JP4342413B2 - Method for producing Ti or Ti alloy by Ca reduction - Google Patents

Method for producing Ti or Ti alloy by Ca reduction Download PDF

Info

Publication number
JP4342413B2
JP4342413B2 JP2004281341A JP2004281341A JP4342413B2 JP 4342413 B2 JP4342413 B2 JP 4342413B2 JP 2004281341 A JP2004281341 A JP 2004281341A JP 2004281341 A JP2004281341 A JP 2004281341A JP 4342413 B2 JP4342413 B2 JP 4342413B2
Authority
JP
Japan
Prior art keywords
molten
ticl
reaction
reduction
cacl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004281341A
Other languages
Japanese (ja)
Other versions
JP2005264319A (en
Inventor
忠司 小笠原
誠 山口
雅彦 堀
徹 上西
勝則 岳下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Titanium Technologies Co Ltd
Toho Titanium Co Ltd
Original Assignee
Osaka Titanium Technologies Co Ltd
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Titanium Technologies Co Ltd, Toho Titanium Co Ltd filed Critical Osaka Titanium Technologies Co Ltd
Priority to JP2004281341A priority Critical patent/JP4342413B2/en
Priority to EP05710241A priority patent/EP1724376A4/en
Priority to PCT/JP2005/002291 priority patent/WO2005080643A1/en
Priority to US10/589,879 priority patent/US20070187255A1/en
Publication of JP2005264319A publication Critical patent/JP2005264319A/en
Application granted granted Critical
Publication of JP4342413B2 publication Critical patent/JP4342413B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/1263Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction
    • C22B34/1268Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams
    • C22B34/1272Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds, e.g. by reduction using alkali or alkaline-earth metals or amalgams reduction of titanium halides, e.g. Kroll process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/12Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
    • C22B34/129Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08 obtaining metallic titanium from titanium compounds by dissociation, e.g. thermic dissociation of titanium tetraiodide, or by electrolysis or with the use of an electric arc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C5/00Electrolytic production, recovery or refining of metal powders or porous metal masses
    • C25C5/04Electrolytic production, recovery or refining of metal powders or porous metal masses from melts

Description

本発明は、四塩化チタン(TiCl4)を含む金属塩化物をCaにより還元処理して金属Ti又はTi合金を製造するCa還元によるTi又はTi合金の製造方法に関する。 The present invention relates to a method for producing Ti or Ti alloy by Ca reduction in which a metal chloride containing titanium tetrachloride (TiCl 4 ) is reduced with Ca to produce metal Ti or a Ti alloy.

金属チタンの工業的な製法としては、酸化チタン(TiO2)を塩素化して得られるTiCl4をMgにより還元するクロール法が一般的である。このクロール法では、反応容器内でTiCl4をMgにより還元する還元工程と、反応容器内に製造されたスポンジ状の金属Tiから未反応のMg及び副生物である塩化マグネシウム(MgCl2)を除去する真空分離工程を経て、金属Tiを製造する。 As an industrial method for producing titanium metal, a crawl method in which TiCl 4 obtained by chlorinating titanium oxide (TiO 2 ) is reduced with Mg is generally used. In this crawl method, a reduction step of reducing TiCl 4 with Mg in the reaction vessel, and unreacted Mg and by-product magnesium chloride (MgCl 2 ) are removed from the spongy metal Ti produced in the reaction vessel. The metal Ti is manufactured through a vacuum separation step.

還元工程では、反応容器内に溶融Mgを充填し、その液面に上方からTiCl4の液体を供給する。これにより、溶融Mgの液面近傍でTiCl4がMgにより還元され、粒子状の金属Tiが生成すると同時に、溶融MgCl2が液面近傍に副生する。生成した金属Tiは逐次下方へ沈降し、溶融MgCl2も比重が溶融Mgより大きいので下方に沈降して、溶融Mgが液面に現れる。この比重差置換により、液面に溶融Mgが供給され続け、TiCl4の還元反応が継続して進行する。 In the reduction step, molten Mg is filled in the reaction vessel, and TiCl 4 liquid is supplied to the liquid surface from above. As a result, TiCl 4 is reduced by Mg in the vicinity of the molten Mg liquid surface, and particulate metal Ti is generated, and at the same time, molten MgCl 2 is by-produced in the vicinity of the liquid surface. The produced metal Ti sequentially settles downward, and the molten MgCl 2 also sinks downward because the specific gravity is larger than the molten Mg, and the molten Mg appears on the liquid surface. By this specific gravity difference replacement, molten Mg is continuously supplied to the liquid surface, and the reduction reaction of TiCl 4 proceeds continuously.

クロール法による金属Tiの製造では、高純度の製品が製造されるが、製造コストが嵩み、製品価格が非常に高くなる。製造コストが嵩む原因の一つは、TiCl4の供給速度を上げることが困難なことである。TiCl4の供給速度が制限される理由としては次の(a)〜(c)が考えられる。 In the production of metal Ti by the crawl method, a high-purity product is produced, but the production cost increases and the product price becomes very high. One of the causes of increased manufacturing cost is that it is difficult to increase the supply rate of TiCl 4 . The following (a) to (c) can be considered as the reason for limiting the supply rate of TiCl 4 .

(a)クロール法での生産性を高めるには、TiCl4の供給速度、即ち溶融Mgの液面への単位面積または単位時間あたりの供給量を増大させるのが有効である。しかし、TiCl4の供給速度を大きくしすぎると、前述の比重差置換が間に合わず、液面にMgCl2が残ってこれにTiCl4が供給されるようになる。その結果、供給されたTiCl4は未反応のTiCl4ガスや、TiCl3などの低級塩化物のガス(これらを、「未反応ガス」という)となって反応容器外へ排出されるため、TiCl4の利用効率が低下する。また、未反応ガスの発生は容器内圧の急激な上昇を伴うので避ける必要がある。従って、TiCl4の供給速度が制限される。 (A) To increase the productivity in the crawl method, it is effective to increase the supply rate of TiCl 4 , that is, the supply amount per unit area or unit time of molten Mg to the liquid surface. However, if the supply rate of TiCl 4 is increased too much, the above-described specific gravity difference replacement cannot be made in time, and MgCl 2 remains on the liquid surface and TiCl 4 is supplied thereto. As a result, the supplied TiCl 4 is discharged to the outside of the reaction vessel as unreacted TiCl 4 gas or lower chloride gas such as TiCl 3 (hereinafter referred to as “unreacted gas”). 4 utilization efficiency decreases. In addition, generation of unreacted gas is accompanied by a rapid increase in the internal pressure of the container, and thus must be avoided. Therefore, the supply rate of TiCl 4 is limited.

(b)TiCl4の供給速度を大きくすると、溶融Mgの液面から生じるMg蒸気がTiCl4の蒸気と反応して溶融Mg液面より上方の反応容器内面におけるTi析出量が多くなる。一方、TiCl4の還元が進むにつれて溶融Mgの液面が上昇するため、反応容器の上部内面に析出したTiが、還元工程の後半では溶融Mgに浸漬した状態となり、液面の有効面積が減少して反応速度が低下する。これを抑えるために、TiCl4の供給速度を制限し、容器上部内面におけるTiの析出を極力抑えることが必要になる。 (B) When the supply rate of TiCl 4 is increased, the Mg vapor generated from the molten Mg liquid surface reacts with the TiCl 4 vapor to increase the amount of Ti deposited on the inner surface of the reaction vessel above the molten Mg liquid surface. On the other hand, as the reduction of TiCl 4 proceeds, the liquid level of molten Mg rises, so that Ti deposited on the upper inner surface of the reaction vessel is immersed in molten Mg in the latter half of the reduction process, and the effective area of the liquid level decreases. As a result, the reaction rate decreases. In order to suppress this, it is necessary to limit the TiCl 4 supply rate and suppress Ti precipitation on the inner surface of the upper portion of the container as much as possible.

特許文献1で、液状のTiCl4を溶融Mgが存在する液面に分散供給することによって反応効率を高め、反応容器の上部内面におけるTiの析出を抑制する方法が提案されている。しかし、前記Ti析出の抑制対策としては十分ではない。 Patent Document 1 proposes a method in which liquid TiCl 4 is dispersedly supplied to the liquid surface where molten Mg is present to increase the reaction efficiency and suppress the precipitation of Ti on the upper inner surface of the reaction vessel. However, it is not sufficient as a measure for suppressing the Ti precipitation.

(c)クロール法では、反応容器内の溶融Mgの液面近傍だけで反応が行われるため、発熱する領域が狭く、局所的に温度が上昇する。そのため、冷却が困難となり、TiCl4の供給速度が制限されることになる。 (C) In the crawl method, the reaction is performed only in the vicinity of the molten Mg liquid level in the reaction vessel, so that the heat generating region is narrow and the temperature rises locally. Therefore, cooling becomes difficult and the supply rate of TiCl 4 is limited.

また、TiCl4の供給速度に直接影響する問題ではないが、クロール法では、溶融Mgの液面近傍で粒子状に生成したTi粉が、溶融Mgの濡れ性(粘着性)により凝集し、その状態で沈降し、沈降中にも溶融液が有する熱により焼結して粒成長する。そのため、生成したTiを微粉として反応容器外へ取り出し、回収することが難しく、製造を連続的に行うことが困難で、生産性の向上が阻害されている。Tiが反応容器内にスポンジチタンとしてバッチ方式で製造されるのは、このためである。 In addition, although it is not a problem that directly affects the supply rate of TiCl 4 , in the crawl method, Ti powder generated in the form of particles near the liquid surface of molten Mg aggregates due to wettability (adhesiveness) of molten Mg. It settles in a state and sinters with the heat of the melt during the sedimentation to grow grains. Therefore, it is difficult to take out the produced Ti as a fine powder out of the reaction vessel and collect it, and it is difficult to continuously perform the production, and the improvement in productivity is hindered. This is why Ti is produced in a batch manner as sponge titanium in the reaction vessel.

クロール法以外のTi製造方法に関しては、特許文献2に、TiCl4の還元剤としてMg以外の例えばCaの使用が可能であることが記載されている。また、特許文献3に、Caによる還元反応を用いたTi製造方法として、反応容器内にCaCl2の溶融塩を保持し、その溶融塩中に上方から金属Ca粉末を供給して、溶融塩中にCaを溶け込ませると共に、下方からTiCl4ガスを供給して、CaCl2の溶融塩中で溶解CaとTiCl4を反応させる方法が記載されている。 Regarding Ti production methods other than the crawl method, Patent Document 2 describes that, for example, Ca other than Mg can be used as a reducing agent for TiCl 4 . Further, in Patent Document 3, as a Ti production method using a reduction reaction with Ca, a molten salt of CaCl 2 is held in a reaction vessel, and metallic Ca powder is supplied into the molten salt from above, And a method of reacting dissolved Ca and TiCl 4 in a molten salt of CaCl 2 by supplying CaCl 2 from below and supplying TiCl 4 gas.

Caによる還元では、下記(1)式の反応により、TiCl4から金属Tiが生成し、それと共にCaCl2が副生する。 In the reduction with Ca, metal Ti is produced from TiCl 4 by the reaction of the following formula (1), and CaCl 2 is by-produced along with it.

TiCl4+2Ca→Ti+2CaCl2 ・・(1)
CaはMgよりClとの親和力が強く、原理的にはTiCl4の還元剤に適している。 特に、特許文献3に記載された方法では、Caを溶融CaCl2中に溶解させて使用するが、このように、溶融CaCl2中でのCa還元反応を利用すれば、クロール法のように反応容器内の還元剤の液面にTiCl4を供給する場合と比べて反応の生じる領域(反応場)が拡がり、発熱領域も拡がるので、冷却が容易になる。従って、TiCl4の供給速度を大幅に高めることができ、生産性の向上が期待できる。
TiCl 4 + 2Ca → Ti + 2CaCl 2 .. (1)
Ca has a stronger affinity for Cl than Mg and is in principle suitable as a reducing agent for TiCl 4 . In particular, in the method described in Patent Document 3, although used by dissolving Ca in the molten CaCl 2, this manner, when a Ca reduction reaction in molten CaCl 2, as Kroll method reaction Compared with the case where TiCl 4 is supplied to the liquid surface of the reducing agent in the container, the region where the reaction occurs (reaction field) is expanded and the heat generation region is expanded, so that cooling is facilitated. Therefore, the supply rate of TiCl 4 can be greatly increased, and an improvement in productivity can be expected.

しかしながら、特許文献3に記載された方法は、工業的なTi製造法としては成立し得ない。この方法では、還元剤として極めて高価な金属Caの粉末を使用するので、製造コストが、クロール法よりも高価となるからである。   However, the method described in Patent Document 3 cannot be established as an industrial Ti production method. In this method, since extremely expensive metal Ca powder is used as the reducing agent, the manufacturing cost is higher than that of the crawl method.

更に、別のTi製造方法としては、特許文献4に、TiO2を、TiCl4を経由せずCaにより直接還元する方法(オルソンの方法)が記載されている。この方法は、酸化物直接還元法の一種で、高能率である。しかし、高純度のTiO2を使用しなければならないので、高純度のTiを製造するのには適さない。 Furthermore, as another Ti production method, Patent Document 4 describes a method (Orson's method) in which TiO 2 is directly reduced by Ca without passing through TiCl 4 . This method is a kind of direct oxide reduction method and is highly efficient. However, since high-purity TiO 2 must be used, it is not suitable for producing high-purity Ti.

特開平8−295955号公報JP-A-8-295955 米国特許第2205854号明細書US Pat. No. 2,205,854 米国特許第4820339号明細書U.S. Pat. No. 4,820,339 米国特許第2845386号明細書U.S. Pat. No. 2,845,386

本発明の目的は、高純度の金属Ti又はTi合金を高能率に、しかも高価な還元剤を使用することなく経済的に製造することにある。   An object of the present invention is to economically produce high-purity metallic Ti or Ti alloy with high efficiency and without using an expensive reducing agent.

この目的を達成するために、本発明者らは、TiCl4のCaによる還元が不可欠であると考え、前掲の特許文献3に記載されたようなCaCl2の溶融塩中に溶解するCaを利用する方法について検討した。 In order to achieve this object, the present inventors consider that reduction of TiCl 4 with Ca is indispensable, and use Ca dissolved in a molten salt of CaCl 2 as described in Patent Document 3 described above. We examined how to do this.

この場合、還元反応容器内では、前記(1)式の反応の進行に伴い溶融塩中のCaが消費されるが、これを補うために、特許文献3に記載された方法では、金属Caの粉末を還元反応容器内に供給し続ける必要がある。しかし、本発明者らは、Ca還元によるTiの製造方法を工業的に確立するためには、還元反応で消費される溶融塩中のCaを経済的に(つまり、安価に)補充する必要があると考え、その手段として、溶融塩中の溶解Ca濃度を電気分解により操作する方法を案出した。   In this case, in the reduction reaction vessel, Ca in the molten salt is consumed as the reaction of the formula (1) proceeds. In order to compensate for this, the method described in Patent Document 3 It is necessary to continue supplying the powder into the reduction reaction vessel. However, the present inventors need to economically (ie, inexpensively) replenish Ca in the molten salt consumed in the reduction reaction in order to industrially establish a method for producing Ti by Ca reduction. As a means to solve this problem, a method of manipulating the dissolved Ca concentration in the molten salt by electrolysis was devised.

即ち、反応槽内で溶融CaCl2を電気分解すると、下記(2)式及び(3)式の電極反応が進行して、陽極の表面近傍でCl2ガスが発生し、陰極の表面近傍でCaが生成するので、溶融塩中のCa濃度を高めることができる。そこで、この陰極側に生成するCaと反応するようにTiCl4を溶融CaCl2中に供給すると、Tiの生成に消費されるCaが随時補充されるので、外部からの金属Caの補充や金属Caの抽出が不要になり、金属Tiの経済的な製造が可能になる。 That is, when the molten CaCl 2 is electrolyzed in the reaction vessel, the electrode reaction of the following formulas (2) and (3) proceeds to generate Cl 2 gas in the vicinity of the surface of the anode and Ca in the vicinity of the surface of the cathode. Is generated, the Ca concentration in the molten salt can be increased. Therefore, when TiCl 4 is supplied into the molten CaCl 2 so as to react with the Ca generated on the cathode side, Ca consumed for Ti generation is replenished as needed. Extraction of the metal Ti becomes unnecessary, and economical production of the metal Ti becomes possible.

陽極: 2Cl-→2e-+Cl2 ・・(2)
陰極: Ca2++2e-→Ca ・・(3)
TiCl4の還元に消費されるCaを電気分解で生成するCaで補充する方法は、還元と電気分解をそれぞれ還元槽と電解槽で行わせ、両槽間で溶融CaCl2を循環させることによっても可能である。しかし、電気分解で陰極側に生成するCaと反応するように、TiCl4を反応槽内の溶融CaCl2中に供給してやれば、反応槽が還元槽と電解槽を兼ねることとなり、両槽を設ける必要がなく、還元槽と電解槽の間で溶融CaCl2を循環させる場合と比べて設備コストなどの面でも非常に有利となる。
Anode: 2Cl → 2e + Cl 2 (2)
Cathode: Ca 2+ + 2e → Ca (3)
A method of replenishing Ca consumed for reduction of TiCl 4 with Ca generated by electrolysis is also performed by causing reduction and electrolysis to be performed in a reduction tank and an electrolysis tank, respectively, and circulating molten CaCl 2 between both tanks. Is possible. However, if TiCl 4 is supplied into the molten CaCl 2 in the reaction tank so as to react with Ca generated on the cathode side by electrolysis, the reaction tank serves as both a reduction tank and an electrolytic tank, and both tanks are provided. This is not necessary, and is very advantageous in terms of equipment cost as compared with the case where molten CaCl 2 is circulated between the reduction tank and the electrolytic tank.

本発明はかかる考察に基づいてなされたものであり、その要旨は、下記のTi又はTi合金の製造方法にある。   The present invention has been made on the basis of such consideration, and the gist thereof is the following method for producing Ti or Ti alloy.

即ち、Caによる還元反応を用いたTi又はTi合金の製造方法であって、CaCl2を含み且つCaが溶解した溶融塩を反応槽内に保持し、該反応槽内の溶融塩中で電気分解を進行させてCaを精製して溶融塩中の溶融Caの消費分を補充すると共に、TiCl 4 を含む金属塩化物を前記溶融塩中に供給して溶融塩中の溶解Caと直接的に還元反応させることにより、前記溶融塩中にTi又はTi合金を生成させる還元電解工程と、前記反応槽内又は反応槽外で前記Ti又はTi合金を溶融塩から分離するTi分離工程とを含むことを特徴とするCa還元によるTi又はTi合金の製造方法である。
That is, a method for producing Ti or a Ti alloy using a reduction reaction with Ca, in which a molten salt containing CaCl 2 and dissolved in Ca is held in a reaction vessel, and electrolysis is performed in the molten salt in the reaction vessel. To purify Ca to replenish the consumption of molten Ca in the molten salt, and supply metal chloride containing TiCl 4 directly into the molten salt to reduce it directly with the dissolved Ca in the molten salt by reacting a reduction electrolysis step to produce Ti or Ti alloy in the molten salt, to include the Ti separation step of separating the Ti or Ti alloy in said reaction vessel or reaction vessel outside from the molten salt It is the manufacturing method of Ti or Ti alloy by the Ca reduction characterized.

本発明のCa還元によるTi又はTi合金の製造方法においては、例えば、溶融塩として溶融CaCl2を反応槽内に保持し、反応槽内の溶融塩中にTiCl4を供給すると、そのTiCl4が溶融塩に溶解しているCaにより還元されて、粒状及び/又は粉状の金属Ti(以下、これを「Ti粒」と記す)が生成する。Ti粒の生成に伴って溶融塩中の溶解Caは消費されるが、反応槽内では還元反応と同時に溶融CaCl2の電気分解が進行しているので、陰極側にCaが生成し、消費された溶解Caが補充される。 In the method for producing Ti or Ti alloy by Ca reduction of the present invention, for example, when molten CaCl 2 is held in the reaction vessel as a molten salt and TiCl 4 is supplied into the molten salt in the reaction vessel, the TiCl 4 is Reduced by Ca dissolved in the molten salt, granular and / or powdery metal Ti (hereinafter referred to as “Ti grains”) is generated. Although the dissolved Ca in the molten salt is consumed as the Ti grains are generated, the electrolysis of the molten CaCl 2 proceeds simultaneously with the reduction reaction in the reaction tank, so Ca is generated and consumed on the cathode side. Dissolved Ca is replenished.

従来、金属Tiの工業的な生産にCaが使用されてこなかった理由の一つは、CaとCaCl2の分離が困難なことである。MgはMgCl2を電解して製造されるが、MgはMgCl2に殆ど溶解しないので、生成されたMgは効率よく回収できる。NaもNaClを電解することにより、Mgと同様に効率よく製造できる。一方、CaはCaCl2の電解により製造されるが、生成されたCaはCaCl2に約1.5%溶解する。そのため、Caだけを効率よく製造することが難しく、溶解したCaがバックリアクション(陰極側に生成したCaが陽極側に生成したCl2と結合してCaCl2に戻る反応)でCaCl2を生成する現象も加わるために、製造効率が悪い。電極を冷却するなどの工夫によりCaの回収率を高める技術も用いられるが、それでもCaの製造コストは高くならざるを得ない。 Conventionally, one of the reasons that Ca has not been used for industrial production of metal Ti is that separation of Ca and CaCl 2 is difficult. Mg is produced by electrolyzing MgCl 2 , but since Mg is hardly dissolved in MgCl 2 , the produced Mg can be efficiently recovered. Na can also be efficiently produced by electrolyzing NaCl in the same manner as Mg. On the other hand, Ca is produced by electrolysis of CaCl 2 , but the produced Ca is dissolved in CaCl 2 by about 1.5%. Therefore, it is difficult to produce only efficiently Ca, dissolved Ca generates CaCl 2 in back reaction (reaction back to CaCl 2 and Ca generated on the cathode side is coupled with Cl 2 generated on the anode side) Since the phenomenon is added, the manufacturing efficiency is poor. A technique for increasing the recovery rate of Ca by means such as cooling the electrode is also used, but the production cost of Ca must still be high.

しかし、本発明のCa還元によるTi又はTi合金の製造方法においては、溶融CaCl2中に溶解したCaを使用し、Caを分離する必要がないため、Caの電解製造コストを低減することができる。 However, in the method for producing Ti or Ti alloy by Ca reduction of the present invention, Ca dissolved in molten CaCl 2 is used and it is not necessary to separate Ca, so that the electrolytic production cost of Ca can be reduced. .

また、溶融CaCl2中でのCa還元を利用すれば、還元反応場が広がり、同時に発熱領域も広がる。更に、850℃での蒸気圧はMgが6.7kPa(50mmHg)であるのに対して、Caは0.3kPa(2mmHg)と極めて小さく、そのため、反応槽の上部内面へのTi析出量は、還元にCaを使用した場合、Mgに比べて格段に少なくなる。従って、本発明のCa還元によるTi又はTi合金の製造方法においては、TiCl4供給速度の大幅増大も可能になる。 Further, if Ca reduction in molten CaCl 2 is used, the reduction reaction field is widened, and at the same time, the heat generation area is widened. Furthermore, while the vapor pressure at 850 ° C. is Mg of 6.7 kPa (50 mmHg), Ca is as extremely low as 0.3 kPa (2 mmHg). Therefore, the amount of Ti deposited on the upper inner surface of the reaction tank is When Ca is used for the reduction, it is much less than Mg. Therefore, in the method for producing Ti or Ti alloy by the Ca reduction of the present invention, the TiCl 4 supply rate can be greatly increased.

その上、CaはMgより濡れ性(粘着性)が劣る上に、析出Ti粒子に付着するCaがCaCl2に溶解するので、生成チタン粒子同士の凝集や、焼結による粒成長もはるかに少なく、生成Tiを粉末状態で反応槽外へ取り出すことができ、連続的なTi製造操作も可能となる。 In addition, Ca is inferior in wettability (adhesiveness) to Mg, and Ca adhering to the precipitated Ti particles dissolves in CaCl 2 , so there is much less aggregation of produced titanium particles and grain growth due to sintering. The produced Ti can be taken out of the reaction vessel in a powder state, and a continuous Ti production operation is also possible.

溶融CaC12液中へのTiCl4の供給形態としては、TiCl4を溶融CaCl2液中へガス状態で直接供給するのが、溶融CaCl2液中のCaに対するTiCl4の接触効率が高く、特に望ましい形態である。しかし、これに限らず、溶融CaCl2液の液面に液体又はガス状態のTiCl4を供給したり、溶融CaCl2液上に保持された溶融Ca液の液面や液中に液体又はガス状態のTiCl4を供給することも可能である。 The supply form of TiCl 4 into the molten CaCl 2 solution, to directly supplied in the gaseous state a TiCl 4 into the molten CaCl 2 solution is higher contact efficiency TiCl 4 to Ca in the molten CaCl 2 solution, especially This is a desirable form. However, the present invention is not limited to this, and TiCl 4 in a liquid or gas state is supplied to the liquid surface of the molten CaCl 2 liquid, or the liquid surface or liquid state of the molten Ca liquid held on the molten CaCl 2 liquid. It is also possible to supply TiCl 4 .

溶融CaCl2液上に保持された溶融Ca液面にTiCl4の液体を供給して還元反応を行わせる場合、溶融Ca液を、溶融CaCl2液中のCaを利用できる程度に薄く保持した状態とするのが望ましい。Ca層が薄ければ、溶融CaCl2液中のCaも反応に関与するので、溶融Ca層から溶融CaCl2層にかけて反応を行わせ、TiCl4の供給速度の増大により比重差置換が間に合わなくなってもTiの生成を継続させることができる。 When supplying the TiCl 4 liquid to the molten Ca liquid surface held on the molten CaCl 2 liquid to cause a reduction reaction, the molten Ca liquid is kept thin enough to use the Ca in the molten CaCl 2 liquid Is desirable. If the Ca layer is thin, Ca in the molten CaCl 2 solution is also involved in the reaction, so the reaction is carried out from the molten Ca layer to the molten CaCl 2 layer, and the specific gravity difference substitution cannot be made in time due to the increase in the supply rate of TiCl 4. Can continue to produce Ti.

前記TiCl4ガスの供給に関し、本発明のCa還元によるTi又はTi合金の製造方法がクロール法と比べて有利であることについて述べる。 Regarding the supply of the TiCl 4 gas, it will be described that the method for producing Ti or Ti alloy by Ca reduction of the present invention is more advantageous than the crawl method.

クロール法では、溶融Mg液の液面にTiCl4の液体を供給するが、反応場の拡大を狙って溶融Mg液の液中にTiCl4のガスを供給することも試みられた。しかし、前述したように、Mgの蒸気圧が高いため、TiCl4ガスの供給管へMg蒸気が侵入し、TiCl4と反応して供給管を閉塞させてしまう。 In the crawl method, a TiCl 4 liquid is supplied to the surface of the molten Mg liquid, but an attempt was made to supply a TiCl 4 gas into the liquid of the molten Mg liquid in order to expand the reaction field. However, as described above, since the vapor pressure of Mg is high, Mg vapor enters the TiCl 4 gas supply pipe and reacts with TiCl 4 to block the supply pipe.

一方、溶融MgCl2液中にTiCl4のガスを供給することも試みたが、供給管を閉塞させる頻度は低下するものの、管閉塞の事態は依然として残る。TiCl4ガスのバブリングにより溶融物が攪拌され、供給管に溶融Mgが到達する場合があるからである。しかも、溶融MgCl2液中にTiCl4を供給しても、その溶融塩中にMgが殆ど溶解しないため、還元反応が起こり難くなる。 On the other hand, although an attempt was made to supply the TiCl 4 gas into the molten MgCl 2 liquid, the frequency of closing the supply pipe is reduced, but the situation of the pipe closing still remains. This is because the molten product may be stirred by bubbling TiCl 4 gas and molten Mg may reach the supply pipe. In addition, even if TiCl 4 is supplied into the molten MgCl 2 solution, Mg hardly dissolves in the molten salt, so that the reduction reaction hardly occurs.

これに対して、Ca還元を利用する方法では、前記供給管の閉塞が起こりにくく、溶融CaCl2液中へのTiCl4ガスの供給が可能である。供給管が閉塞しにくいのは、溶融Caの蒸気圧が低いことによるものと推察される。 On the other hand, in the method using Ca reduction, the supply pipe is hardly clogged and TiCl 4 gas can be supplied into the molten CaCl 2 liquid. The reason why the supply pipe is difficult to block is presumably due to the low vapor pressure of molten Ca.

即ち、本発明のCa還元によるTi又はTi合金の製造方法においては、TiCl4を溶融CaCl2液中へガス状態で直接供給するのが特に望ましいが、実際の操業上もこの供給形態が問題なく実施可能である。また、溶融CaCl2液の液面や、溶融CaCl2液上に保持された溶融Ca液の液面、液中にTiCl4の液体やガスを供給する形態を採ることもできる。 That is, in the method for producing Ti or Ti alloy by Ca reduction according to the present invention, it is particularly desirable to directly supply TiCl 4 in a gaseous state into the molten CaCl 2 liquid, but this supply form is not problematic in actual operation. It can be implemented. In addition, a liquid surface of the molten CaCl 2 liquid, a liquid surface of the molten Ca liquid held on the molten CaCl 2 liquid, and a form of supplying a TiCl 4 liquid or gas into the liquid may be employed.

溶融CaCl2液中に生成したTi粒の溶融CaCl2液からの分離については、反応槽内又は反応槽外のいずれでも実施可能である。しかし、反応槽内で行うとバッチ方式となるので、生産性を高めるためには、生成Tiが粒子状で得られることを利用して、溶融CaCl2液と共に反応槽外へ抜き取り、反応槽外で溶融CaCl2液からTi粒を分離するのがよい。機械的な圧縮による絞り操作などにより、Ti粒を溶融CaCl2液から簡単に分離することができる。 The separation from Ti particles in the molten CaCl 2 solution produced in the molten CaCl 2 solution can be implemented either reactor or reaction vessel outside. However, since it becomes a batch system when carried out in the reaction tank, in order to increase productivity, using the fact that the produced Ti is obtained in the form of particles, it is extracted out of the reaction tank together with the molten CaCl 2 solution, and outside the reaction tank. It is better to separate the Ti particles from the molten CaCl 2 solution. The Ti particles can be easily separated from the molten CaCl 2 liquid by a drawing operation by mechanical compression or the like.

本発明の製造方法でTiを製造する場合、原料としては、TiCl4を使用するが、TiCl4と他の金属塩化物とを混合して使用することにより、Ti合金を製造することも可能である。TiCl4も他の金属塩化物も同時にCaにより還元されるので、この方法によってTi合金を製造することができる。なお、前記他の金属塩化物はガス状、液状のいずれの状態で使用してもよい。 When Ti is produced by the production method of the present invention, TiCl 4 is used as a raw material, but it is also possible to produce a Ti alloy by using a mixture of TiCl 4 and other metal chlorides. is there. Since TiCl 4 and other metal chlorides are simultaneously reduced by Ca, a Ti alloy can be produced by this method. The other metal chloride may be used in a gaseous state or a liquid state.

本発明のCa還元によるTi又はTi合金の製造方法では、溶融CaCl2中のCa(陰極側に生成したCaや未反応のCa)が陽極側に生成したCl2と結合してCaCl2に戻るバックリアクションや、Caの反応性が高いことによる炉材の損耗が問題になる。 In the method for producing Ti or Ti alloy by Ca reduction of the present invention, Ca in molten CaCl 2 (Ca produced on the cathode side or unreacted Ca) is combined with Cl 2 produced on the anode side to return to CaCl 2 . Back reaction and wear of the furnace material due to the high reactivity of Ca become problems.

バックリアクションが生じると、それに電解電流が消費されるため、電流効率が低下する。この問題、特に、陰極側に生成したCaが、陽極側に生成したCl2と結合するバックリアクションに対しては、反応槽に、下方部が開口をなしている隔壁を設けて(後述する図1参照)、槽内を陽極側と陰極側に分けるのが望ましい。 When the back reaction occurs, the electrolysis current is consumed, and the current efficiency is lowered. For this problem, in particular, for the back reaction in which Ca produced on the cathode side is combined with Cl 2 produced on the anode side, a partition wall having an opening at the lower part is provided in the reaction tank (see below). 1), it is desirable to divide the tank into an anode side and a cathode side.

また、炉材の損耗の問題に対しては、溶融塩をCaCl2単独ではなく、混合塩としてその融点を下げ、溶融塩の温度(つまり、浴温)を下げるのが有効である。 Further, for the problem of wear of the furnace material, it is effective to lower the melting point of the molten salt as a mixed salt instead of CaCl 2 alone and to lower the temperature of the molten salt (that is, the bath temperature).

即ち、本発明のCa還元によるTi又はTi合金の製造方法においては、溶融塩として、通常、融点が780℃のCaCl2を用いるが、CaCl2−NaCl、CaCl2−KClの2元系の溶融塩や、CaCl2−NaCl−KClの3元系の溶融塩のように、CaCl2に対して他の塩(例えば、NaCl、KCl、LiCl及びCaF2)のうちの1種以上を混合し、多元系溶融塩とすることも可能である。これにより、塩の融点が下がるので、溶融塩の温度(浴温)を低下させることが可能になる。例えば、CaCl2とNaCl(融点:約800℃)を混合すると、融点を最低で約500℃まで低下させることができる。 That is, in the method for producing Ti or Ti alloy by Ca reduction according to the present invention, CaCl 2 having a melting point of 780 ° C. is usually used as a molten salt, but a binary system of CaCl 2 —NaCl and CaCl 2 —KCl is used. Like salt or CaCl 2 -NaCl-KCl ternary molten salt, CaCl 2 is mixed with one or more of other salts (for example, NaCl, KCl, LiCl and CaF 2 ), A multi-component molten salt is also possible. Thereby, since melting | fusing point of salt falls, it becomes possible to reduce the temperature (bath temperature) of molten salt. For example, when CaCl 2 and NaCl (melting point: about 800 ° C.) are mixed, the melting point can be lowered to a minimum of about 500 ° C.

その結果、炉材の寿命の延長、炉材コストの低減、更には、液面からのCaや塩の蒸発の抑制が可能になる。   As a result, it is possible to extend the life of the furnace material, reduce the furnace material cost, and further suppress the evaporation of Ca and salt from the liquid surface.

本発明のCa還元によるTi又はTi合金の製造方法は、高純度のものが得られやすいTiCl4を還元する方法であるため、高純度の金属Ti又はTi合金を製造できる。 Since the production method of Ti or Ti alloy by Ca reduction of the present invention is a method of reducing TiCl 4 that is easily obtained in high purity, high purity metal Ti or Ti alloy can be produced.

還元剤にCaを使用し、CaCl2を含む溶融塩中のCaにTiCl4を含む金属塩化物を反応させるので、TiCl4の供給速度を増大できる。更に、CaCl2中にTi粒又はTi合金粒を生成させるので、粒子同士の凝集や、焼結による粒成長が極めて少なく、これらを反応槽外へ取り出すことができ、連続的な操業が可能である。しかも、反応槽内で還元反応と電解反応を同時に進行させ、還元反応で消費されるCaを電解反応で補うことにより、Caを常時、溶融塩に溶解した状態で利用することができる。 Since Ca is used as the reducing agent and the metal chloride containing TiCl 4 reacts with Ca in the molten salt containing CaCl 2 , the supply rate of TiCl 4 can be increased. Furthermore, since Ti grains or Ti alloy grains are produced in CaCl 2 , there is very little aggregation between grains and grain growth due to sintering, and these can be taken out of the reaction tank, enabling continuous operation. is there. In addition, the reduction reaction and the electrolytic reaction are allowed to proceed simultaneously in the reaction tank, and Ca consumed by the reduction reaction is supplemented by the electrolytic reaction, so that the Ca can always be used in a state dissolved in the molten salt.

従って、この本発明の製造方法によれば、高純度の金属Ti又はTi合金を能率よく経済的に製造できる。   Therefore, according to the production method of the present invention, high-purity metal Ti or Ti alloy can be produced efficiently and economically.

以下に本発明の実施形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の実施形態を示す金属Ti製造装置の構成図である。この実施形態では、還元反応及び電解反応を同時進行的に行う反応槽1が使用される。反応槽1は、溶融塩としてCaが比較的多量に溶解したCaリッチの溶融CaCl2を保持する。CaCl2は融点が約780℃であり、その溶融塩はその融点以上に加熱されている。 FIG. 1 is a configuration diagram of a metal Ti manufacturing apparatus showing an embodiment of the present invention. In this embodiment, the reaction tank 1 that performs the reduction reaction and the electrolytic reaction simultaneously is used. The reaction tank 1 holds Ca-rich molten CaCl 2 in which Ca is dissolved in a relatively large amount as a molten salt. CaCl 2 has a melting point of about 780 ° C., the molten salt is heated above its melting point.

反応槽1では、溶融塩である溶融CaCl2が陽極2と陰極3の間に通電することにより電気分解され、陽極2の側でCl2ガスが発生し、陰極3の側でCaが生成する。この例では、反応槽1の内部は、隔壁4により陽極側と陰極側に分けられている。但し、隔壁4は、溶融塩の移動が妨げられないように、下方部が開口をなしている。 In the reaction tank 1, molten CaCl 2, which is a molten salt, is electrolyzed by energizing between the anode 2 and the cathode 3, Cl 2 gas is generated on the anode 2 side, and Ca is generated on the cathode 3 side. . In this example, the inside of the reaction vessel 1 is divided into an anode side and a cathode side by a partition wall 4. However, the lower part of the partition wall 4 has an opening so that the movement of the molten salt is not hindered.

反応槽1内では、溶融塩の電気分解と並行して、槽内の陰極側の溶融塩中にガス状のTiCl4が分散して注入される。これにより、注入されたTiCl4が溶融塩中の溶解Caにより還元され、粒子状の金属Tiが生成される。生成されたTi粒は比重差により沈降し、反応槽1内の陰極側の底に溜まる。 In the reaction tank 1, in parallel with the electrolysis of the molten salt, gaseous TiCl 4 is dispersed and injected into the molten salt on the cathode side in the tank. Thereby, the injected TiCl 4 is reduced by the dissolved Ca in the molten salt, and particulate metal Ti is generated. The produced Ti particles settle due to the difference in specific gravity and accumulate on the bottom of the reaction vessel 1 on the cathode side.

反応槽1内の陰極側の底に溜まるTi粒は、その底に存在する溶融塩と共に、反応槽1から抜き出され、Ti分離工程(図示せず)に送られる。Ti分離工程では、反応槽1から溶融塩と共に抜き出されたTi粒が溶融塩から分離される。具体的には、そのTi粒を圧縮して溶融塩を絞り取る。Ti分離工程で得られたTi粒は溶融されTiインゴットとされる。   Ti particles accumulated at the bottom on the cathode side in the reaction tank 1 are extracted from the reaction tank 1 together with the molten salt present at the bottom, and sent to a Ti separation step (not shown). In the Ti separation step, Ti particles extracted from the reaction tank 1 together with the molten salt are separated from the molten salt. Specifically, the molten particles are squeezed out by compressing the Ti grains. Ti particles obtained in the Ti separation step are melted to form a Ti ingot.

一方、Ti分離工程でTi粒から分離された溶融塩は使用済みの溶融塩で、Caが消費され、Ca濃度が低下している。この溶融塩は、反応槽内へ戻して再利用することが望ましく、通常、反応槽1から別途抜き出された使用済みの溶融塩と共に、反応槽1内の陽極側へ導入される。   On the other hand, the molten salt separated from the Ti grains in the Ti separation step is a used molten salt, and Ca is consumed and the Ca concentration is lowered. This molten salt is preferably returned to the reaction vessel and reused, and is usually introduced to the anode side in the reaction vessel 1 together with the used molten salt separately extracted from the reaction vessel 1.

反応槽1内の陰極側では、還元反応によるTi粒の生成に伴って溶融塩中のCaが消費される。しかし、槽内で同時に進行する電気分解により、槽内の陰極3の表面近傍でCaが生成し、これによりCaの消費分が補充される。つまり、陰極3の表面近傍で生成するCaによって、溶融塩中に供給されるTiCl4が逐次直接的に還元される。 On the cathode side in the reaction tank 1, Ca in the molten salt is consumed as Ti particles are generated by the reduction reaction. However, due to the electrolysis that proceeds simultaneously in the tank, Ca is generated in the vicinity of the surface of the cathode 3 in the tank, thereby supplementing the consumption of Ca. That is, TiCl 4 supplied into the molten salt is directly and sequentially reduced by Ca generated in the vicinity of the surface of the cathode 3.

一方、反応槽1内の陽極側には、望ましい形態として、Ti分離工程から使用済みの溶融塩が送り込まれる。これにより、反応槽1内には、陽極側から陰極側へ向かう溶融塩の一方向流が形成され、陰極側で生成するCaの陽極側への流入が回避される。図1に示した隔壁4が設けられていれば、前記一方向流の形成との組み合わせによって、Caの陽極側への流入防止に対してより効果的に機能する。このように、反応槽1内の陽極側に導入された溶融塩は、陰極側へ移動してCaを補充され、Caリッチとなって還元反応に再利用される。   On the other hand, the used molten salt is sent from the Ti separation step to the anode side in the reaction tank 1 as a desirable form. As a result, a one-way flow of molten salt from the anode side to the cathode side is formed in the reaction tank 1, and the inflow of Ca generated on the cathode side to the anode side is avoided. If the partition wall 4 shown in FIG. 1 is provided, the combination with the formation of the one-way flow functions more effectively for preventing Ca from flowing into the anode side. Thus, the molten salt introduced to the anode side in the reaction tank 1 moves to the cathode side, is supplemented with Ca, becomes Ca-rich, and is reused for the reduction reaction.

反応槽1内の陽極側で発生したCl2ガスは、TiO2を塩化処理することにより、Tiの原料であるTiC14を生成させる塩化工程(図示せず)で再利用するのが望ましい。生成されたTiCl4は反応槽1に導入され、Ca還元によるTi粒の生成に循環使用される。 Cl 2 gas generated in the anode side of the reaction tank 1, by treating chloride TiO 2, it is desirable to reuse in the process chloride to produce a TiC1 4 which is a raw material of Ti (not shown). The produced TiCl 4 is introduced into the reaction vessel 1 and recycled for producing Ti particles by Ca reduction.

以上述べたように、この実施形態では、反応槽1内でCa還元によるTi粒の生成、即ちCaの消費と、電気分解によるCaの補充とが同時進行的に行なわれるので、固体状態でのCaの補充も取り出しも必要なく、Ca還元による高品質のTi粒が、連続的かつ経済的に製造される。しかも、反応槽1は還元槽及び電解槽を兼ねており、設備面での経済的メリットも大きい。更に、反応槽1内では、陰極側で生成するCaの陽極側への流入が回避されるので、Caが陽極側で発生するCl2ガスと反応するバックリアクションも防止できる。 As described above, in this embodiment, generation of Ti particles by Ca reduction in the reaction tank 1, that is, consumption of Ca and replenishment of Ca by electrolysis are performed simultaneously, so that in a solid state There is no need to replenish or take out Ca, and high quality Ti grains by Ca reduction are produced continuously and economically. In addition, the reaction tank 1 also serves as a reduction tank and an electrolytic tank, and has great economic merit in terms of equipment. Further, in the reaction tank 1, since the inflow of Ca generated on the cathode side to the anode side is avoided, back reaction in which Ca reacts with the Cl 2 gas generated on the anode side can be prevented.

なお、操業の間、反応槽1内の溶融塩の温度は、CaCl2の融点(約780℃)より高い温度に管理される。 During the operation, the temperature of the molten salt in the reaction tank 1 is controlled to a temperature higher than the melting point of CaCl 2 (about 780 ° C.).

本発明のCa還元によるTi又はTi合金の製造方法によれば、原料であるTiCl4の供給速度を高めることができ、更に、連続的な製造が可能である。しかも、反応槽内で還元反応と電解反応を同時に進行させ、還元反応で消費されるCaを電解反応で補うことができるので、Caそれ自体を単独で取り扱う必要がない。 According to the method for producing Ti or Ti alloy by Ca reduction of the present invention, the supply rate of TiCl 4 as a raw material can be increased, and continuous production is possible. In addition, since the reduction reaction and the electrolytic reaction can proceed simultaneously in the reaction tank and Ca consumed in the reduction reaction can be supplemented by the electrolytic reaction, it is not necessary to handle Ca itself alone.

従って、本発明の製造方法は、高純度の金属Ti又はTi合金を能率よく経済的に製造する手段として有効に利用することができる。   Therefore, the production method of the present invention can be effectively used as a means for efficiently and economically producing high-purity metal Ti or Ti alloy.

本発明の実施形態を示す金属Ti製造装置の構成図である。It is a block diagram of the metal Ti manufacturing apparatus which shows embodiment of this invention.

符号の説明Explanation of symbols

1:反応槽
2:陽極
3:陰極
4:隔壁
1: Reaction tank 2: Anode 3: Cathode 4: Partition wall

Claims (1)

Caによる還元反応を用いたTi又はTi合金の製造方法であって、
CaCl2を含み且つCaが溶解した溶融塩を反応槽内に保持し、該反応槽内の溶融塩中で電気分解を進行させてCaを精製して溶融塩中の溶融Caの消費分を補充すると共に、
TiCl 4 を含む金属塩化物を前記溶融塩中に供給して溶融塩中の溶解Caと直接的に還元反応させることにより
前記溶融塩中にTi又はTi合金を生成させる還元電解工程と、前記反応槽内又は反応槽外で前記Ti又はTi合金を溶融塩から分離するTi分離工程とを含むことを特徴とするCa還元によるTi又はTi合金の製造方法。
A method for producing Ti or a Ti alloy using a reduction reaction with Ca,
The molten salt containing CaCl 2 and dissolved in Ca is held in the reaction tank, and electrolysis is advanced in the molten salt in the reaction tank to purify Ca to replenish the consumed amount of molten Ca in the molten salt. And
By supplying a metal chloride containing TiCl 4 into the molten salt and causing a direct reduction reaction with dissolved Ca in the molten salt ,
Ca reduction characterized by comprising a reduction electrolysis step for producing Ti or a Ti alloy in the molten salt and a Ti separation step for separating the Ti or Ti alloy from the molten salt inside or outside the reaction vessel. Of Ti or Ti alloy by
JP2004281341A 2004-02-20 2004-09-28 Method for producing Ti or Ti alloy by Ca reduction Expired - Fee Related JP4342413B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004281341A JP4342413B2 (en) 2004-02-20 2004-09-28 Method for producing Ti or Ti alloy by Ca reduction
EP05710241A EP1724376A4 (en) 2004-02-20 2005-02-16 PROCESS FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
PCT/JP2005/002291 WO2005080643A1 (en) 2004-02-20 2005-02-16 PROCESS FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
US10/589,879 US20070187255A1 (en) 2004-02-20 2005-02-16 Method for producing ti or ti alloy through reduction by ca

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004044827 2004-02-20
JP2004281341A JP4342413B2 (en) 2004-02-20 2004-09-28 Method for producing Ti or Ti alloy by Ca reduction

Publications (2)

Publication Number Publication Date
JP2005264319A JP2005264319A (en) 2005-09-29
JP4342413B2 true JP4342413B2 (en) 2009-10-14

Family

ID=34889346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004281341A Expired - Fee Related JP4342413B2 (en) 2004-02-20 2004-09-28 Method for producing Ti or Ti alloy by Ca reduction

Country Status (4)

Country Link
US (1) US20070187255A1 (en)
EP (1) EP1724376A4 (en)
JP (1) JP4342413B2 (en)
WO (1) WO2005080643A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546964A (en) * 2018-05-29 2018-09-18 钢研晟华科技股份有限公司 A kind of preparation facilities and preparation method of Titanium

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4193984B2 (en) * 2003-08-28 2008-12-10 株式会社大阪チタニウムテクノロジーズ Metal manufacturing equipment
US9125732B2 (en) 2005-07-25 2015-09-08 Vascular Dynamics, Inc. Devices and methods for control of blood pressure
US9642726B2 (en) 2005-07-25 2017-05-09 Vascular Dynamics, Inc. Devices and methods for control of blood pressure
US8923972B2 (en) 2005-07-25 2014-12-30 Vascular Dynamics, Inc. Elliptical element for blood pressure reduction
US9592136B2 (en) 2005-07-25 2017-03-14 Vascular Dynamics, Inc. Devices and methods for control of blood pressure
WO2007119826A1 (en) * 2006-04-14 2007-10-25 Osaka Titanium Technologies Co., Ltd. PROCESS FOR PRODUCTION OF Ti POWDER
ES2725524T3 (en) 2008-09-26 2019-09-24 Vascular Dynamics Inc Devices and methods to control blood pressure
CN103898555A (en) * 2012-12-25 2014-07-02 攀钢集团攀枝花钢铁研究院有限公司 Metal titanium production method
CN103290433B (en) * 2013-06-26 2016-01-20 石嘴山市天和铁合金有限公司 Device and the technique thereof of pure titanium are prepared in a kind of pair of electrolyzer fused salt electrolysis
CN103451681B (en) * 2013-09-03 2016-06-08 广州有色金属研究院 The extracting method of a kind of metal titanium

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2205854A (en) * 1937-07-10 1940-06-25 Kroll Wilhelm Method for manufacturing titanium and alloys thereof
US2845386A (en) * 1954-03-16 1958-07-29 Du Pont Production of metals
FR2582019B1 (en) * 1985-05-17 1987-06-26 Extramet Sa PROCESS FOR THE PRODUCTION OF METALS BY REDUCTION OF METAL SALTS, METALS OBTAINED THEREBY AND DEVICE FOR CARRYING OUT SAME
ITTO970080A1 (en) * 1997-02-04 1998-08-04 Marco Vincenzo Ginatta PROCEDURE FOR THE ELECTROLYTIC PRODUCTION OF METALS
JP3718691B2 (en) * 2002-04-18 2005-11-24 財団法人生産技術研究奨励会 Titanium production method, pure metal production method, and pure metal production apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108546964A (en) * 2018-05-29 2018-09-18 钢研晟华科技股份有限公司 A kind of preparation facilities and preparation method of Titanium
CN108546964B (en) * 2018-05-29 2019-12-24 钢研晟华科技股份有限公司 Preparation device and preparation method of metallic titanium

Also Published As

Publication number Publication date
JP2005264319A (en) 2005-09-29
US20070187255A1 (en) 2007-08-16
WO2005080643A1 (en) 2005-09-01
EP1724376A1 (en) 2006-11-22
EP1724376A4 (en) 2007-07-25

Similar Documents

Publication Publication Date Title
US20070187255A1 (en) Method for producing ti or ti alloy through reduction by ca
US20070181435A1 (en) Method for producing ti or ti alloy through reduction by ca (as amended)
JP5183498B2 (en) Electrolytic production of silicon and scouring method
AU2005301828B2 (en) Process for producing Ti through Ca reduction and apparatus therefor
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
JP4395386B2 (en) Method for producing Ti or Ti alloy by circulating Ca source
JP4347089B2 (en) Method for producing Ti or Ti alloy by Ca reduction
WO2006098199A1 (en) Method of high-melting-point metal separation and recovery
AU2004280401C1 (en) Method for producing Ti or Ti alloy through reduction by Ca
JP2005133196A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF MOLTEN SALT
JP4249685B2 (en) Method for producing Ti by Ca reduction
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP2009133010A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY BY Ca REDUCTION
EP1876248A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY, AND PULL-UP ELECTROLYSIS METHOD APPLICABLE TO SAID PROCESS
JP2005264181A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY USING MOLTEN Ca ALLOY AS Ca TRANSFERRING MEDIUM
JP4227113B2 (en) Pull-up electrolysis method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070903

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20071005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees