JP7043275B2 - Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank - Google Patents

Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank Download PDF

Info

Publication number
JP7043275B2
JP7043275B2 JP2018017650A JP2018017650A JP7043275B2 JP 7043275 B2 JP7043275 B2 JP 7043275B2 JP 2018017650 A JP2018017650 A JP 2018017650A JP 2018017650 A JP2018017650 A JP 2018017650A JP 7043275 B2 JP7043275 B2 JP 7043275B2
Authority
JP
Japan
Prior art keywords
molten salt
electrolytic cell
electrolytic
chamber
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018017650A
Other languages
Japanese (ja)
Other versions
JP2019131881A (en
Inventor
健人 櫻井
文二 秋元
大輔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2018017650A priority Critical patent/JP7043275B2/en
Publication of JP2019131881A publication Critical patent/JP2019131881A/en
Application granted granted Critical
Publication of JP7043275B2 publication Critical patent/JP7043275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

この発明は、電解槽の内部を溶融塩浴とし、溶融塩を貯留室から電解室へ流動させ、電解室で当該溶融塩を電気分解して生成される溶融金属を貯留室に流入させ、対流により溶融塩浴を循環させる溶融塩電解方法、それを用いる溶融金属の製造方法および、溶融塩電解槽に関するものであり、特に、電流効率の向上に資する技術を提案するものである。 In the present invention, the inside of the electrolytic cell is used as a molten salt bath, the molten salt is flowed from the storage chamber to the electrolytic cell, and the molten metal produced by electrolyzing the molten salt in the electrolytic cell is flowed into the storage chamber to convection. The present invention relates to a molten salt electrolysis method for circulating a molten salt bath, a method for producing a molten metal using the same, and a molten salt electrolytic cell, and particularly proposes a technique that contributes to improvement of current efficiency.

たとえば、クロール法による金属チタンの製造に際し、副次的に生成される塩化マグネシウムは、溶融塩電解槽を用いて、電気分解により金属マグネシウムと塩素ガスとに分解され、それぞれ四塩化チタンの還元およびチタン鉱石の塩素化に用いられて再利用されることがある。 For example, magnesium chloride secondary to the production of metallic titanium by the Kroll process is decomposed into metallic magnesium and chlorine gas by electrolysis using a molten salt electrolytic tank, and the reduction of titanium tetrachloride and chlorine tetrachloride, respectively. It may be used for chlorination of titanium ore and reused.

この種の電気分解では一般に、隔壁によって貯留室と電解室とに区画された電解槽の内部で、塩化マグネシウム等の溶融塩を貯留させて溶融塩浴とし、電解槽の内部の溶融塩が貯留室から電解室へ流れて、ここで電極への通電に基き、金属マグネシウム等の溶融金属と塩素等のガスとに分解される。電解室で生成された溶融金属は電解槽の内部で貯留室へとさらに循環して、溶融塩との密度差によって溶融塩浴の液面上に浮上した後に回収され、また、ガスは電解槽に設けられたガス排出通路を経て電解槽の外部に排出される。このような技術としては従来、特許文献1~4に記載されたもの等がある。 In this type of electrolysis, generally, a molten salt such as magnesium chloride is stored inside an electrolytic cell divided into a storage chamber and an electrolytic cell by a partition wall to form a molten salt bath, and the molten salt inside the electrolytic cell is stored. It flows from the chamber to the electrolytic cell, where it is decomposed into molten metal such as magnesium metal and gas such as chlorine based on the energization of the electrode. The molten metal generated in the electrolytic cell is further circulated inside the electrolytic cell to the storage chamber, floats on the liquid surface of the molten salt bath due to the density difference with the molten salt, and then recovered, and the gas is recovered in the electrolytic cell. It is discharged to the outside of the electrolytic cell through the gas discharge passage provided in. As such a technique, there are conventionally those described in Patent Documents 1 to 4.

特開2005-089801号公報Japanese Unexamined Patent Publication No. 2005-08901 特開2005-171357号公報Japanese Unexamined Patent Publication No. 2005-171357 特開2007-231388号公報Japanese Unexamined Patent Publication No. 2007-231388 特開2015-140459号公報JP-A-2015-140459

ところで、上述したような溶融塩の電気分解では、電極への通電量が低下した際に、電極の近傍、特に、電極を隔てて隔壁と反対側で貯留室から離れて位置する電解槽の後方壁面や隅部側の電極角部の近傍で、溶融塩浴の流れが滞留し、それに起因して、溶融金属の製造歩留まりの低下、電流効率の低下を招くという問題があった。またこの場合は、浴流れの滞留だけでなく、電極間で溶融金属の固化が生じることもある。 By the way, in the above-mentioned electrolysis of molten salt, when the amount of electricity supplied to the electrode decreases, the vicinity of the electrode, particularly the rear of the electrolytic cell located away from the storage chamber on the opposite side of the partition wall across the electrode. There is a problem that the flow of the molten salt bath stays in the vicinity of the wall surface or the corner of the electrode on the corner side, which causes a decrease in the production yield of the molten metal and a decrease in the current efficiency. In this case, not only the bath flow stays, but also the molten metal may solidify between the electrodes.

この発明は、従来技術が抱えるこのような問題を解決することを課題とするものであり、その目的は、電解槽の電解室での溶融塩浴の流れの滞留を効果的に抑制し、電流効率の向上に寄与することのできる溶融塩電解方法、それを用いる溶融金属の製造方法および、溶融塩電解槽を提供することにある。 An object of the present invention is to solve such a problem of the prior art, and an object of the present invention is to effectively suppress the retention of the flow of the molten salt bath in the electrolytic cell of the electrolytic cell and to obtain a current. It is an object of the present invention to provide a molten salt electrolysis method that can contribute to the improvement of efficiency, a method for producing a molten metal using the same, and a molten salt electrolytic cell.

この発明の溶融塩電解方法は、電解槽の内部を溶融塩浴とし、貯留室および電解室を有する電解槽の内部の前記電解室で、該電解室に配置した電極への通電に基いて溶融塩を電気分解するに際し、溶融塩が前記貯留室から電解槽の底部側を通って電解室に流動するとともに当該電解室で電気分解され、それにより得られる溶融金属が溶融塩浴の浴面側から貯留室に流入する溶融塩浴の対流を伴う溶融塩電解方法であって、前記電解室で、電解槽の底部側から電極へ向けて不活性ガスの気泡流を発生させることにある。 In the molten salt electrolysis method of the present invention, the inside of the electrolytic tank is used as a molten salt bath, and in the electrolytic chamber inside the electrolytic tank having a storage chamber and an electrolytic chamber, melting is performed based on energization of electrodes arranged in the electrolytic chamber. When the salt is electrolyzed, the molten salt flows from the storage chamber to the electrolytic chamber through the bottom side of the electrolytic tank and is electrolyzed in the electrolytic chamber, and the molten metal obtained thereby is on the bath surface side of the molten salt bath. It is a molten salt electrolysis method accompanied by convection of a molten salt bath flowing into a storage chamber from the electrolysis chamber, in which a bubble flow of an inert gas is generated from the bottom side of an electrolytic tank toward an electrode in the electrolytic chamber.

この発明の溶融塩電解方法では、前記電極が陽極および陰極を有し、前記陽極および陰極が、電解槽の平面視で貯留室と電解室とを区画する隔壁に対して直交する向きに延びるとともに、交互に配置される陽極部分および陰極部分を含んでなる電解槽を用いることができる。
この場合においては、前記電極がバイポーラ電極をさらに有し、前記バイポーラ電極が、前記陽極および陰極の交互に配置される陽極部分および陰極部分の間に位置するバイポーラ電極部分を含んでなる電解槽を用いることができる。
In the molten salt electrolysis method of the present invention, the electrodes have an anode and a cathode, and the anode and the cathode extend in a direction orthogonal to the partition wall separating the storage chamber and the electrolytic cell in a plan view of the electrolytic cell. , An electrolytic cell comprising alternating anode and cathode portions can be used.
In this case, the electrolytic cell further comprises a bipolar electrode, wherein the bipolar electrode includes a bipolar electrode portion located between an anode portion and a cathode portion alternately arranged between the anode and the cathode. Can be used.

ここで、この発明の溶融塩電解方法では、前記気泡流を、電解槽の底部側から、電解槽の平面視で矩形状をなす電極の、少なくとも、貯留室から離れて位置する各角部の近傍に向けて流動させることが好ましい。複数の陽極等、さらにはバイポーラ電極を有する場合は、それらのそれぞれの当該角部の各々の近傍に向けて、気泡流を流動させることがより一層好適である。 Here, in the molten salt electrolysis method of the present invention, the bubble flow is applied from the bottom side of the electrolytic cell to at least the corners of the electrodes having a rectangular shape in a plan view of the electrolytic cell, which are located away from the storage chamber. It is preferable to flow toward the vicinity. When having a plurality of anodes or the like, and even bipolar electrodes, it is more preferable to flow the bubble flow toward each vicinity of the respective corners thereof.

またここで、この発明の溶融塩電解方法では、単位電解セルの一個当りに対し、前記気泡流を発生させるべく電解槽の底部側に送る不活性ガスの流量を、最大ガス発生量の5.0vоl%~50vоl%とし、前記最大ガス発生量が、前記単位電解セルの一個当りに分配された通電量で当該溶融塩の電気分解により生じる不活性ガスの発生量であって、ファラデーの法則に基いて算出されるものである。 Here, in the molten salt electrolysis method of the present invention, the flow rate of the inert gas sent to the bottom side of the electrolytic cell in order to generate the bubble flow is set to the maximum gas generation amount of 5. It is set to 0vоl% to 50vоl%, and the maximum gas generation amount is the amount of inert gas generated by the electrolysis of the molten salt with the energization amount distributed to each unit electrolytic cell, according to Faraday's law. It is calculated based on this.

そしてまた、この発明の溶融塩電解方法では、前記気泡流を構成する各気泡の直径を、0.5mm~30mmとすることが好ましい。 Further, in the molten salt electrolysis method of the present invention, it is preferable that the diameter of each bubble constituting the bubble flow is 0.5 mm to 30 mm.

この発明の溶融塩電解方法では、前記気泡流により、溶融塩浴の深さ方向に沿う断面視にて、水平面に対し、貯留室と電解室とを区画する隔壁に隣接する表面部分より、電解室の電極を隔てて前記隔壁と反対側に位置する後方壁面に隣接する表面部分で浴面高さが高くなるよう、電解室の溶融塩浴の浴面を傾斜させることが好ましい。
この場合、前記後方壁面に隣接する表面部分の平均浴面高さが、前記隔壁に隣接する表面部分の平均浴面高さの1.01倍~1.30倍となるように、浴面を傾斜させることが好適である。
In the molten salt electrolysis method of the present invention, the bubble flow causes electrolysis from the surface portion adjacent to the partition wall separating the storage chamber and the electrolytic chamber with respect to the horizontal plane in a cross-sectional view along the depth direction of the molten salt bath. It is preferable to incline the bath surface of the molten salt bath in the electrolytic chamber so that the bath surface height is high at the surface portion adjacent to the rear wall surface located on the opposite side of the partition wall across the electrode of the chamber.
In this case, the bath surface is set so that the average bath surface height of the surface portion adjacent to the rear wall surface is 1.01 to 1.30 times the average bath surface height of the surface portion adjacent to the partition wall. It is preferable to incline.

上述した不活性ガスはアルゴンガスとすることが好適である。 The above-mentioned inert gas is preferably argon gas.

この発明の溶融金属の製造方法は、上記のいずれかの溶融塩電解方法を用いて、溶融塩から溶融金属を製造することにある。 The method for producing a molten metal of the present invention is to produce a molten metal from a molten salt by using any of the above-mentioned molten salt electrolysis methods.

この発明の溶融塩電解槽は、内部を溶融塩浴とする電解槽、電解槽の内部を、溶融塩を電気分解する電解室と当該電気分解により得られる溶融金属が流入する貯留室とに区画する隔壁、ならびに、電解室に配置した電極を備え、溶融塩が前記貯留室から電解槽の底部側を通って電解室に流動するとともに当該電解室で電気分解され、それにより得られる溶融金属が溶融塩浴の浴面側から貯留室に流入する溶融塩浴の対流を伴い、溶融塩を電気分解する溶融塩電解槽であって、電解室に、電解槽の底部側で前記電極より深部に配置したガス放出端部を有し、内部に不活性ガスが供給されるガス送り管を設けてなるものである。 The molten salt electrolysis tank of the present invention is divided into an electrolytic tank having a molten salt bath inside, an electrolytic chamber for electrolyzing the molten salt, and a storage chamber into which the molten metal obtained by the electrolysis flows. A partition wall and an electrode arranged in the electrolytic chamber are provided, and the molten salt flows from the storage chamber to the electrolytic chamber through the bottom side of the electrolytic tank and is electrolyzed in the electrolytic chamber, whereby the molten metal obtained is obtained. A molten salt electrolysis tank that electrolyzes molten salt with convection of the molten salt bath flowing into the storage chamber from the bath surface side of the molten salt bath. It has an arranged gas discharge end and is provided with a gas feed pipe to which an inert gas is supplied.

この発明の溶融塩電解槽は、前記電極が陽極および陰極を有し、前記陽極および陰極が、電解槽の平面視で貯留室と電解室とを区画する隔壁に対して直交する向きに延びるとともに、交互に配置される陽極部分および陰極部分を含むものとすることができる。
この場合、前記電極がバイポーラ電極をさらに有し、前記バイポーラ電極が、前記陽極および陰極の交互に配置される陽極部分および陰極部分の間に位置するバイポーラ電極部分を含むものとすることができる。
In the molten salt electrolytic cell of the present invention, the electrodes have an anode and a cathode, and the anode and the cathode extend in a direction orthogonal to the partition wall separating the storage chamber and the electrolytic cell in the plan view of the electrolytic cell. , Can include alternating anode and cathode portions.
In this case, the electrode may further have a bipolar electrode, and the bipolar electrode may include a bipolar electrode portion located between an anode portion and a cathode portion alternately arranged between the anode and the cathode.

ここで、この発明の溶融塩電解槽では、前記ガス送り管のガス放出端部が、電解槽の底部側で、電解槽の平面視で矩形状をなす電極の、少なくとも、貯留室から離れて位置する各角部の近傍の直下に配置されることが好ましい。複数の陽極等、さらにはバイポーラ電極を有する場合は、それらのそれぞれの当該角部の各々の直下に、ガス放出端部を配置するより一層好ましい。 Here, in the molten salt electrolytic cell of the present invention, the gas discharge end of the gas feed pipe is at least separated from the storage chamber of the electrode having a rectangular shape in a plan view of the electrolytic cell on the bottom side of the electrolytic cell. It is preferably placed directly below the vicinity of each corner where it is located. When having a plurality of anodes or the like, and even bipolar electrodes, it is more preferable to arrange the outgassing end portion directly under each of the respective corner portions thereof.

またここで、この発明の溶融塩電解槽では、前記ガス送り管が、貯留室から電解槽の底部側を通って電解室に延びるものとすることが好適である。 Further, in the molten salt electrolytic cell of the present invention, it is preferable that the gas feed pipe extends from the storage chamber to the electrolytic cell through the bottom side of the electrolytic cell.

この発明の溶融塩電解方法によれば、電解室で、電解槽の底部側から電極へ向けて不活性ガスの気泡流を発生させることにより、電極の近傍での溶融塩浴の流れが促進されるので、そこでの溶融塩浴の流れの滞留を有効に防止することができる。しかもここでは、気泡流を電解槽の底部側から電極へ向けて発生させることから、当該気泡流の流動方向が電解室での溶融塩浴の流れ方向と実質的に同じになるので、かかる気泡流は溶融塩浴の流れを阻害しない。それにより、電極への通電時の溶融塩の電気分解の最中に、気泡流による溶融塩浴の流れの促進を行うことができる。 According to the molten salt electrolysis method of the present invention, the flow of the molten salt bath in the vicinity of the electrode is promoted by generating a bubble flow of inert gas from the bottom side of the electrolytic cell toward the electrode in the electrolytic cell. Therefore, it is possible to effectively prevent the flow of the molten salt bath from staying there. Moreover, since the bubble flow is generated from the bottom side of the electrolytic cell toward the electrode, the flow direction of the bubble flow is substantially the same as the flow direction of the molten salt bath in the electrolytic cell. The flow does not obstruct the flow of the molten salt bath. Thereby, during the electrolysis of the molten salt when the electrode is energized, the flow of the molten salt bath can be promoted by the bubble flow.

また、この発明の溶融塩電解槽によれば、電解室に、電解槽の底部側で前記電極より深部に配置したガス放出端部を有する不活性ガスについてのガス送り管を設けたことにより、当該ガス送り管のガス放出端部から不活性ガスを放出して、電解槽の底部側から電極へ向けた不活性ガスの気泡流を有効に発生させることができる。 Further, according to the molten salt electrolytic cell of the present invention, the electrolytic cell is provided with a gas feed tube for an inert gas having a gas discharge end arranged deeper than the electrode on the bottom side of the electrolytic cell. The inert gas can be discharged from the gas discharge end of the gas feed pipe to effectively generate a bubble flow of the inert gas from the bottom side of the electrolytic cell toward the electrode.

この発明の一の実施形態の溶融塩電解方法を実施することのできる溶融塩電解槽の一例を示す縦断面図である。It is a vertical sectional view which shows an example of the molten salt electrolysis tank which can carry out the molten salt electrolysis method of one Embodiment of this invention. 図1の溶融塩電解槽の平面図である。It is a top view of the molten salt electrolytic cell of FIG. 電極の変形例を示す、図2と同様の図である。It is the same figure as FIG. 2 which shows the deformation example of an electrode. 各実施例のガス送り管の端部の設置位置を示す、溶融塩電解槽の平面図である。It is a top view of the molten salt electrolytic cell which shows the installation position of the end part of the gas feed pipe of each Example.

以下に図面に示すところに基き、この発明の実施の形態について詳細に説明する。
図1に例示する溶融塩電解槽1は、たとえば主としてAl23等の耐火煉瓦その他の適切な材料からなる容器形状を有し、その内部に供給された溶融塩からなる溶融塩浴で、溶融塩を電気分解するとともに、その電気分解により溶融金属が生成される電解槽2と、図1の断面図及び図2の平面図に示すように、電解槽2内に溶融塩浴の深さ方向と平行に並べて配置した部分を有する陽極3a及び陰極3bを含む電極3と、電解槽2内の温度調整を行う熱交換器としての温度調整管4とを備えてなる。この発明では、温度調整管4は省略することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to those shown in the drawings.
The molten salt electrolytic cell 1 illustrated in FIG. 1 has a container shape mainly made of fire-resistant bricks such as Al 2 O 3 and other suitable materials, and is a molten salt bath made of molten salt supplied therein. The depth of the molten salt bath in the electrolytic cell 2 in which the molten salt is electrolyzed and the molten metal is generated by the electrolysis, and as shown in the cross-sectional view of FIG. 1 and the plan view of FIG. It is provided with an electrode 3 including an anode 3a and a cathode 3b having portions arranged side by side in parallel with the direction, and a temperature adjusting tube 4 as a heat exchanger for adjusting the temperature in the electrolytic cell 2. In the present invention, the temperature control tube 4 can be omitted.

なおここでは、溶融塩を溶融塩化マグネシウム(MgCl2)とした場合を例として説明し、この場合、溶融塩化マグネシウムの電気分解により、図1に示すように、溶融金属として金属マグネシウム(Mg)が生成されるとともに、ガスとして塩素ガス(Cl2)が発生する。金属マグネシウムは、金属チタンを製造するクロール法における四塩化チタンの還元に、また塩素ガスは、同法におけるチタン鉱石の塩素化にそれぞれ用いることができる。この電気分解の原料とする塩化マグネシウムとしては、クロール法で副次的に生成されるものを使用可能である。但し、この発明の溶融塩電解方法は、溶融塩化カルシウム(CaCl2)、溶融塩化アルミニウム(AlCl3)、溶融塩化亜鉛(ZnCl2)等の他の溶融塩の電気分解にも用いることができる。 Here, a case where the molten salt is molten magnesium chloride (MgCl 2 ) will be described as an example. In this case, as shown in FIG. 1, metallic magnesium (Mg) is produced as the molten metal by electrolysis of the molten magnesium chloride. At the same time as being generated, chlorine gas (Cl 2 ) is generated as a gas. Metallic magnesium can be used for the reduction of titanium tetrachloride in the Kroll process for producing metallic titanium, and chlorine gas can be used for the chlorination of titanium ore in the same method. As the magnesium chloride used as a raw material for this electrolysis, those produced as a by-product by the Kroll process can be used. However, the molten salt electrolysis method of the present invention can also be used for electrolysis of other molten salts such as molten calcium chloride (CaCl 2 ), molten aluminum chloride (AlCl 3 ), and molten zinc chloride (ZnCl 2 ).

ここで、図示の溶融塩電解槽1は、電解槽2の内部に、図1に示すところでは図の中央からやや左寄りに配置された隔壁5をさらに備えるものであり、かかる隔壁5により、電解槽2の内部が、図1では右側に位置して電極3が配置された電解室2aと、図1では左側に位置し、電解室2aでの電気分解により得られた溶融金属が流れ込んで該溶融金属が溶融塩との密度差により上方側に溜まる貯留室2bとに区画される。具体的には、この隔壁5は、ここでは図示しない電解槽2の上方側開口を覆蓋するための蓋部材に近接させて配置されることにより、電解槽2の下方側の底部との間に、貯留室2bから電解室2aへの溶融塩の移動を可能にする溶融塩循環路5aを形成する。また、隔壁5自体に貫通させて設けた溶融金属流路5bにより、電解室2aから貯留室2bへの溶融金属の流入が可能になる。 Here, the illustrated molten salt electrolytic cell 1 is further provided with a partition wall 5 arranged slightly to the left from the center of the figure as shown in FIG. 1 inside the electrolytic cell 2, and the partition wall 5 is used for electrolysis. The inside of the tank 2 is located on the right side in FIG. 1 and is located on the left side of the electrolytic cell 3 and is located on the left side in FIG. 1, and the molten metal obtained by electrolysis in the electrolytic cell 2a flows into the tank 2. The molten metal is partitioned into a storage chamber 2b that collects on the upper side due to a density difference with the molten salt. Specifically, the partition wall 5 is arranged close to a lid member for covering the upper opening of the electrolytic cell 2 (not shown here) so as to be between the partition wall 5 and the lower bottom portion of the electrolytic cell 2. , A molten salt circulation path 5a that enables the movement of the molten salt from the storage chamber 2b to the electrolytic cell 2a is formed. Further, the molten metal flow path 5b provided so as to penetrate the partition wall 5 itself enables the molten metal to flow from the electrolytic chamber 2a into the storage chamber 2b.

またここで、電解室2aに配置された電極3は、少なくとも、整流器等に接続された陽極3a及び陰極3bを有し、たとえばMgCl2→Mg+Cl2等といった所定の反応に基き、陽極3aの表面で酸化反応により塩素等のガスが生じるとともに、陰極3bの表面で還元反応により金属マグネシウム等の溶融金属が生成される。 Further, here, the electrode 3 arranged in the electrolytic chamber 2a has at least an anode 3a and a cathode 3b connected to a rectifier or the like, and is based on a predetermined reaction such as MgCl 2 → Mg + Cl 2 or the like, and the surface of the anode 3a. Gas such as chlorine is generated by the oxidation reaction, and molten metal such as metallic magnesium is generated by the reduction reaction on the surface of the cathode 3b.

電極3は、少なくとも陽極3a及び陰極3bを有するものであれば、溶融塩の電気分解を行うことができるが、電気分解の生成効率向上等の観点より、図2に示すように、陽極3aと陰極3bとの間に、陽極3a及び陰極3b間への電圧の印加によって分極する一枚以上、ここでは二枚のバイポーラ電極3c、3dをさらに有することが好ましい。但し、このようなバイポーラ電極3c、3dは必ずしも必要ではない。 If the electrode 3 has at least an anode 3a and a cathode 3b, the molten salt can be electrolyzed. However, from the viewpoint of improving the efficiency of electrolysis generation, as shown in FIG. 2, the electrode 3 is combined with the anode 3a. It is preferable to further have one or more, here two bipolar electrodes 3c and 3d, which are polarized by the application of a voltage between the anode 3a and the cathode 3b between the cathode 3b and the cathode 3b. However, such bipolar electrodes 3c and 3d are not always necessary.

図2に示す電極3について詳説すると、そのうちの陽極3aは、電解槽2の平面視で隔壁5に対して直交する向きに延びる実質的に直方体の平板状をなす陽極部分からなるものであり、複数個の陽極部分が、隔壁5の延びる方向と平行な方向に互いに間隔をおいて配置されている。また陰極3bは、複数個の陽極3aから所定の間隔をおいてそれらのそれぞれの両側にて、平面視で隔壁5に対して直交する向きに延びる陰極部分と、隔壁5と平行に延びて、隣り合う陰極部分の隔壁5側の端部どうしを連結する部分とからなるものであって、電解槽2の電極3を隔てて隔壁5と反対側に位置する後方壁面2cとで、陽極3aの各陽極部分をその周囲から取り囲む。陽極部分と陰極部分とは、隔壁5に対して直交する方向で視て、交互に並んで配置されている。 When the electrode 3 shown in FIG. 2 is described in detail, the anode 3a thereof is composed of a substantially rectangular parallelepiped plate-shaped anode portion extending in a direction orthogonal to the partition wall 5 in a plan view of the electrolytic cell 2. A plurality of anode portions are arranged at intervals from each other in a direction parallel to the extending direction of the partition wall 5. Further, the cathode 3b extends from the plurality of anodes 3a on both sides of each of the anodes 3a in a direction orthogonal to the partition wall 5 in a plan view and extends in parallel with the partition wall 5. It consists of a portion connecting the ends of the adjacent cathode portions on the partition wall 5 side, and is a rear wall surface 2c located on the opposite side of the partition wall 5 across the electrode 3 of the electrolytic cell 2 and the anode 3a. Surround each anode portion from its surroundings. The anode portion and the cathode portion are arranged side by side alternately when viewed in a direction orthogonal to the partition wall 5.

そして、バイポーラ電極3c、3dはそれぞれ、陰極3bの内側で、陽極3aの各陽極部分の周囲を囲繞するよう平面視で直方形状に延びるものであり、隔壁5に対して直交する方向で陽極部分と陰極部分との間に位置するとともに、隔壁5に対して直交する向きに延びるバイポーラ電極部分を有する。
なお、図2に示すような、バイポーラ電極3c、3d及び陰極3bが陽極部分を取り囲む態様のみならず、図3に示す変形例のように、陽極3a、陰極3b及びバイポーラ電極3c、3dのそれぞれが、平面視でいずれも隔壁5に対して直交する向きに延びる陽極部分、陰極部分およびバイポーラ電極部分のみからなるものとすることもできる。
The bipolar electrodes 3c and 3d each extend in a rectangular shape in a plan view so as to surround the periphery of each anode portion of the anode 3a inside the cathode 3b, and the anode portion extends in a direction orthogonal to the partition wall 5. It is located between the cathode portion and the cathode portion, and has a bipolar electrode portion extending in a direction orthogonal to the partition wall 5.
It should be noted that not only the bipolar electrodes 3c and 3d and the cathode 3b surround the anode portion as shown in FIG. 2, but also the anode 3a, the cathode 3b and the bipolar electrodes 3c and 3d, respectively, as in the modified example shown in FIG. However, it is also possible that all of them are composed of only an anode portion, a cathode portion and a bipolar electrode portion extending in a direction orthogonal to the partition wall 5 in a plan view.

上述したような溶融塩電解槽1を用いた溶融塩電解方法では、溶融塩浴の対流により、貯留室2bから底部側の溶融塩循環路5aを経て電解室2aに流動した溶融塩が電気分解されて、電解室2aで溶融金属が生成され、そしてこの溶融金属は、隔壁5の浴面側の溶融金属流路5bを通って貯留室2bに流入し、その後、溶融塩に対する比重の小さい溶融金属は、貯留室2bの浅い箇所に浮上してそこに溜まることになり、これを図示しないポンプ等により回収することができる。したがって、ここでは、溶融塩から溶融金属を製造することができる。 In the molten salt electrolysis method using the molten salt electrolysis tank 1 as described above, the molten salt that has flowed from the storage chamber 2b through the molten salt circulation path 5a on the bottom side to the electrolytic chamber 2a is electrolyzed by the convection of the molten salt bath. Then, a molten metal is generated in the electrolytic chamber 2a, and the molten metal flows into the storage chamber 2b through the molten metal flow path 5b on the bath surface side of the partition wall 5, and then melts with a small specific gravity to the molten salt. The metal floats to a shallow portion of the storage chamber 2b and accumulates there, and this can be recovered by a pump or the like (not shown). Therefore, here, the molten metal can be produced from the molten salt.

ところで、このような溶融塩の電気分解を行っていると、電解槽の熱バランス維持、生産量の調整、単価の安い夜間電力の有効活用等の理由より電極3への通電量を低下させることがあるが、この場合、電解室2aの電極3の近傍で溶融塩浴の流れが滞留し、それによって溶融金属の生成の歩留まりが低下し、電流効率の低下を招くという問題が生じることがある。この浴流れの滞留は特に、貯留室2bや隔壁5から離れて位置する電解室2aの後方壁面2cや、図2、3に破線で示す隅部2dで顕著となる。 By the way, when such molten salt is electrolyzed, the amount of electricity supplied to the electrode 3 is reduced for reasons such as maintaining the heat balance of the electrolytic cell, adjusting the production amount, and effectively utilizing the low unit price of nighttime electricity. However, in this case, the flow of the molten salt bath stays in the vicinity of the electrode 3 of the electrolytic cell 2a, which may cause a problem that the yield of molten metal formation is lowered and the current efficiency is lowered. .. This retention of the bath flow is particularly remarkable in the rear wall surface 2c of the electrolytic chamber 2a located away from the storage chamber 2b and the partition wall 5, and the corner portion 2d shown by the broken line in FIGS.

かかる問題に対処するため、この実施形態では、図1に模式的に示すように、電解室2aで、電解槽2の底部側である下方側から電極3が配置された上方側へ向けて、不活性ガスの気泡GBからなる気泡流を発生させる。
このことによれば、貯留室2bから溶融塩循環路5aを経て電解室2aに至るとともに、さらにそこから溶融金属流路5bを通って貯留室2bへと流れる溶融塩浴の循環を、その電解室2aでの流れと実質的に一致する方向の気泡流が促進させるので、電解室2aの電極3近傍の浴流れの滞留を効果的に防止することができる。その結果として、歩留まりおよび電流効率の向上を図ることができる。
In order to deal with such a problem, in this embodiment, as schematically shown in FIG. 1, in the electrolytic cell 2a, from the lower side, which is the bottom side of the electrolytic cell 2, toward the upper side where the electrode 3 is arranged, A bubble flow consisting of bubbles GB of the inert gas is generated.
According to this, the circulation of the molten salt bath which flows from the storage chamber 2b to the electrolytic chamber 2a via the molten salt circulation passage 5a and further flows from there to the storage chamber 2b through the molten metal flow path 5b is electrolyzed. Since the bubble flow in the direction substantially coincide with the flow in the chamber 2a is promoted, the retention of the bath flow in the vicinity of the electrode 3 in the electrolytic chamber 2a can be effectively prevented. As a result, the yield and the current efficiency can be improved.

また溶融塩の電気分解では、温度低下等により電極3間で金属マグネシウム等の溶融金属が固化し、これが原因となって短絡のおそれがあることがあるところ、電極3に向けて不活性ガスの気泡流を発生させることにより、このような溶融金属の固化物を除去することができる。しかも、不活性ガスの気泡流を発生させながら電気分解を行うことで、このような溶融金属の固化を未然に防止することもできる。
この実施形態では、電解室2aでの溶融塩浴の対流とほぼ同方向に、不活性ガスの気泡流を発生させることから、溶融塩浴の循環を妨げることなしに、不活性ガスの気泡流による溶融金属の固化物の除去や固化の発生防止を効果的に行うことができる。それゆえに、ここでは、電極3への通電を一時的に止めることを要しない。
Further, in the electrolysis of the molten salt, the molten metal such as metallic magnesium solidifies between the electrodes 3 due to a temperature drop or the like, which may cause a short circuit. By generating a bubble flow, such a solidified molten metal can be removed. Moreover, it is possible to prevent such solidification of the molten metal by performing electrolysis while generating a bubble flow of the inert gas.
In this embodiment, since the bubble flow of the inert gas is generated in substantially the same direction as the convection of the molten salt bath in the electrolytic chamber 2a, the bubble flow of the inert gas does not interfere with the circulation of the molten salt bath. It is possible to effectively remove the solidified metal from the molten metal and prevent the occurrence of solidification. Therefore, it is not necessary here to temporarily stop the energization of the electrode 3.

図示の実施形態では、貯留室2bから電解槽2の底部側の溶融塩循環路5aを通って電解室2aへと延びるガス送り管6を設け、このガス送り管6に不活性ガスを供給し、電極3の下方側の溶融塩浴深部に位置するガス放出端部6aから当該不活性ガスを放出させることにより、電極3に向けて気泡流を発生させることとしている。貯留室2bは、多数個の陽極3aや陰極3b、バイポーラ電極3c、3d等が配置されている電解室2aよりも、ガス送り管6の配置スペースを確保しやすいので、このようなガス送り管6を用いて貯留室2bの浴面側から不活性ガスを送ることが好適である。但し、それ以外の態様によって電解室2aの底部側に不活性ガスを送ることも可能であり、たとえば図示は省略するが、電解槽2の後方壁面2c等の壁部に貫通穴を設け、そこから不活性ガスを送ること等が考えられる。 In the illustrated embodiment, a gas feed pipe 6 extending from the storage chamber 2b through the molten salt circulation path 5a on the bottom side of the electrolytic cell 2 to the electrolytic cell 2a is provided, and an inert gas is supplied to the gas feed pipe 6. By discharging the inert gas from the gas discharge end 6a located in the deep part of the molten salt bath on the lower side of the electrode 3, a bubble flow is generated toward the electrode 3. Since the storage chamber 2b is easier to secure a space for arranging the gas feed pipe 6 than the electrolytic chamber 2a in which a large number of anodes 3a, cathodes 3b, bipolar electrodes 3c, 3d, etc. are arranged, such a gas feed pipe It is preferable to use 6 to send the inert gas from the bath surface side of the storage chamber 2b. However, it is also possible to send the inert gas to the bottom side of the electrolytic cell 2a by other aspects. For example, although not shown, a through hole is provided in the wall portion such as the rear wall surface 2c of the electrolytic cell 2. It is conceivable to send an inert gas from.

先にも述べたように、浴流れの滞留や溶融金属の固化は、電解室2aの電極3を介して隔壁5と対向する後方壁面2cや隅部2d等の、隔壁5から離れた位置で発生することが多い。
それゆえに、不活性ガスの気泡流は、電解槽2の底部側から、電解槽2の平面視で矩形状をなす電極3の四つの角部のうち、少なくとも、貯留室2bから離れて位置する各角部の近傍に向けて流動させることが好ましい。たとえば、図2に示すところでは、陽極3aやバイポーラ電極3c、3dの、隔壁5から離れた側(同図では右側)の角部のほぼ直下の位置に、ガス送り管6のガス放出端部6aを配置することができる。また図3に示すものでは、陽極3a等の、隔壁5から離れた側(同図では右側)の角部のほぼ直下の位置に、ガス送り管6のガス放出端部6aを配置することができる。図示は省略するが、隔壁5の延びる方向で、ガス送り管6を途中で分岐させることにより、又は複数のガス送り管6を並べて配置することにより、電極3の複数個の当該角部のそれぞれの直下に、それらに対応する複数個のガス放出端部6aを配置することが好適である。
As described above, the retention of the bath flow and the solidification of the molten metal occur at a position away from the partition wall 5 such as the rear wall surface 2c and the corner 2d facing the partition wall 5 via the electrode 3 of the electrolytic chamber 2a. It often occurs.
Therefore, the bubble flow of the inert gas is located at least away from the storage chamber 2b from the bottom side of the electrolytic cell 2 among the four corners of the electrode 3 having a rectangular shape in a plan view of the electrolytic cell 2. It is preferable to flow toward the vicinity of each corner. For example, in FIG. 2, the gas discharge end of the gas feed pipe 6 is located at a position substantially directly below the corner of the anode 3a and the bipolar electrodes 3c and 3d on the side away from the partition wall 5 (on the right side in the figure). 6a can be arranged. Further, in the one shown in FIG. 3, the gas discharge end portion 6a of the gas feed pipe 6 may be arranged at a position substantially directly below the corner portion on the side away from the partition wall 5 (on the right side in the figure) such as the anode 3a. can. Although not shown, by branching the gas feed pipe 6 in the middle in the extending direction of the partition wall 5, or by arranging the plurality of gas feed pipes 6 side by side, each of the plurality of corner portions of the electrode 3 is provided. It is preferable to arrange a plurality of gas emission end portions 6a corresponding to them directly under the above.

気泡流を発生させるため、電解槽2の底部側に送る不活性ガスは、好ましくは並列に接続されたN個の単位電解セルを有する電解槽の少なくとも一個の単位電解セルに供給し、その供給する不活性ガスの流量を単位電解セル当りに分配された通電量でファラデーの法則に基づき発生しうる最大ガス発生量の5.0vol%~50vol%、より好ましくは15vol%~45vol%とする。すなわち、不活性ガスの流量が少なすぎると、不活性ガスの供給による効果は若干はあるものの弱いため、溶融塩浴の流れの滞留や溶融金属の固化を十分に抑制できないことが懸念される。この一方で、不活性ガスの流量が多すぎると、溶融塩浴の流れが乱流となって電流効率が悪化する可能性がある。したがって、溶融塩浴の流れが乱流とならない流量で不活性ガスを供給することが好適であるともいえる。不活性ガスの流量は、ガス送り管6等に取り付けたガス流量計により測定することができる。なお、単位電解セルは、電解槽内に少なくとも一つ存在する陽極を介して流れる電解電流に関し、一つの陽極を介して流れる電解電流の通電経路内に存在する電極部で構成されるものであり、図示(図3)の実施形態では陽極3aの左右に配置される二つの陰極3b及び、陽極3aと二つの陰極3bのあいだに配置されるバイポーラ電極3c、3dからなるものである。上記の不活性ガスの流量は、この単位電解セル一個当たりに供給する流量を意味する。 The inert gas sent to the bottom side of the electrolytic cell 2 in order to generate a bubble flow is preferably supplied to and supplied to at least one unit electrolytic cell of the electrolytic cell having N unit electrolytic cells connected in parallel. The flow rate of the inert gas to be generated is 5.0 vol% to 50 vol%, more preferably 15 vol% to 45 vol%, which is the maximum amount of gas that can be generated based on Faraday's law by the amount of electricity distributed per unit electrolytic cell. That is, if the flow rate of the inert gas is too small, the effect of supplying the inert gas is slight but weak, and there is a concern that the retention of the flow in the molten salt bath and the solidification of the molten metal cannot be sufficiently suppressed. On the other hand, if the flow rate of the inert gas is too large, the flow of the molten salt bath may become turbulent and the current efficiency may deteriorate. Therefore, it can be said that it is preferable to supply the inert gas at a flow rate at which the flow of the molten salt bath does not become turbulent. The flow rate of the inert gas can be measured by a gas flow meter attached to the gas feed pipe 6 or the like. The unit electrolytic cell is composed of an electrode portion existing in the energization path of the electrolytic current flowing through one anode with respect to the electrolytic current flowing through at least one anode existing in the electrolytic cell. In the embodiment shown in the figure (FIG. 3), the two cathodes 3b are arranged on the left and right sides of the anode 3a, and the bipolar electrodes 3c and 3d are arranged between the anode 3a and the two cathodes 3b. The flow rate of the above-mentioned inert gas means the flow rate supplied per unit electrolytic cell.

また、ガス放出端部6aから放出されて不活性ガスの気泡流を構成する気泡GBのいずれの直径も、0.5mm~30mmの範囲内に入っていることが好適である。特に、気泡GBの直径は、0.5mm~15mmの範囲内であることがより一層好ましい。直径が小さすぎる気泡GBでは、気泡GBの浮力が小さいために、気泡の浮上速度が遅くなり溶融塩浴の流れの滞留を十分に抑制できないおそれがあり、また直径が大きすぎると、電極間を浮上する際に気泡GBが受ける抵抗が大きくなり、溶融塩浴の流れを妨げる懸念がある。 Further, it is preferable that the diameter of any of the bubble GBs discharged from the gas discharge end portion 6a and constituting the bubble flow of the inert gas is within the range of 0.5 mm to 30 mm. In particular, it is even more preferable that the diameter of the bubble GB is in the range of 0.5 mm to 15 mm. In the bubble GB whose diameter is too small, the buoyancy of the bubble GB is small, so that the bubble floating speed may become slow and the retention of the flow of the molten salt bath may not be sufficiently suppressed. If the diameter is too large, the space between the electrodes may be reduced. There is a concern that the resistance received by the bubble GB when ascending will increase, hindering the flow of the molten salt bath.

上述したようにして、隔壁5から離れた位置で電解槽2の底部側から気泡流を発生させた場合、そこから上方側に浮上する気泡GBにより、電解室2aの溶融塩浴の浴面高さが、貯留室2bに近い表面部分(すなわち隔壁5に隣接する表面部分)よりも貯留室2bから離れた表面部分(すなわち電極3を隔てて隔壁5と反対側に位置する後方壁面2cに隣接する表面部分)で高くなって、電解室2aの溶融塩浴の浴面が、水平面に対して貯留室2bから離れた表面部分で高くなるように傾斜することがある。これにより、電解室2aの後方壁面2cや隅部2dの近傍での浴流れがより有効に促進される。 As described above, when a bubble flow is generated from the bottom side of the electrolytic cell 2 at a position away from the partition wall 5, the bath surface height of the molten salt bath in the electrolytic cell 2a is caused by the bubble GB floating upward from the bubble flow. Is adjacent to the rear wall surface 2c located on the opposite side of the partition wall 5 across the electrode 3 from the surface portion closer to the storage chamber 2b (that is, the surface portion adjacent to the partition wall 5) and away from the storage chamber 2b (that is, the surface portion adjacent to the partition wall 5). The bath surface of the molten salt bath of the electrolytic cell 2a may be inclined so as to be higher at the surface portion away from the storage chamber 2b with respect to the horizontal plane. As a result, the bath flow in the vicinity of the rear wall surface 2c and the corner 2d of the electrolytic chamber 2a is more effectively promoted.

より具体的には、隔壁5から離れた位置で電解槽2の底部側から気泡流を発生させることにより、後方壁面2cに隣接する表面部分の平均浴面高さが、隔壁5に隣接する表面部分の平均浴面高さの1.01倍~1.30倍となるように、浴面を傾斜させることが好適である。後方壁面2cに隣接する表面部分の平均浴面高さが、隔壁5に隣接する表面部分の平均浴面高さの1.01倍未満では、上述したような所定の箇所での浴流れ促進の効果が十分に得られないことが懸念される。一方、後方壁面2cに隣接する表面部分の平均浴面高さを、隔壁5に隣接する表面部分の平均浴面高さの1.30倍よりも高くすれば、電解槽の外に電解浴が流出するおそれがある。
平均浴面高さは、複数箇所の浴面高さを測定し、その複数箇所の浴面高さの測定値の算術平均により求める。ここで、1箇所の浴面高さの測定は、電解槽2の蓋部材に設けた点検穴から、電極3間に挿入可能な長尺の絶縁製(石英製等)の薄板を電解槽2の炉床にあたるまで垂直に差し込み、薄板表面に設けたスケールを目視で読み取ることで行う。
More specifically, by generating a bubble flow from the bottom side of the electrolytic cell 2 at a position away from the partition wall 5, the average bath surface height of the surface portion adjacent to the rear wall surface 2c is the surface adjacent to the partition wall 5. It is preferable to incline the bath surface so that the average bath surface height of the portion is 1.01 to 1.30 times. When the average bath surface height of the surface portion adjacent to the rear wall surface 2c is less than 1.01 times the average bath surface height of the surface portion adjacent to the partition wall 5, the bath flow is promoted at a predetermined location as described above. There is concern that the effect will not be sufficient. On the other hand, if the average bath surface height of the surface portion adjacent to the rear wall surface 2c is made higher than 1.30 times the average bath surface height of the surface portion adjacent to the partition wall 5, the electrolytic bath can be placed outside the electrolytic cell. There is a risk of leakage.
The average bath surface height is obtained by measuring the bath surface heights at a plurality of locations and by arithmetically averaging the measured values of the bath surface heights at the plurality of locations. Here, for the measurement of the bath surface height at one place, a long insulating thin plate (made of quartz or the like) that can be inserted between the electrodes 3 from the inspection hole provided in the lid member of the electrolytic cell 2 is used in the electrolytic cell 2. Insert it vertically until it hits the hearth of the plate, and visually read the scale provided on the surface of the thin plate.

以上に述べたところでは、気泡流の不活性ガスとしては、アルゴンガス、ヘリウムガス等を用いることができるが、なかでも、アルゴンガスが、コストの点で好ましい。 As described above, an argon gas, a helium gas or the like can be used as the inert gas of the bubble flow, but among them, the argon gas is preferable in terms of cost.

次に、この発明の溶融塩電解方法を試験的に実施したので、以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。 Next, since the molten salt electrolysis method of the present invention was carried out on a trial basis, it will be described below. However, the description here is for the purpose of mere illustration, and is not intended to be limited thereto.

以下に示す条件の溶融塩電解槽において溶融塩の電気分解を開始し、電気分解を開始してから2週間にわたって電気分解を継続した。
比較例、実施例は、電気分解を開始してから2週間経過以後の溶融塩電解槽に対する評価を行ったものである。評価期間中は、電解槽の底部側から電極へ向けての不活性ガスの供給有無や供給ガス量、ガス送り管の設置位置を変更させた条件での電流効率を比較した。比較例では、電解槽の底部側からの不活性ガスの供給を行わなかったのに対し、実施例では、電解槽の底部側からの不活性ガス(アルゴンガス)の供給を行った。
なお、各条件に対し、低通電量である8.2kA(電流密度0.4A/cm2相当)の場合と、高通電量である14.3kA(電流密度0.7A/cm2)の場合を評価した。
Electrolysis of the molten salt was started in the molten salt electrolytic cell under the conditions shown below, and the electrolysis was continued for 2 weeks after the start of the electrolysis.
In Comparative Examples and Examples, the molten salt electrolytic cell was evaluated after 2 weeks from the start of electrolysis. During the evaluation period, the current efficiency was compared under the condition that the presence / absence of the supply of the inert gas from the bottom side of the electrolytic cell to the electrode, the amount of the supplied gas, and the installation position of the gas feed tube were changed. In the comparative example, the inert gas was not supplied from the bottom side of the electrolytic cell, whereas in the example, the inert gas (argon gas) was supplied from the bottom side of the electrolytic cell.
For each condition, the case of 8.2 kA (current density equivalent to 0.4 A / cm 2 ), which is a low energization amount, and the case of 14.3 kA (current density 0.7 A / cm 2 ), which is a high energization amount, are used. evaluated.

(溶融塩電解槽の条件)
・溶融塩の浴組成:MgCl2、CaCl2、NaCl、MgF2がそれぞれ質量比で20%、30%、49%、1%(溶融塩の電気分解を継続している間は、金属マグネシウムの生成量に対応した塩化マグネシウムを補給するために、補給溶融塩として、クロール法による副生物の塩化マグネシウムを電解槽に供給し、溶融塩中の塩化マグネシウムの含有量が15~20質量%となるように調節した。)
・溶融塩の量:2800kg
・平均溶融塩温度:660℃
・電解室容積:2m3
・貯留室容積:1m3
・単位電解セル数:2
・陽極-陰極間のバイポーラ電極の枚数:2
・陽極および陰極の配置:陽極電解面の両面に対し、1枚ずつ平行になるように陰極を配置
・バイポーラ電極の配置:陽極電解面の両面に対し、2枚ずつ平行になるように配置
・各電極の有効電解面積:5100cm2
・初期の陽極-バイポーラ電極A、陰極-バイポーラ電極B、バイポーラ電極A-バイポーラ電極Bの距離:1cm
・電流密度:0.4A/cm2および0.7A/cm2(この実施例に示す溶融塩電解槽では、電流密度0.4A/cm2における通電量は8.2kAであるため、電流密度0.4A/cm2条件での1つの単位電解セル内の通電量は4.1kAとなる。また、電流密度0.7A/cm2における通電量は、14.3kAであるため、電流密度0.7A/cm2条件での1つの単位電解セル内の通電量は7.15kAとなる。)
(Conditions for molten salt electrolytic cell)
-Bath composition of molten salt: MgCl 2 , CaCl 2 , NaCl, and MgF 2 are 20%, 30%, 49%, and 1% by mass ratio, respectively (while the electrolysis of the molten salt is continued, the metal magnesium In order to replenish magnesium chloride corresponding to the amount produced, magnesium chloride, which is a by-product of the crawl method, is supplied to the electrolytic tank as a replenished molten salt, and the content of magnesium chloride in the molten salt becomes 15 to 20% by mass. Adjusted to.)
-Amount of molten salt: 2800 kg
-Average molten salt temperature: 660 ° C
・ Electrolysis chamber volume: 2m 3
・ Storage room volume: 1m 3
・ Number of unit electrolytic cells: 2
-Number of bipolar electrodes between anode and cathode: 2
・ Arrangement of anode and cathode: Place one cathode parallel to both sides of the anode electrolytic surface ・ Arrangement of bipolar electrodes: Arrange two pieces parallel to both sides of the anode electrolytic surface ・Effective electrolysis area of each electrode: 5100 cm 2
-Distance between initial anode-bipolar electrode A, cathode-bipolar electrode B, bipolar electrode A-bipolar electrode B: 1 cm
-Current densities: 0.4 A / cm 2 and 0.7 A / cm 2 (In the molten salt electrolytic cell shown in this example, the current density is 8.2 kA at a current density of 0.4 A / cm 2 . The energization amount in one unit electrolytic cell under the condition of 0.4 A / cm 2 is 4.1 kA. Since the energization amount in the current density 0.7 A / cm 2 is 14.3 kA, the current density is 0. The amount of current in one unit electrolytic cell under the condition of .7 A / cm 2 is 7.15 kA.)

(比較例1および比較例2)
上記条件の溶融塩電解槽の電気分解を開始してから2週間経過以後から、12時間サイクルで通電量を8.2kAと14.3kAに切り替えながらの溶融塩の電気分解を5日間継続した。
(Comparative Example 1 and Comparative Example 2)
From 2 weeks after the start of electrolysis of the molten salt electrolytic cell under the above conditions, the electrolysis of the molten salt was continued for 5 days while switching the energization amount between 8.2 kA and 14.3 kA in a 12-hour cycle.

各々の通電量条件での運転時に生成し回収されたマグネシウム質量を合計し、各条件における電流効率は以下の式により算出した。
電流効率=電解槽から回収したマグネシウム質量/理論生成マグネシウム質量
理論生成マグネシウム質量は、ファラデーの法則から求める金属の理論生成量であり、
以下の式により算出する。
理論生成マグネシウム質量 =((電流(A)×通電時間(秒))/(マグネシウムイオンの電荷数n×ファラデー定数F))×(電気分解回数N)×(マグネシウムの原子量)
The mass of magnesium generated and recovered during operation under each energization amount condition was totaled, and the current efficiency under each condition was calculated by the following formula.
Current efficiency = Mass of magnesium recovered from the electrolytic cell / Mass of theoretically produced magnesium The theoretically produced magnesium mass is the theoretically produced amount of metal obtained from Faraday's law.
It is calculated by the following formula.
Theoretical generated magnesium mass = ((current (A) x energization time (seconds)) / (magnesium ion charge number n x Faraday constant F)) x (electrolysis frequency N) x (magnesium atomic weight)

比較例1では、電解室への不活性ガスの供給を行わずに、通電量8.2kAにおいて電気分解を実施した。
比較例2では、電解室への不活性ガスの供給を行わずに、通電量14.3kAにおいて電気分解を実施した。
In Comparative Example 1, electrolysis was carried out at an energization amount of 8.2 kA without supplying the inert gas to the electrolytic chamber.
In Comparative Example 2, electrolysis was carried out at an energization amount of 14.3 kA without supplying the inert gas to the electrolytic chamber.

(実施例1および実施例7)
ガス送り管端部(ガス放出端部)の位置は、図4に示すように、2つの単位電解セルの各々において、後方壁面寄りの側面(計2箇所)とした。
不活性ガスの供給量について、実施例1では、1つの単位電解セル毎に、0.05Nm3/hr(通電量8.2kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の1.0vol%に相当)とした。実施例7では、1つの単位電解セル毎に、0.09Nm3/hr(通電量14.3kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の1.0vol%に相当)とした。
(Example 1 and Example 7)
As shown in FIG. 4, the positions of the gas feed pipe end (gas discharge end) were set to the side surfaces (two places in total) near the rear wall surface in each of the two unit electrolytic cells.
Regarding the supply amount of the inert gas, in Example 1, 0.05 Nm 3 / hr (1 of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 8.2 kA) for each unit electrolytic cell. (Equivalent to 0.0 vol%). In Example 7, each unit electrolytic cell was set to 0.09 Nm 3 / hr (corresponding to 1.0 vol% of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 14.3 kA). ..

実施例1および実施例7の評価期間は5日間とした。ここでは、比較例と同様に、12時間サイクルで、通電量を8.2kAと14.3kAに切り替えながらの溶融塩の電気分解を5日間継続した。各々の通電量条件での運転時に生成し回収されたマグネシウム質量を合計し、各々不活性ガスの供給時における電流効率を算出した。 The evaluation period of Example 1 and Example 7 was 5 days. Here, as in the comparative example, the electrolysis of the molten salt was continued for 5 days while switching the energization amount between 8.2 kA and 14.3 kA in a 12-hour cycle. The mass of magnesium generated and recovered during operation under each energization amount condition was totaled, and the current efficiency at the time of supplying the inert gas was calculated.

(実施例2および実施例8)
ガス送り管端部の位置は、図4に示すように、2つの単位電解セルの各々において、後方壁面寄りの側面(計2箇所)とした。
不活性ガスの供給量について、実施例2では、1つの単位電解セル毎に、0.26Nm3/hr(通電量8.2kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の5.0vol%に相当)とした。実施例8では、1つの単位電解セル毎に、0.45Nm3/hr(通電量14.3kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の5.0vol%に相当)とした。
(Example 2 and Example 8)
As shown in FIG. 4, the positions of the gas feed pipe ends were set to the side surfaces (two places in total) near the rear wall surface in each of the two unit electrolytic cells.
Regarding the supply amount of the inert gas, in Example 2, 0.26 Nm 3 / hr (5 of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 8.2 kA) for each unit electrolytic cell. (Equivalent to 0.0 vol%). In Example 8, each unit electrolytic cell was set to 0.45 Nm 3 / hr (corresponding to 5.0 vol% of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 14.3 kA). ..

実施例2および実施例8の評価期間は5日間とした。ここでは、比較例と同様に、12時間サイクルで、通電量を8.2kAと14.3kAに切り替えながらの溶融塩の電気分解を5日間継続した。各々の通電量条件での運転時に生成し回収されたマグネシウム質量を合計し、各々不活性ガスの供給時における電流効率を算出した。 The evaluation period of Example 2 and Example 8 was 5 days. Here, as in the comparative example, the electrolysis of the molten salt was continued for 5 days while switching the energization amount between 8.2 kA and 14.3 kA in a 12-hour cycle. The mass of magnesium generated and recovered during operation under each energization amount condition was totaled, and the current efficiency at the time of supplying the inert gas was calculated.

(実施例3および実施例9)
ガス送り管端部の位置は、図4に示すように、2つの単位電解セルの各々において、後方壁面寄りの側面(計2箇所)とした。
不活性ガスの供給量について、実施例3では、1つの単位電解セル毎に、0.77Nm3/hr(通電量8.2kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の15vol%に相当)とした。実施例9では、1つの単位電解セル毎に、1.3Nm3/hr(通電量14.3kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の15vol%に相当)とした。
(Example 3 and Example 9)
As shown in FIG. 4, the positions of the gas feed pipe ends were set to the side surfaces (two places in total) near the rear wall surface in each of the two unit electrolytic cells.
Regarding the supply amount of the inert gas, in Example 3, 0.77 Nm 3 / hr (15 vol of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 8.2 kA) for each unit electrolytic cell. Equivalent to%). In Example 9, 1.3 Nm 3 / hr (corresponding to 15 vol% of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 14.3 kA) for each unit electrolytic cell.

実施例3および実施例9の評価期間は5日間とした。ここでは、比較例と同様に、12時間サイクルで、通電量を8.2kAと14.3kAに切り替えながらの溶融塩の電気分解を5日間継続した。各々の通電量条件での運転時に生成し回収されたマグネシウム質量を合計し、各々不活性ガスの供給時における電流効率を算出した。 The evaluation period of Example 3 and Example 9 was 5 days. Here, as in the comparative example, the electrolysis of the molten salt was continued for 5 days while switching the energization amount between 8.2 kA and 14.3 kA in a 12-hour cycle. The mass of magnesium generated and recovered during operation under each energization amount condition was totaled, and the current efficiency at the time of supplying the inert gas was calculated.

(実施例4および実施例10)
ガス送り管端部の位置は、図4に示すように、2つの単位電解セルの各々において、後方壁面寄りの側面(計2箇所)とした。
不活性ガスの供給量について、実施例4では、1つの単位電解セル毎に、2.3Nm3/hr(通電量8.2kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の45vol%に相当)とした。実施例10では、1つの単位電解セル毎に、4.0Nm3/hr(通電量14.3kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の45vol%に相当)とした。
(Example 4 and Example 10)
As shown in FIG. 4, the positions of the gas feed pipe ends were set to the side surfaces (two places in total) near the rear wall surface in each of the two unit electrolytic cells.
Regarding the supply amount of the inert gas, in Example 4, 2.3 Nm 3 / hr (45 vol of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 8.2 kA) for each unit electrolytic cell. Equivalent to%). In Example 10, 4.0 Nm 3 / hr (corresponding to 45 vol% of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 14.3 kA) was set for each unit electrolytic cell.

実施例4および実施例10の評価期間は5日間とした。ここでは、比較例と同様に、12時間サイクルで、通電量を8.2kAと14.3kAに切り替えながらの溶融塩の電気分解を5日間継続した。各々の通電量条件での運転時に生成し回収されたマグネシウム質量を合計し、各々不活性ガスの供給時における電流効率を算出した。 The evaluation period of Example 4 and Example 10 was 5 days. Here, as in the comparative example, the electrolysis of the molten salt was continued for 5 days while switching the energization amount between 8.2 kA and 14.3 kA in a 12-hour cycle. The mass of magnesium generated and recovered during operation under each energization amount condition was totaled, and the current efficiency at the time of supplying the inert gas was calculated.

(実施例5および実施例11)
ガス送り管端部の位置は、図4に示すように、2つの単位電解セルの各々において、後方壁面寄りの側面(計2箇所)とした。
不活性ガスの供給量について、実施例5では、1つの単位電解セル毎に、2.8Nm3/hr(通電量8.2kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の55vol%に相当)とした。実施例11では、1つの単位電解セル毎に、4.9Nm3/hr(通電量14.3kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の55vol%に相当)とした。
(Example 5 and Example 11)
As shown in FIG. 4, the positions of the gas feed pipe ends were set to the side surfaces (two places in total) near the rear wall surface in each of the two unit electrolytic cells.
Regarding the supply amount of the inert gas, in Example 5, 2.8 Nm 3 / hr (55 vol of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 8.2 kA) for each unit electrolytic cell. Equivalent to%). In Example 11, each unit electrolytic cell was set to 4.9 Nm 3 / hr (corresponding to 55 vol% of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 14.3 kA).

実施例5および実施例11の評価期間は5日間とした。ここでは、比較例と同様に、12時間サイクルで、通電量を8.2kAと14.3kAに切り替えながらの溶融塩の電気分解を5日間継続した。各々の通電量条件での運転時に生成し回収されたマグネシウム質量を合計し、各々不活性ガスの供給時における電流効率を算出した。 The evaluation period of Example 5 and Example 11 was 5 days. Here, as in the comparative example, the electrolysis of the molten salt was continued for 5 days while switching the energization amount between 8.2 kA and 14.3 kA in a 12-hour cycle. The mass of magnesium generated and recovered during operation under each energization amount condition was totaled, and the current efficiency at the time of supplying the inert gas was calculated.

(実施例6および実施例12)
ガス送り管端部の位置は、図4に示すように、2つの単位電解セルの各々において、隔壁寄りの側面(計2箇所)とした。
不活性ガスの供給量について、実施例6では、1つの単位電解セル毎に、0.77Nm3/hr(通電量8.2kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の15vol%に相当)とした。実施例12では、1つの単位電解セル毎に、1.3Nm3/hr(通電量14.3kAにおいて1つの単位電解セル内で発生しうる最大ガス発生量の15vol%に相当)とした。
(Example 6 and Example 12)
As shown in FIG. 4, the positions of the gas feed pipe ends were set to the side surfaces (two places in total) near the partition wall in each of the two unit electrolytic cells.
Regarding the supply amount of the inert gas, in Example 6, 0.77 Nm 3 / hr (15 vol of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 8.2 kA) for each unit electrolytic cell. Equivalent to%). In Example 12, 1.3 Nm 3 / hr (corresponding to 15 vol% of the maximum gas generation amount that can be generated in one unit electrolytic cell at an energization amount of 14.3 kA) was set for each unit electrolytic cell.

実施例6および実施例12の評価期間は5日間とした。ここでは、比較例と同様に、12時間サイクルで、通電量を8.2kAと14.3kAに切り替えながらの溶融塩の電気分解を5日間継続した。各々の通電量条件での運転時に生成し回収されたマグネシウム質量を合計し、各々不活性ガスの供給時における電流効率を算出した。 The evaluation period of Example 6 and Example 12 was 5 days. Here, as in the comparative example, the electrolysis of the molten salt was continued for 5 days while switching the energization amount between 8.2 kA and 14.3 kA in a 12-hour cycle. The mass of magnesium generated and recovered during operation under each energization amount condition was totaled, and the current efficiency at the time of supplying the inert gas was calculated.

上述した比較例1、2および実施例1~12の各電気分解実施時の不活性ガスの供給条件を、表1にまとめて示すとともに、その供給条件時の電流効率の結果も表1に示す。なお、表1中の電流効率は、比較例1の電流効率を100としたときの相対値である。 The supply conditions of the inert gas at the time of each electrolysis of Comparative Examples 1 and 2 and Examples 1 to 12 described above are summarized in Table 1, and the results of the current efficiency under the supply conditions are also shown in Table 1. .. The current efficiency in Table 1 is a relative value when the current efficiency of Comparative Example 1 is 100.

Figure 0007043275000001
Figure 0007043275000001

表1に示す結果より、いずれの電流密度相当の通電量(8.2kA、14.3kA)においても、電解槽の底部側から電極へ向けて不活性ガスを供給した実施例1~12は、不活性ガスの供給を行わなかった比較例1および比較例2に比して、電流効率が向上したことが解かる。 From the results shown in Table 1, Examples 1 to 12 in which the inert gas was supplied from the bottom side of the electrolytic cell toward the electrode at any current density equivalent (8.2 kA, 14.3 kA) were shown in Examples 1 to 12. It can be seen that the current efficiency was improved as compared with Comparative Example 1 and Comparative Example 2 in which the inert gas was not supplied.

1 溶融塩電解槽
2 電解槽
2a 電解室
2b 貯留室
2c 後方壁面
2d 隅部
3 電極
3a 陽極
3b 陰極
3c、3d バイポーラ電極
4 温度調整管
5 隔壁
5a 溶融塩循環路
5b 溶融金属流路
6 ガス送り管6
6a ガス放出端部
GB 気泡
1 Molten salt electrolytic cell 2 Electrolytic cell 2a Electrolytic cell 2b Storage chamber 2c Rear wall surface 2d Corner 3 Electrode 3a Anode 3b Cathode 3c 3d Bipolar electrode 4 Temperature control tube 5 Partition 5a Molten salt circulation path 5b Molten metal flow path 6 Gas feed Tube 6
6a Outgassing end GB bubble

Claims (13)

電解槽の内部を溶融塩浴とし、貯留室および電解室を有する電解槽の内部の前記電解室で、該電解室に配置した電極への通電に基いて溶融塩を電気分解するに際し、溶融塩が前記貯留室から電解槽の底部側を通って電解室に流動するとともに当該電解室で電気分解され、それにより得られる溶融金属が溶融塩浴の浴面側から貯留室に流入する溶融塩浴の対流を伴う溶融塩電解方法であって、
前記電解室で、電解槽の底部側から電極へ向けて不活性ガスの気泡流を発生させ
前記不活性ガスが、アルゴンガス又はヘリウムガスを含む溶融塩電解方法。
The inside of the electrolytic tank is used as a molten salt bath, and in the electrolytic chamber inside the electrolytic tank having a storage chamber and an electrolytic chamber, the molten salt is electrolyzed based on the energization of the electrodes arranged in the electrolytic chamber. Flows from the storage chamber through the bottom side of the electrolytic tank to the electrolytic chamber and is electrolyzed in the electrolytic chamber, and the molten metal obtained thereby flows into the storage chamber from the bath surface side of the molten salt bath. It is a molten salt electrolysis method that involves convection.
In the electrolytic cell, a bubble flow of the inert gas is generated from the bottom side of the electrolytic cell toward the electrode .
A method for electrolyzing a molten salt in which the inert gas contains argon gas or helium gas .
前記電極が陽極および陰極を有し、前記陽極および陰極が、電解槽の平面視で貯留室と電解室とを区画する隔壁に対して直交する向きに延びるとともに、交互に配置される陽極部分および陰極部分を含んでなる電解槽を用いる請求項1に記載の溶融塩電解方法。 The electrodes have an anode and a cathode, and the anode and the cathode extend in a direction orthogonal to the partition wall separating the storage chamber and the electrolytic cell in a plan view of the electrolytic cell, and the anode portions and the anode portions arranged alternately. The molten salt electrolysis method according to claim 1, wherein an electrolytic cell including a cathode portion is used. 前記電極がバイポーラ電極をさらに有し、前記バイポーラ電極が、前記陽極および陰極の交互に配置される陽極部分および陰極部分の間に位置するバイポーラ電極部分を含んでなる電解槽を用いる請求項2に記載の溶融塩電解方法。 The second aspect of the present invention uses an electrolytic cell in which the electrode further has a bipolar electrode, and the bipolar electrode includes a bipolar electrode portion located between an anode portion and a cathode portion alternately arranged between the anode and the cathode. The molten salt electrolysis method according to the above. 前記気泡流を、電解槽の底部側から、電解槽の平面視で矩形状をなす電極の、少なくとも、貯留室から離れて位置する各角部の近傍に向けて流動させる請求項1~3のいずれか一項に記載の溶融塩電解方法。 13. The molten salt electrolysis method according to any one of the above. 単位電解セルの一個当りに対し、前記気泡流を発生させるべく電解槽の底部側に送る不活性ガスの流量を、最大ガス発生量の5.0vоl%~50vоl%とし、前記最大ガス発生量が、前記単位電解セルの一個当りに分配された通電量で当該溶融塩の電気分解により生じる不活性ガスの発生量であって、ファラデーの法則に基いて算出される請求項1~4のいずれか一項に記載の溶融塩電解方法。 The flow rate of the inert gas sent to the bottom side of the electrolytic cell to generate the bubble flow per unit electrolytic cell is set to 5.0vоl% to 50vоl% of the maximum gas generation amount, and the maximum gas generation amount is , The amount of inert gas generated by the electrolysis of the molten salt, which is the amount of electricity distributed per unit electrolytic cell, and is any of claims 1 to 4 calculated based on Faraday's law. The molten salt electrolysis method according to item 1. 前記気泡流により、溶融塩浴の深さ方向に沿う断面視にて、水平面に対し、貯留室と電解室とを区画する隔壁に隣接する表面部分より、電解室の電極を隔てて前記隔壁と反対側に位置する後方壁面に隣接する表面部分で浴面高さが高くなるよう、電解室の溶融塩浴の浴面を傾斜させる請求項1~5のいずれか一項に記載の溶融塩電解方法。 Due to the bubble flow, in a cross-sectional view along the depth direction of the molten salt bath, the partition wall is separated from the partition wall of the electrolytic chamber from the surface portion adjacent to the partition wall separating the storage chamber and the electrolytic chamber with respect to the horizontal plane. The molten salt electrolysis according to any one of claims 1 to 5, wherein the bath surface of the molten salt bath in the electrolytic chamber is inclined so that the bath surface height is high at the surface portion adjacent to the rear wall surface located on the opposite side. Method. 前記後方壁面に隣接する表面部分の平均浴面高さが、前記隔壁に隣接する表面部分の平均浴面高さの1.01倍~1.30倍となるように、浴面を傾斜させる請求項6に記載の溶融塩電解方法。 Claims to incline the bath surface so that the average bath surface height of the surface portion adjacent to the rear wall surface is 1.01 to 1.30 times the average bath surface height of the surface portion adjacent to the partition wall. Item 6. The molten salt electrolysis method according to Item 6. 請求項1~のいずれか一項に記載の溶融塩電解方法を用いて、溶融塩から溶融金属を製造する、溶融金属の製造方法。 A method for producing a molten metal, wherein the molten metal is produced from the molten salt by using the molten salt electrolysis method according to any one of claims 1 to 7 . 内部を溶融塩浴とする電解槽、電解槽の内部を、溶融塩を電気分解する電解室と当該電気分解により得られる溶融金属が流入する貯留室とに区画する隔壁、ならびに、電解室に配置した電極を備え、溶融塩が前記貯留室から電解槽の底部側を通って電解室に流動するとともに当該電解室で電気分解され、それにより得られる溶融金属が溶融塩浴の浴面側から貯留室に流入する溶融塩浴の対流を伴い、溶融塩を電気分解する溶融塩電解槽であって、
電解室に、電解槽の底部側で前記電極より深部に配置したガス放出端部を有し、内部に、アルゴンガス又はヘリウムガスを含む不活性ガスが供給されるガス送り管を設けてなる溶融塩電解槽。
An electrolytic tank having a molten salt bath inside, a partition partition that divides the inside of the electrolytic tank into an electrolytic chamber for electrolyzing molten salt and a storage chamber into which molten metal obtained by the electrolysis flows, and an electrolytic chamber. The molten salt flows from the storage chamber through the bottom side of the electrolytic tank to the electrolytic chamber and is electrolyzed in the electrolytic chamber, and the molten metal obtained thereby is stored from the bath surface side of the molten salt bath. A molten salt electrolysis tank that electrolyzes molten salt with convection of the molten salt bath flowing into the chamber.
The electrolytic cell has a gas discharge end located deeper than the electrode on the bottom side of the electrolytic cell, and is provided with a gas feed pipe to which an inert gas containing argon gas or helium gas is supplied. Salt electrolytic cell.
前記電極が陽極および陰極を有し、前記陽極および陰極が、電解槽の平面視で貯留室と電解室とを区画する隔壁に対して直交する向きに延びるとともに、交互に配置される陽極部分および陰極部分を含んでなる請求項に記載の溶融塩電解槽。 The electrodes have an anode and a cathode, and the anode and the cathode extend in a direction orthogonal to the partition wall separating the storage chamber and the electrolytic cell in a plan view of the electrolytic cell, and the anode portions and the anode portions arranged alternately. The molten salt electrolytic cell according to claim 9 , which comprises a cathode portion. 前記電極がバイポーラ電極をさらに有し、前記バイポーラ電極が、前記陽極および陰極の交互に配置される陽極部分および陰極部分の間に位置するバイポーラ電極部分を含んでなる請求項10に記載の溶融塩電解槽。 The molten salt according to claim 10 , wherein the electrode further comprises a bipolar electrode, wherein the bipolar electrode includes a bipolar electrode portion located between an anode portion and a cathode portion alternately arranged between the anode and the cathode. Electrolytic cell. 前記ガス送り管のガス放出端部が、電解槽の底部側で、電解槽の平面視で矩形状をなす電極の、少なくとも、貯留室から離れて位置する各角部の近傍の直下に配置されてなる請求項11のいずれか一項に記載の溶融塩電解槽。 The gas discharge end of the gas feed pipe is arranged on the bottom side of the electrolytic cell, at least in the vicinity of each corner located away from the storage chamber, of the electrodes having a rectangular shape in a plan view of the electrolytic cell. The molten salt electrolytic cell according to any one of claims 9 to 11 . 前記ガス送り管が、貯留室から電解槽の底部側を通って電解室に延びるものとしてなる請求項12のいずれか一項に記載の溶融塩電解槽。 The molten salt electrolytic cell according to any one of claims 9 to 12 , wherein the gas feed pipe extends from the storage chamber to the electrolytic cell through the bottom side of the electrolytic cell.
JP2018017650A 2018-02-02 2018-02-02 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank Active JP7043275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018017650A JP7043275B2 (en) 2018-02-02 2018-02-02 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017650A JP7043275B2 (en) 2018-02-02 2018-02-02 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank

Publications (2)

Publication Number Publication Date
JP2019131881A JP2019131881A (en) 2019-08-08
JP7043275B2 true JP7043275B2 (en) 2022-03-29

Family

ID=67544841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017650A Active JP7043275B2 (en) 2018-02-02 2018-02-02 Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank

Country Status (1)

Country Link
JP (1) JP7043275B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171357A (en) 2003-12-15 2005-06-30 Toho Titanium Co Ltd Electrolyzer for molten metal chloride
JP2010523455A (en) 2007-04-02 2010-07-15 ノルスク・ヒドロ・アーエスアー Method and reactor for producing high purity silicon
JP2015140459A (en) 2014-01-29 2015-08-03 株式会社大阪チタニウムテクノロジーズ molten salt electrolysis tank
WO2016002377A1 (en) 2014-06-30 2016-01-07 東邦チタニウム株式会社 Metal production method and production method for high-melting-point metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56112491A (en) * 1980-02-05 1981-09-04 Nippon Mining Co Ltd Electrolytic decoppering method
WO2007015510A1 (en) * 2005-08-02 2007-02-08 Santen Pharmaceutical Co., Ltd. Method for prevention of degradation of thermally unstable substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005171357A (en) 2003-12-15 2005-06-30 Toho Titanium Co Ltd Electrolyzer for molten metal chloride
JP2010523455A (en) 2007-04-02 2010-07-15 ノルスク・ヒドロ・アーエスアー Method and reactor for producing high purity silicon
JP2015140459A (en) 2014-01-29 2015-08-03 株式会社大阪チタニウムテクノロジーズ molten salt electrolysis tank
WO2016002377A1 (en) 2014-06-30 2016-01-07 東邦チタニウム株式会社 Metal production method and production method for high-melting-point metal

Also Published As

Publication number Publication date
JP2019131881A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
US3755099A (en) Light metal production
US3822195A (en) Metal production
JP6501886B2 (en) Molten salt electrolytic cell, method of producing metallic magnesium using the same, and method of producing titanium sponge
CN104047025A (en) Systems and methods of protecting electrolysis cell sidewalls
JP7043275B2 (en) Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank
JP7129828B2 (en) Molten salt electrolysis method and metal magnesium production method
US3893899A (en) Electrolytic cell for metal production
EP3872235A1 (en) Fluorine gas production device
JP7076296B2 (en) Method of manufacturing molten metal and molten salt electrolytic cell
JP6997617B2 (en) Molten salt electrolysis method, molten metal manufacturing method, and molten salt electrolysis tank
KR20090074041A (en) A method and an electrolysis cell for production of a metal from a molten chloride
JP2020193378A (en) Method of molten salt electrolysis and production method of magnesium metal
JP4261328B2 (en) Molten metal chloride electrolyzer
JP7061519B2 (en) Molten salt moisture reduction method, molten salt electrolysis method, and molten metal manufacturing method
US2950236A (en) Electrolytic production of magnesium metal
JP7333223B2 (en) Molten salt electrolytic cell, method for forming molten salt solidified layer, method for manufacturing metal
JP6914152B2 (en) Method for manufacturing molten metal collection member and metallic magnesium
JP2021004398A (en) Molten salt electrolytic cell, and method of producing metal using the same
JPH0211676B2 (en)
JP7458916B2 (en) Molten salt electrolysis method, metal magnesium manufacturing method, and magnesium chloride supply device
RU2710490C1 (en) Electrolysis cell for producing metals from metal oxides in molten electrolytes
JP6945398B2 (en) Molten salt electrolytic cell
JP5766492B2 (en) Molten salt electrolysis method
JP2022102307A (en) Molten salt electrolytic device and manufacturing method for magnesium metal
JP2022072375A (en) Production method of magnesium metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220316

R150 Certificate of patent or registration of utility model

Ref document number: 7043275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150