 とスケール情報検出デバイス 1 3 0 2 で構成される原盤移動量検出デバイスでレジス ト原盤 1 2 0 8の移動量 を検出する。 これは先に説明したとおり、 スケール情報検出デバイス 1 3 0 2で得られる干渉縞の間隔が、 レジスト原盤 1 2 0 8上の測定しな ければならない半径方向 1 1 0 6の移動間隔と比例関係にあるため、 干 渉縞の間隔が等間隔となるように水平移動デバイス 1 2 0 6を駆動させ れば、 レジスト原盤 1 2 0 8上に記録される トラックピッチも等間隔と なる。
すなわち、 水平移動デバイス 1 2 0 6の回転に伴い、 計測された干渉 縞の間隔と、 レジスト原盤 1 2 0 8への記録線速度と送りピッチから決 定される基準間隔とを比較し、 両者の差がなくなるように水平移動デバ イス 1 2 0 6を駆動させれば、 レジス ト原盤 1 2 0 8上に記録される ト ラックピッチも等間隔となる。 このように、 水平移動デバイス 1 2 0 6 の回転に伴う計測された干渉縞の間隔と基準間隔との差を算出すること は、 結局、 水平移動デバイス 1 2 0 6の回転に伴う、 レジス ト原盤 1 2 0 8の中心点の軌跡上の移動距離と直線上の移動距離の差を算出するこ とと等価となる。 記録ビームが位置 1 3 1 4に来たとき、 スケール 1 3 0 5とスケール 情報検出デバイス 1 3 1 1で構成される原盤移動量検出デバイスに切り 替える。 この構成にすれば、 スケール 1 3 0 5の内、 スケール 1 3 0 5 と側面部との接点 1 3 1 3より半分の部分を使用することになる。 この ようにすれば、 測定しなければならない方向 1 3 0 6での送り間隔の広 がり方と、 スケール 1 3 0 5から出力される干渉縞の間隔の広がり方が 比例関係となり、 トラックピツチの補正が容易となる。
スケール情報検出デバイス 1 3 1 1で検出される干渉縞の間隔は、 レ ジスト原盤 1 2 0 8上の測定しなければならない方向 1 3 0 6の移動間 隔と比例関係にある。 しかしスケール情報検出デバイス 1 3 0 2の出力 とは係数が異なるため、 両者の出力を整合させるためには補正が必要と なる。 水平移動デバィス 1 2 0 6の回転中心 1 3 0 9とスケール 1 3 0 1および水平移動デバイス 1 2 0 6の接点 1 3 1 2とを結ぶ直線と、 水 平移動デバイス 1 2 0 6の回転中心 1 3 0 9とスケーノレ 1 3 0 5および 水平移動デパイス 1 2 0 6の接点 1 3 1 3とを結ぶ直線とのなす角 1 3 1 5を ψ とすると、 スケール情報検出デバイス 1 3 0 2の出力信号と、 スケール情報検出デバイス 1 3 1 1の出力信号との比は c o s φ倍異な る。 そのため、 原盤移動量検出デバイスが切り替わった瞬間、 記録点移 動量補正デバイスで、 スケール情報検出デバイスの出力に c o s φをか ける補正を行う。 この構成を用いることにより、 長く精度の高いスケー ルを作製するのが困難な場合や、 あるいは温度変化などによってスケー ルが伸縮することで長いスケールの精度を維持することが困難な場合に おいても、 短く精度の高いスケールを用いて広範囲な記録点変動検出が 可能となる。
なお、 本実施の形態では、 ホログラム格子を持ったスケールを用いて 位置検出を行ったが、 スケールを磁気記録したパターンと し、 磁気へッ ドで、 スケールの磁化パターン (本発明の所定のパターンの別の一例と して対応する。 ) を読みとる方法を用いても同様の効果が得られる。 また、 以上までの説明において、 水平移動デバイスは長手形状アーム であるとしてきたが、 円形など他の形状もあり得る。 その場合も、 ディ スク原盤の中心と、 水平移動デバイスの回転中心とが異なっており、 水 平移動デバイスの端部において、 ディスク原盤の中心点の移動距離を読 みとることができれば、 上記と同様の効果を得ることができる。
さらに、 上記では曲率をもって移動する水平移動デバイスを用いて記 録点変動の検出をする方法を説明したが、 図 1 5に示すように、 ネジ送 り式のように直線的に矢印 1 4 0 5の方向に移動する水平移動デバイス においても、 スケール 1 4 0 1、 1 4 0 3 とスケール情報検出デバイス 1 4 0 2、 1 4 0 4を図のように配置することによって、 短く精度の良 いスケールを用いて広範囲な位置検出を行うことが可能である。
また原盤移動量検出デバイスは 2つだけではなく、 3つ以上を用いて も同様である。
また、 検出した記録点変動情報を利用し、 記録ビーム偏向デバイスを 駆動させることによって、 記録点変動を抑制し、 レジス ト原盤に記録す るパターンのトラックピッチムラを低減することが可能である。
また、 本実施の形態において、 直線状のホログラムパターンから干渉 縞の間隔を読みとり、 干渉縞の間隔の広がりを、 原盤の回転速度にフィ 一トノ ックさせる代わりに、 実施の形態 1の場合と同様にビームの制御 にフィードパックをする方法も考えられる。 そのような場合も、 上記同 様の効果を得ることができる。
なお、 以上までの説明において、 各レジス ト原盤の水平移動は、 ァー ムによる公転であるとしたが、 それ以外の移動の仕方もある得る。 その ような場合でも、 レジス ト原盤の中心点の軌跡の移動距離と、 直線上の 移動距離との差を検出することができれば、 上記と同様の効果を得るこ とができる。
また、 以上までの説明において'、 本発明の所定のパターンとは、 ホロ グラムパターンまたは、 磁気パターンであるとしたが、 他のパターンが 形成されていてよい。 そのような場合も、 パターンから中心点の軌跡の 移動距離を算出することができれば、 上記と同様の効果を得ることがで きる。
また、 以上までの説明に加えて、 各レジス ト原盤の中心点の軌跡上の 移動距離と直線上の移動距離との差に基づいて、 各自転デバイスの自転 速度を制御する方法も考えれる。 そのような場合でも、 上記と同様の効 果を得ることかできる。 ただし、 この場合は、 各ピッ トにおける電子線 またはレーザの照射量が自転速度の変動により変化するので、 この変化 が許容範囲に入ることが条件となる。
(実施の形態 3 )
図 1 6に本発明の実施の形態 3のディスク原盤の製造装置を示す。 図
2 0に示す装置と同一の構成要素には同一の参照符号を付与している。 本実施の形態のディスク原盤の製造装置と、 図 2 0に示す装置との違い は、 本発明の移動距離読み取りデバイスの一例であるレーザ干渉測長計
1 3 2 5を電子カラム 2 0 3に設置した点にある。 このように、 水平移 動デパイス 2 1 2の移動距離を電子カラム 2 0 3に固定したレーザ干渉 測長計 1 3 2 5で測定し、 測定結果を制御デバイス 1 3 1 6によって電 子ビームの照射位置を制御することにより、 電子カラム 2 0 3の振動、 ずれ等によるビームのずれを補正することができ、 より正確なトラック ピッチをレジス ト原盤 2 1 0に形成することができる。 この制御デバィ ス 1 3 1 6においては、 例えば、 所定の時間において水平移動デバイス
2 1 2が移動すべき距離の情報をあらかじめ格納しており、 実際にその 所定時間に移動した水平移動デバイス 2 1 2の距離とを比較することに より、 ビームのずれを検出する等の制御動作が考えられる。
なお、 本実施の形態において、 レーザ干渉測長計 1 3 2 5は必ずしも 電子カラム 2 0 3に固定されていなくてもよい。 すなわち、 レーザ干渉 測長計 1 3 2 5が電子カラム 2 0 3から間隔を空けて設置されていても 、 レーザ干渉測長計 1 3 2 5と電子カラム 2 0 3との距離、 およびその 距離の変動を計測することができれば、 上記と同様の効果が得られる。 この場合、 本発明の基準は、 レーザ干渉測長計 1 3 2 5にも対応する。 さらに、 レーザ干渉測長計 1 3 2 5とは別に電子カラム 2 0 3の振動 等を検出するための基準があることも考えられる。 その場合もこの基準 と電子カラム 2 0 3が所定の関係 (すなわち、 固定されているか、 また は両者の間の距離を読みとることができる関係) があれば、 上記と同様 の効果を得ることができる。
なお、 実施の形態 1、 2においては、 記録点変動検出デバイス 5 1 4 、 9 1 4は、 電子カラム 5 0 3、 9 0 3に固定されているとして説明し たが、 上記のように、 記録点変動検出デバイス 5 1 4、 9 1 4と電子力 ラム 5 0 3、 9 0 3とが、 両者の間の距離が読みとられる関係で設置さ れていてもよい。
なお、 以上までの説明において、 所定の製造パラメータを制御すると は、 ディスク原盤へのビームの照射を制御すること、 水平移動デバイス の移動速度を制御すること、 または、 自転デパイスの自転速度を制御す ることに対応する。
また、 以上までの説明においては、 次世代記録媒体等の高記録密度の 光ディスク原盤を製造する場合を想定してきたが、 〇0ゃ0 0等の従 来型の光ディスク原盤を製造する場合に本発明が利用される場合もあり 得る。 その場合は、 記録点変動検出デバイス 5 1 4、 9 1 4は必要では なく、 水平移動デバイスの移動距離は、 水平移動デバイスを駆動するモ ータの精度が十分であれば、 例えばアームの回転軸に設けられているェ ンコーダの出力をモニタすることにより算出することができる。 経過時 間に対応する水平移動デバイスの絶対位置をあらかじめテーブルに格納 しておき、 この格納された絶対位置と、 エンコーダ出力とを比較デパイ スが比較して、 制御器がビーム照射位置のずれを、 上記のように補正す ることも考えられる。
また、 以上までは、 ディスク原盤の製造装置、 およびそれを用いたデ イスク原盤の製造方法を説明してきたが、 水平移動デバイスの移動のず れを補正しなければ、 本発明はディスク原盤の検查装置、 ディスク原盤 の検査方法、 ディスク原盤の移動距離差検出装置、 ディスク原盤の移動 距離差検出方法でもあり得る。 産業上の利用可能性
本発明にかかるディスク原盤の製造方法によれば、 曲率をもって移動 する水平移動デバイスを使用して正確なディスク原盤の送り精度を実現 することができ、 また、 水平移動デバイスと記録ビーム集束デパイスと の相対的な位置関係を把握することができ、 ディスク原盤の製造装置、 ディスク原盤の移動距離差検出方法、 ディスク原盤の移動距離差検出装 置、 ディスク原盤の検査方法、 およびディスク原盤の検査装置等として 有用である。

Claims

請 求 の 範 囲
1 . ディスク原盤を自転させる工程と、
前記デイスク原盤を移動させる工程と、
前記移動に伴う前記ディスク原盤の中心点の軌跡上の移動距離を読み とる工程と、
前記中心点の軌跡上の移動距離と、 前記移動に伴う前記ディスク原盤 の中心点の直線上の移動距離との差を検出する工程と、
前記検出結果に基づいて、 所定の製造パラメータを制御する工程と、 を備える、 ディスク原盤の製造方法。
2 . 前記ディスク原盤の移動は、 前記ディスク原盤の中心点とは異 なる回転中心のまわりに回転する公転である、 請求の範囲 1項に記載の ディスク原盤の製造方法。
3 . 前記ディスク原盤の自転は、 長手形状を有するアームの一端で 行い、 前記ディスク原盤の公転は、 前記アームの回転中心の廻りの公転 であり、
前記ディスク原盤の中心点の軌跡上の移動距離の読みとりは、 前記ァ 一ムの端面に設けられた所定のパターンを利用して行う、 請求の範囲 2 項に記載ディスク原盤の製造方法。
4 . 前記ディスク原盤の中心点の軌跡上の移動距離の読みとりは、 前記アームの端面に設けられた、 前記中心点の軌跡に相似する形状のホ ログラムパターンにレーザ光を照射することにより、 その回折光の干渉 縞を計数することにより行う、 請求の範囲 3項に記載のディスク原盤の 製造方法。
5 . 前記中心点の軌跡上の移動距離の読みとりは、 前記アームの端 面に設けられた磁気パターンを磁気へッドにより計数することにより行 う、 請求の範囲 3項に記載のディスク原盤の製造方法。
6 . 前記中心点の軌跡上の移動距離の読みとりは、 前記アームの端 面に設けられた、 直線形状のホログラムパターンにレーザ光を照射する ことにより、 その回折光の干渉縞の間隔を計測することにより行う、 請 求の範囲 3項に記載のディスク原盤の製造方法。
7 . 前記干渉縞の間隔の計測は、 前記アームの回転の限界点を基準 としてなされる、 請求の範囲 6項に記載のディスク原盤の製造方法。
8 . 前記所定の製造パラメータを制御する工程は、 前記ディスク原 盤へのビーム照射の位置を制御する工程.である、 請求の範囲 1項に記載 のディスク原盤の製造方法。
9 . 前記ビーム照射の位置の制御は、 電子線を電界により偏向させ ることにより行う、 請求の範囲 8項に記載のディスク原盤の製造方法。
1 0 . 前記ビーム照射の位置の制御は、 レーザ光を A O Dを用いて偏 向することにより行う、 請求の範囲 8項に記載のディスク原盤の製造方 法。
1 1 . 前記ビーム照射の位置の制御は、 レーザ光を E O Dを用いて偏 向することにより行う、 請求の範囲 8項に記載のディスク原盤の製造方 法。
1 2 . 前記ビーム照射の位置の制御は、 レーザ光源を圧電素子を用い て偏向することにより、 前記レーザ光源から照射されるレーザ光の偏向 を行うものである、 請求の範囲 8項に記載のディスク原盤の製造方法。
1 3 . 前記所定の製造パラメータを制御する工程は、 前記移動速度を 制御する工程である、 請求の範囲 1項に記載のディスク原盤の製造方法。
1 4 . 前記所定の製造パラメータを制御する工程は、 前記自転速度を 制御する工程である、 請求の範囲 6項に記載のディスク原盤の製造方法。
1 5 . 前記回折光の干渉縞の間隔の計測値、 記録線速度、 および送り ピッチに基づいて、 前記自転速度を制御する、 請求の範囲 1 4項に記載 のディスク原盤の製造方法。
1 6 . ディスク原盤を自転させる自転デバイスと、
前記デイスク原盤を移動させる移動デバイスと、
前記移動に伴う前記ディスク原盤の中心点の軌跡上の移動距離を読み とる移動距離読みとりデバイスと、 を備え、
前記移動距離読みとりデバイスにより読みとられた前記中心点の軌跡 上の移動距離と、 前記移動に伴う前記ディスク原盤の中心点の直線上の 移動距離との差を検出する検出デバイスと、
前記検出結果に基づいて、 所定の製造パラメータを制御する制御デパ イスと、 を備える、 ディスク原盤の製造装置。
1 7 . ディスク原盤を自転させる工程と、
前記ディスク原盤を移動させる工程と、
前記移動に伴う前記ディスク原盤の中心点の軌跡上の移動距離を読み とる工程と、
前記中心点の軌跡上の移動距離と、 前記移動に伴う前記ディスク原盤 の中心点の直線上の移動距離との差を検出する工程と、 を備える、 ディ. スク原盤の移動距離差検出方法。
1 8 . ディスク原盤を自転させる自転デバイスと、
前記ディスク原盤を移動させる移動デバィスと、
前記移動に伴う前記ディスク原盤の中心点の軌跡上の移動距離を読み とる移動距離読みとりデバイスと、
前記移動距離読みとりデバイスにより読みとられた前記中心点の軌跡 上の移動距離と、 前記移動に伴う前記ディスク原盤の中心点の直線上の 移動距離との差を検出する検出デバイスと、 を備える、 ディスク原盤の 移動距離差検出装置。
PCT/JP2004/013180 2003-09-08 2004-09-03 ディスク原盤の製造方法、ディスク原盤の製造装置、ディスク原盤の移動距離差検出方法、およびディスク原盤の移動距離差検出装置 WO2005024807A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005513723A JPWO2005024807A1 (ja) 2003-09-08 2004-09-03 ディスク原盤の製造方法、ディスク原盤の製造装置、ディスク原盤の移動距離差検出方法、およびディスク原盤の移動距離差検出装置
US10/570,962 US7361456B2 (en) 2003-09-08 2004-09-03 Method of manufacturing master disk, apparatus of manufacturing master disk, method of detecting moving distance difference of master disk, and apparatus of detecting moving distance difference of master disk
EP04772919A EP1667130A4 (en) 2003-09-08 2004-09-03 DATA CARRIER MASTER MANUFACTURING METHOD, DATA CARRIER MASTER MANUFACTURING DEVICE, METHOD FOR DETECTING A DIFFERENCE OF THE DATA CARRIER MASTER TRANSITION DISTANCE AND DEVICE FOR DETECTING THE DIFFERENCE OF THE DATA CARRIER MASTER TRANSITION DISTANCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-315998 2003-09-08
JP2003315998 2003-09-08

Publications (1)

Publication Number Publication Date
WO2005024807A1 true WO2005024807A1 (ja) 2005-03-17

Family

ID=34269837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013180 WO2005024807A1 (ja) 2003-09-08 2004-09-03 ディスク原盤の製造方法、ディスク原盤の製造装置、ディスク原盤の移動距離差検出方法、およびディスク原盤の移動距離差検出装置

Country Status (6)

Country Link
US (1) US7361456B2 (ja)
EP (1) EP1667130A4 (ja)
JP (1) JPWO2005024807A1 (ja)
KR (1) KR20060081409A (ja)
CN (1) CN100373474C (ja)
WO (1) WO2005024807A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1981243A (zh) * 2004-06-21 2007-06-13 日本先锋公司 电子束绘制装置
US7871933B2 (en) * 2005-12-01 2011-01-18 International Business Machines Corporation Combined stepper and deposition tool
US8335146B2 (en) * 2006-03-24 2012-12-18 Nuflare Technology, Inc. Master disk exposing apparatus and the adjusting method therefor
EP2321731A4 (en) * 2008-09-05 2014-07-30 Doug Carson & Associates Inc COMPENSATION FOR DIFFERENT GEOMETRIES OF TRANSDUCER TRANSLATION ROADS
JP2014142978A (ja) * 2013-01-22 2014-08-07 Sony Corp 制御装置および制御方法、ならびに原盤作製装置
US10056224B2 (en) * 2015-08-10 2018-08-21 Kla-Tencor Corporation Method and system for edge-of-wafer inspection and review
CN106767442A (zh) * 2017-03-30 2017-05-31 李良杰 长度测量笔

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011459A1 (fr) * 1995-09-19 1997-03-27 Kabushiki Kaisha Toshiba Procede d'exposition de disque optique d'origine, appareil d'exposition prevu a cet effet et disque optique
JP2002141012A (ja) 2000-10-31 2002-05-17 Elionix Kk 電子線微細加工装置
US6414916B1 (en) 1998-06-29 2002-07-02 Pioneer Corporation Recording apparatus of master discs of optical discs

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4339198A (en) * 1977-06-13 1982-07-13 Celenav Industries, Inc. Geodetic instrument
JPH0767257B2 (ja) * 1986-03-05 1995-07-19 オリンパス光学工業株式会社 磁気エンコ−ダ付回転電機
DE3850165T2 (de) * 1987-04-08 1994-11-10 Nippon Telegraph & Telephone Verfahren und Gerät zur Herstellung von Matrizen für optische Platten und optischen Platten.
US5043965A (en) * 1987-10-05 1991-08-27 Hitachi Maxell, Ltd. Optical apparatus for optical information recording medium
JPH06101513B2 (ja) * 1987-11-16 1994-12-12 日本電気株式会社 半導体基板処理装置
SG46603A1 (en) * 1991-08-30 1998-02-20 Canon Kk Head positioning device
US5798999A (en) * 1991-12-23 1998-08-25 Nimbus Communications International Limited Damped turntable/disk arculately positionable relative to a head
JPH07114733A (ja) * 1993-08-26 1995-05-02 Pioneer Electron Corp 光ディスク及びその記録方法
JPH0765385A (ja) * 1993-08-27 1995-03-10 Matsushita Electric Ind Co Ltd レーザ記録装置
JP3196459B2 (ja) * 1993-10-29 2001-08-06 キヤノン株式会社 ロータリーエンコーダ
JPH10318718A (ja) * 1997-05-14 1998-12-04 Hitachi Ltd 光学式高さ検出装置
JP2000011464A (ja) * 1998-06-29 2000-01-14 Fujitsu Ltd 電子ビーム照射方法及び装置
JP2002092977A (ja) * 2000-09-14 2002-03-29 Pioneer Electronic Corp 光ディスク原盤製造装置
EP1191527A3 (en) * 2000-09-14 2006-11-02 Pioneer Corporation Master disc manufacturing apparatus
JP2002324312A (ja) * 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd マスター情報担体の製造方法
US6985425B2 (en) * 2001-06-22 2006-01-10 Matsushita Electric Industrial Co., Ltd. Electron beam recorder and method thereof
CN1253871C (zh) * 2001-06-29 2006-04-26 松下电器产业株式会社 光盘原盘曝光装置和光盘原盘曝光方法以及针孔机构
US7053394B2 (en) * 2001-08-08 2006-05-30 Matsushita Electric Industrial Co., Ltd. Recording device of master disk for information recording medium
CN1630905A (zh) * 2001-11-16 2005-06-22 皇家飞利浦电子股份有限公司 制造压模的方法、模板、支承结构以及这种压模的用途
CN1542798A (zh) * 2003-02-26 2004-11-03 ���µ�����ҵ��ʽ���� 电子束记录器和电子束照射位置检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997011459A1 (fr) * 1995-09-19 1997-03-27 Kabushiki Kaisha Toshiba Procede d'exposition de disque optique d'origine, appareil d'exposition prevu a cet effet et disque optique
US6414916B1 (en) 1998-06-29 2002-07-02 Pioneer Corporation Recording apparatus of master discs of optical discs
JP2002141012A (ja) 2000-10-31 2002-05-17 Elionix Kk 電子線微細加工装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1667130A4

Also Published As

Publication number Publication date
JPWO2005024807A1 (ja) 2006-11-09
CN100373474C (zh) 2008-03-05
CN1846257A (zh) 2006-10-11
US7361456B2 (en) 2008-04-22
EP1667130A4 (en) 2008-12-31
US20060248967A1 (en) 2006-11-09
EP1667130A1 (en) 2006-06-07
KR20060081409A (ko) 2006-07-12

Similar Documents

Publication Publication Date Title
EP0392561B1 (en) Optical disk drive
JPS63153456A (ja) 光デイスクテストシステム
KR20040076600A (ko) 전자선 기록 장치 및 전자선 조사 위치 검출 방법
KR100796839B1 (ko) 편심율을 보상하는 이중 인코더 장치를 구비하는 회전식레코더
WO2005024807A1 (ja) ディスク原盤の製造方法、ディスク原盤の製造装置、ディスク原盤の移動距離差検出方法、およびディスク原盤の移動距離差検出装置
CN101449328A (zh) 束记录装置和束调整方法
JP4746677B2 (ja) ディスク原盤製造方法
US11156481B2 (en) Optical encoder system and method
JP4403417B2 (ja) 基準原盤、芯出し調整方法
US6103177A (en) Mastering apparatus for recording onto a glass master and method for recording onto a glass master
JP4440663B2 (ja) 電子線記録装置及び電子線照射位置検出方法
JPH01112110A (ja) 光学式ロータリーエンコーダ
US7474604B2 (en) Electron beam recorder, electron beam irradiation position detecting method and electron beam irradiation position controlling method
JP4559984B2 (ja) 光ディスク原盤露光装置
JPS63153425A (ja) 回転量検出装置
US7539091B2 (en) Differential push-pull gain controlling method and apparatus to reduce the effects of rotational eccentricity
JP2005302704A (ja) 電子線記録装置と電子線照射位置検出方法及び電子線照射位置制御方法
JP3471773B2 (ja) 描画記録装置およびその方法
JP2707749B2 (ja) 光学式エンコーダ
EP2132739B1 (en) Diffraction order measurement
JPH0991720A (ja) 露光装置
US20110188353A1 (en) Electron beam lithography method, electron beam lithography apparatus, method for producing a mold, and method for producing a magnetic disk medium
JPH0562251A (ja) 偏芯調整装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480025632.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067004305

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005513723

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004772919

Country of ref document: EP

Ref document number: 2006248967

Country of ref document: US

Ref document number: 10570962

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004772919

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067004305

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10570962

Country of ref document: US