JP4261328B2 - Molten metal chloride electrolyzer - Google Patents

Molten metal chloride electrolyzer Download PDF

Info

Publication number
JP4261328B2
JP4261328B2 JP2003416145A JP2003416145A JP4261328B2 JP 4261328 B2 JP4261328 B2 JP 4261328B2 JP 2003416145 A JP2003416145 A JP 2003416145A JP 2003416145 A JP2003416145 A JP 2003416145A JP 4261328 B2 JP4261328 B2 JP 4261328B2
Authority
JP
Japan
Prior art keywords
electrolysis
electrolytic
electrolytic cell
molten metal
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003416145A
Other languages
Japanese (ja)
Other versions
JP2005171357A (en
Inventor
晋 小瀬村
良治 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2003416145A priority Critical patent/JP4261328B2/en
Publication of JP2005171357A publication Critical patent/JP2005171357A/en
Application granted granted Critical
Publication of JP4261328B2 publication Critical patent/JP4261328B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、高温融体である溶融金属塩化物の電解装置に係り、特に、電流効率の低下を抑制する電解技術に関する。   The present invention relates to an electrolysis apparatus for molten metal chloride that is a high-temperature melt, and more particularly, to an electrolysis technique that suppresses a decrease in current efficiency.

クロール法によるスポンジチタンの製造技術においては、四塩化チタンの還元剤として溶融マグネシウムが使用される。この還元反応で副生した溶融塩化マグネシウムは、溶融塩電解(以下、単に「電解」と称する場合がある。)により、マグネシウムと塩素ガスとに再生される。   In the manufacturing technology of sponge titanium by the crawl method, molten magnesium is used as a reducing agent for titanium tetrachloride. The molten magnesium chloride by-produced by this reduction reaction is regenerated into magnesium and chlorine gas by molten salt electrolysis (hereinafter sometimes simply referred to as “electrolysis”).

したがって、四塩化チタンを還元する際には、溶融マグネシウムや溶融塩化マグネシウムを頻繁に取り扱う必要がある。しかしながら、溶融マグネシウムは、大気中の酸素ガスや窒素ガスと容易に反応する。このため、これらを取り扱うに際し、大気との接触を避けるように配慮しなければならない。   Therefore, when reducing titanium tetrachloride, it is necessary to frequently handle molten magnesium and molten magnesium chloride. However, molten magnesium easily reacts with oxygen gas and nitrogen gas in the atmosphere. Therefore, when handling these, care must be taken to avoid contact with the atmosphere.

しかしながら、たとえば電解槽から溶融マグネシウムを運搬容器に汲み出す場合や、運搬容器から還元容器に溶融マグネシウムを注入する場合には、溶融マグネシウムが大気と接触して酸化物や窒化物を生成するおそれがある。これら酸化物等(以下、単に「電堆」と称する場合がある。)の生成は、チタンの歩留まりの低下を招く。   However, for example, when molten magnesium is pumped from the electrolytic cell to the transport container, or when molten magnesium is injected from the transport container into the reduction container, the molten magnesium may come into contact with the atmosphere to generate oxides and nitrides. is there. The generation of these oxides and the like (hereinafter sometimes simply referred to as “electrode stack”) causes a decrease in the yield of titanium.

また、生成した電堆は、電解槽を静置した場合には重力によりその底部に沈降する。しかしながら、電解装置を稼働させる場合には電解槽の浴中に原料を供給しなければならず、例えば、この際に原料により浴が局所的に乱流となる。このため、電堆の一部が浴流れに沿って巻き上げられて電解室に到達し、カーボン製の陽極に付着して塩素ガスの発生を阻害するおそれがある。さらに、電解室に到達した電堆によって、陽極表面において生成する溶融マグネシウムの逆反応を促進して、電流効率の低下を招くおそれもある。このため、電堆の生成を抑制する技術、又は電堆が生成した場合であっても電流効率の低下を抑制する技術の開発が要請されていた。   Moreover, when the electrolyzer is left standing, the generated electropile sinks to the bottom by gravity. However, when the electrolysis apparatus is operated, the raw material must be supplied into the bath of the electrolytic cell. For example, the bath is locally turbulent by the raw material at this time. For this reason, a part of the electric stack is wound up along the bath flow, reaches the electrolytic chamber, and may adhere to the carbon anode to inhibit generation of chlorine gas. In addition, the deposit that has reached the electrolysis chamber promotes the reverse reaction of the molten magnesium produced on the anode surface, which may lead to a decrease in current efficiency. For this reason, development of the technique which suppresses the production | generation of an electric pile or the technique which suppresses the fall of electric current efficiency even when the electric pile is produced | generated was requested | required.

このような要請に対し、電解槽底部から電堆を系外に排出する技術が提案されている(特許文献1〜3参照)。また、電解槽底部に蓄積した電堆中に四塩化チタンガスを吹き込んで、電堆を溶解消滅させる技術も提案されている(特許文献4参照)。   In response to such a request, a technique for discharging an electric pile from the bottom of the electrolytic cell to the outside of the system has been proposed (see Patent Documents 1 to 3). In addition, a technique has been proposed in which titanium tetrachloride gas is blown into an electrode stack accumulated at the bottom of the electrolytic cell to dissolve and extinguish the electrode stack (see Patent Document 4).

特開昭50−001014号公報JP 50-001014 A 特開昭57−063687号公報JP 57-063687 A 特開昭63−219595号公報JP-A-63-219595 特開昭60−187693号公報JP-A-60-187893

上記特許文献1〜4に記載した技術においては、電堆の量を減少させることはできる。しかしながら、電解装置には、通常、溶融塩浴中に熱交換器が配設されており、この熱交換器を電解槽から抜き出す際に、解体された電解槽の蓋に付着した電堆や熱交換器自身に付着した電堆が電解浴に落下する。このような電堆は比較的大きな塊であるので落下した電堆は、電解槽底部まで沈降し、時には、この電堆の塊が浴の循環流路をふさぐ場合もある。また、電解槽底部まで沈降した電堆の塊が蓄積されると、結果として電解槽の底面を上方の押し上げることになり、電解浴中に浮遊している微細な電堆が浴流れに沿って電解室に到達するおそれがある。このため、上記した陽極及び陰極での不具合を完全に防止することは困難であり、電流効率の低下を高いレベルで抑制することはできなかった。従って、電流効率の低下をさらに抑制することができる電解装置の開発が要請されていた。   In the techniques described in Patent Documents 1 to 4, the amount of the electric stack can be reduced. However, the electrolysis apparatus is usually provided with a heat exchanger in the molten salt bath, and when the heat exchanger is extracted from the electrolysis tank, the deposit or heat deposited on the lid of the dismantled electrolysis tank is removed. The deposit attached to the exchanger itself falls into the electrolytic bath. Since such a deposit is a relatively large lump, the dropped litter settles to the bottom of the electrolytic cell, and sometimes this lump accumulates the circulation path of the bath. In addition, accumulation of deposits that have settled down to the bottom of the electrolytic cell will result in pushing up the bottom of the electrolytic cell upward, and the fine deposits floating in the electrolytic bath will follow the bath flow. There is a risk of reaching the electrolytic chamber. For this reason, it is difficult to completely prevent the above-described problems with the anode and the cathode, and the reduction in current efficiency cannot be suppressed at a high level. Accordingly, there has been a demand for the development of an electrolyzer that can further suppress a decrease in current efficiency.

本発明は、上記事情に鑑みてなされたものであり、電堆による電流効率の低下を高いレベルで抑制することができる溶融金属塩化物の電解装置を提供することを目的としている。   This invention is made | formed in view of the said situation, and it aims at providing the electrolytic device of the molten metal chloride which can suppress the fall of the current efficiency by an electric stack at a high level.

本発明者らは、上記課題を解決すべく鋭意検討したところ、熱交換器を構成する複数の枝管の上方、下方、及びそれらの間のうちの少なくとも一箇所に、枝管に対して平行に不純物捕集部材を設けることで、電解槽の底部への電堆の沈降を防止し、これにより電堆の浴流れ中への合流を防止して、電流効率の低下を抑制することができるとの知見を得た。本発明は、上記知見に基づいてなされたものである。   The inventors of the present invention diligently studied to solve the above-described problems. As a result, the plurality of branch pipes constituting the heat exchanger are parallel to the branch pipes at the top, the bottom, and at least one of them. By providing an impurity collecting member, the sedimentation of the deposit to the bottom of the electrolytic cell can be prevented, thereby preventing the accumulation of the deposit in the bath flow, and the decrease in current efficiency can be suppressed. And gained knowledge. The present invention has been made based on the above findings.

すなわち、本発明の溶融金属塩化物の電解装置は、電解槽と、上記電解槽の上部から垂下した隔壁を備え上記隔壁を挟んで両側に生成金属の貯留室が形成されているとともに、上記第2隔壁とは反対側に電解室が形成され、電解槽上部の電解室側にガス排出ノズルを備えるとともに、上記電解室に陰極及び陽極を備え、さらに、電解槽上部の貯留室側に蓋を備えるとともに、外部から上記蓋を貫通して上記電解槽内の貯留室側に鉛直方向に延在する2本の導管と上記2本の導管の一方から他方に水平方向に延在する複数の枝管とを有する熱交換器を備え、上記複数の枝管の上方、下方、及びそれらの間のうちの少なくとも一箇所に、枝管に対して平行にかつ上記2本の導管によって挟まれた範囲内に延在するように不純物捕集部材を設けたことを特徴としている。 In other words, the molten metal chloride electrolysis apparatus of the present invention comprises an electrolytic cell and a partition wall suspended from the upper part of the electrolytic cell, wherein the product metal storage chambers are formed on both sides of the partition wall. An electrolytic chamber is formed on the opposite side of the two partition walls, a gas discharge nozzle is provided on the electrolytic chamber side above the electrolytic cell, a cathode and an anode are provided on the electrolytic chamber, and a lid is provided on the storage chamber side above the electrolytic cell. And two pipes extending from the outside through the lid to the storage chamber side in the electrolytic cell in the vertical direction and a plurality of branches extending in the horizontal direction from one of the two pipes to the other A range including a heat exchanger having a pipe and being sandwiched between the two pipes at the upper, lower, and at least one of the branch pipes in parallel with the branch pipe this provided the impurity collecting member so as to extend within It is characterized in.

このような溶融金属塩化物の電解装置においては、上記不純物捕集部材に複数の貫通孔を設けることが、特に優れた電流効率を得ることができる点で好適である。また、このような装置は、塩化マグネシウム、塩化ナトリウム及び塩化カルシウムを含む溶融塩浴からマグネシウムを生成する場合に好適に使用することができる。   In such a molten metal chloride electrolysis apparatus, it is preferable to provide a plurality of through holes in the impurity collecting member in that particularly excellent current efficiency can be obtained. Moreover, such an apparatus can be used suitably when producing | generating magnesium from the molten salt bath containing magnesium chloride, sodium chloride, and calcium chloride.

本発明の溶融金属塩化物の電解装置によれば、熱交換器を構成する複数の枝管の上方、下方、及びそれらの間のうちの少なくとも一箇所に、枝管に対して平行に不純物捕集部材を設けること、すなわち、電解槽の底部に電堆を沈降させずに電堆の浴流れ中への合流を防止する技術を採用して、電流効率の低下を高いレベルで抑制することができる。また、不純物捕集部材に複数の貫通孔を設けることで、電解浴を適当に流下させるとともに、電堆の沈降を阻止して電流効率の低下を一層抑制することができる。   According to the molten metal chloride electrolysis apparatus of the present invention, impurities are trapped in parallel to the branch pipes at the upper, lower, and at least one of the branch pipes constituting the heat exchanger. Providing a collecting member, that is, adopting a technique that prevents the accumulation of the deposits into the bath flow without sinking the deposits at the bottom of the electrolytic cell, to suppress the decrease in current efficiency at a high level it can. Moreover, by providing a plurality of through-holes in the impurity collecting member, it is possible to appropriately flow down the electrolytic bath and to prevent sedimentation of the electrode stack, thereby further suppressing a decrease in current efficiency.

以下、本発明の好適な実施形態を図面に沿って詳細に説明する。
図1は、本発明の溶融金属塩化物の電解装置を示す正面図であり、第1と第2の隔壁を有したものである。図中符号1は塩化マグネシウムの電解槽、2は電解槽1の上部に配設された溶融塩化マグネシウム用コンテナである。同図に示すように、電解槽1は、鉄製外板3、断熱煉瓦層4、及び耐火煉瓦層5を備えるとともに、断熱煉瓦層4からなる上壁部から第1隔壁6及び第2隔壁7が垂下された構造となっている。また、電解槽1の内部は、第1隔壁6によって、溶融金属の貯留室8と、貯留室8と連なる電解室9とに区画されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a front view showing a molten metal chloride electrolysis apparatus of the present invention, which has first and second partition walls. In the figure, reference numeral 1 is a magnesium chloride electrolytic cell, and 2 is a molten magnesium chloride container disposed in the upper part of the electrolytic cell 1. As shown in the figure, the electrolytic cell 1 includes an iron outer plate 3, a heat insulating brick layer 4, and a refractory brick layer 5, and a first partition wall 6 and a second partition wall 7 from an upper wall portion made of the heat insulating brick layer 4. It has a structure that hangs down. The interior of the electrolytic cell 1 is partitioned by a first partition wall 6 into a molten metal storage chamber 8 and an electrolytic chamber 9 connected to the storage chamber 8.

電解槽1には、溶融塩化マグネシウムを含む高温融体が、図1の電解浴レベル10まで満たされている。また、電解槽1の貯留室側には、電解槽1の上部に蓋11が配設されているとともに、外部から蓋11を貫通して電解槽1内の貯留室側に鉛直方向に延在する熱交換器12が配設されている。熱交換器12は、電解浴中に浸漬されており、この中に冷却用空気又は燃焼ガスを通すことで、電解浴の温度調整に供している。さらに、電解室9には、鉄製の陰極13とグラファイト陽極14とが外部からそれぞれ挿入配置されている。   The electrolytic bath 1 is filled with a high-temperature melt containing molten magnesium chloride up to an electrolytic bath level 10 in FIG. In addition, a lid 11 is disposed on the upper side of the electrolytic cell 1 on the storage chamber side of the electrolytic cell 1, and extends vertically from the outside to the storage chamber side in the electrolytic cell 1 through the lid 11. A heat exchanger 12 is disposed. The heat exchanger 12 is immersed in the electrolytic bath, and is used for adjusting the temperature of the electrolytic bath by passing cooling air or combustion gas therethrough. Furthermore, an iron cathode 13 and a graphite anode 14 are respectively inserted and arranged in the electrolysis chamber 9 from the outside.

図2は、図1に示す溶融金属塩化物の電解装置の側面図であり、説明の便宜上、図1に示す電解槽1、蓋11、熱交換器12のみを示す。
上述したように、蓋11は電解槽1の上部に配設されており、熱交換器12は、外部から蓋11を貫通して電解槽1内に鉛直方向に延在する2本の導管12a,12bと導管12aから導管12bに水平方向に延在する3本の枝管12c〜12eとから構成されている。このような構成の下、枝管12aと枝管12bとの間、及び枝管12bと枝管12cとの間に、鉛直方向に複数の貫通孔が設けられている不純物捕集部材12f,12gがそれぞれ配設されている。
FIG. 2 is a side view of the molten metal chloride electrolysis apparatus shown in FIG. 1 and shows only the electrolytic cell 1, the lid 11, and the heat exchanger 12 shown in FIG. 1 for convenience of explanation.
As described above, the lid 11 is disposed in the upper part of the electrolytic cell 1, and the heat exchanger 12 passes through the lid 11 from the outside and extends into the electrolytic cell 1 in the vertical direction 12 a. , 12b and three branch pipes 12c to 12e extending in the horizontal direction from the conduit 12a to the conduit 12b. Under such a configuration, the impurity collecting members 12f and 12g are provided with a plurality of through holes in the vertical direction between the branch pipe 12a and the branch pipe 12b and between the branch pipe 12b and the branch pipe 12c. Are arranged respectively.

以下に、上述した構成の装置を使用する場合について説明する。なお、以下に示す例は、被電解金属が溶融マグネシウムであり、電解浴が溶融塩化マグネシウム、塩化ナトリウム、及び塩化カルシウムから構成されている場合である。
図1に示すように、スポンジチタンの製造工程で副生された溶融塩化マグネシウムは、コンテナ2から電解槽1の給排出口15を経て電解槽1内に注入され、同図中の矢印付き環状経路に合流する。
Below, the case where the apparatus of the structure mentioned above is used is demonstrated. In addition, the example shown below is a case where a to-be-electrolyzed metal is molten magnesium and an electrolytic bath is comprised from molten magnesium chloride, sodium chloride, and calcium chloride.
As shown in FIG. 1, molten magnesium chloride produced as a by-product in the titanium sponge manufacturing process is injected into the electrolytic cell 1 from the container 2 through the supply / discharge port 15 of the electrolytic cell 1, and has an annular shape with arrows in FIG. Join the path.

このようにコンテナ2から注入された溶融塩化マグネシウム中には、不純物である電堆が混在している。図1に示すように、電堆16は溶融塩化マグネシウムよりも比重が大きいため沈降し、熱交換器12の不純物捕集部材12f,12gに堆積する。   In this manner, the molten magnesium chloride injected from the container 2 contains an electric pile that is an impurity. As shown in FIG. 1, since the electric stack 16 has a specific gravity greater than that of molten magnesium chloride, it deposits and deposits on the impurity collecting members 12 f and 12 g of the heat exchanger 12.

このように電堆16が重力により自然分離された溶融塩化マグネシウムは、図1の循環流経路に沿って進路を変更し、第1隔壁6の下方を通過して貯留室8から電解室9に到達する。また、電解室9内では、グラファイト陽極14上で溶融塩化マグネシウムが電気分解され、溶融マグネシウムと塩素ガスとに分離される。   Thus, the molten magnesium chloride from which the electropile 16 is naturally separated by gravity changes the course along the circulation flow path of FIG. 1, passes under the first partition 6 and passes from the storage chamber 8 to the electrolysis chamber 9. To reach. In the electrolysis chamber 9, molten magnesium chloride is electrolyzed on the graphite anode 14 and separated into molten magnesium and chlorine gas.

次いで、電気分解された溶融マグネシウムは、図1の環状経路に沿ってさらに進路を変更し、第1隔壁6の穴部6aを通過して第2隔壁7の下方を通過し、貯留室8に到達する。一方、塩素ガスは開口17から外部に排出される。最後に、貯留室8に到達した溶融マグネシウムが給排出口14から外部に取り出される。なお、溶融マグネシウムが第2隔壁7の下方を通過する際には、電気分解されなかった電解浴(例えば、塩化ナトリウム及び塩化カルシウム)は、溶融マグネシウムよりも比重が大きいために沈降し、再び循環流に沿って電解室9に到達する。   Next, the electrolyzed molten magnesium further changes its course along the annular path of FIG. 1, passes through the hole 6 a of the first partition 6, passes below the second partition 7, and enters the storage chamber 8. To reach. On the other hand, chlorine gas is discharged from the opening 17 to the outside. Finally, the molten magnesium that has reached the storage chamber 8 is taken out from the supply / discharge port 14. When molten magnesium passes below the second partition wall 7, the electrolytic bath (for example, sodium chloride and calcium chloride) that has not been electrolyzed settles down because of its higher specific gravity than molten magnesium, and circulates again. The electrolysis chamber 9 is reached along the flow.

以上が電解槽1に溶融塩化マグネシウムを注入し、電気分解して得られた溶融マグネシウムを取り出すまでの一連の流れであるが、以下に、本発明の特徴事項である不純物捕集部材12f,12gの作用効果について、より詳細に説明する。
以下では、不純物捕集部材12f,12gのその他の作用効果について述べる。
The above is a series of flows until molten magnesium chloride is injected into the electrolytic cell 1 and the molten magnesium obtained by electrolysis is taken out. Hereinafter, the impurity collecting members 12f and 12g which are characteristic features of the present invention are described below. The effect of the will be described in more detail.
Below, the other effect of the impurity collection members 12f and 12g is described.

熱交換器12は所定使用時間経過後に整備する必要があるため、図1において蓋11を取り外すとともに、熱交換器12も外部に取り出さねばならない。この際、蓋11を同図において上方に移動させた場合には、蓋11の裏側に付着した電堆が落下するおそれがある。また、熱交換器12を上方に移動して外部に取り出す場合には、熱交換器12に付着した電堆が落下するおそれがある。しかしながら、これらの電堆も熱交換器12の不純物捕集部材12f,12gにより捕集されるため、電解槽底部への沈降を防止することができる。   Since it is necessary to maintain the heat exchanger 12 after a predetermined use time has elapsed, in addition to removing the lid 11 in FIG. 1, the heat exchanger 12 must also be taken out. At this time, when the lid 11 is moved upward in the figure, there is a possibility that the deposit attached to the back side of the lid 11 falls. Moreover, when moving the heat exchanger 12 upward and taking it out, there is a possibility that the deposit attached to the heat exchanger 12 may fall. However, since these electric piles are also collected by the impurity collecting members 12f and 12g of the heat exchanger 12, settling to the bottom of the electrolytic cell can be prevented.

なお、不純物捕集部材12f,12gに設ける貫通孔の大きさと数は適宜選定することができるが、熱交換器12の引き上げの際に不純物捕集部材12f、12gよりも上方の熱交換器12の各部分に付着した電堆の落下を阻止でき、しかも電解浴が適当に流下することができるように構成することが好ましい。また、不純物捕集部材12f,12gは、熱交換器12を構成する導管12a,12bと複数の枝管12c〜12eとによって包囲された空間部に配置することもでき、又は熱交換器12の下方に配置することもできる。   The size and number of through holes provided in the impurity collecting members 12f and 12g can be selected as appropriate. However, when the heat exchanger 12 is pulled up, the heat exchanger 12 above the impurity collecting members 12f and 12g. It is preferable that the electrode stack attached to each part of the battery can be prevented from falling, and the electrolytic bath can flow down appropriately. In addition, the impurity collecting members 12f and 12g can be arranged in a space surrounded by the conduits 12a and 12b and the branch pipes 12c to 12e constituting the heat exchanger 12, or the heat exchanger 12 It can also be arranged below.

さらに、水平方向に延在する不純物捕集部材12f,12gの幅(図1の左右方向及び紙面に垂直な方向)は、熱交換器12の各部材12a〜12eの幅を超えて配設することもできる。但し、上記幅を過度に大きくした場合には、熱交換器12と電解槽1との空隙が狭くなって、電解浴中の流れを阻害するおそれもある。このため、不純物捕集部材12f,12gの幅は、このような不具合を生じない程度に適宜選択する必要がある。以上のような熱交換器12の構造を採用することにより、熱交換器12の上方に位置する蓋11の裏側に付着した電堆や、熱交換器12自身に付着した電堆を効果的に捕集することができる。なお、不純物捕集部材を上下方向の複数箇所に配置した場合には、上記捕集効果をさらに向上させることができる。   Further, the widths of the impurity collecting members 12f and 12g extending in the horizontal direction (the left-right direction in FIG. 1 and the direction perpendicular to the paper surface) are arranged to exceed the widths of the respective members 12a to 12e of the heat exchanger 12. You can also. However, when the width is excessively increased, the gap between the heat exchanger 12 and the electrolytic cell 1 is narrowed, which may hinder the flow in the electrolytic bath. For this reason, it is necessary to select the widths of the impurity collecting members 12f and 12g as appropriate so as not to cause such a problem. By adopting the structure of the heat exchanger 12 as described above, it is possible to effectively remove the deposits attached to the back side of the lid 11 located above the heat exchanger 12 and the deposits attached to the heat exchanger 12 itself. Can be collected. In addition, when the impurity collection member is arrange | positioned in the several places of an up-down direction, the said collection effect can be improved further.

(実験例1)
図1に示す装置を使用し、不純物捕集部材12f,12gを配設して、溶融塩化マグネシウムの溶融塩電解を24ヶ月間行った。その結果、溶融塩化マグネシウムの注入直後に発生する電流効率の低下は殆ど見られず、また、運転期間を通じての電流効率は80%であった。
(Experimental example 1)
Using the apparatus shown in FIG. 1, the impurity collecting members 12f and 12g were disposed, and molten magnesium electrolysis of molten magnesium chloride was performed for 24 months. As a result, almost no decrease in the current efficiency generated immediately after the injection of molten magnesium chloride was observed, and the current efficiency throughout the operation period was 80%.

(実験例2)
実験例1と同様の装置を使用した。しかしながら、上記不純物捕集部材12f,12gは配設せず、溶融塩化マグネシウムの溶融塩電解を24ヶ月間行った。その結果、溶融塩化マグネシウムの注入直後に発生する電流効率の低下が見られ、また、運転期間を通じての電流効率は75%であった。
(Experimental example 2)
The same device as in Experimental Example 1 was used. However, the impurity collecting members 12f and 12g were not provided, and molten salt electrolysis of molten magnesium chloride was performed for 24 months. As a result, a decrease in current efficiency generated immediately after injection of molten magnesium chloride was observed, and the current efficiency throughout the operation period was 75%.

以上説明したように、本発明によれば、電解槽の底部に電堆を沈降させずに電堆の浴流れ中への合流を防止する技術を採用し、電流効率の低下を抑制することができる。よって、本発明の溶融金属塩化物の電解装置は、クロール法によるスポンジチタン製造の際に副生される溶融塩化マグネシウムの溶融塩電解に代表される溶融塩電解に利用することができる。   As described above, according to the present invention, it is possible to prevent the current efficiency from being lowered by adopting the technology for preventing the accumulation of the deposits into the bath flow without sinking the deposits at the bottom of the electrolytic cell. it can. Therefore, the molten metal chloride electrolysis apparatus of the present invention can be used for molten salt electrolysis typified by molten salt electrolysis of molten magnesium chloride by-produced in the production of sponge titanium by the crawl method.

本発明の溶融金属塩化物の電解装置を示す正面図である。It is a front view which shows the electrolytic device of the molten metal chloride of this invention. 図1に示す溶融金属塩化物の電解装置を示す側面図である。It is a side view which shows the electrolysis apparatus of the molten metal chloride shown in FIG.

符号の説明Explanation of symbols

1 …電解槽
2 …コンテナ
3 …鉄製外板
4 …断熱煉瓦層
5 …耐火煉瓦層
6 …第1隔壁
6a…穴部
7 …第2隔壁
8 …貯留室
9 …電解室
10 …電解浴レベル
11 …蓋
12 …熱交換器
12a,12b…導管
12c,12d,12e…枝管
12f,12g…不純物捕集部材
13 …鉄製の陰極
14 …グラファイト陽極
15 …給排出口
16 …電堆
17 …開口
DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell 2 ... Container 3 ... Iron outer plate 4 ... Heat insulation brick layer 5 ... Fireproof brick layer 6 ... 1st partition 6a ... Hole 7 ... 2nd partition 8 ... Storage chamber 9 ... Electrolytic chamber 10 ... Electrolytic bath level 11 ... Lid 12 ... Heat exchangers 12a, 12b ... Conduit 12c, 12d, 12e ... Branch pipes 12f, 12g ... Impurity collecting member 13 ... Iron cathode 14 ... Graphite anode 15 ... Supply / discharge port 16 ... Electrode 17 ... Opening

Claims (3)

電解槽と、前記電解槽の上部から垂下した隔壁を備え、前記隔壁を挟んで両側に生成金属の貯留室と電解室が形成され、電解槽上部の電解室側にガス排出ノズルを備えるとともに、前記電解室に陰極及び陽極を備え、さらに、電解槽上部の貯留室側に蓋を備えるとともに、外部から前記蓋を貫通して前記電解槽内の貯留室側に鉛直方向に延在する2本の導管と前記2本の導管の一方から他方に水平方向に延在する複数の枝管とを有する熱交換器を備える溶融金属塩化物の電解装置において、
前記複数の枝管の上方、下方、及びそれらの間のうちの少なくとも一箇所に、前記枝管に対して平行にかつ前記2本の導管によって挟まれた範囲内に延在するように不純物捕集部材を設けたことを特徴とする溶融金属塩化物の電解装置。
An electrolytic cell and a partition wall hanging from the upper part of the electrolytic cell are provided, and a storage chamber and an electrolytic chamber for the generated metal are formed on both sides of the partition wall, and a gas discharge nozzle is provided on the electrolytic chamber side above the electrolytic cell, The electrolysis chamber includes a cathode and an anode, and further includes a lid on the storage chamber upper side of the electrolysis cell, and extends from the outside to the storage chamber side in the electrolysis cell through the lid in the vertical direction. A molten metal chloride electrolysis apparatus comprising a heat exchanger having a plurality of branch pipes extending horizontally from one of the two pipes to the other of the two pipes,
Impurity trapping is performed so as to extend in a range sandwiched between the two pipes in parallel with the branch pipe at least at one of the top, bottom, and between the plurality of branch pipes. An apparatus for electrolyzing molten metal chloride, comprising a collecting member.
前記不純物捕集部材に複数の貫通孔を設けたことを特徴とする請求項1に記載の溶融金属塩化物の電解装置。   The molten metal chloride electrolysis apparatus according to claim 1, wherein the impurity collecting member is provided with a plurality of through holes. 塩化マグネシウム、塩化ナトリウム及び塩化カルシウムを含む溶融塩浴からマグネシウムを生成することを特徴とする請求項1又は2に記載の溶融金属塩化物の電解装置。   3. The molten metal chloride electrolysis apparatus according to claim 1, wherein magnesium is produced from a molten salt bath containing magnesium chloride, sodium chloride and calcium chloride.
JP2003416145A 2003-12-15 2003-12-15 Molten metal chloride electrolyzer Expired - Lifetime JP4261328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416145A JP4261328B2 (en) 2003-12-15 2003-12-15 Molten metal chloride electrolyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416145A JP4261328B2 (en) 2003-12-15 2003-12-15 Molten metal chloride electrolyzer

Publications (2)

Publication Number Publication Date
JP2005171357A JP2005171357A (en) 2005-06-30
JP4261328B2 true JP4261328B2 (en) 2009-04-30

Family

ID=34735423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416145A Expired - Lifetime JP4261328B2 (en) 2003-12-15 2003-12-15 Molten metal chloride electrolyzer

Country Status (1)

Country Link
JP (1) JP4261328B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102534663B (en) * 2012-01-17 2016-03-16 青海北辰科技有限公司 The device of generating metal magnesium by electrolyzing magnesium chloride
JP7043275B2 (en) * 2018-02-02 2022-03-29 東邦チタニウム株式会社 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank
JP7206160B2 (en) * 2019-06-26 2023-01-17 東邦チタニウム株式会社 A molten salt electrolytic bath and a method for producing metal using the same.
RU2719215C1 (en) * 2019-07-12 2020-04-17 Публичное Акционерное Общество "Корпорация Всмпо-Ависма" Method for thermal control of magnesium electrolytic production process and device for its implementation
JP7453044B2 (en) 2020-04-03 2024-03-19 東邦チタニウム株式会社 Molten salt electrolytic cell, metal manufacturing method, and method of using molten salt electrolytic cell
CN112210793B (en) * 2020-10-19 2022-06-10 郑州轻冶科技股份有限公司 Aluminum electrolytic cell with heat pipe heat exchanger on side part

Also Published As

Publication number Publication date
JP2005171357A (en) 2005-06-30

Similar Documents

Publication Publication Date Title
CA1097588A (en) Flow control baffles for molten salt electrolysis
EA005281B1 (en) A method and electrowinning cell for production of metal
KR880000707B1 (en) Electrolytic reduction cell
WO2005080642A1 (en) PROCESS FOR PRODUCING Ti OR Ti ALLOY BY REDUCTION OF Ca
JP4261328B2 (en) Molten metal chloride electrolyzer
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
JP4193984B2 (en) Metal manufacturing equipment
JP2005068539A5 (en)
US2311257A (en) Electrolytic beryllium and process
JP2005133195A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF Ca SOURCE
JP2009019250A (en) Method and apparatus for producing metal
CA1093007A (en) Cooling a chamber wall in a fused electrolytic salt bath
CN104520476B (en) Electrolytic cell for the production of rare earth metal
JP4299117B2 (en) Method for electrolysis of molten metal chloride
JP2019214773A (en) Molten salt electrolysis method, and method for producing metal magnesium
KR20090074041A (en) A method and an electrolysis cell for production of a metal from a molten chloride
JP2005171354A (en) Electrolyzer for molten metal chloride
JP2006124813A (en) METHOD AND APPARATUS FOR PRODUCING Ti BY Ca REDUCTION
US4168215A (en) Situ cleaning of electrolytic cells
JPH0211676B2 (en)
JP7333223B2 (en) Molten salt electrolytic cell, method for forming molten salt solidified layer, method for manufacturing metal
JP2020193378A (en) Method of molten salt electrolysis and production method of magnesium metal
JP2006274340A (en) METHOD FOR PRODUCING Ti OR Ti ALLOY
JP7453044B2 (en) Molten salt electrolytic cell, metal manufacturing method, and method of using molten salt electrolytic cell
JP4009457B2 (en) Method for operating electrolyzer for production of magnesium metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4261328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term