WO2005024482A1 - Lichtquelle mit einem mikrostrukturierten optischen element - Google Patents

Lichtquelle mit einem mikrostrukturierten optischen element Download PDF

Info

Publication number
WO2005024482A1
WO2005024482A1 PCT/EP2004/052053 EP2004052053W WO2005024482A1 WO 2005024482 A1 WO2005024482 A1 WO 2005024482A1 EP 2004052053 W EP2004052053 W EP 2004052053W WO 2005024482 A1 WO2005024482 A1 WO 2005024482A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical element
light source
microstructured optical
source according
Prior art date
Application number
PCT/EP2004/052053
Other languages
English (en)
French (fr)
Inventor
Hilmar Gugel
Original Assignee
Leica Microsystems Cms Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leica Microsystems Cms Gmbh filed Critical Leica Microsystems Cms Gmbh
Priority to JP2006525153A priority Critical patent/JP2007504499A/ja
Priority to EP04766714A priority patent/EP1714187B1/de
Priority to US10/570,486 priority patent/US7466885B2/en
Publication of WO2005024482A1 publication Critical patent/WO2005024482A1/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/3528Non-linear optics for producing a supercontinuum

Definitions

  • the invention relates to a light source with a microstructured optical element which receives the light from a primary light source and widens it spectrally.
  • the patent US 6,097,870 discloses an arrangement for generating a broadband spectrum in the visible and infrared spectral range. The arrangement is based on a microstructured fiber into which the light from a pump laser is coupled. The pump light is broadened in the microstructured fiber by nonlinear effects. So-called photonic band gap material or "photon crystal fibers", “holey fibers” or “microstructured fibers” is also used as the microstructured fiber. Refinements are also known as so-called “hollow fibers”. A further arrangement for generating a broadband spectrum is described in the Birks et al.
  • a device for illuminating an object which contains a microstructured optical element which spectrally broadened the light of a laser.
  • the device comprises an optic which forms the spectrally broadened light into an illuminating light beam.
  • the publication discloses the use of the device for illumination in a microscope, in particular in a scanning microscope.
  • the arrangement consists of a laser and an optical means that images the light generated by the laser onto a sample to be examined.
  • An optical component is provided between the laser and the optical means, which spectrally widens the light generated by the laser during a single pass, the optical component consisting of photonic band gap material and preferably being designed as an optical fiber.
  • the generation of light of a broadband wavelength spectrum from 500 to 1600 nm is shown using an air quartz glass fiber.
  • the properties of the light generated with the aid of microstructured optical elements depend not only on the wavelength of the primary light source but also on the parameters of the microstructured optical element, such as, for example, the zero dispersion wavelength or the type and dimensions of the hole or the microstructure.
  • the parameters of the microstructured optical element such as, for example, the zero dispersion wavelength or the type and dimensions of the hole or the microstructure.
  • two different photonic crystal fibers have a different emission spectrum at the same wavelength of the primary light. This is particularly disadvantageous with regard to the reproducibility of experiments.
  • the power of the spectrally diffused light is generally largely evenly distributed over the entire broad spectral range, so that for applications in which only light of individual wavelengths or light of small wavelength ranges is required, only a relatively low light output (typically 1-5 mW / nm) is available.
  • the published patent application DE 100 56 382 A1 discloses a light source for illumination in scanning microscopy and a scanning microscope.
  • the light source contains an electromagnetic energy source that emits light of a wavelength and a means for spatially dividing the light into at least two partial light beams.
  • An intermediate element for changing the wavelength is provided in at least one partial light beam.
  • the light source can be used in STED microscopy.
  • a sample is illuminated with a light beam in order to observe the reflection or fluorescent light emitted by the sample.
  • the focus of an illuminating light beam is moved with the aid of a controllable beam deflection device, generally by tilting two SFirrors, in an object plane, the deflection axes usually being perpendicular to one another, so that one mirror deflects in the x direction and the other in the y direction.
  • the mirrors are tilted, for example, with the help of galvanometer control elements.
  • the power of the light coming from the object via a detection beam path is measured with a detector depending on the position of the scanning beam.
  • the control elements are usually equipped with sensors for determining the equipped with the current mirror position.
  • a confocal scanning microscope generally includes a light source, imaging optics with which the light from the source is focused on a pinhole - the so-called excitation diaphragm - a beam splitter, a beam deflector for beam control, microscope optics, a detection diaphragm and the detectors for detecting the detection - or fluorescent light.
  • the illuminating light is often coupled in via the beam splitter, which can be designed, for example, as a neutral beam splitter or as a dichroic beam splitter.
  • Neutral beam splitters have the disadvantage that, depending on the division ratio, a lot of excitation or a lot of detection light is lost.
  • the detection light coming from the object passes back to the beam splitter via the beam deflection device, passes it, and is then focused on the detection diaphragm behind which the detectors are located.
  • Detection light that does not come directly from the focus region takes a different light path and does not pass through the detection diaphragm, so that point information is obtained which leads to a three-dimensional image by sequential scanning of the object.
  • a three-dimensional image is usually achieved by recording image data in layers, the path of the scanning light beam on or in the object ideally describing a meander.
  • samples with multiple markers prepared for example several different fluorescent dyes. These dyes can be excited sequentially, for example with illuminating light beams that have different excitation wavelengths.
  • An increase in resolution in the direction of the optical axis can be achieved, as described in European patent EP 0 491 289 with the title: "Double confocal scanning microscope", by means of a double lens arrangement (4Pi arrangement).
  • the light coming from the illumination system is split into two partial beams which illuminate the sample in opposite directions through two mirror-symmetrically arranged lenses at the same time.
  • the two lenses are arranged on different sides of the object plane common to them.
  • this interferometric illumination forms an interference pattern that shows a main maximum and several secondary maxima when there is constructive interference.
  • an increased axial resolution can be achieved by the interferometric illumination compared to the conventional scanning microscope.
  • a circular path of the stimulation light beam Phase delay plate introduced, which delays the light waves in partial areas by a phase that corresponds to an optical path length of ⁇ / 2.
  • the diameter of the phase delay plate is smaller than the beam diameter and is consequently over-illuminated.
  • the amount of light that experiences a phase delay of ⁇ / 2 must be equal to the amount of light that is not delayed.
  • TiSa titanium sapphire laser
  • OPO optical parametric oscillator
  • titanium sapphire lasers are used as light sources in conjunction with optical parametric oscillators (OPO).
  • OPO optical parametric oscillators
  • Light sources of this type have the disadvantage that they can only provide light of a very limited wavelength spectrum and that they are also difficult to operate. Last but not least, the disadvantage of these light sources is the very high purchase price.
  • semiconductor lasers synchronized with one another are also used as light sources in STED microscopy, the disadvantage of which is that the light output of the laser diode used for the stimulated excitation is often insufficient.
  • the two wavelengths of the laser diodes used are mandatory.
  • solid-state lasers with subsequent frequency doubling are currently used in STED microscopy.
  • the light for excitation of the sample and for the light which causes a stimulated emission are set to two mutually dependent wavelengths, which limits the replaceability of this type of light source to a few possible uses.
  • the object is achieved by a light source, which is characterized in that the spectrally broadened light passes through at least one further microstructured optical element.
  • the spectral properties of the light emitted by the light source can be influenced and adapted to the requirements of the intended application.
  • the power of the light emitted by the light source can be increased in the spectral subregions, which are of particular importance for an application, by suitable selection of the parameters of the microstructured optical element and the further microstructured optical element.
  • the light output can be maximized in the area of the absorption spectrum of the sample dyes used and in the area of the emission spectrum of the sample dyes used.
  • emission light can be generated with the light source according to the invention, the spectral width of which goes beyond the spectral width that each individual microstructured optical element would produce.
  • Such a light source is particularly interesting for multi-wavelength STED applications, since a very wide super continuum is required here.
  • the microstructured optical element and the further microstructured optical element are spliced together.
  • the splicing of optical fibers is a technique which is well known to the person skilled in the art.
  • the published patent application US 2003/0081915 also describes how a conventional fiber is spliced to a microstructured fiber in such a way that the transmission losses are minimized.
  • the light which emerges from the microstructured optical element is coupled into the further microstructured optical element through a lens arrangement.
  • the primary light source is preferably a pulsed light source and, in a preferred variant, comprises a pulsed laser, which can be designed, for example, as a pulsed titanium-sapphire laser.
  • a means for selecting light components of at least one wavelength and / or at least one wavelength range is provided. These means can be, for example, color filters or dichroic filters.
  • the means for selecting preferably includes an acousto-optical or electro-optical component.
  • the means for selection is designed as AOTF (Acousto Optical Tunable Filter) or as AOBS (Acousto Optical Beam Splitter).
  • AOTF Acoustic Optical Tunable Filter
  • AOBS Acoustic Optical Beam Splitter
  • the spectral light emitted by the light source is used to split off a portion of light that has a wavelength within the excitation spectrum of the fluorescent dye used and another portion of light that has a wavelength within the emission spectrum of the fluorescent dye that is used and shaped into an illuminating light beam. While the portion of light that has a wavelength within the excitation spectrum of the fluorescent dye serves to excite the sample in the illuminated area, the portion of light that has a wavelength within the emission spectrum is used to trigger stimulated emission in a sample area that partially overlaps the excitation sample area. If the primary light source is a pulsed light source, the pulses in the two split-off light components are necessarily synchronized with one another, which is a very important property for STED microscopy.
  • the light from the primary light source preferably passes through the microstructured optical element and / or the further microstructured optical element only once. However, iterations can also be repeated.
  • the microstructured optical element and / or the further microstructured optical element preferably contains photonic band gap material.
  • the microstructured optical element and / or the further microstructured optical element is preferably designed as an optical fiber (photonic crystal fiber (PCS); holey fiber, etc.).
  • the microstructured optical element designed as an optical fiber has a tapered fiber.
  • the microstructured optical element and / or the further microstructured optical element is composed of a large number of microoptical structural elements constructed, which have at least two different optical densities.
  • the optical element includes a first region and a second region, the first region having a homogeneous structure and a microscopic structure formed from micro-optical structure elements in the second region. It is also advantageous if the second area encloses the first area.
  • the micro-optical structural elements are preferably cannulas, webs, honeycombs, tubes or cavities.
  • the microstructured optical element and / or the further microstructured optical element consists of glass or plastic material and cavities arranged side by side.
  • the embodiment variant in which the microstructured optical element and / or the further microstructured optical element consists of photonic band gap material and is designed as an optical fiber is particularly preferred.
  • An optical diode is preferably provided between the laser and the optical fiber, which suppresses back reflections of the light beam which originate from the ends of the optical fiber.
  • a very particularly preferred and easy-to-implement embodiment variant includes, as a microstructured optical element and / or as a further microstructured optical element, a conventional optical fiber with a fiber core diameter of approximately 9 ⁇ m, which has a taper at least along a section.
  • Optical fibers of this type are known as so-called "tapered fibers".
  • the optical fiber is preferably a total of 1 m long and has a taper over a length of 30 mm to 90 mm.
  • the diameter of the entire fiber is in the area of the taper approx. 2 ⁇ m.
  • a further preferred embodiment variant includes a microstructured optical element and a further microstructured optical element in which the structural elements continuously merge into one another.
  • the light source according to the invention can also be used, for example, in a flow cytometer or an endoscope or a chromatograph or a lithography device.
  • FIG. 2 shows a further light source according to the invention and FIG. 3 shows a confocal scanning microscope according to the invention.
  • FIG. 1 shows a light source 1 according to the invention with a primary light source 3, which is designed as a pulsed titanium-sapphire laser 5.
  • the light 7 of the primary light source is coupled into a microstructured optical element 11, which is designed as a photonic crystal fiber 13, with the aid of the coupling optics 9.
  • Another microstructured optical element 15, which is designed as a further photonic crystal fiber 17, is spliced directly onto the photonic crystal fiber 13.
  • a third and a fourth microstructured optical element 19, 21 follow, which are spliced on as third and fourth photonic crystal fibers 23, 25.
  • the spectrally broadened light emerging from the fourth photonic crystal fiber 25 is shaped into an illuminating light beam 29 with the aid of the optics 27.
  • the illuminating light beam 29 then passes through a means 31 for selecting light components of at least one wavelength and / or at least one wavelength range, which is designed as AOTF 33.
  • the illuminating light beam 29 emerging from the AOTF 33 now only contains light components of the selected wavelength or the selected wavelength ranges, while the remaining light components are directed by the AOTF into a beam trap (not shown).
  • the light source has a housing 35.
  • Another light source according to the invention is shown in FIG. 2.
  • the light 7 of the primary light source 3 is first coupled into a conventional optical fiber 12 using the coupling optics 9.
  • the conventional optical fiber 12 is spliced to a microstructured optical element 11, which is designed as a photonic crystal fiber 13.
  • the light 7 is spectrally broadened in the photonic crystal fiber 13 and coupled out of the fiber.
  • the spectrally broadened light 16 is then coupled with the aid of a lens arrangement 14 into a further microstructured optical element 15, which is equipped as a further photonic crystal fiber 17.
  • the coupling of two optical fibers with a lens arrangement is a standard in fiber optics and can be assembled.
  • a third microstructured element 19 consisting of a third photonic crystal fiber 23.
  • the transition area 20 which is shown with a gradual gray transition, the structural elements continuously merge. After passing through all the optical elements, the light beam has a spectrum in which a particularly large amount of light has been converted into certain spectral ranges compared to all other spectral ranges.
  • This spectrally shaped light beam 28 then passes through a means 31 for selecting light components of at least one wavelength and / or at least one wavelength range, which is designed as AOTF 33.
  • the spectrally shaped light beam 28 is then split into an excitation light beam 30 and a stimulation light beam 32 using a beam splitter 36.
  • the stimulation light beam 32 passes through a phase delay plate 34, as is used in STED microscopy. This procedure is well known to the person skilled in the art.
  • the two light beams are combined with one another again via a straightener 38.
  • This light beam can then be coupled as an illuminating light beam 29 into a scanning microscope according to the invention, as described in FIG. 3, and used for STED microscopy.
  • FIG. 3 shows a scanning microscope according to the invention, which is designed as a confocal scanning microscope. That of an inventive Light source 1 with the illuminating light beam 29 emanating from the microstructured optical elements (not shown in this figure) is focused by the lens 61 onto the illumination pinhole 37 and then arrives at the main beam splitter 39, which directs the illuminating light beam 29 to the beam deflection device 41, which contains a gimbal-mounted scanning mirror 43, directs.
  • the beam deflection device 41 guides the illuminating light beam 29 through the scan lens 45 and the tube lens 47 as well as through the objective 49 over or through the sample 51.
  • the detection light 53 emanating from the sample arrives in the reverse light path , namely through the lens 49, the tube lens 47 and through the scan lens 45 back to the beam deflection device 41 and to the main beam splitter 39, passes this and after passing through the detection pinhole 55 reaches the detector 57, which is designed as a multiband detector 59.
  • the detection light is detected in different spectral detection channels and electrical signals proportional to the power are generated, which are forwarded to a processing system (not shown) for displaying an image of the sample 51.

Abstract

Eine Lichtquelle mit einem mikrostrukturierten optischen Element (11), das das Licht einer Primärlichtquelle (3) empfängt und spektral verbreitert, ist dadurch gekennzeichnet, dass das spektral verbreiterte Licht zumindest ein weiteres mikrostrukturiertes optisches Element (15, 19, 21) durchläuft. Die Lichtquelle ist in der Rastermikroskopie und insbesondere in der STED-Mikroskopie effizient einsetzbar.

Description

LICHTQUELLE MIT MEHREREN MIKROSTRUKTURIERTEN OPTISCHEN ELEMENTEN
Die Erfindung betrifft eine Lichtquelle mit einem mikrostrukturierten optischen Element, das das Licht einer Primärlichtquelle empfängt und spektral verbreitert. Die Patentschrift US 6,097,870 offenbart eine Anordnung zur Generierung eines Breitbandspektrums im sichtbaren und infraroten Spektralbereich. Die Anordnung basiert auf einer mikrostrukturierten Faser, in die das Licht eines Pumplasers eingekoppelt wird. Das Pumplicht wird in der mikrostrukturierten Faser durch nichtlineare Effekte verbreitert. Als mikrostrukturierte Faser findet auch sog. Photonic-Band-Gap-Material oder "photon crystal fibres", „holey fibers" oder „microstructured fibers" Verwendung. Es sind auch Ausgestaltungen als sog. „Hollow fiber" bekannt. Eine weitere Anordnung zur Generierung eines Breitbandspektrums ist in der Veröffentlichung von Birks et al.: .Supercontinuum generation in tapered fibers", Opt.Lett. Vol. 25, p.1415 (2000), offenbart. In der Anordnung wird eine herkömmliche Lichtleitfaser mit einem Faserkern, die zumindest entlang eines Teilstücks eine Verjüngung aufweist verwendet. Lichtleitfasern dieser Art sind als sog. „tapered fibers" bekannt. Insbesondere in dar Mikroskopie, der Eπdoskopis, der Flußzytometrie, der Chromatographie und in der Lithographie sind zur Beleuchtung der Objekte universelle Beleuchtungseinrichtungen mit hoher Leuchtdichte wichtig. In der Scanmikroskopie wird eine Probe mit einem Lichtstrahl abgerastert. Hierzu werden oft Laser als Lichtquelle eingesetzt. Aus der EP 0 495 930: „Konfokales Mikroskopsystem für Mehrfarbenfluoreszenz" ist beispielsweise ein Anordnung mit einem einzelnen mehrere Laserlinien emittierenden Laser bekannt. Derzeit werden hierfür meist Mischgaslaser, insbesondere ArKr- Laser, eingesetzt. Als Probe werden beispielsweise mit Fluoreszenzfarbstoffen präparierte, biologische Gewebe oder Schnitte untersucht. Im Bereich der Materialuntersuchung wird oft das von der Probe reflektierte Beleuchtungslicht detektiert. Auch Festkörperlaser und Farbstofflaser, sowie Faserlaser und Optisch-Parametrische-Oszillatoren (OPO), denen ein Pumplaser vorgeordnet ist, werden häufig verwendet.
Aus der Offenlegungsschrift DE 101 15 488 A1 ist eine Vorrichtung zur Beleuchtung eines Objekts, die ein mikrostrukturiertes optisches Element beinhaltet, das das Licht eines Lasers spektral verbreitert, bekannt. Die Vorrichtung umfasst eine Optik, die das spektral verbreiterte Licht zu einem Beleuchtungslichtstrahl formt. Außerdem ist in der Offenlegungsschrift die Verwendung der Vorrichtung zur Beleuchtung in einem Mikroskop, insbesondere in einem Scanmikroskop, offenbart.
Aus der Patentanmeldung DE 101 15 509 A1 ist eine Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und einer Beleuchtungseinrichtung für ein Scanmikroskop bekannt. Die Anordnung besteht aus einem Laser und einem optischen Mittel, dass das von dem Laser erzeugte Licht auf eine zu untersuchende Probe abbildet. Zwischen dem Laser und dem optischen Mittel ist ein optisches Bauelement vorgesehen, dass das vom Laser erzeugte Licht bei einmaligem Durchlauf spektral verbreitert, wobei das optische Bauelement aus Photonic-Band-Gap-Material besteht und vorzugsweise als Lichtleitfaser ausgebildet ist. In dem Artikel von Ranka et al., Optics Letters, Vol. 25, No. 1, ist die Erzeugung von Licht eines Breitbandwellenlängenspektrums von 500 bis 1600 nm mit Hilfe einer Luft-Quarzglas-Faser gezeigt. Die Eigenschaften des mit Hilfe von mikrostrukturierten optischen Elementen, wie beispielsweise photonischen Kristallfasern, erzeugten Lichts, hängen neben der Wellenlänge der Primärlichtquelle auch von den Parametern des mikrostrukturierten optischen Elements, wie beispielsweise der Null- Dispersions-Wellenlänge oder der Art und der Dimensionen der Loch- bzw. der MikroStruktur, ab. In der Regel weisen zwei unterschiedliche photonische Kristallfasern bei gleicher Wellenlänge des Primärlichtes ein unterschiedliches Emissionsspektrum auf. Dies ist insbesondere mit Hinblick auf die Reproduzierbarkeit von Experimenten von besonderem Nachteil. Die Leistung des spektral verbreiteten Lichts verteilt sich in der Regel weitgehend gleichmäßig über den gesamten breiten Spektralbereich, so dass für Anwendungen, bei denen nur Licht einzelner Wellenlängen oder Licht einzelner kleiner Wellenlängenbereiche benötigt wird, nur eine relativ geringe Lichtleistung (typischerweise stehen 1-5 mW/nm) zur Verfügung steht. Die Offenlegungsschrift DE 100 56 382 A1 offenbart eine Lichtquelle zur Beleuchtung in der Scanmikroskopie und ein Scanmikroskop. Die Lichtquelle beinhaltet eine elektromagnetische Energiequelle, die Licht einer Wellenlänge emittiert und ein Mittel zum räumlichen Aufteilen des Lichts in mindestens zwei Teillichtstrahlen. In mindestens' einem Teillichtstrahl ist ein Zwischenelement zur Wellenlängenänderung vorgesehen. Die Lichtquelle ist in der STED-Mikroskopie einsetzbar.
In der Rastermikroskopie wird eine Probe mit einem Lichtstrahl beleuchtet, um das von der Probe emittierte Reflexions- oder Fluoreszenzlicht zu beobachten. Der Fokus eines Beleuchtungslichtstrahles wird mit Hilfe einer steuerbaren Strahlablenkeinrichtung, im Allgemeinen durch Verkippen zweier SFpiegel, in einer Objektebene bewegt, wobei die Ablenkachsen meist senkrecht aufeinander stehen, so dass ein Spiegel in x-, der andere in y-Richtung ablenkt. Die Verkippung der Spiegel wird beispielsweise mit Hilfe von Galvanometer-Stellelementen bewerkstelligt. Die Leistung des vom Objekt über einen Detektionsstrahlengang kommenden Lichtes wird mit einem Detektor in Abhängigkeit von der Position des Abtaststrahles gemessen. Üblicherweise werden die Stellelemente mit Sensoren zur Ermittlung der aktuellen Spiegelstellung ausgerüstet.
Speziell in der konfokalen Rastermikroskopie wird ein Objekt mit dem Fokus eines Lichtstrahles in drei Dimensionen abgetastet.
Ein konfokales Rastermikroskop umfasst im Allgemeinen eine Lichtquelle, eine Abbildungsoptik, mit der das Licht der Quelle auf eine Lochblende - die sog. Anregungsblende - fokussiert wird, einen Strahlteiler, eine Strahlablenkeinrichtung zur Strahlsteuerung, eine Mikroskopoptik, eine Detektionsblende und die Detektoren zum Nachweis des Detektions- bzw. Fluoreszenzlichtes. Das Beleuchtungslicht wird oft über den Strahlteiler, der beispielsweise als Neutralstrahlteiler oder als dichroitischer Strahlteiler ausgeführt sein kann, eingekoppelt. Neutralstrahlteiler haben den Nachteil, dass je nach Teilungsverhältnis viel Anregungs- oder viel Detektionslicht verloren geht.
Das vom Objekt kommende Detektionslicht (z.B. Fluoreszenz- oder Reflexionslicht) gelangt über die Strahlablenkeinrichtung zurück zum Strahlteiler, passiert diesen, um anschließend auf die Detektionsblende fokussiert zu werden, hinter der sich die Detektoren befinden. Detektionslicht, das nicht direkt aus der Fokusregion stammt, nimmt einen anderen Lichtweg und passiert die Detektionsblende nicht, so dass man eine Punktinformation erhält, die durch sequentielles Abtasten des Objekts zu einem dreidimensionalen Bild führt. Meist wird ein dreidimensionales Bild durch schichtweise Bilddatenaufnahme erzielt, wobei die Bahn des Abtastlichtstrahles auf bzw. in dem Objekt idealerweise einen Mäander beschreibt. (Abtasten einer Zeile in x-Richtung bei konstanter y-Position, anschließend x-Abtastung anhalten und per y-Verstellung auf die nächste abzutastende Zeile schwenken und dann, bei konstanter y-Position, diese Zeile in negative x-Richtung abtasten u.s.w.). Um eine schichtweise Bilddatenaufnahme zu ermöglichen, wird der Probentisch oder das Objektiv nach dem Abtasten einer Schicht verschoben und so die nächste abzutastende Schicht in die Fokusebene des Objektivs gebracht.
Bei vielen Anwendungen werden Proben mit mehreren Markern, beispielsweise mehreren unterschiedlichen Fluoreszenzfarbstoffen präpariert. Diese Farbstoffe können sequentiell, beispielsweise mit Beleuchtungslichtstrahlen, die unterschiedliche Anregungswellenlängen aufweisen, angeregt werden. Eine Auflösungssteigerung in Richtung der optischen Achse lässt sich, wie in der Europäischen Patentschrift EP 0 491 289 mit dem Titel: „Doppelkonfokales Rastermikroskop" beschrieben ist, durch eine Doppelobjektivanordnung (4Pi-Anordnung) erreichen. Das vom Beleuchtungssystem kommende Licht wird in zwei Teilstrahlen aufgespalten, die die Probe einander entgegenlaufend durch zwei spiegelsymmetrisch angeordnete Objektive gleichzeitig beleuchten. Die beiden Objektive sind auf verschiedenen Seiten der ihnen gemeinsamen Objektebene angeordnet. Im Objektpunkt bildet sich durch diese interferometrische Beleuchtung ein Interferenzmuster aus, dass bei konstruktiver Interferenz ein Hauptmaximum und mehrere Nebenmaxima aufweist. Mit einem doppelkonfokalen Rastermikroskop kann im Vergleich zum konventionellen Rastermikroskop durch die interferometrische Beleuchtung eine erhöhte axiale Auflösung erzielt werden.
Eine Anordnung zur Steigerung des Auflösungsvermögens für Fluoreszenzanwendungen ist aus der DE 44 16 558 bekannt. Hierbei werden die lateralen Randbereiche des Fokusvolumens des Anregungslichtstrahls mit einem Lichtstrahl einer anderen Wellenlänge, dem sog. Stimulationslichtstrahl, der von einem zweiten Laser emittiert wird, beleuchtet, um dort die vom Licht des ersten Lasers angeregten Probenbereiche stimuliert in den Grundzustand zurück zu bringen. Detektiert wird dann nur das spontan emittierte Licht aus den nicht vom zweiten Laser beleuchteten Bereichen, so dass insgesamt eine Auflösungsverbesserung erreicht wird. Für dieses Verfahren hat sich die Bezeichnung STED (Stimulated Emission Depletion) eingebürgert.
Eine neue Entwicklung hat gezeigt, dass man gleichzeitig sowohl lateral, als auch axial eine Aufiosungsverbesserung erzielen kann, wenn es gelingt, den
Fokus des Stimulationslichtstrahles innen hohl zu machen. Hierzu wird in den
Strahlengang des Stimulationslichtstrahles eine runde Phasenverzögerungsplatte eingebracht, welche die Lichtwellen in Teilbereichen um eine Phase verzögert, die einer optischen Weglänge von λ/2 entspricht. Die Phasenverzögerungsplatte ist in ihrem Durchmesser kleiner als der Strahldurchmesser und wird folglich überleuchtet. Um einen innen hohlen Stimulationsstrahl zu erreichen, muss die Lichtmenge, die eine Phasenverzögerung von λ/2 erfährt, gleich der nicht verzögerten Lichtmenge sein.
STED-Mikroskopie wird zur Zeit in drei verschiedenen Konfigurationen durchgeführt: Mittels eines Titan-Saphir-Lasers (TiSa) zum stimulierten Abregen des Fluoreszenzfarbstoffs und eines durch den TiSa gepumpten optischen parametrischen Oszillators (OPO) zum Anregen des Fluoreszenzfarbstoffs. (Proc. Natl. Acad. Sei. U.S.A., Vol. 97, p. 8206-8210, 2000)
Mittels zweier synchronisierter Laserdioden, von denen eine Laserdiode eine Wellenlänge im Wellenlängenbereich des Absorptionsspektrums des Farbstoffs und die andere Laserdiode eine Wellenlänge im Bereich des Emissionsspektrums des Farbstoffs besitzt. (Appl. Phys. Lett, Vol. 82, No. 18, p. 3125-3127, 2003)
Mittels eines gepulsten Festkörperlasers, dessen Licht einerseits zur stimulierten Abregung des Fluoreszenzfarbstoffs verwendet wird. Anderseits wird das Licht frequenzverdoppelt und zur Anregung des Farbstoffs verwendet. (Hell, S. W. (1997). „Increasing the Resolution of Far-Field Fluorescence Microscopy by Point-Spread-Function Engineering." Topics In Fluorescence Spectroscopy 5: Nonlinear and Two-Photon-Induced Fluorescence. J. Lakowicz. New York, Plenum Press. 5.)
In der STED-Mikroskopie werden beispielsweise Titan-Saphir-Laser in Verbindung mit optisch parametrischen Oszillatoren (OPO) als Lichtquelle verwendet. Lichtquellen dieser Art haben den Nachteil, dass sie nur Licht eines sehr begrenzten Wellenlängenspektrums zur Verfügung stellen können und dass sie darüber hinaus schwierig bedienbar sind. Nachteilhaft ist bei diesen Lichtquellen nicht zuletzt der sehr hohe Anschaffungspreis. Derzeit werden auch aufeinander synchronisierte Halbleiterlaser als Lichtquellen in der STED-Mikroskopie verwendet,, wobei nachteiligerweise die Lichtleistung der zum stimulierten Abregen verwendeten Laserdiode oft nicht ausreicht. Außerdem ist man zwingend auf die beiden Wellenlängen der eingesetzten Laserdioden festgelegt. Als Alternative werden derzeit in der STED- Mikroskopie auch Festkörperlaser mit nachfolgender Frequenzverdopplung verwendet. Hierbei ist man für das Licht zur Anregung der Probe und für das Licht, das eine stimulierte Emission bewirkt, auf zwei voneinander abhängige Wellenlängen zwingend festgelegt, was die Ersetzbarkeit dieses Lichtquellentyps auf wenige Anwendungsmöglichkeiten einschränkt.
Es ist die Aufgabe der vorliegenden Erfindung, eine Lichtquelle mit einem mikrostrukturiertem optischen Element anzugeben, deren Emissionsspektrum auf die jeweilige Anwendung angepasst ist und die insbesondere in der Rastermikroskopie und speziell in der STED-Mikroskopie verwendbar ist. Die Aufgabe wird durch eine Lichtquelle gelöst, die dadurch gekennzeichnet ist, dass das spektral verbreiterte Licht zumindest ein weiteres mikrostrukturiertes optisches Element durchläuft.
Durch die Hintereinander-Anordnung von zwei oder mehr mikrostrukturierten optischen Elementen können die spektralen Eigenschaften des von der Lichtquelle emittierten Lichts beeinflusst und an die Anforderungen der beabsichtigten Anwendung angepasst werden. Insbesondere kann durch geeignete Auswahl der Parameter des mikrostrukturierten optischen Elements und des weiteren mikrostrukturierten optischen Elements die Leistung des von der Lichtquelle emittierten Lichts in den spektralen Unterbereichen, die für eine Anwendung von besonderer Bedeutung sind, erhöht werden. Beispielsweise kann bei Verwendung der Lichtquelle in der STED-Mikroskopie eine Maximierung der Lichtleistung im Bereich des Absorptionsspektrums der verwendeten Probenfarbstoffe und im Bereich des Emissionsspektrums der verwendeten Probenfarbstoffe erzielt werden. Die erfindungsgemäße Lichtquelle eignet sich daher hervorragend für Anwendungen in der hochauflösenden Mikroskopie, wie beispielsweise der erwähnten STED- Mikroskopie oder in der STED- Pi=Rastermikroskopie (doppelkonfokales Rastermikroskop), sowie in der CARS-Mikroskopie.
Vorteilhafterweise kann mit der erfindungsgemäßen Lichtquelle Emissionslicht erzeugt werden, dessen spektrale Breite über die spektrale Breite, die jedes einzelne mikrostrukturierte optische Element erzeugen würde, hinausgeht. Eine solche Lichtquelle ist insbesondere für Mehrwellenlängen-STED- Anwendungen interessant, da hier ein sehr breites Superkontinuum benötigt wird.
In einer ganz besonders bevorzugten Ausgestaltungsvariante der Lichtquelle sind das mikrostrukturierte optische Element und das weitere mikrostrukturierte optische Element miteinander verspleißt. Das Verspleißen von Lichtleitfasern ist eine dem Fachmann hinlänglich bekannte Technik. In der Offenlegungsschrift US 2003/0081915 wird zudem beschrieben, wie eine konventionelle Faser mit einer mikrostrukturierten Faser so miteinander verspleißt werden, dass die Transmissionsverluste minimiert sind. In einer anderen bevorzugten Ausgestaltungsvariante der Lichtquelle wird das Licht, welches aus dem mikrostrukturiertem optischen Element austritt, durch eine Linsenanordnung in das weitere mikrostrukturierte optische Element eingekoppelt.
Auch "Pump-Probe"-Experimente sind mit Hilfe der erfindungsgemäßen Lichtquelle effizient durchführbar.
Die Primärlichtquelle ist vorzugsweise eine Pulslichtquelle und umfasst in einer bevorzugten Variante einen Pulslaser, der beispielsweise als gepulster Titan-Saphir-Laser ausgeführt sein kann.
In einer besonders bevorzugten Ausgestaltungsform ist ein Mittel zum Selektieren von Lichtanteilen zumindest einer Wellenlänge und/oder zumindest eines Wellenlängenbereichs vorgesehen. Bei diesen Mitteln kann es sich beispielsweise um Farbfilter oder dichroitische Filter handeln. Vorzugsweise beinhaltet das Mittel zum Selektieren ein akusto-optisches oder elektro-optisches Bauteil. In einer bevorzugten Variante ist das Mittel zum Selektieren als AOTF (Acousto Optical Tunable Filter) oder als AOBS (Acousto Optical Beam Splitter) ausgeführt. Wie bereits erwähnt, ist die Lichtquelle auch innerhalb eines Verfahrens zur Erzeugung von Beleuchtungslicht für die STED-Mikroskopie oder für "Pump- Probe"-Experimente hervorragend geeignet. Aus dem von der Lichtquelle emittierten spektral verbreiteten Licht wird hierbei mit Hilfe des Mittels zum Selektieren ein Lichtanteil, der eine Wellenlänge innerhalb des Anregungsspektrums des jeweils verwendeten Fluoreszenzfarbstoffs aufweist, abgespalten und ein weiterer Lichtanteil, der eine Wellenlänge innerhalb des Emissionsspektrums des verwendeten Fluoreszenzfarbstoffs aufweist, abgespalten und zu einem Beleuchtungslichtstrahl geformt. Während der Lichtanteil, der eine Wellenlänge innerhalb des Anregungsspektrums des Fluoreszenzfarbstoffs aufweist, zur Anregung der Probe im beleuchteten Bereicht dient, dient der Lichtanteil, der eine Wellenlänge innerhalb des Emissionsspektrums aufweist, zur Auslösung von stimulierter Emission in einem mit dem Anregungsprobenbereich teilweise überlappenden Probenbereich. Wenn die Primärlichtquelle eine Pulslichtquelle ist, so sind die Pulse in den beiden abgespaltenen Lichtanteilen zwangsläufig zueinender synchronisiert, was eine für die STED-Mikroskopie sehr wichtige Eigenschaft ist.
Vorzugsweise durchläuft das Licht der Primärlichtquelle das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element nur ein mal. Es ist jedoch auch ein wiederholtes Durchlaufen möglich.
Vorzugsweise beinhaltet das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element Photonic-Band-Gap-Material. Vorzugsweise ist das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element als Lichtleitfaser ausgestaltet (Photonic-Crystal-Faser (PCS); Holey fiber, usw).
In einer anderen Variante weist das als Lichtleitfaser ausgestaltete mikrostrukturierte optische Element eine Verjüngung (Tapered fiber) auf.
Das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element ist in einer bevorzugten Ausgestaltung des Scanmikroskops aus einer Vielzahl von mikrooptischen Strukturelementen aufgebaut, die zumindest zwei unterschiedliche optische Dichten aufweisen. Ganz besonders bevorzugt ist eine Ausgestaltung, bei der das optische Element einen ersten Bereich und einen zweiten Bereich beinhaltet, wobei der erste Bereich eine homogene Struktur aufweist und in dem zweiten Bereich eine mikroskopische Struktur aus mikrooptischen Strukturelementen gebildet ist. Von Vorteil ist es außerdem, wenn der zweite Bereich den ersten Bereich umschließt. Die mikrooptischen Strukturelemente sind vorzugsweise Kanülen, Stege, Waben, Röhren oder Hohlräume.
Das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element besteht in einer besonderen Variante aus nebeneinander angeordnetem Glas- oder Kunststoffmaterial und Hohlräumen. Besonders zu bevorzugen ist die Ausführungsvariante, bei der das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element aus Photonic-Band-Gap-Material besteht und als Lichtleitfaser ausgestaltet ist. Vorzugsweise ist zwischen dem Laser und der Lichtleitfaser eine optische Diode vorgesehen, die Rückreflexionen des Lichtstrahles, die von, den Enden der Lichtleitfaser herrühren, unterdrückt.
Eine ganz besonders bevorzugte und einfach zu realisierende Ausführungsvariante beinhaltet als mikrostrukturiertes optisches Element und/oder als weiteres mikrostrukturiertes optisches Element eine herkömmliche Lichtleitfaser mit einem Faserkerndurchmesser von ca. 9 μm, die zumindest entlang eines Teilstücks eine Verjüngung aufweist. Lichtleitfasern dieser Art sind als sog. „tapered fibers" bekannt. Vorzugsweise ist die Lichtleitfaser insgesamt 1 m lang und weist eine Verjüngung auf einer Länge von 30 mm bis 90 mm auf. Der Durchmesser der gesamten Faser beträgt in einer bevorzugten Ausgestaltung im Bereich der Verjüngung ca. 2 μm.
Eine weitere bevorzugte Ausführungsvariante beinhaltet ein mikrostrukturiertes optisches Element und ein weiteres mikrostrukturiertes optisches Element, bei denen die Strukturelemente kontinuierlich ineinander übergehen. In einer ganz besonders bevorzugten Variante sind ein rnikrost/ukturiertes optisches Element und ein weiteres mikrostirukturieirtes optisches Element als Lichtleitfasern mit kontinuierlichem Übergang ausgebildet.
Die erfindungsgemäße Lichtquelle ist beispielsweise auch in einem Flußzytometer oder einem Endoskop oder einem Chromatographen oder einer Lithographievorrichtung verwendbar.
In der Zeichnung ist der Erfindungsgegenstand schematisch dargestellt und wird anhand der Figuren nachfolgend beschrieben. Dabei zeigen:
Fig. 1 eine erfindungsgemäße Lichtquelle,
Fig. 2 eine weitere erfindungsgemäße Lichtquelle und Fig. 3 ein erfindungsgemäßes konfokales Rastermikroskop.
Fig. 1 zeigt eine erfindungsgemäße Lichtquelle 1 mit einer Primärlichtquelle 3, die als gepulster Titan-Saphir-Laser 5 ausgestaltet ist. Das Licht 7 der Primärlichtquelle wird mit Hilfe der Einkoppeloptik 9 in ein mikrostrukturiertes optisches Element 11 , das als Photonic-Crystal-Faser 13 ausgebildet ist, eingekoppelt. Unmittelbar an die Photonic-Crystal-Faser 13 ist ein weiteres mikrostrukturiertes optisches Element 15, das als weitere Photonic-Crystal- Faser 17 ausgebildet ist, angespleißt. Analog folgen ein drittes und ein viertes mikrostrukturiertes optisches Element 19, 21, die als dritte und vierte Photonic-Crystal-Faser 23, 25 angespleißt sind. Das aus der vierten Photonic- Crystal-Faser 25 austretende spektral verbreiterte Licht wird mit Hilfe der Optik 27 zu einem Beleuchtungslichtstrahl 29 geformt. Der Beleuchtungslichtstrahl 29 durchläuft anschließend ein Mittel 31 zum Selektieren von Lichtanteilen zumindest einer Wellenlänge und/oder zumindest eines Wellenlängenbereichs, das als AOTF 33 ausgebildet ist. Der aus dem AOTF 33 austretende Beleuchtungslichtstrahl 29 beinhaltet nur noch Lichtanteile der ausgewählten Wellenlänge bzw. der ausgewählten Wellenlängenbereiche, während die übrigen Lichtanteile von dem AOTF in eine nicht gezeigte Strahlfalle gelenkt werden. Zum Schutz vor äußeren Beeinflussungen, insbesondere zum Schutz vor Verschmutzung, weist die Lichtquelle ein Gehäuse 35 auf. Eine weitere erfindungsgemäße Lichtquelle ist in Fig. 2 dargestellt. Das Licht 7 der Primärlichtquelle 3 wird zunächst mit Hilfe der Einkoppeloptik 9 in eine konventionelle Lichtleitfaser 12 eingekoppelt. Die konventionelle Lichtleitfaser 12 ist mit einem mikrostrukturiertem optischen Element 11, das als Photonic- Crystal-Faser 13 ausgeführt ist, verspleißt. In der Photonic-Crystal-Faser 13 wird das Licht 7 spektral verbreitert und aus der Faser ausgekoppelt. Das spektral verbreiterte Licht 16 wird anschließend mit Hilfe einer Linsenanordnung 14 in ein weiteres mikrostrukturiertes optisches Element 15, das als weitere Photonic-Crystal-Faser 17 ausgestattet ist, eingekoppelt. Die Kopplung zweier Lichtleitfasern mit einer Linsenanordnung ist in der Faseroptik ein Standard und kann konfektioniert werden. Im Anschluss an die weitere Photonic-Crystal-Faser 17 befindet sich ein drittes mikrostrukturiertes Element 19, bestehend aus einer dritten Photonic-Crystal-Faser 23. Im Übergangsbereich 20, der mit einem graduellen Grauübergang dargestellt ist, gehen die Strukturelemente kontinuierlich ineinander über. Der Lichtstrahl weist nach Durchlaufen aller optischen Elemente ein Spektrum auf, in dem in bestimmte Spektral bereiche besonders viel Licht konvertiert worden ist, im Vergleich zu allen anderen Spektral bereichen. Dieser spektral geformte Lichtstrahl 28 durchläuft anschließend ein Mittel 31 zum Selektieren von Lichtanteilen zumindest einer Wellenlänge und/oder zumindest eines Wellenlängenbereichs, das als AOTF 33 ausgebildet ist. Anschließend wird der spektral geformte Lichtstrahl 28 mit einem Strahlteiler 36 in einen Anregungslichtstrahl 30 und einen Stimulationslichtstrahl 32 aufgeteilt. Der Stimulationslichtstrahl 32 durchläuft eine Phasenverzögerungsplatte 34, wie sie in der STED-Mikroskopie Verwendung findet. Dem Fachmann ist diese Vorgehensweise hinlänglich bekannt. Über einen Stra l vereiniger 38 werden beide Lichtstrahlen wieder miteinander vereint. Dieser Lichtstrahl kann anschließend als Beleuchtungslichtstrahl 29 in ein erfindungsgemäßes Rastermikroskop, wie in Fig. 3 beschrieben ist, eingekoppelt und zur STED- Mikroskopie verwendet werden.
Fig. 3 zeigt ein erfindungsgemäßes Rastermikroskop, das als konfokales Rastermikroskop ausgebildet ist. Der von einer erfindungsgemäßen Lichtquelle 1 mit den in dieser Figur nicht gezeigten mikrostrukturierten optischen Elementen ausgehende Beleuchtungslichtstrahl 29 wird von der Linse 61 auf die Beleuchtungslochblende 37 fokussiert und gelangt anschließend zu dem Hauptstrahlteiler 39, der den Beleuchtungslichtstrahl 29 zu der Strahlablenkeinrichtung 41, die einen kardanisch aufgehängten Scanspiegel 43 beinhaltet, lenkt. Die Strahlablenkeinrichtung 41 führt den Beleuchtungslichtstrahl 29 durch die Scanlinse 45 und die Tubuslinse 47 sowie durch das Objektiv 49 hindurch über bzw. durch die Probe 51. Das von der Probe ausgehende Detektionslicht 53, das in der Figur gestrichelt dargestellt ist, gelangt auf dem umgekehrten Lichtweg, nämlich durch das Objektiv 49, die Tubuslinse 47 und durch die Scanlinse 45 zurück zur Strahlablenkeinrichtung 41 und zum Hauptstrahlteiler 39, passiert diesen und gelangt nach Durchlaufen der Detektionslochblende 55 zum Detektor 57, der als Multibanddetektor 59 ausgeführt ist. Im Multibanddetektor 59 wird in verschiedenen spektralen Detektionskanalen das Detektionslicht detektiert und zur Leistung proportionale elektrische Signale erzeugt, die an ein nicht gezeigtes Verarbeitungssystem zur Darstellung eines Abbildes der Probe 51 weitergegeben werden.
Die Erfindung wurde in Bezug auf eine besondere Ausführungsform beschrieben. Es ist jedoch selbstverständlich, dass Änderungen und Abwandlungen durchgeführt werden können, ohne dabei den Schutzbereich der nachstehenden Ansprüche zu verlassen.
Bezugszeichenliste:
1 Lichtquelle
3 Primärlichtquelle
5 Titan-Saphir-Laser
7 Licht
9 Einkoppeloptik
11 mikrostrukturiertes optisches Element
12 konventionelle Lichtleitfaser
13 Photonic-Crystal-Faser
14 Linsenanordnung
15 weiteres mikrostrukturiertes optisches Element
16 spektral verbreitertes Licht
17 weitere Photonic-Crystal-Faser
19 drittes mikrostrukturiertes optisches Element
20 Übergangsbereich
21 viertes mikrostrukturiertes optisches Element
23 dritte Photonic-Crystal-Faser
25 vierte Photonic-Crystal-Faser
27 Optik
28 spektral geformter Lichtstrahl
29 Beleuchtungslichtstrahl
30 Anregungslichtstrahl
31 Mittel zum Selektieren von Lichtanteilen
32 Stimulationslichtstrahl
33 AOTF Phasenverzögerungsplatte
Gehäuse
Strahlteiler
Beleuchtungsloch blende
Strahlvereiniger
Hauptstrahlteiler
Strahlablenkeinrichtung
Scanspiegel
Scanlinse
Tubuslinse
Objektiv
Probe
Detektionslicht
Detektionslochblende
Detektor
Multibanddetektor
Linse

Claims

Patentansprüche
1. Lichtquelle mit einem mikrostrukturierten optischen Element, das das Licht einer Primärlichtquelle empfängt und spektral verbreitert, dadurch gekennzeichnet, dass das spektral verbreiterte Licht zumindest ein weiteres mikrostrukturiertes optisches Element durchläuft.
2. Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element Photonic-Band-Gap-Material beinhaltet.
3. Lichtquelle nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element als Lichtleitfaser ausgestaltet sind.
4. Lichtquelle nach Anspruch 3, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element eine Verjüngung (tapered Fiber) aufweist.
5. Lichtquelle nach Anspruch 3, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element und das weitere mikrostrukturierte optische Element kontinuierlich ineinander übergehen.
6. Lichtquelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element eine Photonic-Crystal-Faser (mikrostrukturierte Faser, Holey Fiber) ist.
7. Lichtquelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das mikrostrukturierte optische Element und das weitere mikrostrukturierte optische Element miteinander verspleißt sind.
8. Lichtquelle nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das Licht, welches aus dem mikrostrukturiertem optischen Element austritt mit einer Linsenanordnung in das weitere mikrostrukturierte optische Element einkoppelbar ist.
9. Lichtquelle nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Primärlichtquelle einen Pulslaser umfasst.
10. Lichtquelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Licht der Primärlichtquelle das mikrostrukturierte optische Element und/oder das weitere mikrostrukturierte optische Element wiederholt durchläuft.
11. Lichtquelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass Mittel zum Selektieren von Lichtanteilen zumindest einer Wellenlänge und/oder zumindest eines Wellenlängenbereichs vorgesehen sind.
12. Lichtquelle nach einem der Ansprüche 1 bis 11, gekennzeichnet durch die Verwendung in einem Flußzytometer oder einem Endoskop oder einem Chromatographen oder einer Lithographievorrichtung.
13. Mikroskop mit einer Lichtquelle nach einem der
Ansprüche 1 bis 11.
14. Rastermikroskop mit einer Lichtquelle nach einem der
Ansprüche 1 bis 11.
15. Rastermikroskop nach Anspruch 14, dadurch gekennzeichnet, dass das Rastermikroskop ein konfokales Rastermikroskop und/oder ein doppel konfokales Rastermikroskop und/oder ein STED- Rastermikroskop und/oder ein STED-4Pi-Rastermikroskop und/oder ein CARS-Rastermikroskop ist.
16. Verfahren zur Erzeugung von Beleuchtungslicht gekennzeichnet durch folgende Schritte: • Erzeugen von spektral verbreitertem Licht mit einer Lichtquelle nach einem der Ansprüche 1 bis 11 , • Auswählen zumindest einer Beleuchtungslichtwellenlange und/oder zumindest eines Beleuchtungslichtwellenlängenbereichs und • Abspalten des Beleuchtungslichtes der zumindest einen Beleuchtungslichtwellenlange und/oder des zumindest einen Beleuchtungslichtwellenlängenbereichs aus dem spektral verbreiterten Licht.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass das Beleuchtungslicht eine Probe optisch anregt.
18. Verfahren nach einem der Ansprüche 16 oder 17, gekennzeichnet durch den weiteren Schritt: • Auswählen zumindest einer weiteren Beleuchtungslichtwellenl nge und/oder zumindest eines weiteren Beleuchtungslichtwellenlängenbereichs und • Abspalten von weiterem Beleuchtuπgslicht der zumindest einen weiteren Beleuchtungslichtwellenlange und/oder des zumindest einen weiteren Beleuchtungslichtwellenlängenbereichs aus dem spektral verbreiterten Licht.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass das weitere Beleuchtungslicht eine stimulierte Emission bewirkt.
20. Verwendung des Verfahrens nach einem der Ansprüche
16 bis 19 in der STED-Mikroskopie.
21. Verwendung des Verfahrens nach einem der Ansprüche
16 bis 19 zur Durchführung von Pump-Probe-Experimenten.
PCT/EP2004/052053 2003-09-05 2004-09-06 Lichtquelle mit einem mikrostrukturierten optischen element WO2005024482A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006525153A JP2007504499A (ja) 2003-09-05 2004-09-06 複数の微細構造光学要素を有する光源
EP04766714A EP1714187B1 (de) 2003-09-05 2004-09-06 Mikroskop mit einer lichtquelle mit mehreren mikrostrukturierten optischen elementen
US10/570,486 US7466885B2 (en) 2003-09-05 2004-09-06 Light source comprising a plurality of microstructured optical elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340964.5 2003-09-05
DE10340964A DE10340964A1 (de) 2003-09-05 2003-09-05 Lichtquelle mit einem mikrostrukturierten optischen Element

Publications (1)

Publication Number Publication Date
WO2005024482A1 true WO2005024482A1 (de) 2005-03-17

Family

ID=34223378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/052053 WO2005024482A1 (de) 2003-09-05 2004-09-06 Lichtquelle mit einem mikrostrukturierten optischen element

Country Status (5)

Country Link
US (1) US7466885B2 (de)
EP (1) EP1714187B1 (de)
JP (1) JP2007504499A (de)
DE (1) DE10340964A1 (de)
WO (1) WO2005024482A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033632A1 (de) 2005-09-21 2007-03-29 Leica Microsystems Cms Gmbh Verfahren und vorrichtung zum hochaufgelösten optischen abtasten einer probe
DE102006009833A1 (de) * 2006-03-01 2007-09-06 Leica Microsystems Cms Gmbh Verfahren und Mikroskop zur räumlich hochauflösenden Untersuchung von Proben
EP1936345A1 (de) * 2006-12-22 2008-06-25 Sony Deutschland Gmbh Temperatur und Temperaturverteilungsmessung mit hoher Auflösung in mikroskopischen elektronischen Vorrichtungen und biologische Objekte
DE102009053306A1 (de) * 2009-11-12 2011-05-26 Ben-Gurion University Of The Negev Verfahren und Vorrichtung zur Erzeugung einer Anregungsstrahlung und Einrichtung zur Analyse einer Probe
WO2023078732A1 (de) * 2021-11-03 2023-05-11 Trumpf Lasertechnik Gmbh Sted-mikroskop

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8340741B2 (en) * 2004-06-07 2012-12-25 James Schellenberg System and micro-catheter devices for medical imaging of the breast
US7519253B2 (en) 2005-11-18 2009-04-14 Omni Sciences, Inc. Broadband or mid-infrared fiber light sources
GB2434483A (en) 2006-01-20 2007-07-25 Fianium Ltd High-Power Short Optical Pulse Source
DE102006009832B4 (de) * 2006-03-01 2013-07-04 Leica Microsystems Cms Gmbh Verfahren und Mikroskop zur räumlich hochauflösenden Untersuchung von Proben
US7619732B2 (en) 2006-03-01 2009-11-17 Leica Microsystems Cms Gmbh Method and microscope for high spatial resolution examination of samples
DE102006047816A1 (de) * 2006-10-07 2008-04-17 Leica Microsystems Cms Gmbh Verfahren und Vorrichtung zum hochaufgelösten optischen Abtasten einer Probe
DE102007002203A1 (de) * 2007-01-16 2008-07-17 Carl Zeiss Microimaging Gmbh Beleuchtungsvorrichtung und Beleuchtungsverfahren
US8023179B2 (en) * 2007-03-15 2011-09-20 Ofs Fitel Llc Enhanced continuum generation in nonlinear bulk optic materials
CN101909513A (zh) * 2008-01-04 2010-12-08 皇家飞利浦电子股份有限公司 光学探针
GB0800936D0 (en) 2008-01-19 2008-02-27 Fianium Ltd A source of optical supercontinuum generation having a selectable pulse repetition frequency
US9207385B2 (en) 2008-05-06 2015-12-08 Qd Vision, Inc. Lighting systems and devices including same
WO2009137053A1 (en) 2008-05-06 2009-11-12 Qd Vision, Inc. Optical components, systems including an optical component, and devices
WO2009151515A1 (en) 2008-05-06 2009-12-17 Qd Vision, Inc. Solid state lighting devices including quantum confined semiconductor nanoparticles
WO2010085548A2 (en) * 2009-01-22 2010-07-29 Li-Cor, Inc. Single molecule proteomics with dynamic probes
WO2010129350A2 (en) 2009-04-28 2010-11-11 Qd Vision, Inc. Optical materials, optical, components, devices, and methods
DE102010037190B4 (de) * 2010-08-27 2015-11-26 Leica Microsystems Cms Gmbh Vorrichtung zum zeitlichen Verschieben von Weißlichtlaserpulsen
JP5776992B2 (ja) * 2010-11-22 2015-09-09 マックス−プランク−ゲゼルシャフト ツル フォルデルング デル ヴィッゼンシャフテン イー.ヴイ. 自然放出蛍光をパルス励起、連続脱励起、およびゲート記録するsted顕微鏡法、sted蛍光相関分光法、およびsted蛍光顕微鏡
DE202013006817U1 (de) * 2013-07-30 2014-10-31 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Gepulste Laserlichtquelle für die Fluoreszenzanregung
DE112015001154T5 (de) * 2014-04-24 2016-12-08 Olympus Corporation Mikroskop und Mikroskopie-Verfahren
KR102288353B1 (ko) * 2015-02-27 2021-08-11 삼성디스플레이 주식회사 레이저 광학계 및 이를 포함하는 레이저 어닐링 장치
JP6594437B2 (ja) 2015-09-15 2019-10-23 オリンパス株式会社 顕微鏡および顕微鏡観察方法
US10520789B2 (en) * 2016-08-25 2019-12-31 Coherent Kaiserslautern GmbH Modular ultraviolet pulsed laser-source
US10409139B2 (en) 2017-09-21 2019-09-10 Qioptiq Photonics Gmbh & Co. Kg Light source with multi-longitudinal mode continuous wave output based on multi-mode resonant OPO technology
US10756505B2 (en) 2017-09-21 2020-08-25 Qioptiq Photonics Gmbh & Co. Kg Tunable light source with broadband output
CN110068560B (zh) * 2019-04-17 2021-08-06 深圳大学 一种受激辐射损耗超分辨成像系统及方法
CN113677254B (zh) * 2019-04-28 2024-01-16 北京航空航天大学 可调谐光源及内窥镜系统
DE102021005684A1 (de) 2021-11-16 2023-05-17 Jörn Volkher Wochnowski STED-Verfahren mit Hohllichtwellenleitern

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4416558A1 (de) * 1994-02-01 1995-08-03 Hell Stefan Vorrichtung und Verfahren zum optischen Messen eines Probenpunktes einer Probe mit hoher Ortsauflösung
EP0886174A2 (de) * 1997-06-18 1998-12-23 Nippon Telegraph And Telephone Corporation Gepulste Weisslichtquelle
EP0922992A2 (de) * 1997-12-11 1999-06-16 Lucent Technologies Inc. Optischer Pulskompressor für optische Kommunikationssysteme
US5960146A (en) * 1996-07-24 1999-09-28 Sumitomo Electric Industries, Ltd. Optical fiber and light source apparatus
DE10115488A1 (de) * 2000-06-17 2001-12-20 Leica Microsystems Verfahren und Vorrichtung zur Beleuchtung eines Objekts
EP1184701A1 (de) * 2000-06-17 2002-03-06 Leica Microsystems Heidelberg GmbH Beleuchtungseinrichtung
JP2002148468A (ja) * 2000-11-09 2002-05-22 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバの融着方法
US20030081915A1 (en) * 2001-10-31 2003-05-01 Fajardo James C. Splice joint and process for joining a microstructured optical fiber and a conventional optical fiber

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5127730A (en) 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
DE4040441A1 (de) 1990-12-18 1992-07-02 Hell Stefan Doppelkonfokales rastermikroskop
US5731588A (en) * 1994-02-01 1998-03-24 Hell; Stefan Process and device for optically measuring a point on a sample with high local resolution
JP3558499B2 (ja) * 1996-07-24 2004-08-25 住友電気工業株式会社 光ファイバ、光源装置及びシステム
EP0970396B1 (de) * 1997-03-29 2004-09-22 Deutsche Telekom AG Faser-integrierte photonenkristalle und -systeme
JP3474773B2 (ja) * 1997-06-18 2003-12-08 日本電信電話株式会社 白色パルス光源
US6097870A (en) * 1999-05-17 2000-08-01 Lucent Technologies Inc. Article utilizing optical waveguides with anomalous dispersion at vis-nir wavelenghts
DE50108370D1 (de) * 2000-06-17 2006-01-19 Leica Microsystems Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop
DE20122783U1 (de) * 2000-06-17 2007-11-15 Leica Microsystems Cms Gmbh Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
DE20122791U1 (de) * 2000-06-17 2007-11-29 Leica Microsystems Cms Gmbh Scanmikroskop
US6898367B2 (en) * 2000-06-17 2005-05-24 Leica Microsystems Heidelberg Gmbh Method and instrument for microscopy
EP1164406B1 (de) * 2000-06-17 2019-04-17 Leica Microsystems CMS GmbH Verfahren und Vorrichtung zur Beleuchtung eines Objekts
EP1164402B1 (de) * 2000-06-17 2010-04-28 Leica Microsystems CMS GmbH Scanmikroskop mit mehrbandiger Beleuchtung und optisches Bauelement für ein Scanmikroskop mit mehrbandiger Beleuchtung
JP2002055240A (ja) * 2000-08-09 2002-02-20 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバ及びその製造方法
DE10056382B4 (de) * 2000-11-14 2004-07-01 Leica Microsystems Heidelberg Gmbh Scanmikroskop
US6846428B2 (en) * 2001-03-20 2005-01-25 Wisconsin Alumni Research Foundation Thin film lithium niobate and method of producing the same
CA2443037A1 (en) * 2001-04-11 2002-10-24 Crystal Fibre A/S Dual core photonic crystal fibers (pcf) with special dispersion properties
US7616986B2 (en) * 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
JP2003083905A (ja) * 2001-09-11 2003-03-19 Seiko Instruments Inc 試料表面変位測定による試料分析装置
US6993228B2 (en) * 2003-08-13 2006-01-31 Corning Incorporated Dispersion compensated optical fiber transmission system and module including micro-structured optical fiber
US7280570B2 (en) * 2003-12-15 2007-10-09 Leica Microsystems Device for generating a light beam including multiple wavelengths

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4416558A1 (de) * 1994-02-01 1995-08-03 Hell Stefan Vorrichtung und Verfahren zum optischen Messen eines Probenpunktes einer Probe mit hoher Ortsauflösung
US5960146A (en) * 1996-07-24 1999-09-28 Sumitomo Electric Industries, Ltd. Optical fiber and light source apparatus
EP0886174A2 (de) * 1997-06-18 1998-12-23 Nippon Telegraph And Telephone Corporation Gepulste Weisslichtquelle
EP0922992A2 (de) * 1997-12-11 1999-06-16 Lucent Technologies Inc. Optischer Pulskompressor für optische Kommunikationssysteme
DE10115488A1 (de) * 2000-06-17 2001-12-20 Leica Microsystems Verfahren und Vorrichtung zur Beleuchtung eines Objekts
EP1184701A1 (de) * 2000-06-17 2002-03-06 Leica Microsystems Heidelberg GmbH Beleuchtungseinrichtung
JP2002148468A (ja) * 2000-11-09 2002-05-22 Mitsubishi Cable Ind Ltd フォトニッククリスタルファイバの融着方法
US20030081915A1 (en) * 2001-10-31 2003-05-01 Fajardo James C. Splice joint and process for joining a microstructured optical fiber and a conventional optical fiber

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BIRKS T A ET AL: "SUPERCONTINUUM GENERATION IN TAPERED FIBERS", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 25, no. 19, 1 October 2000 (2000-10-01), pages 1415 - 1417, XP000981159, ISSN: 0146-9592 *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 09 4 September 2002 (2002-09-04) *
RANKA J K ET AL: "VISIBLE CONTINUUM GENERATION IN AIR-SILICA MICROSTRUCTURE OPTICAL FIBERS WITH ANOMALOUS DISPERSION AT 800 NM", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 25, no. 1, 1 January 2000 (2000-01-01), pages 25 - 27, XP000928530, ISSN: 0146-9592 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007033632A1 (de) 2005-09-21 2007-03-29 Leica Microsystems Cms Gmbh Verfahren und vorrichtung zum hochaufgelösten optischen abtasten einer probe
DE102006009833A1 (de) * 2006-03-01 2007-09-06 Leica Microsystems Cms Gmbh Verfahren und Mikroskop zur räumlich hochauflösenden Untersuchung von Proben
DE102006009833B4 (de) * 2006-03-01 2009-01-08 Leica Microsystems Cms Gmbh Verfahren und Mikroskop zur räumlich hochauflösenden Untersuchung von Proben
US7646481B2 (en) 2006-03-01 2010-01-12 Leica Microsystems Cms Gmbh Method and microscope for high spatial resolution examination of samples
US7903247B2 (en) 2006-03-01 2011-03-08 Leica Microsystems Cms Gmbh Method and microscope for high spatial resolution examination of samples
EP1936345A1 (de) * 2006-12-22 2008-06-25 Sony Deutschland Gmbh Temperatur und Temperaturverteilungsmessung mit hoher Auflösung in mikroskopischen elektronischen Vorrichtungen und biologische Objekte
WO2008077490A1 (en) * 2006-12-22 2008-07-03 Sony Deutschland Gmbh Temperature and temperature distribution sensing with high resolution in microscopic electronic devices and biological objects
DE102009053306A1 (de) * 2009-11-12 2011-05-26 Ben-Gurion University Of The Negev Verfahren und Vorrichtung zur Erzeugung einer Anregungsstrahlung und Einrichtung zur Analyse einer Probe
DE102009053306B4 (de) * 2009-11-12 2017-12-14 Ben-Gurion University Of The Negev Verfahren und Vorrichtung zur Erzeugung einer Anregungsstrahlung und Einrichtung zur Analyse einer Probe
WO2023078732A1 (de) * 2021-11-03 2023-05-11 Trumpf Lasertechnik Gmbh Sted-mikroskop

Also Published As

Publication number Publication date
EP1714187A1 (de) 2006-10-25
EP1714187B1 (de) 2012-06-06
US20070025662A1 (en) 2007-02-01
US7466885B2 (en) 2008-12-16
JP2007504499A (ja) 2007-03-01
DE10340964A1 (de) 2005-03-31

Similar Documents

Publication Publication Date Title
EP1714187B1 (de) Mikroskop mit einer lichtquelle mit mehreren mikrostrukturierten optischen elementen
EP1184701B1 (de) Beleuchtungseinrichtung
EP1164406B1 (de) Verfahren und Vorrichtung zur Beleuchtung eines Objekts
DE10243449B4 (de) CARS-Mikroskop und Verfahren zur CARS-Mikroskopie
DE10120425C2 (de) Scanmikroskop
DE10115589B4 (de) Konfokales Scanmikroskop
DE10137155B4 (de) Optische Anordnung und Scanmikroskop
EP1164403B1 (de) Scanmikroskop
WO2013131808A1 (de) Lichtrastermikroskop mit spektraler detektion
DE10235914A1 (de) Lichtquelle zur Beleuchtung mikroskopischer Objekte und Scanmikroskopsystem
WO2008098875A1 (de) Mikroskop zur herkömmlichen fluoreszenzmikroskopie und zur totalinternen-reflexions-mikroskopie
EP1664888A1 (de) Rastermikroskop mit evaneszenter beleuchtung
WO2005029149A1 (de) Mikroskop mit evaneszenter beleuchtung
EP1882970A1 (de) Laser-Scanning-Mikroskop zur Fluoreszenzuntersuchung
DE10227111B4 (de) Spektralmikroskop und Verfahren zur Datenaufnahme mit einem Spektralmikroskop
EP1164400B1 (de) Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
DE10137158B4 (de) Verfahren zur Scanmikroskopie und Scanmikroskop
DE102004017956A1 (de) Mikroskop zur Untersuchung der Lebensdauer angeregter Zustände in einer Probe
DE10139754B4 (de) Beleuchtungsverfahren für ein Scanmikroskop und Scanmikroskop
WO2015032819A1 (de) Mikroskop mit einem element zum verändern der form des beleuchtungslichtfokus
DE102004032953A1 (de) Phasenfilter
DE102004029733B4 (de) Rastermikroskop und Verfahren zur Rastermikroskopie
EP2492737B1 (de) Pulsvereiniger für die verschiedenen Spektralfarben eines Superkontinuum-Lasers
DE20122785U1 (de) Vorrichtung zur Beleuchtung eines Objekts

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007025662

Country of ref document: US

Ref document number: 10570486

Country of ref document: US

Ref document number: 2006525153

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2004766714

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004766714

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10570486

Country of ref document: US