WO2005021809A1 - Method and apparatus for producing metal - Google Patents

Method and apparatus for producing metal Download PDF

Info

Publication number
WO2005021809A1
WO2005021809A1 PCT/JP2004/010024 JP2004010024W WO2005021809A1 WO 2005021809 A1 WO2005021809 A1 WO 2005021809A1 JP 2004010024 W JP2004010024 W JP 2004010024W WO 2005021809 A1 WO2005021809 A1 WO 2005021809A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten salt
metal
chamber
reduction
cacl
Prior art date
Application number
PCT/JP2004/010024
Other languages
French (fr)
Japanese (ja)
Inventor
Tadashi Ogasawara
Makoto Yamaguchi
Masahiko Hori
Toru Uenishi
Original Assignee
Sumitomo Titanium Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Titanium Corporation filed Critical Sumitomo Titanium Corporation
Priority to US10/569,602 priority Critical patent/US20060219053A1/en
Priority to EP04747490A priority patent/EP1666615A1/en
Publication of WO2005021809A1 publication Critical patent/WO2005021809A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/02Electrolytic production, recovery or refining of metals by electrolysis of melts of alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof

Definitions

  • the present invention relates to a metal production method by an oxide direct reduction method for producing a metal such as titanium by reducing a metal oxide with Ca, and a metal production apparatus used for the method.
  • the crawl method is generally used as an industrial production method of titanium metal.
  • metallic titanium is produced through a reduction step and a vacuum separation step.
  • titanium tetrachloride (TiCl 4) is reduced by Mg in the reaction vessel, and sponge-like metallic titanium
  • FIG. 1 is a diagram illustrating a known oxide direct reduction method.
  • a typical known direct oxide reduction method is the Olson method described in US Pat. No. 2,845,386. In this method, as shown in Fig. 1, Ti powder is added to molten CaCl salt.
  • the by-produced CaO has the property of dissolving in CaCl
  • the generated Ca ⁇ dissolves in CaCl
  • the reaction between Ti ⁇ and Ca continues on the surface of the Ti ⁇ powder
  • CaC is produced in the molten salt with the electrolysis of Ca 2 O. And the generated CaC is
  • Olson's method is based on the reaction of CaC generated in the molten salt of CaCl with the electrolysis of the force Ca ⁇ , which is capable of continuous generation of Ti and is efficient.
  • the present invention employs an oxide direct reduction method in which a metal oxide is reduced with Ca, but has a high productivity and does not cause quality deterioration such as carbon contamination. And a metal manufacturing apparatus.
  • the metal production method of the present invention comprises:
  • a metal oxide is introduced into the molten salt contained therein, and the metal oxide is reduced by Ca in the molten salt to form a metal; and a metal formed in the molten salt is separated from the molten salt.
  • Process, and the molten salt after the metal is separated is subjected to a chlorination treatment with chlorine gas.
  • the metal manufacturing apparatus of the present invention holds a molten salt containing CaCl as a main component and containing Ca.
  • the molten salt that has been removed is retained, the molten salt is subjected to salting treatment with chlorine gas, and a salting room for salifying by-product Ca in the molten salt is provided.
  • An electrolysis chamber that holds part or all of the molten salt and electrolyzes the molten salt to generate CaCl force Ca and chlorine;
  • the target titanium is produced based on the reaction represented by the following chemical formulas (4)-(6).
  • the titanium oxide to be charged is reduced by Ca in the molten salt, whereby titanium metal is continuously produced, and CaO is by-produced. Therefore, the molten salt after reduction becomes CaCl containing CaO by-produced in addition to titanium metal.
  • the separation step the metallic titanium generated in the molten salt is separated from the molten salt.
  • the molten salt after the treatment contains substantially no CaCl and substantially only CaCl.
  • the molten salt that has been subjected to the salinization treatment and has substantially CaCl power is entirely or partially subjected to the electrolysis step.
  • the Ca is generated in the molten salt by the electrolytic treatment. And after the electrolysis process, again Molten salt containing CaCl as the main component and containing Ca is recycled to the reduction process
  • the present invention includes first and second characteristic configurations.
  • the first configuration is to perform electrolysis outside the region of the reduction reaction.
  • the second configuration is to salt CaO in the molten salt before the electrolysis.
  • the present invention is advantageous in that chlorine gas is generated at the anode in electrolysis and oxygen gas is not generated.
  • oxygen gas is generated at the anode in electrolysis
  • carbon dioxide gas is generated as a result.
  • Ca generated on the cathode side has a strong reducing power, and thus reduces metal oxides.
  • CaC when gaseous carbonate is present in the molten salt, CaC is generated, and this CaC mixes the metal carbide with the generated metal.
  • the temperature of the molten salt it is necessary to control the temperature of the molten salt to be equal to or higher than the melting point of CaCl 2 (780 ° C.) in the reduction step, the salification step, and the electrolysis step in which the molten salt circulates.
  • the melting point of Ca is 848 ° C. If Ca is melted into molten salt of CaCl,
  • the dissolution of Ca can be up to about 1.5% by weight in CaCl, and the dissolution of Ca ⁇ is 8.0% in CaCl.
  • powdery, granular or massive titanium oxide is charged into the molten salt.
  • the metal titanium separated from the molten salt after reduction is likewise powdery, granular or massive and wet with the molten salt.
  • powdered titanium oxide It is desirable to use
  • the separation step it is effective to separate metal titanium by a physical method such as sedimentation separation or compaction. If the titanium metal is solidified to some extent by sedimentation separation, compression and compaction, and the like, and then taken out, the ingot can be made into an ingot by a usual melting method such as a plasma melting method after the separation.
  • a physical method such as sedimentation separation or compaction.
  • either a bottomless crucible or a bottomed crucible may be used as the melting crucible.
  • a bottomless crucible When a bottomless crucible is used, a continuous structure becomes possible.
  • the particle size of the titanium oxide to be charged is small, the particle size of the produced metal titanium is also small, so that sedimentation and separation in the reduction step may be inefficient.
  • the reduction step is performed in a bottomed vessel, and the molten salt in which the generated metallic titanium is suspended at a high concentration is removed from the bottom of the vessel by stationary separation, and then the molten salt is compressed and compacted. It is efficient to adopt a method of separating the titanium produced by force. Further, the remaining molten salt is subjected to a salification treatment, whereby the utilization efficiency of the molten salt can be improved.
  • continuous and efficient salification treatment can be performed by bubbling chlorine gas into the molten salt.
  • CaO can dissolve up to about 8.0% by weight in CaCl.
  • Ca ⁇ remaining in titanium is dissolved and dissolved in CaCl that does not contain injected Ca ⁇ .
  • the Ca concentration in the CaCl layer can be increased by dissolving Ca from the Ca layer formed on the liquid surface into the CaCl layer.
  • the portion will be replenished in the form of dissolution into the CaCl layer from the Ca layer.
  • the manufacturing apparatus of the present invention is an apparatus that generates metal using the above-described manufacturing method of the present invention.
  • the electrolytic chamber has a configuration in which a partition wall for separating the anode side and the cathode side is provided.
  • a partition wall for separating the anode side and the cathode side is provided.
  • Flow (flow) can be formed. Then, even if a porous plate is not used for the partition wall, even if a dense plate provided with gaps and holes below the liquid level through which a small amount of molten salt can flow, for example, a metal plate with slits is used, The same Ca separation effect as when a porous plate is used can be obtained.
  • Chlorine gas generated on the anode side in the electrolysis chamber is used for bubbling in the salification step.
  • the salt shaving room can be combined with the reduction chamber.
  • the electrolysis chamber can also be combined with the reduction chamber.
  • the uniting means that another chamber is continuously installed next to a specific chamber, and a partition partitioning between the two chambers may or may not be provided, and a case where no partition is provided will be described later. Means unity.
  • the cathode side of the electrolysis chamber combined with the reduction chamber can be integrated with the reduction chamber by removing a partition partitioning the two chambers.
  • the electrolytic chamber can be formed in a ring around the cylindrical reduction chamber, and more specifically, the outer cylinder also serves as an anode and the cathode also serves as a cathode, so that the molten salt can flow therethrough. And it can be constituted by a combination with an inner cylinder having a reduction chamber on the inside.
  • FIG. 1 is a diagram illustrating a known oxide direct reduction method.
  • FIG. 2 is a diagram illustrating a configuration of a titanium manufacturing facility according to the first embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a configuration of a titanium manufacturing facility according to a second embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a configuration of a titanium manufacturing facility according to a third embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a configuration of a titanium manufacturing facility according to a fourth embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a configuration of a titanium manufacturing facility according to a fifth embodiment of the present invention.
  • FIG. 7 is a diagram illustrating a configuration of a titanium manufacturing facility according to a sixth embodiment of the present invention.
  • FIG. 8 is a view for explaining a cross-sectional configuration of the titanium manufacturing facility shown in FIG. 7 in the XX view.
  • FIG. 2 is a diagram illustrating a configuration of a titanium manufacturing facility according to the first embodiment of the present invention.
  • a reduction chamber 1 having a tower shape and a horizontal separation device 2 connected to a lower portion thereof are provided.
  • the reduction chamber 1 contains a molten salt containing CaCl as a main component and containing Ca.
  • TiO 2 titanium oxide
  • the molten salt is additionally supplied from above.
  • the molten salt is extracted to the side by the separation device 2.
  • a downward flow of the molten salt is formed in the reduction chamber 1. This molten salt flow promotes the sedimentation and separation of the aforementioned generated Ti and by-product Ca ⁇ .
  • the molten salt that contains a large amount of the generated Ti and by-product CaO that has flowed in is physically compressed in the cylinder using the cylindrical perforated screw 3.
  • the molten salt can be squeezed out of the produced Ti and the produced Ti can be compacted.
  • the compacted porous Ti is discharged sequentially from the separation device 2 and dissolved in the dissolution device 4.
  • the Ti formed by compression-separating the molten salt in the separation device 2 has CaCl as a main component and no CaO.
  • Rinsing treatment can be performed with a molten salt. If Ca ⁇ remains in the generated Ti, oxygen in CaO is contained in the titanium metal at the time of dissolution and the oxygen concentration increases, so that CaO is prevented from remaining. Specifically, a molten salt that has been salified in the salification chamber 7 described later and does not contain CaO is used for rinsing, and CaO remaining in the generated Ti is dissolved in CaCl,
  • the Ti melted in the melting device 4 was compressed and separated from the molten salt in the separation device 2, Contains molten salts. Therefore, the molten salt can be floated and separated by storing the molten Ti in the primary water-cooled mold 5. The separated molten salt is sent to the chloride tank 7 described below.
  • Both the molten salt separated from the Ti produced by the separation device 2 and the molten salt floated and separated by the primary water-cooled mold 5 are sent to the chloride chamber 7. Since these molten salts contain a large amount of by-product CaO, chlorine gas is bubbled into the molten salt introduced in the salting chamber 7 to convert CaO in the molten salt. CaO contained in the molten salt is converted to CaCI
  • the molten salt not containing CaO is then sent to the electrolysis chamber 8 with a force S, as described above, part of which is sent to the separation device 4 for rinsing.
  • the introduced molten salt is electrolyzed using a graphite anode and an iron cathode, and chlorine gas is generated on the anode side in the chamber and Ca is generated on the cathode side.
  • the chlorine gas by-produced in the electrolysis chamber 8 is sent to the chlorination chamber 7 to be circulated.
  • the anode side and the cathode side are separated by a porous partition wall 9.
  • the molten salt sent from the salt chamber 7 is introduced to the anode side, and the molten salt containing Ca is extracted from the cathode side and sent to the reduction chamber 1. Thereby, a flow from the anode side to the cathode side is formed. As a result, backflow of the molten salt from the cathode side to the anode side is prevented.
  • chlorine gas is prevented from entering the anode side cathode side.
  • FIG. 3 is a diagram illustrating a configuration of a titanium manufacturing facility according to a second embodiment of the present invention.
  • a part of the molten salt that has been subjected to the salting treatment in the chloride chamber 7 is sent to the electrolytic chamber 8, and almost all of the remaining molten salt is left. Is different from returning electrolysis to reduction chamber 1 and transferring Ca from electrolysis chamber 7 to reduction chamber 1 in a metallic state. To do.
  • a method in which Ca is dissolved in CaCl and transferred may be used in combination.
  • the electrolytic chamber 8 the molten salt from the salt shading chamber 7 is introduced to the anode side, and Ca generated on the liquid level on the cathode side is sent to the reduction chamber 1 alone or together with some CaCl. Return room 1
  • the Ca concentration in CaCl in reduction chamber 1 is maintained at a high level, despite the small amount of molten salt or Ca transferred from reduction chamber 7 to reduction chamber 1 through electrolysis chamber 8.
  • FIG. 4 is a diagram illustrating a configuration of a titanium manufacturing facility according to a third embodiment of the present invention.
  • the third embodiment is different from the production facility of the second embodiment shown in FIG. 3 in that the reduction chamber 1 and the salt shading chamber 7 are combined.
  • other configurations are substantially the same as the manufacturing facilities of the second embodiment.
  • the chloride chamber 7 is formed on the side of the vertical reduction chamber 1 with a partition 10 interposed therebetween.
  • titanium oxide is added to the CaCl by a feed pipe 11 inserted into the molten CaCl salt in the chamber.
  • the titanium thus settles down at the bottom of the reduction chamber 1, is extracted downward, and is sent to the separation device 2 below.
  • CaCl containing by-produced CaO flows from the reduction chamber 1 into the salt shaving chamber 7 at the lower part, and is injected from the lower part.
  • CaO is salified by being subjected to salting treatment by the chlorine gas entering. CaCl rises in the chlorination chamber 7 due to the chlorine gas flow (gas lift) rising in the chlorination chamber 7.
  • the CaCl separated from the titanium metal in the device 2 is also introduced into the lower part of the salt shading room 7. Meanwhile, salt
  • the oxygen gas by-produced in the gasification chamber 7 is extracted upward.
  • CaCl is transferred to the electrolysis chamber 8.
  • the introduced CaCl force Ca is generated.
  • the Ca generated in electrolysis chamber 8 is reduced alone or with a small amount of Ca-rich CaCl
  • the Ca introduced into the reduction chamber 1 forms a layer on CaCl in the reduction chamber 1.
  • the inlet pipe 11 is for introducing titanium oxide into CaCl through the Ca layer on CaCl.
  • FIG. 5 is a diagram illustrating a configuration of a titanium manufacturing facility according to a fourth embodiment of the present invention.
  • the electrolysis chamber 8 is further combined with the reduction chamber 1.
  • the other configuration is substantially the same as the titanium manufacturing facility of the third embodiment.
  • Electrolysis chamber 8 is formed on the opposite side of chloride chamber 7 with reduction chamber 1 interposed therebetween, and no partition wall is provided between the two.
  • the electrolysis chamber 8 includes a graphite anode 12 and an iron cathode 13.
  • the cathode side and the cathode side are separated by a partition 9.
  • the cathode side is located on the side of the reduction chamber 1 and is continuous with the reduction chamber 1 without a partition wall.
  • the partition 9 has a structure that allows the molten salt to pass through.
  • CaCl transferred from the chloride chamber 7 is introduced to the anode side. Chlorine gas by-produced on the anode side
  • Ca is generated on the surface of the iron cathode 13, and the generated Ca moves to the reduction chamber 1 while floating on the bath flow.
  • a Ca reservoir 14 is provided near the bath surface from the cathode 13 to the reduction chamber 1 side.
  • the Ca reservoir 14 is a box having an open bottom, and captures Ca generated on the surface of the cathode 13 and moving to the reduction chamber 1 side, thereby preventing the Ca from being exposed to the bath surface.
  • the Ca stored in the Ca reservoir 14 is dissolved in CaCl in the reduction chamber 1 and
  • the Ca reservoir 14 is made of iron like the cathode 13, and the Ca reservoir 14 is made of iron. It may be integrated with the cathode 13 so as to have the same potential.
  • the purpose of providing the Ca reservoir 14 is not to expose the Ca layer to the bath surface. If the liquid surface on the reduction chamber side from the cathode 13 can be maintained in an insoluble gas atmosphere, exposing the Ca layer to the bath surface does not cause any problem.However, if air mixing cannot be avoided due to operational requirements, When the Ca layer is exposed on the bath surface, Ca ⁇ is generated by oxidation. Therefore, a Ca reservoir 14 was provided to avoid the generation of Ca ⁇ by oxidation.
  • the upper portion of the partition wall 9 extends to the side of the cathode 13 and is in contact with the cathode 13. This is because Ca generated on the surface of the cathode 13 is generated between the cathode 13 and the partition wall 9. It is a structure to prevent accumulation in the water.
  • FIG. 6 is a diagram illustrating a configuration of a titanium manufacturing facility according to a fifth embodiment of the present invention.
  • the configuration of the manufacturing facility of the fourth embodiment shown in FIG. 6 is such that the partition 9 of the electrolytic chamber 8 is eliminated.
  • Other configurations are substantially the same as those of the titanium manufacturing facility of the fourth embodiment.
  • the molten salt is introduced into the anode side as described above, so that a flow of the molten salt is formed from the anode 12 side to the cathode 13 side. For this reason, even if the partition 9 for partitioning between the anode side and the cathode example is omitted, a decrease in efficiency due to the backflow of the molten salt is prevented.
  • the cathode 13 has a structure that allows the molten salt to pass therethrough, like the partition wall 9.
  • a curtain wall type partition wall 15 made of a chlorine-resistant gas material such as a refractory is provided above the cathode 13.
  • a chlorine-resistant gas material such as a refractory
  • the partition wall 9 for separating the anode side and the cathode side in the electrolytic chamber 8 is omitted.
  • the facility structure can be further simplified, and the size can be further reduced.
  • no Ca reservoir is provided on the reduction chamber side of the cathode 13, it is necessary to maintain an insoluble gas atmosphere above the liquid level on the reduction chamber side from the cathode 13.
  • FIG. 7 is a diagram illustrating a configuration of a titanium manufacturing facility according to a sixth embodiment of the present invention.
  • FIG. 8 is a diagram illustrating a cross-sectional configuration of the titanium manufacturing facility shown in FIG. 7 in the XX view.
  • the sixth embodiment has a configuration in which the electrolysis chamber 8 is united with the reduction chamber 1 as in the fourth and fifth embodiments, but the reduction chamber 1 is formed in a cylindrical shape and the electrolysis chamber 8 is It has a cylindrical shape on the outside.
  • the total amount of Ca ⁇ and Ca-free CaCl obtained in the chloride chamber 7 placed beside the reduction chamber 1 is the anode 12 and the cathode 13
  • the inner cathode 13 also serves as a part of the cylindrical outer wall of the reduction chamber 1, and the inside thereof is integrated with the reduction chamber 1.
  • the cathodes 13 in the sixth embodiment are arranged in a spiral shape in the circumferential direction, and slits 13a are provided at predetermined intervals between the cathodes 13.
  • the slits 13a allow the molten salt to pass from the outside to the inside, and the interval gradually increases from the inside to the outside.
  • a swirling flow is formed outside and inside the cathode 13, and the flow of the molten salt from the outside to the inside is promoted.
  • a cylindrical partition wall 15 made of a chlorine-resistant gas material such as a refractory is continuously provided above the cathode 13. For the same reason as in the fifth embodiment, it is necessary to provide the partition wall 15 separately from the cathode 13.
  • the molten salt flowing into the inside of the cathode 13 descends in the reduction chamber 1 while swirling, so that Ca generated on the surface of the cathode 13 is smoothly drawn into the inside of the cathode 13. Then, the Ca flowing into the inside of the cathode 13 floats on the CaCl in the reduction chamber 1, is dissolved in the CaCl, and dissolved.
  • examples of the metal that is an object of the present invention include tungsten, niobium, tantalum, chromium, zirconium, and neodymium in addition to the titanium. .
  • the electrolysis is performed outside the reduction region, and the molten salt to be subjected to the electrolysis is used.
  • the electrolysis is performed outside the reduction region, and the molten salt to be subjected to the electrolysis is used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

A method for producing a metal by the direct reduction of an oxide wherein a metal oxide is reduced with Ca, which comprises holding a molten salt containing CaCl2 as a main component in a reduction chamber (1), inserting a metal oxide into the molten salt in the reduction chamber (1), to thereby form a metal through the reduction of the metal oxide by the Ca in the molten salt, separating the metal formed in the molten salt from the molten salt by means of a separating apparatus (2), introducing the molten salt separated from the metal into a chlorination chamber (7), subjecting the molten salt to a chlorination treatment with a chlorine gas, to remove the by-produced CaO form the molten salt, introducing the molten salt after the chlorination into an electrolysis chamber (8) to electrolyze the molten salt and form Ca and chlorine from CaCl2, transporting the formed Ca or a molten salt containing said Ca from the electrolysis chamber (8) to the reduction chamber (1) and using the chlorine formed in the electrolysis chamber (8) in the chlorination chamber (7); and an apparatus for practicing the method . The method employs a direct reduction process as described above, and also achieves high productivity, and further is free from the contamination of the resultant metal with carbon, which is due to CaO, and from the generation of CO2 in the production process.

Description

明 細 書  Specification
金属製造方法および装置  Metal manufacturing method and apparatus
技術分野  Technical field
[0001] 本発明は、金属酸化物を Caにより還元してチタンなどの金属を生成する、酸化物 直接還元法による金属製造方法およびそれに用いる金属製造装置に関するもので ある。  TECHNICAL FIELD [0001] The present invention relates to a metal production method by an oxide direct reduction method for producing a metal such as titanium by reducing a metal oxide with Ca, and a metal production apparatus used for the method.
^景技術  ^ Scenic technology
[0002] 金属チタンの工業的な製法としてはクロール法が一般的である。このクロール法で は、還元工程および真空分離工程を経て金属チタンが製造される。還元工程では、 反応容器内で四塩化チタン (TiCl )が Mgにより還元され、スポンジ状の金属チタン  [0002] The crawl method is generally used as an industrial production method of titanium metal. In this Kroll method, metallic titanium is produced through a reduction step and a vacuum separation step. In the reduction step, titanium tetrachloride (TiCl 4) is reduced by Mg in the reaction vessel, and sponge-like metallic titanium
4  Four
が製造される。真空分離工程では、反応容器内のスポンジ状の金属チタンから未反 応 Mgおよび副生物である塩化マグネシウム(MgCl )が除去され、製品チタンが製  Is manufactured. In the vacuum separation process, unreacted Mg and by-product magnesium chloride (MgCl) are removed from the sponge-like titanium metal in the reaction vessel, and the product titanium is produced.
2  2
造される。  Built.
[0003] クロール法による金属チタンの製造では、高純度の製品が製造できるが、製造コス トが嵩み製品価格が高くなる。このため、クロール法による製造では、高品質であるが 高価格の金属チタンしか製造できないという制約がある。  [0003] In the production of titanium metal by the Kroll method, a high-purity product can be produced, but the production cost is increased and the product price is increased. For this reason, there is a limitation that high-quality but high-priced metallic titanium can be produced by the crawl method.
[0004] ところ力 構造材などとして、純度は多少低くても、安価な金属チタンの製造が要請 されている。このような要請に対応するため、純度が比較的低い金属チタンを低コスト で連続的に製造する方法の開発が企画されるようになり、その一環として、酸化チタ ンを Caで還元する酸化物直接還元法が検討されている。  [0004] However, there is a demand for the production of inexpensive metallic titanium, even though its purity is somewhat low, as a structural material. In order to respond to such demands, the development of a method for continuously producing low-purity metallic titanium at a low cost has been planned, and as one of the measures, an oxide that reduces titanium oxide with Ca The direct reduction method is being studied.
[0005] 図 1は、公知の酸化物直接還元法を説明する図である。従来から知られる酸化物 直接還元法の代表的な方法として、米国特許第 2845386号明細書に記載されたォ ルソンの方法がある。この方法では、図 1に示すように、 CaCl の溶融塩中に Ti〇粉  FIG. 1 is a diagram illustrating a known oxide direct reduction method. A typical known direct oxide reduction method is the Olson method described in US Pat. No. 2,845,386. In this method, as shown in Fig. 1, Ti powder is added to molten CaCl salt.
2 2 末を投入し、 TiOを Caで還元して Tiを生成する。これと同時に、 CaClの溶融塩中  22 Add powder and reduce TiO with Ca to produce Ti. At the same time, in the molten salt of CaCl
2 2  twenty two
で鉄陰極および黒鉛陽極を用いて CaOの電気分解を行う。  Electrolysis of CaO using iron cathode and graphite anode.
[0006] 上記オルソンの方法では、反応にともなって TiO粉末の表面に CaOが副生する。  [0006] In the Olson method, CaO is by-produced on the surface of the TiO powder due to the reaction.
2  2
しかし、副生した CaOは、 CaCl 中に溶解する性質があるため、 Ti〇粉末の表面に 生成した Ca〇は CaCl 中に溶解し、 Ti〇粉末の表面では Ti〇と Caの反応が継続 However, the by-produced CaO has the property of dissolving in CaCl, The generated Ca〇 dissolves in CaCl, and the reaction between Ti〇 and Ca continues on the surface of the Ti〇 powder
2 2 2  2 2 2
的に進行する。さらに、 Ca〇を含む CaCl の溶融塩を電気分解すると、下記の化学  Progress. Furthermore, when the molten salt of CaCl containing Ca〇 is electrolyzed,
2  2
式(1)一(3)の反応に示すように、 CaCl 中から Ca〇が除去されることになる。  As shown in the reactions of equations (1) and (3), Ca〇 is removed from CaCl 2.
2  2
[0007] すなわち、オルソンの方法によれば、 Ti〇粉末の表面に副生した Ca〇は CaCl 中  [0007] That is, according to Olson's method, Ca〇 by-produced on the surface of Ti〇 powder
2 2 に溶解し、さらに溶解した Ca〇は電気分解により CaCl 中から逐次除去され、蓄積  Dissolved in 2 and further dissolved Ca〇 was sequentially removed from CaCl by electrolysis and accumulated.
2  2
することがないので、 Ti〇力 Tiを生成する反応は継続することになる。  Therefore, the reaction that generates Ti force Ti will continue.
2  2
[0008] 2CaO + C→ 2Ca + C〇 (アノード表面) · · · (1)  [0008] 2CaO + C → 2Ca + C〇 (anode surface) · · · (1)
5Ca + 2CO → CaC +4Ca〇(アノード付近)  5Ca + 2CO → CaC + 4Ca〇 (near the anode)
2 2  twenty two
… (2)  … (2)
2Ti + CaC → 2TiC + Ca (力ソード) . · · (3)  2Ti + CaC → 2TiC + Ca (force sword). · · (3)
2  2
[0009] 前述の通り、オルソンの方法では副生した CaOを蓄積させることなぐ ΤΪΟから Tiを  [0009] As described above, Olson's method does not accumulate by-product CaO,
2 継続的に生成することができるが、その一方では、上記化学式(2)に示すように、 Ca Oの電気分解にともなって溶融塩中に CaCが生成する。そして、生成された CaCは  2 Although it can be produced continuously, on the other hand, as shown in the above chemical formula (2), CaC is produced in the molten salt with the electrolysis of Ca 2 O. And the generated CaC is
2 2 twenty two
、上記化学式(3)に示すように、 Ti中に TiCを混入させ Tiの品質を劣化させることに なる。 However, as shown in the above chemical formula (3), TiC is mixed into Ti, thereby deteriorating the quality of Ti.
[0010] 換言すれば、オルソンの方法は、 Tiの継続生成が可能で能率的である力 Ca〇の 電気分解にともない CaClの溶融塩中に生成する CaCの反応により、 Ti中への TiC  [0010] In other words, Olson's method is based on the reaction of CaC generated in the molten salt of CaCl with the electrolysis of the force Ca〇, which is capable of continuous generation of Ti and is efficient.
2 2  twenty two
の混入が発生する。このような炭素(C)汚染による製品品質の劣化は、金属チタンの 製造において致命的な問題になるため、酸化物直接還元法は未だ実用化されてい ないのが現状である。  Contamination occurs. The deterioration of product quality due to such carbon (C) contamination is a fatal problem in the production of metallic titanium, and the direct oxide reduction method has not yet been put to practical use.
発明の開示  Disclosure of the invention
[0011] 本発明は、金属酸化物を Caで還元する酸化物直接還元法を採用するものでありな がら、生産性が高ぐしかも炭素汚染などの品質劣化を生じることがない金属製造方 法および金属製造装置を提供することを目的にしている。  The present invention employs an oxide direct reduction method in which a metal oxide is reduced with Ca, but has a high productivity and does not cause quality deterioration such as carbon contamination. And a metal manufacturing apparatus.
[0012] 上記目的を達成するために、本発明の金属製造方法は、 CaClを主成分とし Caを  [0012] In order to achieve the above object, the metal production method of the present invention comprises:
2  2
含有する溶融塩中に金属酸化物を投入し、該金属酸化物を溶融塩中の Caにより還 元して金属を生成する還元工程と、溶融塩中に生成した金属を溶融塩から分離する 分離工程と、金属を分離した後の溶融塩を塩素ガスにより塩化処理して、溶融塩中 の副生 CaOを塩化する塩化工程と、塩化処理した後の溶融塩の一部または全部を 電気分解して、 CaCl力 Caおよび塩素を生成し、生成された Caまたは Caを含有す A metal oxide is introduced into the molten salt contained therein, and the metal oxide is reduced by Ca in the molten salt to form a metal; and a metal formed in the molten salt is separated from the molten salt. Process, and the molten salt after the metal is separated is subjected to a chlorination treatment with chlorine gas. The salinization process of salinizing CaO and the electrolysis of part or all of the molten salt after the salification treatment to produce CaCl force Ca and chlorine, containing the produced Ca or Ca
2  2
る溶融塩を前記還元工程へ送る電解工程とを含んでいる。  And sending the molten salt to the reduction step.
[0013] また、本発明の金属製造装置は、 CaClを主成分とし Caを含有する溶融塩を保持  [0013] Further, the metal manufacturing apparatus of the present invention holds a molten salt containing CaCl as a main component and containing Ca.
2  2
し、該溶融塩に投入される金属酸化物を溶融塩中の Caにより還元して金属を生成す る還元室と、溶融塩中に生成した金属を溶融塩から分離する手段と、金属を分離除 去した溶融塩を保持し、該溶融塩を塩素ガスにより塩ィ匕処理して、溶融塩中の副生 Ca〇を塩化する塩ィ匕室と、塩化処理された後の溶融塩の一部または全部を保持し、 該溶融塩を電気分解して、 CaCl力 Caおよび塩素を生成する電解室と、該電解  A reduction chamber for reducing the metal oxide supplied to the molten salt with Ca in the molten salt to generate a metal, a means for separating the metal generated in the molten salt from the molten salt, and a method for separating the metal. The molten salt that has been removed is retained, the molten salt is subjected to salting treatment with chlorine gas, and a salting room for salifying by-product Ca in the molten salt is provided. An electrolysis chamber that holds part or all of the molten salt and electrolyzes the molten salt to generate CaCl force Ca and chlorine;
2  2
室から前記還元室へ生成 Caまたは該 Caを含有する溶融塩を移送する手段とを具備 している。  Means for transferring generated Ca or a molten salt containing the Ca from the chamber to the reduction chamber.
[0014] 本発明の金属製造方法によると、例えば金属チタンを製造する場合には、下記の 化学式 (4)一 (6)に示す反応に基づき、対象とするチタンが生成される。  According to the metal production method of the present invention, for example, in the case of producing metal titanium, the target titanium is produced based on the reaction represented by the following chemical formulas (4)-(6).
Ti〇 + 2Ca  Ti〇 + 2Ca
2  2
→Ti+ 2CaO (還元工程〉 · · · (4)  → Ti + 2CaO (reduction process) · · · (4)
2CaO + 2Cl → 2CaCl +0 (塩化工程) · · · (5)  2CaO + 2Cl → 2CaCl +0 (chlorination step) · · · (5)
2 2 2  2 2 2
CaCl → Ca + Cl (電解工程)  CaCl → Ca + Cl (electrolysis process)
2 2  twenty two
… (6)  … (6)
[0015] まず、還元工程では、投入される酸化チタンが溶融塩中の Caで還元されることによ り金属チタンが連続的に生成し、 CaOが副生する。したがって、還元後の溶融塩は、 金属チタンの他に副生した CaOを含んだ CaCl となる。  First, in the reduction step, the titanium oxide to be charged is reduced by Ca in the molten salt, whereby titanium metal is continuously produced, and CaO is by-produced. Therefore, the molten salt after reduction becomes CaCl containing CaO by-produced in addition to titanium metal.
2  2
[0016] 次に、分離工程では、溶融塩中に生成した金属チタンを溶融塩から分離することに なる。  Next, in the separation step, the metallic titanium generated in the molten salt is separated from the molten salt.
[0017] さらに、塩ィ匕工程では、金属チタンを分離した後の溶融塩を塩素ガスにより塩化処 理することにより、還元反応で副生した CaOから CaClを生成する。これにより、塩化  Further, in the salting process, CaCl is generated from CaO by-produced in the reduction reaction by subjecting the molten salt after separating the metallic titanium to a chlorination treatment with chlorine gas. As a result,
2  2
処理後の溶融塩は、 Ca〇を殆ど含まず実質的に CaClのみを含有することなる。  The molten salt after the treatment contains substantially no CaCl and substantially only CaCl.
2  2
[0018] 塩化処理され、実質的に CaCl力もなる溶融塩は、全部または一部が電解工程へ  [0018] The molten salt that has been subjected to the salinization treatment and has substantially CaCl power is entirely or partially subjected to the electrolysis step.
2  2
送られ、電解処理により溶融塩中に Caが生成される。そして、電解工程を経て、再び CaClを主成分とし Caを含有することとなった溶融塩は、還元工程に循環されることThe Ca is generated in the molten salt by the electrolytic treatment. And after the electrolysis process, again Molten salt containing CaCl as the main component and containing Ca is recycled to the reduction process
2 2
により、金属チタンの連続製造が可能になる。  This enables continuous production of titanium metal.
[0019] 本発明は、第 1および第 2の特徴的な構成からなる。第 1の構成は、還元反応の領 域外で電気分解を行うことである。第 2の構成は、電気分解の前に溶融塩中の CaO を塩ィ匕することである。これらの第 1および第 2の構成を組み合わせることによって、 還元工程での CaOの蓄積を防止するとともに、 Ca〇の電気分解に起因する CaCの [0019] The present invention includes first and second characteristic configurations. The first configuration is to perform electrolysis outside the region of the reduction reaction. The second configuration is to salt CaO in the molten salt before the electrolysis. By combining these first and second configurations, it is possible to prevent the accumulation of CaO in the reduction step and to reduce the amount of CaC due to the electrolysis of Ca〇.
2 発生を防止し、生成金属の炭素汚染をなくすことが可能になる。すなわち、製品汚染 を防止しつつ、還元反応を継続することができる。  2 Prevents generation and eliminates carbon contamination of generated metal. That is, the reduction reaction can be continued while preventing product contamination.
[0020] さらに、本発明では、電気分解において陽極で塩素ガスが発生する力 酸素ガスが 発生しないことによる有利さがある。通常、電気分解の陽極材として黒鉛が使用され る力 前記図 1のオルソンの方法で示すように、陽極で酸素ガスが発生すると、結果 的に炭酸ガスが発生することになる。 [0020] Further, the present invention is advantageous in that chlorine gas is generated at the anode in electrolysis and oxygen gas is not generated. Normally, the force of using graphite as an anode material for electrolysis As shown by the Olson method in FIG. 1, when oxygen gas is generated at the anode, carbon dioxide gas is generated as a result.
[0021] 前記図 1に示す電気分解では、陰極側に発生する Caは還元力が強いため、金属 酸化物を還元する。しかし、前記化学式(2)、 (3)に示すように、溶融塩中に炭酸ガ スが存在する場合には CaCを生成し、この CaCが生成金属中に炭化金属を混入さ In the electrolysis shown in FIG. 1, Ca generated on the cathode side has a strong reducing power, and thus reduces metal oxides. However, as shown in the chemical formulas (2) and (3), when gaseous carbonate is present in the molten salt, CaC is generated, and this CaC mixes the metal carbide with the generated metal.
2 2  twenty two
せることにより、生成金属の品質を低下させる。  By doing so, the quality of the produced metal is reduced.
[0022] これに対し、本発明による電気分解では、黒鉛陽極で酸素ガスが発生せず、結果と して炭酸ガスが発生しないことから、生成金属に炭素汚染が発生するおそれがない。 しかも、黒鉛陽極が消耗しないため、安定した電解条件を確保することができる。 [0022] On the other hand, in the electrolysis according to the present invention, no oxygen gas is generated at the graphite anode, and as a result, no carbon dioxide gas is generated. Moreover, since the graphite anode is not consumed, stable electrolysis conditions can be ensured.
[0023] 本発明の製造方法では、溶融塩が循環する還元工程、塩化工程および電解工程 では、 CaCl の融点(780°C)以上に溶融塩の温度を管理する必要がある。因みに In the production method of the present invention, it is necessary to control the temperature of the molten salt to be equal to or higher than the melting point of CaCl 2 (780 ° C.) in the reduction step, the salification step, and the electrolysis step in which the molten salt circulates. By the way
2  2
Caの融点は 848°Cである力 Caを CaClの溶融塩に溶融させれば、 848°C以下で  The melting point of Ca is 848 ° C.If Ca is melted into molten salt of CaCl,
2  2
も溶解が可能である。正確な溶解度は溶解温度によって変化する力 Caの溶解は C aCl に対し 1. 5重量%程度まで可能であり、 Ca〇の溶解は CaCl に対し 8. 0重量 Can also be dissolved. The exact solubility depends on the dissolution temperature. The dissolution of Ca can be up to about 1.5% by weight in CaCl, and the dissolution of Ca〇 is 8.0% in CaCl.
2 2 twenty two
%程度まで可能である。  % Is possible.
[0024] 還元工程では、粉末状、顆粒状または塊状の酸化チタンが溶融塩中に投入される 。還元後に溶融塩から分離された金属チタンは、同様に粉末状、顆粒状または塊状 であり、溶融塩で濡れている。還元効率を考慮すれば、原料として粉末状の酸化チタ ンを用いるのが望ましい。 [0024] In the reduction step, powdery, granular or massive titanium oxide is charged into the molten salt. The metal titanium separated from the molten salt after reduction is likewise powdery, granular or massive and wet with the molten salt. Considering the reduction efficiency, powdered titanium oxide It is desirable to use
[0025] 分離工程では、沈降分離、または圧縮押し固めなどの物理的方法により金属チタ ンを分離するのが有効である。金属チタンを沈降分離、圧縮押し固めなどである程度 固めて取り出せば、分離後は通常の溶解法、例えばプラズマ溶解法等によりインゴッ トとすることができる。  [0025] In the separation step, it is effective to separate metal titanium by a physical method such as sedimentation separation or compaction. If the titanium metal is solidified to some extent by sedimentation separation, compression and compaction, and the like, and then taken out, the ingot can be made into an ingot by a usual melting method such as a plasma melting method after the separation.
[0026] 溶解工程では、溶解用ルツボとして無底ルツボ、または有底ルツボのいずれを使 用してもよい。無底ルツボを使用する場合には、連続錡造が可能になる。  [0026] In the dissolving step, either a bottomless crucible or a bottomed crucible may be used as the melting crucible. When a bottomless crucible is used, a continuous structure becomes possible.
[0027] 投入される酸化チタンの粒径が小さい場合には、生成金属チタンの粒径も小さくな るため、還元工程での沈降分離が非効率になることがある。このような場合には、例 えば、有底容器で還元工程を行い、静置分離により生成金属チタンが高濃度に懸濁 した溶融塩を容器底部から抜き出し、その後に圧縮押し固めなどにより溶融塩力 生 成金属チタンを分離する方法を採用するのが効率的である。また、残留した溶融塩 は、塩化処理することにより、溶融塩の利用効率を向上させることができる。  [0027] If the particle size of the titanium oxide to be charged is small, the particle size of the produced metal titanium is also small, so that sedimentation and separation in the reduction step may be inefficient. In such a case, for example, the reduction step is performed in a bottomed vessel, and the molten salt in which the generated metallic titanium is suspended at a high concentration is removed from the bottom of the vessel by stationary separation, and then the molten salt is compressed and compacted. It is efficient to adopt a method of separating the titanium produced by force. Further, the remaining molten salt is subjected to a salification treatment, whereby the utilization efficiency of the molten salt can be improved.
[0028] 塩化工程では、溶融塩中に塩素ガスをパブリングさせることにより、連続してかつ効 率的な塩化処理を施すことが可能になる。  [0028] In the salification step, continuous and efficient salification treatment can be performed by bubbling chlorine gas into the molten salt.
[0029] 還元工程で生成した金属チタン中に CaOが残留すると、溶解時に CaO中の酸素 が金属チタンに含有され、チタン中の酸素濃度が高くなる。これを防止するには、塩 化処理後の CaOが含まれていない CaClを分離工程の該当箇所に注入し、溶融塩  [0029] If CaO remains in the titanium metal produced in the reduction step, oxygen in the CaO is contained in the titanium metal during dissolution, and the oxygen concentration in the titanium increases. In order to prevent this, CaCl that does not contain CaO after the salting treatment is injected into the relevant part of the separation step, and molten salt is added.
2  2
から分離された金属チタンをこの塩化処理後の CaClでリンスする、いわゆるリンスェ  Rinsing of the metallic titanium separated from the steel with the CaCl
2  2
程を設けるのが望ましい。  It is desirable to provide a step.
[0030] 前述の通り、 CaClには CaOが 8. 0重量%程度まで溶解することができるので、金 [0030] As described above, CaO can dissolve up to about 8.0% by weight in CaCl.
2  2
属チタン中に残留していた Ca〇は、注入された Ca〇が含まれない CaClに溶解さら  Ca〇 remaining in titanium is dissolved and dissolved in CaCl that does not contain injected Ca〇.
2 2
、金属チタン中から除去される。 , Is removed from the metallic titanium.
[0031] 電解工程では、陰極側で Caが発生し、陽極側で塩素ガスが発生する。電解槽内の 陰極部から抜き出される Caを含有する CaClは、含有する Ca濃度が高いほど、還元 [0031] In the electrolysis step, Ca is generated on the cathode side, and chlorine gas is generated on the anode side. The CaCl containing Ca extracted from the cathode in the electrolytic cell is reduced as the Ca concentration increases.
2  2
工程での還元能力を高めることができる。  The reduction ability in the process can be increased.
[0032] 電解槽内で Ca濃度が CaClの溶解度を超えた場合、過剰となった Caは固体として [0032] When the Ca concentration exceeds the solubility of CaCl in the electrolytic cell, the excess Ca becomes a solid.
2  2
懸濁するか、分離浮上することになる。 Caが懸濁した状態で CaClを還元工程へ送  It will either suspend or separate and float. Send CaCl to the reduction step with Ca suspended
2 ること力 Sできる。還元工程で含有された Caが消費されると、懸濁していた Caが新たに CaClに溶解し、還元作用を発揮するからである。 2 S power This is because, when the Ca contained in the reduction step is consumed, the suspended Ca is newly dissolved in CaCl and exerts a reducing action.
2  2
[0033] 塩化工程から電解工程へは CaClの全部を移送する必要はなぐその一部を移送  [0033] It is not necessary to transfer the entire CaCl from the salification process to the electrolysis process, but transfer a part of it
2  2
するようにしてもよレ、。その場合には、残余の CaClは電解工程を経ずに、塩化工程  You can do it. In that case, the remaining CaCl is not subjected to the electrolytic process,
2  2
力 還元工程へ直送すればよい。塩ィ匕工程から電解工程へ CaClの一部を移送す  It may be sent directly to the power reduction step. Transfer a part of CaCl from the salting process to the electrolysis process
2  2
るのは、次の理由による。  The reason is as follows.
[0034] Caの CaClへの溶解度は小さレ、。このため、 Caが溶解した CaClを還元工程へ送  [0034] The solubility of Ca in CaCl is low. For this reason, CaCl in which Ca is dissolved is sent to the reduction process.
2 2  twenty two
る場合には、所定の還元能力を確保するために、多量の CaClをサイクルさせる必要  If necessary, it is necessary to cycle a large amount of CaCl to secure the specified reduction capacity.
2  2
がある。しかし、電解工程から溶融 Caを単体で還元工程へ移送すれば、多量の CaC 1をサイクルさせる必要がなくなる。  There is. However, if the molten Ca is transferred from the electrolysis step to the reduction step alone, it is not necessary to cycle a large amount of CaC 1.
2  2
[0035] 還元工程では、電解工程からの Caを溶融液面に溜めておけば、液面に形成され た Ca層から CaCl層へ Caが溶解することで、 CaCl層の Ca濃度を高めることができ  [0035] In the reduction step, if Ca from the electrolysis step is stored on the molten liquid surface, the Ca concentration in the CaCl layer can be increased by dissolving Ca from the Ca layer formed on the liquid surface into the CaCl layer. Can
2 2  twenty two
る。すなわち、 CaCl層において溶解 Caにより TiOが還元されたとき、その消費 Ca  The That is, when TiO is reduced by dissolved Ca in the CaCl layer,
2 2  twenty two
分は Ca層力ら CaCl層への溶解の形態で補給されることになる。  The portion will be replenished in the form of dissolution into the CaCl layer from the Ca layer.
2  2
[0036] 本発明の製造装置は、上述の本発明の製造方法を用いて金属を生成する装置で ある。本発明の製造装置では、電解室を陽極側と陰極側を分離する隔壁を設けた構 成にするのが望ましい。隔壁を設けることにより、陽極側で発生する塩素ガスが陽極 側へ侵入しなレ、ようになり、さらに陰極側で発生する Caが陽極側へ戻らなレ、ようにで きる力らである。隔壁を設ける場合は、多孔質のセラミック板(隔膜)を使用するのがよ レ、。  [0036] The manufacturing apparatus of the present invention is an apparatus that generates metal using the above-described manufacturing method of the present invention. In the production apparatus of the present invention, it is preferable that the electrolytic chamber has a configuration in which a partition wall for separating the anode side and the cathode side is provided. By providing the partition, the chlorine gas generated on the anode side does not enter the anode side, and the Ca generated on the cathode side does not return to the anode side. When providing a partition, it is better to use a porous ceramic plate (diaphragm).
[0037] 一方、塩ィヒ工程から供給される CaClを陽極側へ連続的に投入しつつ、陰極側か  On the other hand, while continuously supplying CaCl supplied from the salt process to the anode side,
2  2
ら Ca含有の CaClを連続的に抜き出すようにすれば、陽極側から陰極側への定常  If Ca-containing CaCl is continuously extracted from the anode, steady flow from the anode side to the cathode side
2  2
的な流れ (フロー)を形成することができる。そうすれば、隔壁に多孔質板を用いずと も、少量の溶融塩が流通できる隙間ゃ孔を液面下に設けた緻密な板、例えば、スリツ ト付き金属板などを使用しても、多孔質板を使用した場合と同様の Ca分離効果が得 られる。  Flow (flow) can be formed. Then, even if a porous plate is not used for the partition wall, even if a dense plate provided with gaps and holes below the liquid level through which a small amount of molten salt can flow, for example, a metal plate with slits is used, The same Ca separation effect as when a porous plate is used can be obtained.
[0038] 電解室内の陽極側で発生する塩素ガスは、塩化工程でバブリングに用いる。  [0038] Chlorine gas generated on the anode side in the electrolysis chamber is used for bubbling in the salification step.
[0039] 装置の小型化を図るために、塩ィ匕室を還元室と合体させることができる。また、同様 の趣旨で、電解室も還元室と合体させることができる。ここで合体とは、特定の室の隣 に別の室を続けて設置するという意味であり、両室間を仕切る隔壁を設けても設けな くてもよく、隔壁を設けない場合が後述する一体化を意味する。 [0039] In order to reduce the size of the apparatus, the salt shaving room can be combined with the reduction chamber. Also the same For the purpose of the above, the electrolysis chamber can also be combined with the reduction chamber. Here, the uniting means that another chamber is continuously installed next to a specific chamber, and a partition partitioning between the two chambers may or may not be provided, and a case where no partition is provided will be described later. Means unity.
[0040] 還元室に合体させた電解室の陰極側は、両室間を仕切る隔壁を取り除いて還元室 と一体化させることができる。また、この電解室は、筒状に形成された還元室の周囲 に環状に形成することができ、より具体的には、陽極を兼ねる外筒と、陰極を兼ね、 溶融塩の流通が可能で且つ内側が還元室とされた内筒との組み合わせにより構成 できる。  [0040] The cathode side of the electrolysis chamber combined with the reduction chamber can be integrated with the reduction chamber by removing a partition partitioning the two chambers. The electrolytic chamber can be formed in a ring around the cylindrical reduction chamber, and more specifically, the outer cylinder also serves as an anode and the cathode also serves as a cathode, so that the molten salt can flow therethrough. And it can be constituted by a combination with an inner cylinder having a reduction chamber on the inside.
図面の簡単な説明  Brief Description of Drawings
[0041] 図 1は、公知の酸化物直接還元法を説明する図である。  FIG. 1 is a diagram illustrating a known oxide direct reduction method.
図 2は、本発明の第 1の実施形態を示すチタン製造設備の構成を説明する図であ る。  FIG. 2 is a diagram illustrating a configuration of a titanium manufacturing facility according to the first embodiment of the present invention.
図 3は、本発明の第 2の実施形態を示すチタン製造設備の構成を説明する図であ る。  FIG. 3 is a diagram illustrating a configuration of a titanium manufacturing facility according to a second embodiment of the present invention.
図 4は、本発明の第 3の実施形態を示すチタン製造設備の構成を説明する図であ る。  FIG. 4 is a diagram illustrating a configuration of a titanium manufacturing facility according to a third embodiment of the present invention.
図 5は、本発明の第 4の実施形態を示すチタン製造設備の構成を説明する図であ る。  FIG. 5 is a diagram illustrating a configuration of a titanium manufacturing facility according to a fourth embodiment of the present invention.
図 6は、本発明の第 5の実施形態を示すチタン製造設備の構成を説明する図であ る。  FIG. 6 is a diagram illustrating a configuration of a titanium manufacturing facility according to a fifth embodiment of the present invention.
図 7は、本発明の第 6の実施形態を示すチタン製造設備の構成を説明する図であ る。  FIG. 7 is a diagram illustrating a configuration of a titanium manufacturing facility according to a sixth embodiment of the present invention.
図 8は、前記図 7に示すチタン製造設備のうち X— X視野による断面構成を説明する 図である。  FIG. 8 is a view for explaining a cross-sectional configuration of the titanium manufacturing facility shown in FIG. 7 in the XX view.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0042] 以下に、本発明の第 1一第 6の実施形態を図面に基づいて説明する。 Hereinafter, first to sixth embodiments of the present invention will be described with reference to the drawings.
(第 1の実施形態)  (First Embodiment)
図 2は、本発明の第 1の実施形態を示すチタン製造設備の構成を説明する図であ る。第 1の実施形態では、塔状の還元室 1と、その下部に連結された横向きの分離装 置 2とを備えている。還元室 1には、 CaClを主成分とし Caを含む溶融塩が収容され FIG. 2 is a diagram illustrating a configuration of a titanium manufacturing facility according to the first embodiment of the present invention. The In the first embodiment, a reduction chamber 1 having a tower shape and a horizontal separation device 2 connected to a lower portion thereof are provided. The reduction chamber 1 contains a molten salt containing CaCl as a main component and containing Ca.
2  2
ており、原料である酸化チタン (TiO )の粉末が継続的に投入される。  The powder of titanium oxide (TiO 2) as a raw material is continuously supplied.
2  2
[0043] これにより、還元室 1内では溶融塩中に投入された Ti〇が溶融塩中の Caにより還  [0043] As a result, in the reduction chamber 1, Ti〇 introduced into the molten salt is returned by Ca in the molten salt.
2  2
元され、金属チタン (Ti)が生成され、同時に Ca〇が副生する。生成 Tiおよび副生 Ca Oは、ともに溶融塩から沈降分離され、若干量の CaClをともなって分離装置 2内に  To produce metallic titanium (Ti) and, at the same time, by-product Ca 副. Both the generated Ti and by-product Ca O are settled and separated from the molten salt, and with a small amount of CaCl,
2  2
流入する。  Inflow.
[0044] 還元室 1内には、原料である酸化チタンとともに、 CaClを主成分とし Caを含む溶  [0044] In the reduction chamber 1, a solution containing CaCl as a main component and Ca as well as titanium oxide as a raw material is contained.
2  2
融塩が上方から追加供給される。一方、還元室 1の下部からは、分離装置 2により溶 融塩が側方へ抜き出される。これにより、還元室 1内には溶融塩の下向き流が形成さ れる。この溶融塩流により、前述の生成 Tiおよび副生 Ca〇の沈降分離が促進される  The molten salt is additionally supplied from above. On the other hand, from the lower part of the reduction chamber 1, the molten salt is extracted to the side by the separation device 2. As a result, a downward flow of the molten salt is formed in the reduction chamber 1. This molten salt flow promotes the sedimentation and separation of the aforementioned generated Ti and by-product Ca〇.
[0045] 分離装置 2では、流入した生成 Tiおよび副生 CaOを多く含む溶融塩を、円筒状の 孔あきスクリュウ 3を用いて筒体内で物理的に圧縮する。この物理的な分離操作によ り、生成 Tiから溶融塩を絞り取り、その生成 Tiを押し固めることができる。押し固めら れた多孔質状の生成 Tiは、分離装置 2から順次排出され、溶解装置 4で溶解される [0045] In the separation device 2, the molten salt that contains a large amount of the generated Ti and by-product CaO that has flowed in is physically compressed in the cylinder using the cylindrical perforated screw 3. By this physical separation operation, the molten salt can be squeezed out of the produced Ti and the produced Ti can be compacted. The compacted porous Ti is discharged sequentially from the separation device 2 and dissolved in the dissolution device 4.
[0046] 分離装置 2で溶融塩を圧縮分離した生成 Tiは、 CaClを主成分とし CaOを含まな [0046] The Ti formed by compression-separating the molten salt in the separation device 2 has CaCl as a main component and no CaO.
2  2
い溶融塩によりリンス処理することができる。生成 Ti中に Ca〇が残留すると、溶解時 に CaO中の酸素が金属チタンに含有され酸素濃度が高くなるので、 CaOの残留を 防止するためである。具体的には、後述する塩化室 7で塩化処理され、 CaOが含ま れない溶融塩をリンスに使用し、生成 Ti中に残留する CaOを CaClに溶解させ、生  Rinsing treatment can be performed with a molten salt. If Ca で remains in the generated Ti, oxygen in CaO is contained in the titanium metal at the time of dissolution and the oxygen concentration increases, so that CaO is prevented from remaining. Specifically, a molten salt that has been salified in the salification chamber 7 described later and does not contain CaO is used for rinsing, and CaO remaining in the generated Ti is dissolved in CaCl,
2  2
成 Tiから除去する。  Removed from Ti.
[0047] 溶解装置 4では、プラズマ装置を使用しており、不溶性雰囲気中で生成 Ti塊を溶 解し、溶融した Tiは一次水冷モールド 5に溜められる。一次水冷モールド 5内では溶 融した Tiは沈降し、溶融塩は浮上する。溶融塩と分離された溶融 Tiは、水冷二次モ 一ルド 6に流し込まれ、铸造されて Tiインゴットになる。  In the melting device 4, a plasma device is used, and the generated Ti lump is melted in an insoluble atmosphere, and the molten Ti is stored in the primary water-cooled mold 5. In the primary water-cooled mold 5, the molten Ti sediments and the molten salt floats. The molten Ti separated from the molten salt is poured into a water-cooled secondary mold 6, where it is formed into a Ti ingot.
[0048] 溶解装置 4で溶融した Tiは、分離装置 2で溶融塩から圧縮分離したとはいえ、若干 の溶融塩を含んでいる。このため、溶融した Tiを一次水冷モールド 5に溜めることに より、溶融塩を浮上分離できる。分離された溶融塩は、後述する塩化槽 7へ送られる [0048] Although the Ti melted in the melting device 4 was compressed and separated from the molten salt in the separation device 2, Contains molten salts. Therefore, the molten salt can be floated and separated by storing the molten Ti in the primary water-cooled mold 5. The separated molten salt is sent to the chloride tank 7 described below.
[0049] 分離装置 2で生成 Tiから分離された溶融塩、および一次水冷モールド 5で浮上分 離された溶融塩は、いずれも塩化室 7へ送られる。これらの溶融塩は副生 CaOを多 量に含んでいるので、塩ィ匕室 7では導入される溶融塩中に塩素ガスをバブリングし、 溶融塩中の CaOを塩化する。 Ca〇の塩化により、溶融塩に含有される CaOが CaCI [0049] Both the molten salt separated from the Ti produced by the separation device 2 and the molten salt floated and separated by the primary water-cooled mold 5 are sent to the chloride chamber 7. Since these molten salts contain a large amount of by-product CaO, chlorine gas is bubbled into the molten salt introduced in the salting chamber 7 to convert CaO in the molten salt. CaO contained in the molten salt is converted to CaCI
2 に変化し、 CaOを含まない実質的に CaCI力もなる溶融塩が生成される。  2 to form a molten salt that does not contain CaO but also has a substantial CaCI force.
2  2
[0050] 上記の CaOを含まない溶融塩は次に電解室 8へ送られる力 S、前述の通り、その一 部はリンス処理のために分離装置 4へ送られる。電解室 8では、導入された溶融塩を 黒鉛陽極および鉄陰極を用いて電気分解が行われ、室内の陽極側で塩素ガスが発 生し、陰極側で Caが生成される。これにより、 CaCIを主成分とし Caを含む溶融塩が  [0050] The molten salt not containing CaO is then sent to the electrolysis chamber 8 with a force S, as described above, part of which is sent to the separation device 4 for rinsing. In the electrolytic chamber 8, the introduced molten salt is electrolyzed using a graphite anode and an iron cathode, and chlorine gas is generated on the anode side in the chamber and Ca is generated on the cathode side. As a result, molten salt containing CaCI as a main component and Ca
2  2
生成される。  Generated.
[0051] 塩化室 7では除去目的物である CaOが塩化される。一方、還元室 1では Caを含む 溶融塩が必要であることから、電解室 8では Caを含む溶融塩が生成され、還元室 1 へ送られる。このようにして、 CaCIおよび Caを外部からの補充することが実質的に  [0051] In the salification chamber 7, CaO, which is a removal target, is salified. On the other hand, since a molten salt containing Ca is necessary in the reduction chamber 1, a molten salt containing Ca is generated in the electrolytic chamber 8 and sent to the reduction chamber 1. In this way, external replenishment of CaCI and Ca is virtually impossible.
2  2
不要となる。また、電解室 8で副生した塩素ガスは、塩化室 7へ送られて循環使用さ れる。  It becomes unnecessary. The chlorine gas by-produced in the electrolysis chamber 8 is sent to the chlorination chamber 7 to be circulated.
[0052] この電解室 8では、陽極側と陰極側が多孔質状の隔壁 9により仕切られている。塩 化室 7から送られてくる溶融塩は陽極側へ導入され、 Caを含む溶融塩は陰極側から 抜き取って還元室 1へ送られる。これにより、陽極側から陰極側へ向かう流れが形成 される。その結果、陰極側から陽極側への溶融塩の逆流が阻止される。また、陽極側 力 陰極側への塩素ガスの侵入が防止される。  [0052] In the electrolytic chamber 8, the anode side and the cathode side are separated by a porous partition wall 9. The molten salt sent from the salt chamber 7 is introduced to the anode side, and the molten salt containing Ca is extracted from the cathode side and sent to the reduction chamber 1. Thereby, a flow from the anode side to the cathode side is formed. As a result, backflow of the molten salt from the cathode side to the anode side is prevented. In addition, chlorine gas is prevented from entering the anode side cathode side.
[0053] (第 2の実施形態)  (Second Embodiment)
図 3は、本発明の第 2の実施形態を示すチタン製造設備の構成を説明する図であ る。 第 2の実施形態では、前記図 2に示す第 1の実施形態に比べ、塩化室 7で塩ィ匕 処理を終えた溶融塩の一部を電解室 8へ送り、残りの溶融塩のほぼ全部を還元室 1 へ戻すこと、および電解室 7から還元室 1への Caの移送を金属状態で行うことが相違 する。しかし、第 2の実施形態では、還元室 1への Caの移送を金属状態で行う場合に 、 Caを CaClに溶解させて移送する方法を併用してもよい。 FIG. 3 is a diagram illustrating a configuration of a titanium manufacturing facility according to a second embodiment of the present invention. In the second embodiment, compared to the first embodiment shown in FIG. 2, a part of the molten salt that has been subjected to the salting treatment in the chloride chamber 7 is sent to the electrolytic chamber 8, and almost all of the remaining molten salt is left. Is different from returning electrolysis to reduction chamber 1 and transferring Ca from electrolysis chamber 7 to reduction chamber 1 in a metallic state. To do. However, in the second embodiment, when Ca is transferred to the reduction chamber 1 in a metal state, a method in which Ca is dissolved in CaCl and transferred may be used in combination.
2  2
[0054] したがって、電解室 8では、塩ィ匕室 7からの溶融塩が陽極側へ導入され、陰極側の 液面に生じる Caが単独または若干の CaClとともに還元室 1へ送られる。還元室 1へ  [0054] Therefore, in the electrolytic chamber 8, the molten salt from the salt shading chamber 7 is introduced to the anode side, and Ca generated on the liquid level on the cathode side is sent to the reduction chamber 1 alone or together with some CaCl. Return room 1
2  2
移送された Caは、室内の溶融塩の液面に浮上し、 CaClへ溶解する。このため、塩  The transferred Ca floats on the liquid surface of the molten salt in the room and dissolves in CaCl. Because of this, salt
2  2
化室 7から電解室 8を経て還元室 1へ移送される溶融塩または Caの移送量が少ない にもかかわらず、還元室 1内の CaCl中の Ca濃度が高レベルに維持される。  The Ca concentration in CaCl in reduction chamber 1 is maintained at a high level, despite the small amount of molten salt or Ca transferred from reduction chamber 7 to reduction chamber 1 through electrolysis chamber 8.
2  2
[0055] 塩化室 7から電解室 8へ一部の溶融塩を移送するのは、前述の通り、 Caの CaCl  As described above, a part of the molten salt is transferred from the chloride chamber 7 to the electrolysis chamber 8 by CaCl
2 への溶解度は小さいことを考慮したものであり、多量の CaClによるサイクルをなくし、  Considering the low solubility in 2, the cycle with a large amount of CaCl is eliminated,
2  2
全体の製造効率を向上させることができる。  Overall manufacturing efficiency can be improved.
[0056] (第 3の実施形態) (Third Embodiment)
図 4は、本発明の第 3の実施形態を示すチタン製造設備の構成を説明する図であ る。 第 3実施形態では、前記図 3に示す第 2の実施形態の製造設備と比べて、還元 室 1に塩ィ匕室 7を合体させた構成になっている。しかし、他の構成は、第 2の実施形 態の製造設備と実質的に同じ構成である。  FIG. 4 is a diagram illustrating a configuration of a titanium manufacturing facility according to a third embodiment of the present invention. The third embodiment is different from the production facility of the second embodiment shown in FIG. 3 in that the reduction chamber 1 and the salt shading chamber 7 are combined. However, other configurations are substantially the same as the manufacturing facilities of the second embodiment.
[0057] 塩化室 7は、縦型の還元室 1の側方に隔壁 10を介して形成されている。還元室 7で は、室内の CaCl溶融塩に差し込まれた投入管 11により、その CaCl中に酸化チタ [0057] The chloride chamber 7 is formed on the side of the vertical reduction chamber 1 with a partition 10 interposed therebetween. In the reduction chamber 7, titanium oxide is added to the CaCl by a feed pipe 11 inserted into the molten CaCl salt in the chamber.
2 2  twenty two
ンが上方から投入される。 CaCl中の Caによる還元によって酸化チタンから生成され  Is inserted from above. Formed from titanium oxide by reduction with Ca in CaCl
2  2
たチタンは、還元室 1の底に沈降し、下方へ抜き出されて下方の分離装置 2へ送られ る。  The titanium thus settles down at the bottom of the reduction chamber 1, is extracted downward, and is sent to the separation device 2 below.
[0058] 副生した CaOを含む CaClは、下部で還元室 1から塩ィ匕室 7に流入し、下部から注  [0058] CaCl containing by-produced CaO flows from the reduction chamber 1 into the salt shaving chamber 7 at the lower part, and is injected from the lower part.
2  2
入する塩素ガスにより塩ィ匕処理されることにより、 CaOが塩化される。また、塩化室 7 内を上昇する塩素ガス流れ (ガスリフト)により、 CaClは塩化室 7を上昇する。分離装  CaO is salified by being subjected to salting treatment by the chlorine gas entering. CaCl rises in the chlorination chamber 7 due to the chlorine gas flow (gas lift) rising in the chlorination chamber 7. Separation equipment
2  2
置 2で金属チタンから分離された CaClも、塩ィ匕室 7の下部に導入される。一方、塩  The CaCl separated from the titanium metal in the device 2 is also introduced into the lower part of the salt shading room 7. Meanwhile, salt
2  2
化室 7で副生する酸素ガスは上方へ抜き出される。  The oxygen gas by-produced in the gasification chamber 7 is extracted upward.
[0059] 塩化室 7を出た CaClの大半は、塩化室 7の上部から還元室 1に還流する。残りの [0059] Most of the CaCl that has exited the chloride chamber 7 is returned to the reduction chamber 1 from above the chloride chamber 7. Remaining
2  2
CaClは電解室 8へ移送される。電解室 8では、導入された CaCl力 Caが生成され CaCl is transferred to the electrolysis chamber 8. In the electrolysis chamber 8, the introduced CaCl force Ca is generated.
2 2 twenty two
る。電解室 8で生成された Caは、単独または若干量の Caリッチの CaClとともに還元  The Ca generated in electrolysis chamber 8 is reduced alone or with a small amount of Ca-rich CaCl
2 室 1へ移送される。また、副生した塩素ガスは、塩化室 7へ送られて循環使用される。 2 Transferred to room 1. In addition, the by-produced chlorine gas is sent to the chlorination chamber 7 for circulating use.
[0060] 還元室 1へ導入された Caは、還元室 1内の CaCl上に層を形成する。前述した投 [0060] The Ca introduced into the reduction chamber 1 forms a layer on CaCl in the reduction chamber 1. The throw mentioned earlier
2  2
入管 11は、 CaCl上の Ca層を貫通して CaClに酸化チタンを投入するためのもので  The inlet pipe 11 is for introducing titanium oxide into CaCl through the Ca layer on CaCl.
2 2  twenty two
める。  Confuse.
[0061] 還元室 1に塩ィ匕室 7を合体させたチタン製造設備では、両室間での CaClの授受  [0061] In a titanium manufacturing facility in which the Shii-Dai room 7 is combined with the reduction room 1, CaCl is exchanged between the two rooms.
2 が容易となる。また、塩化室 7を出た CaClの全部を電解室 8へ移送することも可能で  2 becomes easier. It is also possible to transfer all of the CaCl leaving the chloride chamber 7 to the electrolytic chamber 8.
2  2
める。  Confuse.
[0062] (第 4の実施形態)  (Fourth Embodiment)
図 5は、本発明の第 4の実施形態を示すチタン製造設備の構成を説明する図であ る。 第 4の実施形態では、前記図 4に示す第 3の実施形態の製造設備と比べて、さ らに電解室 8を還元室 1に合体させた構成になっている。しかし、他の構成は、第 3実 施形態のチタン製造設備と実質的に同一の構成である。  FIG. 5 is a diagram illustrating a configuration of a titanium manufacturing facility according to a fourth embodiment of the present invention. In the fourth embodiment, as compared with the manufacturing equipment of the third embodiment shown in FIG. 4, the electrolysis chamber 8 is further combined with the reduction chamber 1. However, the other configuration is substantially the same as the titanium manufacturing facility of the third embodiment.
[0063] 電解室 8は、還元室 1を挟んで塩化室 7の反対側に形成されており、両者の間に隔 壁は設けられていない。この電解室 8は黒鉛陽極 12と鉄陰極 13とを備えており、陽 極側と陰極側は隔壁 9により分離されてレ、る。陰極側は還元室 1の側に位置し、隔壁 なしで還元室 1に連続している。隔壁 9は、第 1実施形態の場合と同様、溶融塩を通 過させる構造になっている。  [0063] Electrolysis chamber 8 is formed on the opposite side of chloride chamber 7 with reduction chamber 1 interposed therebetween, and no partition wall is provided between the two. The electrolysis chamber 8 includes a graphite anode 12 and an iron cathode 13. The cathode side and the cathode side are separated by a partition 9. The cathode side is located on the side of the reduction chamber 1 and is continuous with the reduction chamber 1 without a partition wall. As in the case of the first embodiment, the partition 9 has a structure that allows the molten salt to pass through.
[0064] 塩化室 7から移送される CaClは陽極側に導入される。陽極側で副生する塩素ガス  [0064] CaCl transferred from the chloride chamber 7 is introduced to the anode side. Chlorine gas by-produced on the anode side
2  2
は塩化室 7へ送られる。陽極側に導入された CaClは隔壁 9を通過して陰極側へ移  Is sent to the chloride chamber 7. CaCl introduced to the anode side passes through the partition 9 and moves to the cathode side.
2  2
動する。すなわち、隔壁 9が溶融塩を通過させるために、陽極側への溶融塩の供給 にともなって陽極 12側から陰極 13側へ向力う浴流れが電解室 8内に形成される。  Move. That is, since the partition wall 9 allows the molten salt to pass through, a bath flow is generated in the electrolytic chamber 8 from the anode 12 side to the cathode 13 side with the supply of the molten salt to the anode side.
[0065] 電解室 8の陰極側では、鉄陰極 13の表面に Caが生成し、生成した Caは浴流れに 乗って浮上しつつ還元室 1の側へ移動する。陰極 13から還元室 1の側にかけての浴 面近傍には Ca溜め 14が設けられている。 Ca溜め 14は底部が開放した箱体であり、 陰極 13の表面で生成されて還元室 1の側へ移動する Caを捕捉し、浴面に露出する のを防止する。 Ca溜め 14に溜められた Caは、還元室 1内の CaClに溶解し、還元室 [0065] On the cathode side of the electrolysis chamber 8, Ca is generated on the surface of the iron cathode 13, and the generated Ca moves to the reduction chamber 1 while floating on the bath flow. A Ca reservoir 14 is provided near the bath surface from the cathode 13 to the reduction chamber 1 side. The Ca reservoir 14 is a box having an open bottom, and captures Ca generated on the surface of the cathode 13 and moving to the reduction chamber 1 side, thereby preventing the Ca from being exposed to the bath surface. The Ca stored in the Ca reservoir 14 is dissolved in CaCl in the reduction chamber 1 and
2  2
1内での還元反応に使用される。  Used for the reduction reaction within 1.
[0066] 第 4の実施形態では、 Ca溜め 14は陰極 13と同様に鉄で構成しており、陰極 13と 同電位になるように、陰極 13と一体構造としてもよい。 Ca溜め 14を設ける狙いは、 C a層を浴面に露出させないことである。陰極 13より還元室側の液面上を不溶性ガス雰 囲気に維持できる場合は、 Ca層を浴面に露出させても支障ないが、操業上の要求 で空気の混入が避けられない場合に、 Ca層が浴面に露出させると、酸化により Ca〇 が生成することになる。このため、 Ca溜め 14を設けて、酸化による Ca〇が生成を回 避することとした。 [0066] In the fourth embodiment, the Ca reservoir 14 is made of iron like the cathode 13, and the Ca reservoir 14 is made of iron. It may be integrated with the cathode 13 so as to have the same potential. The purpose of providing the Ca reservoir 14 is not to expose the Ca layer to the bath surface. If the liquid surface on the reduction chamber side from the cathode 13 can be maintained in an insoluble gas atmosphere, exposing the Ca layer to the bath surface does not cause any problem.However, if air mixing cannot be avoided due to operational requirements, When the Ca layer is exposed on the bath surface, Ca〇 is generated by oxidation. Therefore, a Ca reservoir 14 was provided to avoid the generation of Ca〇 by oxidation.
[0067] また、第 4の実施形態では、隔壁 9の上部は陰極 13の側に張り出し陰極 13と接触 しているが、これは陰極 13の表面で発生する Caが陰極 13と隔壁 9の間に溜まるのを 阻止するための構造である。  Further, in the fourth embodiment, the upper portion of the partition wall 9 extends to the side of the cathode 13 and is in contact with the cathode 13. This is because Ca generated on the surface of the cathode 13 is generated between the cathode 13 and the partition wall 9. It is a structure to prevent accumulation in the water.
[0068] 還元室 1に電解室 8を合体させたチタン製造設備では、電解室 8から還元室 1への Caの移送が容易となる。特に、電解室 8内の Caが生成される陰極側は還元室 1と一 体化できるため、両室開から隔壁を排除できる。このため、設備構造が特に簡略化さ れ、装置の小型化を図ることができる。  [0068] In the titanium production facility in which the electrolysis chamber 8 is combined with the reduction chamber 1, Ca can be easily transferred from the electrolysis chamber 8 to the reduction chamber 1. In particular, since the cathode side where Ca is generated in the electrolysis chamber 8 can be integrated with the reduction chamber 1, the partition can be eliminated from the opening of both chambers. For this reason, the facility structure is particularly simplified, and the size of the device can be reduced.
[0069] (第 5の実施形態)  (Fifth Embodiment)
図 6は、本発明の第 5の実施形態を示すチタン製造設備の構成を説明する図であ る。 第 5の実施形態では、前記図 6に示す第 4の実施形態の製造設備の構成から、 電解室 8の隔壁 9を排除した構成としている。他の構成は、第 4の実施形態のチタン 製造設備と実質的に同一である。  FIG. 6 is a diagram illustrating a configuration of a titanium manufacturing facility according to a fifth embodiment of the present invention. In the fifth embodiment, the configuration of the manufacturing facility of the fourth embodiment shown in FIG. 6 is such that the partition 9 of the electrolytic chamber 8 is eliminated. Other configurations are substantially the same as those of the titanium manufacturing facility of the fourth embodiment.
[0070] 還元室 1に一体化された電解室 8では、前述の通り、陽極側に溶融塩が導入される ため、陽極 12の側から陰極 13の側へ溶融塩の流れが形成される。このため、陽極側 と陰極例の間を仕切る隔壁 9を省略しても、溶融塩の逆流による効率の低下は防止 される。ただし、陰極 13は、隔壁 9と同様に溶融塩が通過可能な構造にしている。  [0070] In the electrolysis chamber 8 integrated with the reduction chamber 1, the molten salt is introduced into the anode side as described above, so that a flow of the molten salt is formed from the anode 12 side to the cathode 13 side. For this reason, even if the partition 9 for partitioning between the anode side and the cathode example is omitted, a decrease in efficiency due to the backflow of the molten salt is prevented. However, the cathode 13 has a structure that allows the molten salt to pass therethrough, like the partition wall 9.
[0071] し力 ながら、陰極 13の上方には、耐火物などの耐塩素ガス材からなるカーテンゥ オール形式の隔壁 15が設けられている。通常、新たに設けた隔壁 15に替えて、陰極 13を液面上に延長することが考えられるが、この場合には陰極 13の延長部が陽極 側で発生する塩素ガスにより腐食する問題がある。このため、陰極 13とは別個に、隔 壁 15を設けることが必要になる。  However, a curtain wall type partition wall 15 made of a chlorine-resistant gas material such as a refractory is provided above the cathode 13. Normally, it is conceivable to extend the cathode 13 above the liquid level in place of the newly provided partition wall 15, but in this case, there is a problem that the extension of the cathode 13 is corroded by chlorine gas generated on the anode side. . Therefore, it is necessary to provide the partition wall 15 separately from the cathode 13.
[0072] 第 5の実施形態では、電解室 8における陽極側と陰極側を仕切る隔壁 9を省略する ことにより、設備構造か一層簡略化され、さらに小型化を図ることができる。一方、陰 極 13の還元室側に Ca溜めを設けていないため、陰極 13より還元室側の液面上は 不溶性ガス雰囲気に維持する必要がある。 [0072] In the fifth embodiment, the partition wall 9 for separating the anode side and the cathode side in the electrolytic chamber 8 is omitted. Thereby, the facility structure can be further simplified, and the size can be further reduced. On the other hand, since no Ca reservoir is provided on the reduction chamber side of the cathode 13, it is necessary to maintain an insoluble gas atmosphere above the liquid level on the reduction chamber side from the cathode 13.
[0073] (第 6の実施形態)  (Sixth Embodiment)
図 7は、本発明の第 6の実施形態を示すチタン製造設備の構成を説明する図であ る。図 8は、図 7に示すチタン製造設備のうち X— X視野による断面構成を説明する図 である。 第 6の実施形態は、第 4、第 5の実施形態と同様に、電解室 8を還元室 1に 合体させた構成であるが、還元室 1を円筒状に形成し、電解室 8をその外側に円筒 状に形成した構成にしている。  FIG. 7 is a diagram illustrating a configuration of a titanium manufacturing facility according to a sixth embodiment of the present invention. FIG. 8 is a diagram illustrating a cross-sectional configuration of the titanium manufacturing facility shown in FIG. 7 in the XX view. The sixth embodiment has a configuration in which the electrolysis chamber 8 is united with the reduction chamber 1 as in the fourth and fifth embodiments, but the reduction chamber 1 is formed in a cylindrical shape and the electrolysis chamber 8 is It has a cylindrical shape on the outside.
[0074] 還元室 1の外側に円筒状に設けられた電解室 8は、外壁を兼ねる円筒形状の陽極  [0074] The electrolytic chamber 8 provided in a cylindrical shape outside the reduction chamber 1 has a cylindrical anode serving also as an outer wall.
12と、内壁を兼ねる円筒形状の陰極 13とを有している。還元室 1の側方に配置され た塩化室 7で得られた Ca〇および Caを含まない CaClは、全量が陽極 12と陰極 13  12 and a cylindrical cathode 13 also serving as an inner wall. The total amount of Ca〇 and Ca-free CaCl obtained in the chloride chamber 7 placed beside the reduction chamber 1 is the anode 12 and the cathode 13
2  2
の間に環状空間に導入される。内側の陰極 13は還元室 1の円筒状外壁の一部を兼 ねており、その内側は還元室 1と一体化されている。  Is introduced into the annular space. The inner cathode 13 also serves as a part of the cylindrical outer wall of the reduction chamber 1, and the inside thereof is integrated with the reduction chamber 1.
[0075] 図 8に示すように、第 6の実施形態における陰極 13は、周方向に旋回状に配置さ れており、各陰極 13間には所定間隔でスリット 13aが設けられている。このスリット 13 aにより溶融塩を外側から内側へ通過させる構成になっており、内側から外側へ向け て間隔が漸次増大する形状になっている。このスリット 13aの構成により、陰極 13の 外側および内側に旋回流が形成されるとともに、外側から内側への溶融塩の流れが 促進される。 As shown in FIG. 8, the cathodes 13 in the sixth embodiment are arranged in a spiral shape in the circumferential direction, and slits 13a are provided at predetermined intervals between the cathodes 13. The slits 13a allow the molten salt to pass from the outside to the inside, and the interval gradually increases from the inside to the outside. With the configuration of the slit 13a, a swirling flow is formed outside and inside the cathode 13, and the flow of the molten salt from the outside to the inside is promoted.
[0076] 陰極 13の上方には、耐火物などの耐塩素ガス材からなる円筒状の隔壁 15が連続 して設けられている。第 5の実施形態の場合と同様の理由で、陰極 13とは別個に、隔 壁 15を設けることが必要になる。  [0076] Above the cathode 13, a cylindrical partition wall 15 made of a chlorine-resistant gas material such as a refractory is continuously provided. For the same reason as in the fifth embodiment, it is necessary to provide the partition wall 15 separately from the cathode 13.
[0077] 第 6の実施形態では、円筒形状の陰極 13の外面側に旋回流が発生し、さらに陰極  In the sixth embodiment, a swirling flow is generated on the outer surface side of the cylindrical cathode 13,
13の内側に流入した溶融塩は旋回しながら還元室 1を降下することにより、陰極 13 の表面で生成した Caがその内側へスムーズに引き込まれることになる。そして、陰極 13の内側に流入した Caは還元室 1内の CaCl上に浮上し、 CaClに溶解し、溶解し  The molten salt flowing into the inside of the cathode 13 descends in the reduction chamber 1 while swirling, so that Ca generated on the surface of the cathode 13 is smoothly drawn into the inside of the cathode 13. Then, the Ca flowing into the inside of the cathode 13 floats on the CaCl in the reduction chamber 1, is dissolved in the CaCl, and dissolved.
2 2  twenty two
た Caが還元室 1での還元反応に寄与することになる。 [0078] 還元室 1に合体された電解室 8を、その還元室 1の外側に環状に構成することによ り、電解室 8における陽極 12および陰極 13の面積を大きくでき、より効率的な設備設 計が可能になる。なお、ここでは塩ィ匕室 7で得た CaClの全量を電解室 8へ導入して Ca contributes to the reduction reaction in the reduction chamber 1. [0078] By forming the electrolysis chamber 8 combined with the reduction chamber 1 in an annular shape outside the reduction chamber 1, the area of the anode 12 and the cathode 13 in the electrolysis chamber 8 can be increased, and more efficient Equipment design becomes possible. In this case, the entire amount of CaCl obtained in Shiojiro room 7 was introduced into electrolysis room 8
2  2
いる力 その一部を導入することも可能である。  It is also possible to introduce some of that power.
[0079] 以上では、金属チタンを生成する場合について説明したが、本発明の対象となる金 属としては、前記チタンの他に、タングステン、ニオブ、タンタル、クロム、ジルコニウム およびネオジゥムを挙げることができる。 [0079] Although the case where titanium metal is produced has been described above, examples of the metal that is an object of the present invention include tungsten, niobium, tantalum, chromium, zirconium, and neodymium in addition to the titanium. .
産業上の利用の可能性  Industrial potential
[0080] 本発明の金属製造方法および金属製造装置によれば、金属酸化物を Caにより還 元する酸化物直接還元法において、還元領域外で電気分解を行い、且つ電気分解 に供する溶融塩から CaOを除去することにより、従来の酸化物直接還元法で問題と なっている生産性の低さおよび炭素汚染による製品品質の劣化を回避できる。これ により、酸化物還元法による金属製造の分野で実用化に大きく寄与できる。 According to the metal production method and the metal production apparatus of the present invention, in the direct oxide reduction method in which the metal oxide is reduced by Ca, the electrolysis is performed outside the reduction region, and the molten salt to be subjected to the electrolysis is used. By removing CaO, it is possible to avoid low productivity and deterioration of product quality due to carbon contamination, which are problems in the conventional direct oxide reduction method. This can greatly contribute to practical use in the field of metal production by the oxide reduction method.

Claims

請求の範囲 The scope of the claims
[1] CaClを主成分とし Caを含有する溶融塩中に金属酸化物を投入し、該金属酸化物  [1] A metal oxide is charged into a molten salt containing CaCl as a main component and containing Ca,
2  2
を溶融塩中の Caにより還元して金属を生成する還元工程と、  Reducing the metal with Ca in the molten salt to produce a metal,
溶融塩中に生成した金属を溶融塩から分離する分離工程と、  A separation step of separating the metal generated in the molten salt from the molten salt,
金属を分離した後の溶融塩を塩素ガスにより塩化処理して、溶融塩中の副生 CaO を塩化する塩化工程と、  A salting step of salting the molten salt after separating the metal with chlorine gas to salinate by-product CaO in the molten salt;
塩化処理した後の溶融塩を電気分解して、 CaCl力 Caおよび塩素を生成し、生  Electrolyze the molten salt after the salt treatment to generate CaCl force Ca and chlorine,
2  2
成された Caまたは該 Caを含有する溶融塩を前記還元工程へ送る電解工程とを包含 する金属製造方法。  An electrolysis step of sending the formed Ca or a molten salt containing the Ca to the reduction step.
[2] CaClを主成分とし Caを含有する溶融塩中に金属酸化物を投入し、該金属酸化物  [2] A metal oxide is introduced into a molten salt containing CaCl as a main component and containing Ca,
2  2
を溶融塩中の Caにより還元して金属を生成する還元工程と、  Reducing the metal with Ca in the molten salt to produce a metal,
溶融塩中に生成した金属を溶融塩から分離する分離工程と、  A separation step of separating the metal generated in the molten salt from the molten salt,
金属を分離した後の溶融塩を塩素ガスにより塩化処理して、溶融塩中の副生 CaO を塩化する塩化工程と、  A salting step of salting the molten salt after separating the metal with chlorine gas to salinate by-product CaO in the molten salt;
塩化処理した後の溶融塩を電気分解して、 CaCl力 Caおよび塩素を生成し、生  Electrolyze the molten salt after the salt treatment to generate CaCl force Ca and chlorine,
2  2
成された Caまたは該 Caを含有する溶融塩を前記還元工程へ送る電解工程とを包含 しており、  Electrolysis step of sending the formed Ca or a molten salt containing the Ca to the reduction step,
前記還元工程では、生成した金属を沈降させ、沈降した金属を溶融塩とともに抜き 出して分離工程へ搬送する金属製造方法。  In the reduction step, a metal production method in which generated metal is settled, and the settled metal is extracted together with a molten salt and transported to a separation step.
[3] 前記金属はチタン、タングステン、ニオブ、タンタル、クロム、ジルコニウムまたはネ ォジゥムのいずれかである請求項 1または 2に記載の金属製造方法。 3. The metal production method according to claim 1, wherein the metal is any one of titanium, tungsten, niobium, tantalum, chromium, zirconium, and neodymium.
[4] 塩化処理した後の溶融塩の一部を電解工程へ送り、残りの溶融塩を還元工程へ送 る請求項 1または 2に記載の金属製造方法。 4. The metal production method according to claim 1, wherein a part of the molten salt after the salt treatment is sent to an electrolysis step, and the remaining molten salt is sent to a reduction step.
[5] 前記電解工程で生成された塩素ガスを前記塩化工程に使用する請求項 1または 2 に記載の金属製造方法。 5. The metal production method according to claim 1, wherein chlorine gas generated in the electrolysis step is used in the chlorination step.
[6] 前記電解工程では、陽極側と陰極側を隔壁により分離した電解室を使用する請求 項 1または 2に記載の金属製造方法。 6. The metal production method according to claim 1, wherein in the electrolysis step, an electrolysis chamber in which an anode side and a cathode side are separated by a partition wall is used.
[7] 電解室内の陽極側から陰極側へ向力う溶融塩の流れを形成する請求項 6に記載 の金属製造方法。 [7] The method according to claim 6, wherein the molten salt flows toward the cathode side from the anode side in the electrolysis chamber. Metal manufacturing method.
[8] 溶融塩から分離された金属を、前記塩ィヒ工程を終えた CaClの一部を用いてリンス  [8] The metal separated from the molten salt is rinsed with a part of the CaCl that has been subjected to the above salt step.
2  2
するリンス工程を含む請求項 1または 2に記載の金属製造方法。  3. The metal production method according to claim 1, further comprising a rinsing step.
[9] 前記分離工程では、物理的な圧縮押し固めによって溶融塩力 金属を分離する請 求項 1または 2に記載の金属製造方法。 [9] The metal production method according to claim 1, wherein in the separation step, the molten salt metal is separated by physical compression and compaction.
[10] 分離工程で得られた金属を不溶性雰囲気中で溶解してインゴットとする溶解工程を 含む請求項 1または 2に記載の金属製造方法。 [10] The metal production method according to claim 1 or 2, further comprising a melting step of dissolving the metal obtained in the separation step in an insoluble atmosphere to form an ingot.
[11] CaClを主成分とし Caを含有する溶融塩を保持し、該溶融液に投入される金属酸 [11] A metal salt containing CaCl as a main component and holding a molten salt containing Ca, and charged into the molten solution
2  2
化物を溶融塩中の Caにより還元して金属を生成する還元室と、  A reduction chamber that generates a metal by reducing the chloride with Ca in the molten salt,
溶融塩中に生成した金属を溶融液から分離する手段と、  Means for separating the metal formed in the molten salt from the molten liquid,
金属を分離除去された溶融塩を保持し、該溶融塩を塩素ガスにより塩化処理して、 溶融塩中の副生 CaOを塩ィヒする塩化室と、  Holding a molten salt from which metal has been separated and removed, subjecting the molten salt to chlorine treatment with chlorine gas, and salting a by-product CaO in the molten salt;
塩化処理された後の溶融塩を保持し、該溶融塩を電気分解して、 CaCl力 Caお  The molten salt after the chlorination treatment is retained, the molten salt is electrolyzed, and CaCl
2 よび塩素を生成する電解室と、  An electrolysis chamber that produces 2 and chlorine;
該電解室から前記還元室へ生成 Caまたは該 Caを含有する溶融塩を移送する手段 とを具備する金属製造装置。  Means for transferring generated Ca or a molten salt containing the Ca from the electrolysis chamber to the reduction chamber.
[12] CaClを主成分とし Caを含有する溶融塩を保持し、該溶融塩に投入される金属酸 [12] A metal salt containing CaCl as a main component and holding a molten salt containing Ca, and charged into the molten salt
2  2
化物を溶融塩中の Caにより還元して金属を生成する還元室と、  A reduction chamber that generates a metal by reducing the chloride with Ca in the molten salt,
溶融塩中に生成した金属を溶融塩力 分離する手段と、  Means for separating the metal formed in the molten salt by molten salt force;
金属を分離除去された溶融塩を保持し、該溶融塩を塩素ガスにより塩化処理して、 溶融塩中の副生 CaOを塩ィヒする塩化室と、  Holding a molten salt from which metal has been separated and removed, subjecting the molten salt to chlorine treatment with chlorine gas, and salting a by-product CaO in the molten salt;
塩化処理された後の溶融塩を保持し、該溶融塩を電気分解して、 CaCl力 Caお  The molten salt after the chlorination treatment is retained, the molten salt is electrolyzed, and CaCl
2 よび塩素を生成する電解室と、  An electrolysis chamber that produces 2 and chlorine;
該電解室から前記還元室へ生成 Caまたは該 Caを含有する溶融塩を移送する手段 とを具備しており、前記塩化室は前記還元室と合体している金属製造装置。  Means for transferring generated Ca or a molten salt containing the Ca from the electrolysis chamber to the reduction chamber, wherein the chloride chamber is integrated with the reduction chamber.
[13] CaClを主成分とし Caを含有する溶融塩を保持し、該溶融塩に投入される金属酸 [13] A metal salt containing CaCl as a main component and holding a molten salt containing Ca, and charged into the molten salt
2  2
化物を溶融塩中の Caにより還元して金属を生成する還元室と、  A reduction chamber that generates a metal by reducing the chloride with Ca in the molten salt,
溶融塩中に生成した金属を溶融塩力 分離する手段と、 金属を分離除去された溶融塩を保持し、該溶融塩を塩素ガスにより塩化処理して、 溶融塩中の副生 CaOを塩ィヒする塩化室と、 Means for separating the metal formed in the molten salt by molten salt force; Holding a molten salt from which metal has been separated and removed, subjecting the molten salt to a chlorine treatment with chlorine gas, and salting a by-product CaO in the molten salt;
塩化処理された後の溶融塩を保持し、該溶融塩を電気分解して、 CaCl力 Caお  The molten salt after the chlorination treatment is retained, the molten salt is electrolyzed, and CaCl
2 よび塩素を生成する電解室と、  An electrolysis chamber that produces 2 and chlorine;
該電解室から前記還元室へ生成 Caまたは該 Caを含有する溶融塩を移送する手段 とを具備しており、前記電解室は前記還元室と合体している金属製造装置。  Means for transferring generated Ca or a molten salt containing the Ca from the electrolysis chamber to the reduction chamber, wherein the electrolysis chamber is integrated with the reduction chamber.
[14] 前記電解室は、陽極側と陰極側との間に、溶融塩の流通が可能な隔壁を有する請 求項 11一 13のいずれかに記載の金属製造装置。  14. The metal manufacturing apparatus according to claim 11, wherein the electrolytic chamber has a partition wall between the anode side and the cathode side, through which a molten salt can flow.
[15] 前記電解室の陰極側が前記還元室と一体化している請求項 13に記載の金属製造  15. The metal production according to claim 13, wherein a cathode side of the electrolysis chamber is integrated with the reduction chamber.
[16] 前記電解室は、陽極側に投入された溶融塩が陰極を経て還元室へ流動可能に構 成されてレ、る請求項 15に記載の金属製造装置。 16. The metal manufacturing apparatus according to claim 15, wherein the electrolysis chamber is configured so that a molten salt put on the anode side can flow to the reduction chamber via the cathode.
[17] 陰極より還元室側に Caを液中に滞留させる Ca溜まりを有する請求項 16に記載の  17. The method according to claim 16, further comprising a Ca reservoir for retaining Ca in the liquid on the reduction chamber side from the cathode.
[18] 前記電解室は、筒状に形成された還元室の周囲に環状に形成されている請求項 1 5に記載の金属製造装置。 18. The metal manufacturing apparatus according to claim 15, wherein the electrolysis chamber is formed in an annular shape around a reduction chamber formed in a cylindrical shape.
[19] 前記電解室は、陽極を兼ねる外筒と、陰極を兼ね、溶融塩の流通が可能で且つ内 側が還元室とされた内筒とを有する請求項 18に記載の金属製造装置。  19. The metal manufacturing apparatus according to claim 18, wherein the electrolysis chamber has an outer cylinder also serving as an anode, and an inner cylinder also serving as a cathode, through which a molten salt can flow, and the inside of which is a reduction chamber.
PCT/JP2004/010024 2003-08-28 2004-07-14 Method and apparatus for producing metal WO2005021809A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/569,602 US20060219053A1 (en) 2003-08-28 2004-07-14 Method and apparatus for producing metal
EP04747490A EP1666615A1 (en) 2003-08-28 2004-07-14 Method and apparatus for producing metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-304176 2003-08-28
JP2003304176A JP4193984B2 (en) 2003-08-28 2003-08-28 Metal manufacturing equipment

Publications (1)

Publication Number Publication Date
WO2005021809A1 true WO2005021809A1 (en) 2005-03-10

Family

ID=34269262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010024 WO2005021809A1 (en) 2003-08-28 2004-07-14 Method and apparatus for producing metal

Country Status (4)

Country Link
US (1) US20060219053A1 (en)
EP (1) EP1666615A1 (en)
JP (1) JP4193984B2 (en)
WO (1) WO2005021809A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628731A (en) * 2019-01-31 2019-04-16 河钢股份有限公司承德分公司 A kind of method that short route processing extraction containing vanadium raw materials prepares vanadium and alloy powder
US10280527B2 (en) 2012-09-13 2019-05-07 Ge-Hitachi Nuclear Energy Americas Llc Methods of fabricating metallic fuel from surplus plutonium
CN112410589A (en) * 2020-11-30 2021-02-26 包头稀土研究院 Treatment method of rare earth sulfate roasted ore
CN113234935A (en) * 2021-05-10 2021-08-10 北京科技大学 Method for co-extracting vanadium, titanium and chromium from vanadium slag
CN113881975A (en) * 2021-10-19 2022-01-04 杭州嘉悦智能设备有限公司 Fused salt chlorination electrolytic furnace and control method thereof

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1876248A1 (en) * 2005-03-29 2008-01-09 Sumitomo Titanium Corporation PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS
AU2006240896A1 (en) * 2005-04-25 2006-11-02 Toho Titanium Co., Ltd. Molten salt electrolytic cell and process for producing metal using the same
JP2007063585A (en) * 2005-08-30 2007-03-15 Sumitomo Titanium Corp MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
WO2008038405A1 (en) * 2006-09-28 2008-04-03 Toho Titanium Co., Ltd. Molten salt electrolyzing vessel for metal production and process for producing metal therewith
JP5336193B2 (en) * 2006-11-02 2013-11-06 株式会社三徳 Method for producing metallic lithium
EP2109691B1 (en) * 2007-01-22 2016-07-13 Materials And Electrochemical Research Corporation Metallothermic reduction of in-situ generated titanium chloride
CN104109757B (en) * 2014-08-06 2016-03-30 中国原子能科学研究院 A kind of technique recycling calciothermic reduction fused salt used
CN109295309B (en) * 2018-09-25 2020-03-27 内蒙古扎鲁特旗鲁安矿业有限公司 Method for preparing metal beryllium by beryllium chloride reduction
CN111349788B (en) * 2020-04-07 2021-12-17 厦门钨业股份有限公司 Method for recycling tungsten from scheelite smelting slag

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345252A (en) * 1999-06-03 2000-12-12 Sumitomo Sitix Amagasaki:Kk Method for deoxidizing titanium material
JP2002129250A (en) * 2000-10-30 2002-05-09 Katsutoshi Ono Method for producing metallic titanium
JP2004052073A (en) * 2002-07-23 2004-02-19 Sumitomo Metal Ind Ltd Lithium silicate based lubrication treated steel strip
JP2004131784A (en) * 2002-10-09 2004-04-30 Katsutoshi Ono Method for smelting metallic titanium

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2845386A (en) * 1954-03-16 1958-07-29 Du Pont Production of metals
US4617098A (en) * 1982-08-31 1986-10-14 Rhone-Poulenc Specialites Chimiques Continuous electrolysis of lithium chloride into lithium metal
CA2012009C (en) * 1989-03-16 1999-01-19 Tadashi Ogasawara Process for the electrolytic production of magnesium
US5439563A (en) * 1993-08-25 1995-08-08 Alcan International Limited Electrolytic production of magnesium metal with feed containing magnesium chloride ammoniates
JP2003129268A (en) * 2001-10-17 2003-05-08 Katsutoshi Ono Method for smelting metallic titanium and smelter therefor
JP2004156130A (en) * 2002-09-11 2004-06-03 Sumitomo Titanium Corp Titanium oxide porous sintered compact for production of metal titanium by direct electrolysis process, and its manufacturing method
WO2005035806A1 (en) * 2003-10-10 2005-04-21 Sumitomo Titanium Corporation METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP4395386B2 (en) * 2003-10-10 2010-01-06 株式会社大阪チタニウムテクノロジーズ Method for producing Ti or Ti alloy by circulating Ca source
JP2005264320A (en) * 2004-02-20 2005-09-29 Sumitomo Titanium Corp PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
JP4342413B2 (en) * 2004-02-20 2009-10-14 株式会社大阪チタニウムテクノロジーズ Method for producing Ti or Ti alloy by Ca reduction
JP4347089B2 (en) * 2004-03-01 2009-10-21 株式会社大阪チタニウムテクノロジーズ Method for producing Ti or Ti alloy by Ca reduction
JP4247792B2 (en) * 2004-10-12 2009-04-02 東邦チタニウム株式会社 Method and apparatus for producing metal by molten salt electrolysis
JP2006124813A (en) * 2004-11-01 2006-05-18 Sumitomo Titanium Corp METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345252A (en) * 1999-06-03 2000-12-12 Sumitomo Sitix Amagasaki:Kk Method for deoxidizing titanium material
JP2002129250A (en) * 2000-10-30 2002-05-09 Katsutoshi Ono Method for producing metallic titanium
JP2004052073A (en) * 2002-07-23 2004-02-19 Sumitomo Metal Ind Ltd Lithium silicate based lubrication treated steel strip
JP2004131784A (en) * 2002-10-09 2004-04-30 Katsutoshi Ono Method for smelting metallic titanium

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEN G.Z. ET AL.: "Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride", NATURE, vol. 407, 2000, pages 361 - 363, XP002985651 *
ONO K.: "Kangenesi yoyuen ni yoru sanka titanium no chokusetsu kangen", MATERIA, vol. 41, no. 1, 2002, pages 28 - 31, XP002985650 *
SUZUKI R.O. ET AL.: "Calciothermic reduction of titanium oyxide and in-situ electrolysis in molten CaCl2", METALLURGICAL & MATERIALS TRANSACTIONS B, vol. 34B, June 2003 (2003-06-01), pages 287 - 295, XP001166347 *
SUZUKI R.O. ET AL.: "Calciothermic reduction of titanium oyxide in molten CaCl2", METALLURGICAL & MATERIALS TRANSACTIONS B, vol. 34B, June 2003 (2003-06-01), pages 277 - 286, XP001166346 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10280527B2 (en) 2012-09-13 2019-05-07 Ge-Hitachi Nuclear Energy Americas Llc Methods of fabricating metallic fuel from surplus plutonium
CN109628731A (en) * 2019-01-31 2019-04-16 河钢股份有限公司承德分公司 A kind of method that short route processing extraction containing vanadium raw materials prepares vanadium and alloy powder
CN109628731B (en) * 2019-01-31 2020-09-04 河钢股份有限公司承德分公司 Method for extracting and preparing vanadium and alloy powder by short-process treatment of vanadium-containing raw material
CN112410589A (en) * 2020-11-30 2021-02-26 包头稀土研究院 Treatment method of rare earth sulfate roasted ore
CN113234935A (en) * 2021-05-10 2021-08-10 北京科技大学 Method for co-extracting vanadium, titanium and chromium from vanadium slag
CN113234935B (en) * 2021-05-10 2022-04-01 北京科技大学 Method for co-extracting vanadium, titanium and chromium from vanadium slag
CN113881975A (en) * 2021-10-19 2022-01-04 杭州嘉悦智能设备有限公司 Fused salt chlorination electrolytic furnace and control method thereof

Also Published As

Publication number Publication date
EP1666615A1 (en) 2006-06-07
JP2005068539A (en) 2005-03-17
JP4193984B2 (en) 2008-12-10
US20060219053A1 (en) 2006-10-05

Similar Documents

Publication Publication Date Title
AU2002335251B2 (en) Method and apparatus for smelting titanium metal
WO2005021809A1 (en) Method and apparatus for producing metal
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
EA011903B1 (en) Metal producing method and producing device by molten salt electrolysis
JP2005068539A5 (en)
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
JP3718691B2 (en) Titanium production method, pure metal production method, and pure metal production apparatus
JP4395386B2 (en) Method for producing Ti or Ti alloy by circulating Ca source
JPWO2006098199A1 (en) Separation and recovery method for refractory metals
WO2005083135A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY THROUGH Ca REDUCTION
JP2009019250A (en) Method and apparatus for producing metal
JP4193985B2 (en) Metal production method and apparatus by Ca reduction
JP4261328B2 (en) Molten metal chloride electrolyzer
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
JPH10176296A (en) Electrolytic formation of neodymium without being companied with perfluorocarbon compound in waste gas
WO2005035806A1 (en) METHOD FOR PRODUCING Ti OR Ti ALLOY THROUGH REDUCTION BY Ca
JP4502617B2 (en) Metal oxide reduction method and metal oxide reduction apparatus
JP2004052037A (en) Method and apparatus for refining metallic titanium
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP4513297B2 (en) Metal oxide reduction method and metal oxide reduction apparatus
JP4249685B2 (en) Method for producing Ti by Ca reduction
JP7333223B2 (en) Molten salt electrolytic cell, method for forming molten salt solidified layer, method for manufacturing metal
JP2005133196A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP2022183910A (en) Anode, molten salt electrolysis device and method for producing metal
JP2005171353A (en) Method of electrolyzing molten metal chloride

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006219053

Country of ref document: US

Ref document number: 10569602

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2004747490

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004747490

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10569602

Country of ref document: US