JP5766492B2 - Molten salt electrolysis method - Google Patents

Molten salt electrolysis method Download PDF

Info

Publication number
JP5766492B2
JP5766492B2 JP2011089270A JP2011089270A JP5766492B2 JP 5766492 B2 JP5766492 B2 JP 5766492B2 JP 2011089270 A JP2011089270 A JP 2011089270A JP 2011089270 A JP2011089270 A JP 2011089270A JP 5766492 B2 JP5766492 B2 JP 5766492B2
Authority
JP
Japan
Prior art keywords
zinc
molten salt
molten
chamber
electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011089270A
Other languages
Japanese (ja)
Other versions
JP2012219360A (en
Inventor
義人 高野
義人 高野
鈴木 大輔
大輔 鈴木
秋男 平川
秋男 平川
長谷川 雅俊
雅俊 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2011089270A priority Critical patent/JP5766492B2/en
Publication of JP2012219360A publication Critical patent/JP2012219360A/en
Application granted granted Critical
Publication of JP5766492B2 publication Critical patent/JP5766492B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属ケイ素を得るための還元剤金属亜鉛を効率よく製造する技術に関する。   The present invention relates to a technique for efficiently producing a reducing agent metal zinc for obtaining metallic silicon.

金属ケイ素は、太陽光エネルギー利用の観点から、太陽電池の原料として特に注目されている。太陽電池用シリコンセル用途の高純度ケイ素を製造するプロセスとしては、トリクロロシランを還元してケイ素を得るシーメンス法が知られている。シーメンス法によれば9N(99.9999999%)以上の高純度珪素を製造することができる。   Metallic silicon is particularly attracting attention as a raw material for solar cells from the viewpoint of utilizing solar energy. As a process for producing high-purity silicon for use in silicon cells for solar cells, a Siemens method for obtaining silicon by reducing trichlorosilane is known. According to the Siemens method, high-purity silicon of 9N (99.9999999%) or more can be produced.

しかしながら、前記方法ではシリカを炭素還元して金属ケイ素を製造する際に膨大なエネルギーを必要とし、また、トリクロロシランは反応性が高いためハンドリングには細心の注意が求められる。更には、金属ケイ素の溶解部を通電加熱して高温に保持する必要があるため、多大な電気エネルギーを消費するため、省エネ対策が求められている等の課題が残されている。そこで近年、シーメンス法よりも安価に製造できる多結晶シリコン製造法として、四塩化珪素を金属亜鉛で還元して高純度多結晶シリコンを製造する亜鉛還元法が注目されている。   However, in the above method, enormous energy is required for producing metal silicon by carbon reduction of silica, and trichlorosilane is highly reactive, so handling with great care is required. Furthermore, it is necessary to energize and heat the melted portion of the metal silicon to keep it at a high temperature, so that a large amount of electric energy is consumed, and thus there are problems such as requiring energy saving measures. Therefore, in recent years, a zinc reduction method for producing high-purity polycrystalline silicon by reducing silicon tetrachloride with metallic zinc has attracted attention as a polycrystalline silicon production method that can be produced at a lower cost than the Siemens method.

例えば、特許文献1には、高純度四塩化珪素及び高純度亜鉛をそれぞれ気化させて、900〜1100℃のガス雰囲気において反応を行うにあたり、反応器内部に通電可能なシリコン芯又はタンタル芯を設置し芯上にシリコン析出を促進するものであり、反応終了後に反応器を開放し、生成した針状並びにフレーク状シリコンを取り出す方法が開示されている。   For example, in Patent Document 1, a silicon core or a tantalum core that can be energized is installed in the reactor when vaporizing high-purity silicon tetrachloride and high-purity zinc and performing a reaction in a gas atmosphere at 900 to 1100 ° C. A method is disclosed in which silicon deposition is promoted on the wick, the reactor is opened after completion of the reaction, and the generated needle-like and flaky silicon are taken out.

また、特許文献2には、上部に設置されたシリコン塩化物ガス供給ノズルと、還元剤ガス供給ノズルと、排気ガス抜き出しパイプを有する縦型反応器を用いて、該反応器内にシリコン塩化物ガスと還元剤ガスを供給し、シリコン塩化物ガスと還元剤ガスとの反応によりシリコン塩化物ガス供給ノズルの先端部に多結晶シリコンを生成させ、更にそのまま下方に成長させる多結晶シリコン製造装置が開示されている。   Further, in Patent Document 2, a vertical reactor having a silicon chloride gas supply nozzle, a reducing agent gas supply nozzle, and an exhaust gas extraction pipe installed at the top is used, and silicon chloride is contained in the reactor. A polycrystalline silicon manufacturing apparatus that supplies gas and reducing agent gas, generates polycrystalline silicon at the tip of the silicon chloride gas supply nozzle by the reaction of silicon chloride gas and reducing agent gas, and further grows downward as it is. It is disclosed.

亜鉛還元法は、反応率が7割程度と高く、反応温度も従来から行われているシーメンス法より低いため、高純度シリコンをシーメンス法と比較して低コストで製造できるという利点がある。   Since the zinc reduction method has a high reaction rate of about 70% and a reaction temperature lower than that of the conventional Siemens method, there is an advantage that high-purity silicon can be produced at a lower cost than the Siemens method.

上記亜鉛還元法においては、四塩化珪素を亜鉛で還元して高純度シリコンを得るが、このとき同時に塩化亜鉛が副生する。副生した塩化亜鉛は電気分解することにより、亜鉛と塩素を得ることができる。得られた亜鉛はリサイクルして還元反応の原料とすることができ、一方、塩素は金属シリコン等を塩素化して四塩化珪素を製造する原料として使用することができるので全体の系をクローズド化することができる。   In the zinc reduction method, silicon tetrachloride is reduced with zinc to obtain high-purity silicon, and at the same time, zinc chloride is by-produced. By-product zinc chloride can be electrolyzed to obtain zinc and chlorine. The obtained zinc can be recycled to be used as a raw material for the reduction reaction, while chlorine can be used as a raw material for producing silicon tetrachloride by chlorinating metallic silicon and the like, so that the entire system is closed. be able to.

上記クローズドサイクルにおいて、副生した塩化亜鉛を溶融状態で回収し、そのまま電気分解できれば、エネルギーロスは最小限に抑えることができるため、塩化亜鉛の電気分解には溶融塩電解法を適用するのが望ましい。溶融塩中では電気分解にて生成した亜鉛は電解液に比べて密度が高いため、電極から液滴状で溶融塩電解槽の底に沈降し堆積してゆく。従って、溶融塩電解槽の底部より溶融亜鉛を効率よく回収することは、塩化亜鉛電解の鍵となる技術である。   In the closed cycle, by-product zinc chloride can be recovered in a molten state and electrolyzed as it is, so that energy loss can be minimized. Therefore, the molten salt electrolysis method is applied to the electrolysis of zinc chloride. desirable. In the molten salt, zinc generated by electrolysis has a higher density than the electrolytic solution, and therefore settles and deposits in the form of droplets from the electrode to the bottom of the molten salt electrolytic cell. Therefore, efficiently recovering molten zinc from the bottom of the molten salt electrolysis tank is a key technology for zinc chloride electrolysis.

従来、溶融塩電解による亜鉛の回収法として、以下の技術が知られている。
非特許文献1のFig2、Fig11には、電解室の上部よりパイレックス(登録商標)ガラス製のサイフォン管を電解液中に挿入し、電解室底に沈んだ亜鉛を抜き出す構造が示されている。また、特許文献3には電解槽の側面下部に溶融亜鉛取り出し口を設け、溶融亜鉛を抜き出す構造、特許文献4には電解槽の底部に溶融亜鉛取り出し口を取り付けた構造が示されている。
Conventionally, the following techniques are known as a method for recovering zinc by molten salt electrolysis.
FIG. 2 and FIG. 11 of Non-Patent Document 1 show a structure in which a Pyrex (registered trademark) glass siphon tube is inserted into the electrolytic solution from the upper part of the electrolytic chamber, and the zinc settling in the electrolytic chamber bottom is extracted. Further, Patent Document 3 shows a structure in which a molten zinc take-out port is provided at the lower part of the side surface of the electrolytic cell to extract the molten zinc, and Patent Document 4 shows a structure in which a molten zinc take-out port is attached to the bottom of the electrolytic cell.

非特許文献1のパイレックス(登録商標)ガラス製サイフォン管挿入方式は、構造が複雑であるとともに、亜鉛の固化固着によるサイフォン管の詰まりなど、サイフォン管の維持管理が難しく寿命が短いという問題がある。また、減圧吸引抜出であることから、吸上げ高さに限界(159cm程度)があり、電解槽深さ方向に制限が生じるため、生産性の低い浅型電解槽にしか適用できない技術である。   The Pyrex (registered trademark) glass siphon tube insertion method of Non-Patent Document 1 has a problem that the structure is complicated and the siphon tube is difficult to maintain and has a short life, such as clogging of the siphon tube due to solidification and fixation of zinc. . In addition, since it is a vacuum suction extraction, there is a limit to the suction height (about 159 cm), and there is a limit in the depth direction of the electrolytic cell. Therefore, this technique can be applied only to a shallow electrolytic cell with low productivity. .

特許文献3の電解槽側面下部、及び特許文献4の電解槽底部に亜鉛取り出し口を設ける構造では、取り出し口先端に液止め用の栓を取り付ける必要があり、溶融亜鉛の抜き出し及び液止めを繰り返す間に亜鉛の固着などで栓の締りが悪くなり溶融亜鉛が溢出するおそれがある。栓の使用による溶融亜鉛の抜き出しは間欠的にならざるを得ず操業の連続化は困難であるという問題もある。また、栓の材質には亜鉛との反応による合金化のおそれから金属製材質の使用は制限される。さらに、電解槽の底に沈んでいる溶融亜鉛の液位などの状況把握が困難であり、溶融亜鉛抜き出しのタイミングが計りづらいという問題がある。   In the structure in which the zinc outlet is provided in the lower part of the side surface of the electrolytic cell in Patent Document 3 and the bottom of the electrolytic cell in Patent Document 4, it is necessary to attach a stopper for liquid stop at the front end of the outlet, and repeated extraction and liquid stop of molten zinc are repeated. There is a possibility that molten zinc will overflow due to the tightness of the stopper due to zinc sticking in between. There is also a problem that the extraction of molten zinc by the use of a plug must be intermittent and it is difficult to continue the operation. In addition, the use of a metal material for the material of the plug is restricted because of the risk of alloying due to reaction with zinc. Furthermore, it is difficult to grasp the situation such as the level of molten zinc sinking to the bottom of the electrolytic cell, and there is a problem that it is difficult to measure the timing of extracting molten zinc.

特開2004−18370号公報JP 2004-18370 A 特開2007−223822号公報JP 2007-223822 A 特開2004−256907号公報Japanese Patent Laid-Open No. 2004-256907 特開2003−328173号公報JP 2003-328173 A

”Electrowinning zinc from zinc chloride in monopolar and bipolar fused salt cells”, Report of Investigations. United States Department of the Interior. Bureau of Mines, 8524 (1981)“Electrowinning zinc from zinc chloride in monopolar and bipolar fused salt cells”, Report of Investigations. United States Department of the Interior. Bureau of Mines, 8524 (1981)

本発明は、塩化亜鉛の溶融塩電解において、生成した溶融亜鉛の抜き出し、回収における従来技術の問題点を解決するためになされたものであり、その目的は、構造が単純であり、溶融塩電解槽底部に堆積してゆく溶融亜鉛の液面を一定に保ちながら、溶融亜鉛を安全に抜き出し回収できる溶融塩電解方法及び溶融塩電解槽を提供することにある。   The present invention has been made in order to solve the problems of the prior art in extracting and recovering the generated molten zinc in molten salt electrolysis of zinc chloride. The object of the present invention is simple structure, molten salt electrolysis An object of the present invention is to provide a molten salt electrolysis method and a molten salt electrolysis tank capable of safely extracting and recovering molten zinc while keeping the liquid level of molten zinc deposited on the bottom of the tank constant.

本発明の溶融塩電解方法は、塩化亜鉛を含む溶融塩を収容し、溶融塩を電解して溶融金属亜鉛と塩素を生成する電解室と、生成した溶融金属亜鉛を収容し、溶融金属亜鉛を回収する開口部を有する抜き出し室と、電解室および抜き出し室を底部で互いに連通し溶融金属亜鉛で満たされた連通部とを有する溶融塩電解槽を用い、塩化亜鉛を含む溶融塩を電解し金属亜鉛を製造する溶融塩電解方法であって、開口部の高さを、電解室の塩化亜鉛を含む溶融塩と溶融金属亜鉛との界面の液位より高く、電解室に収容された塩化亜鉛を含む溶融塩の液位より低くなるように設定し、電解室に収容された塩化亜鉛を含む溶融塩の液面の高さが一定となるように塩化亜鉛を含む溶融塩を電解室へ加えながら、塩化亜鉛を電解することを特徴としている。   The molten salt electrolysis method of the present invention contains a molten salt containing zinc chloride, electrolyzes the molten salt to generate molten metal zinc and chlorine, contains the generated molten metal zinc, and contains the molten metal zinc. Using a molten salt electrolyzer having an extraction chamber having an opening to be recovered and a communicating portion filled with molten metal zinc with the electrolytic chamber and the extraction chamber communicating with each other at the bottom, the molten salt containing zinc chloride is electrolyzed and metal A molten salt electrolysis method for producing zinc, wherein the height of the opening is higher than the liquid level at the interface between the molten salt containing zinc chloride and the molten metal zinc in the electrolytic chamber, and the zinc chloride contained in the electrolytic chamber is The molten salt containing zinc chloride is set to be lower than the liquid level of the molten salt containing, and the molten salt containing zinc chloride is added to the electrolytic chamber so that the height of the molten salt containing zinc chloride contained in the electrolytic chamber is constant. It is characterized by electrolyzing zinc chloride.

本発明においては、前記開口部の高さh2Zn
2Zn =(ρZn×h1Zn +ρ×h)/ρZn
+h1Zn:電解室底部から電極下端までの距離以上、溶融塩電解槽の高さ未満
1Zn:連通部の高さ以上、電解室底部から電極下端までの距離未満
(h:電解室中の塩化亜鉛を含む溶融塩の高さ、h1Zn:電解室中の溶融金属亜鉛の高さ、ρZn:亜鉛の密度、ρ:塩化亜鉛を含む溶融塩の密度)となるように設定することができる
In the present invention, the height h 2Zn of the opening is
h 2Zn = (ρ Zn × h 1Zn + ρ s × h s) / ρ Zn
h s + h 1Zn : More than the distance from the bottom of the electrolysis chamber to the lower end of the electrode, less than the height of the molten salt electrolyzer
h 1Zn : More than the height of the communication part, less than the distance from the bottom of the electrolysis chamber to the bottom of the electrode
(H s : height of molten salt containing zinc chloride in electrolytic chamber, h 1Zn : height of molten metal zinc in electrolytic chamber, ρ Zn : density of zinc, ρ s : density of molten salt containing zinc chloride ) Can be set.

本発明の溶融塩電解方法および溶融塩電解槽の構成によれば、溶融金属亜鉛レベルを容易に管理することができ、溶融金属亜鉛を安全に抜き出し回収することができるという効果を奏するものである。本発明により従来技術で問題であった溶融塩電解槽の構造の複雑さ及び溶融金属亜鉛抜き出し時の溢出のおそれ、沈殿する溶融金属亜鉛による電極短絡のおそれ、減圧吸引式による亜鉛揚程に起因する溶融塩電解槽の深さ制限などから解消され、簡単な構造で安全に溶融金属亜鉛を抜き出せ、容易に溶融金属亜鉛レベル管理ができる溶融塩電解槽の提供を可能にした。   According to the structure of the molten salt electrolysis method and the molten salt electrolysis tank of the present invention, the molten metal zinc level can be easily managed, and the effect that the molten metal zinc can be safely extracted and recovered is achieved. . Due to the complexity of the structure of the molten salt electrolytic cell and the risk of overflow when the molten metal zinc is extracted, the risk of an electrode short circuit due to the precipitated molten metal zinc, and the zinc head by the vacuum suction method This eliminates the depth limitation of the molten salt electrolyzer, and enables the provision of a molten salt electrolyzer that can easily extract molten metal zinc with a simple structure and can easily control the molten metal zinc level.

図1は本発明の一態様を示す溶融塩電解槽の概略図である。FIG. 1 is a schematic view of a molten salt electrolytic cell showing one embodiment of the present invention. 図2は本発明の別の一態様を示す溶融塩電解槽の概略図である。FIG. 2 is a schematic view of a molten salt electrolytic cell showing another embodiment of the present invention.

以下、図面に基づいて本発明を説明する。
図1は本発明の一態様を示す溶融塩電解槽の模式図である。
溶融塩電解槽1は、塩化亜鉛を含む溶融塩5を電解して溶融金属亜鉛6と塩素を製造する電解室2と、生成した溶融金属亜鉛6を収容する抜き出し室3の2つに区画されている。電解室2と抜き出し室3は底部で連通部4を経て互いに連通し、電解室2の下方と抜き出し室3は、塩化亜鉛を含む溶融塩5より高密度である溶融金属亜鉛6で満たされている。従って、抜き出し室3は、塩化亜鉛を含む溶融塩5が侵入しないように液封されている。
The present invention will be described below with reference to the drawings.
FIG. 1 is a schematic view of a molten salt electrolytic cell showing one embodiment of the present invention.
The molten salt electrolysis tank 1 is divided into two parts: an electrolytic chamber 2 for producing molten metal zinc 6 and chlorine by electrolyzing a molten salt 5 containing zinc chloride, and an extraction chamber 3 for accommodating the generated molten metal zinc 6. ing. The electrolysis chamber 2 and the extraction chamber 3 communicate with each other via the communication portion 4 at the bottom, and the lower portion of the electrolysis chamber 2 and the extraction chamber 3 are filled with molten metal zinc 6 having a higher density than the molten salt 5 containing zinc chloride. Yes. Therefore, the extraction chamber 3 is liquid-sealed so that the molten salt 5 containing zinc chloride does not enter.

電解室2は、陽極11及び陰極12が1対1で配置される単極式電極(モノポーラ)を単一又は複数組が設置される。また、陽極と陰極の間に複数の中間電極13(複極)を配置した双極式電極(バイポーラ)を単一又は複数組配置する構成としてもよい。電解反応速度を速めるには双極式電極を用いることが好ましい。電極の材質及び形状は特に限定されない。陽極11の材質は、炭素材料が好ましく、特に比較的低い電気抵抗のためにグラファイトが好ましい。陰極12の材質は、炭素材料や、TiB等の導電性セラミック、Mo、W及びNb等の不活性金属を適用することができる。電極の形状は、形は平板状、溝のついた平板状、或いは円筒状のものを用いることができる。 The electrolysis chamber 2 is provided with a single or a plurality of sets of monopolar electrodes (monopolar) in which the anode 11 and the cathode 12 are arranged one-on-one. Moreover, it is good also as a structure which arrange | positions the bipolar electrode (bipolar) which has arrange | positioned the several intermediate electrode 13 (bipolar) between the anode and the cathode single or multiple sets. In order to increase the electrolytic reaction rate, it is preferable to use a bipolar electrode. The material and shape of the electrode are not particularly limited. The material of the anode 11 is preferably a carbon material, and graphite is particularly preferable because of its relatively low electric resistance. The material of cathode 12 can be applied or carbon materials, conductive ceramics such as TiB 2, Mo, inert metals such as W and Nb. As the shape of the electrode, a flat plate shape, a flat plate shape with a groove, or a cylindrical shape can be used.

電解室2の上部には、原料となる塩化亜鉛を含む溶融塩の投入口14及び生成した塩素の取り出し口である塩素吸引配管15を有する。   In the upper part of the electrolysis chamber 2, there is provided an inlet 14 for molten salt containing zinc chloride as a raw material and a chlorine suction pipe 15 which is an outlet for the generated chlorine.

電解室2の底部は水平でもよいが、電解室2の底部を連通部4へ向かって傾斜させる構造とすれば、電解室底部に滞留する溶融金属亜鉛の連通部4方向への流れはより促進される。   The bottom of the electrolysis chamber 2 may be horizontal, but if the bottom of the electrolysis chamber 2 is inclined toward the communication portion 4, the flow of molten metal zinc staying at the bottom of the electrolysis chamber toward the communication portion 4 is further promoted. Is done.

抜き出し室3は、溶融金属亜鉛6が露出した開口部7を有する。該開口部7の高さは、電解室2に収容される塩化亜鉛を含む溶融塩5と溶融金属塩の界面の液位より高く、電解室に収容された塩化亜鉛を含む溶融塩5の液位より低くなるように設定される。   The extraction chamber 3 has an opening 7 through which the molten metal zinc 6 is exposed. The height of the opening 7 is higher than the liquid level at the interface between the molten salt 5 containing zinc chloride and the molten metal salt accommodated in the electrolytic chamber 2, and the liquid of the molten salt 5 containing zinc chloride accommodated in the electrolytic chamber 2. It is set to be lower than

電解室2内に堆積する溶融金属亜鉛6の液面高さ(h1Zn)、抜き出し室3の開口部7の高さ(h2Zn)と電解室2内の塩化亜鉛を含む溶融塩5の液位 (h)は、(1)式の関係式が成立する。ρZnは亜鉛の密度、ρは塩化亜鉛を含む溶融塩の密度である。
ρZn×h2Zn = ρZn×h1Zn+ρ×h・・・・(1)
2Zn =(ρZn×h1Zn +ρ×h)/ρZn・・・・・(2)
1Zn =(ρZn×h2Zn−ρ×h)/ρZn・・・・(3)
Liquid molten salt 5 containing zinc chloride molten liquid level of the metal zinc 6 (h 1Zn), the height of the opening 7 of the extraction chamber 3 and (h 2Zn) in the electrolytic chamber 2 to deposit into the electrolysis chamber 2 For the position (h s ), the relational expression (1) is established. ρ Zn is the density of zinc, and ρ s is the density of the molten salt containing zinc chloride.
ρ Zn × h 2Zn = ρ Zn × h 1Zn + ρ s × h s ···· (1)
h 2Zn = (ρ Zn × h 1Zn + ρ s × h s) / ρ Zn ····· (2)
h 1Zn = (ρ Zn × h 2Zn -ρ s × h s) / ρ Zn ···· (3)

1Znは、連通部4の高さ以上、電解室槽底部から電極下端までの距離未満の範囲に任意に設定される。また、本発明では、電解室の溶融塩5のレベル(h+h1Zn)は、電解室槽底部から電極下端までの距離以上、溶融塩電解槽の高さ未満の範囲で任意に選択され、一定となるように(設定した電解室の溶融塩5のレベル(h+h1Zn)に対して±5%以内となるように)管理される。h2Znは、上記(2)式より機械的に決めることができる。 h 1Zn is arbitrarily set within the range of the height of the communication portion 4 and less than the distance from the bottom of the electrolytic chamber tank to the lower end of the electrode. In the present invention, the level (h s + h 1Zn ) of the molten salt 5 in the electrolysis chamber is arbitrarily selected within the range from the bottom of the electrolysis chamber tank to the lower end of the electrode and less than the height of the molten salt electrolysis tank, It is controlled so as to be constant (within ± 5% with respect to the set level of molten salt 5 in the electrolytic chamber (h s + h 1Zn )). h 2Zn can be determined mechanically from the above equation (2).

電解室2、抜き出し室3及び連通部4の材質は、塩化亜鉛を含む溶融塩の電解液及び生成する塩素、溶融亜鉛に腐食、浸食されない材質であればよく、アルミナ、シリカ、窒素珪素、炭化珪素などを主体とする耐火物で作製することが好ましい。   The material of the electrolysis chamber 2, the extraction chamber 3, and the communication portion 4 may be any material that does not corrode or corrode the molten salt electrolyte containing zinc chloride and the generated chlorine and molten zinc, such as alumina, silica, nitrogen silicon, carbonized It is preferable to produce the refractory mainly composed of silicon or the like.

まず、上記の溶融塩電解槽に、連通部4を溶融金属亜鉛で満たすことができる量の金属亜鉛、所定の液位(h)となる量の塩化亜鉛を含む溶融塩を投入する。溶融塩電解槽の温度を昇温し、金属亜鉛、塩化亜鉛を含む溶融塩を溶解した後、通電を開始する。 First, a molten salt containing an amount of metal zinc capable of filling the communicating portion 4 with molten metal zinc and an amount of zinc chloride that achieves a predetermined liquid level (h s ) is charged into the molten salt electrolytic cell. The temperature of the molten salt electrolyzer is raised to dissolve the molten salt containing metallic zinc and zinc chloride, and then energization is started.

塩化亜鉛を含む溶融塩5は、塩化亜鉛単独でも良いし、支持電解質としてLi、Na、K、Ca、Baなどのアルカリ金属塩(例:LiCl、NaCl、KCl、CaCl、BaCl、LiF、NaF、KF、CaF、BaF)を単独或いは複数を含む塩化亜鉛でもよい。 The molten salt 5 containing zinc chloride may be zinc chloride alone, or an alkali metal salt such as Li, Na, K, Ca, Ba (eg, LiCl, NaCl, KCl, CaCl 2 , BaCl 2 , LiF, etc.) as a supporting electrolyte. Zinc chloride containing NaF, KF, CaF 2 , BaF 2 ) alone or a plurality thereof may be used.

電解反応を進めると、陰極12近傍に亜鉛が析出し陽極近傍には塩素が生成する。溶融金属亜鉛6は塩化亜鉛を含む溶融塩5よりも密度が大きいため、溶融塩5中を沈降し、電解室2の底部に滞留する。塩素は気泡として溶融塩5を上昇し溶融塩5表面上方で捕集され、塩素吸引配管15を通して回収される。   As the electrolytic reaction proceeds, zinc is deposited near the cathode 12 and chlorine is produced near the anode. Since the molten metal zinc 6 has a higher density than the molten salt 5 containing zinc chloride, the molten metal zinc settles in the molten salt 5 and stays at the bottom of the electrolysis chamber 2. Chlorine rises in the molten salt 5 as bubbles, is collected above the surface of the molten salt 5, and is collected through the chlorine suction pipe 15.

電解反応進行とともに、電解室の溶融塩5のレベルは低下するが、投入口14より塩化亜鉛または塩化亜鉛を含む溶融塩を投入し、電解室の溶融塩5のレベルは一定となるよう管理する。溶融塩5のレベルは、目視、カメラ、レベルセンサー等によりに確認することができる。溶融金属亜鉛6は、電解反応進行とともに連通部4を通して抜き出し室3に移動し、やがて抜き出し室3の開口部7より溢流する。溢流した溶融金属亜鉛は一次的に貯槽等に受け、適宜、ポンプ或いは移送樋などの移送手段を用いて、次工程へ移送する。   As the electrolytic reaction proceeds, the level of the molten salt 5 in the electrolysis chamber decreases, but zinc chloride or a molten salt containing zinc chloride is introduced from the inlet 14 so that the level of the molten salt 5 in the electrolysis chamber is kept constant. . The level of the molten salt 5 can be confirmed by visual observation, a camera, a level sensor, or the like. The molten metal zinc 6 moves to the extraction chamber 3 through the communication portion 4 as the electrolytic reaction proceeds, and eventually overflows from the opening 7 of the extraction chamber 3. The overflowing molten metal zinc is temporarily received in a storage tank or the like and appropriately transferred to the next process using a transfer means such as a pump or a transfer rod.

溶融塩電解槽1の底部に堆積した溶融金属亜鉛6の抜き出しを適宜行う従来技術の場合、電極下端が、電解室2の底部にて徐々に堆積量の増す溶融金属亜鉛6と接触して短絡しないように留意する必要がある。しかし、本発明の溶融塩電解槽では、電解室2の底部と抜き出し室3の底部は連通部4を経て互いに連通しているため、電解室2の塩化亜鉛を含む溶融塩5及び底部に滞留している溶融金属亜鉛の総質量と抜き出し室に滞留する溶融金属亜鉛の質量はバランスし、互いの液位をそれぞれ保つ。抜き出し室3の開口部7の高さと塩化亜鉛を含む溶融塩の液位の設定により、溶融塩電解槽1内の溶融金属亜鉛の高さを決められるため、短絡の危険を確実に回避することができる。   In the case of the prior art in which the molten metal zinc 6 deposited on the bottom of the molten salt electrolysis tank 1 is appropriately extracted, the lower end of the electrode comes into contact with the molten metal zinc 6 gradually increasing in the bottom of the electrolytic chamber 2 and short-circuits. It is necessary to be careful not to. However, in the molten salt electrolyzer of the present invention, the bottom of the electrolysis chamber 2 and the bottom of the extraction chamber 3 communicate with each other via the communication portion 4, so that the molten salt 5 containing zinc chloride in the electrolysis chamber 2 and the bottom are retained. The total mass of the molten metal zinc and the mass of the molten metal zinc staying in the extraction chamber are balanced to maintain the liquid level of each other. Since the height of the molten metal zinc in the molten salt electrolytic cell 1 can be determined by setting the height of the opening 7 of the extraction chamber 3 and the level of the molten salt containing zinc chloride, the risk of short-circuiting must be reliably avoided. Can do.

さらに、電解室2から連通部4を経て抜き出し室3の底部に堆積した溶融金属亜鉛6の水平方向の平均断面積S(溶融金属亜鉛のレベル変動域内の平均断面積)に対する電解室2の電解液(塩化亜鉛を含む溶融塩)の水平方向の平均断面積S(塩化亜鉛を含む溶融塩のレベル変動域内の平均断面積)の比(S/S)を、溶融金属亜鉛の密度ρZnに対する電解液(塩化亜鉛を含む溶融塩)の密度ρ比(ρ/ρZn)より小さく設計することで、塩化亜鉛または塩化亜鉛を含む溶融塩の補給をしなくても電解により亜鉛が生成するだけで、抜き出し室3より溶融金属亜鉛を排出させることが可能となり、亜鉛排出速度をより平均化することができる。 Furthermore, the electrolytic chamber 2 has a horizontal average cross-sectional area S a (average cross-sectional area in the molten metal zinc level fluctuation region) of the molten metal zinc 6 deposited on the bottom of the extraction chamber 3 from the electrolytic chamber 2 through the communication portion 4. The ratio (S b / S a ) of the horizontal average cross-sectional area S b (the average cross-sectional area within the level fluctuation region of the molten salt containing zinc chloride) of the electrolyte solution (molten salt containing zinc chloride) of the molten metal zinc by reducing design than the density [rho s ratio (ρ s / ρ Zn) of the electrolytic solution for the density [rho Zn (molten salt containing zinc chloride), without replenishment of the molten salt containing zinc chloride or zinc chloride electrolyte Thus, it is possible to discharge molten metal zinc from the extraction chamber 3 only by generating zinc, and the zinc discharge rate can be further averaged.

得られた溶融金属亜鉛6は、例えば、亜鉛還元法の還元反応器へ投入される亜鉛に再利用できる。また、電解時に発生した塩素は金属シリコン等を塩素化して四塩化珪素を製造する原料として使用することができる。   The obtained molten metal zinc 6 can be reused, for example, for zinc charged into a reduction reactor of a zinc reduction method. Chlorine generated during electrolysis can be used as a raw material for producing silicon tetrachloride by chlorinating metal silicon or the like.

図2は本発明の別の態様である溶融塩電解槽の模式図である。
抜き出し室3は、図1のように電解室2の壁面で仕切られているのではなく、電解室2と抜き出し室3は互いに離間して、その底部において互いに連通した構造とすることにより、電解室2の堆積亜鉛層の断面積を必要最小限に小さくし、電解液と溶融金属亜鉛の断面積比をρ/ρZn以下にしている。図2の態様によれば、図1の態様の溶融塩電解槽より、生成亜鉛が排出速度の均一化と電解室側での亜鉛貯蔵量の削減が可能な構造となっている。また、電解室2内には、上下二段の塩化亜鉛を含む溶融塩の流通口21、22が設けられた隔壁23が配置され、溶融塩を循環させることができる。
FIG. 2 is a schematic view of a molten salt electrolyzer which is another embodiment of the present invention.
The extraction chamber 3 is not partitioned by the wall surface of the electrolysis chamber 2 as shown in FIG. 1, but the electrolysis chamber 2 and the extraction chamber 3 are separated from each other and communicated with each other at the bottom thereof. The cross-sectional area of the deposited zinc layer in the chamber 2 is made as small as necessary, and the cross-sectional area ratio between the electrolytic solution and molten metal zinc is set to ρ s / ρ Zn or less. According to the embodiment of FIG. 2, the generated zinc has a structure capable of making the discharge rate uniform and reducing the amount of zinc stored on the electrolysis chamber side from the molten salt electrolytic cell of the embodiment of FIG. 1. In the electrolysis chamber 2, a partition wall 23 provided with molten salt circulation ports 21 and 22 including two stages of zinc chloride in the upper and lower stages is disposed, and the molten salt can be circulated.

[実施例1]
図1に示すバイポーラ方式の溶融塩電解槽を用いて塩化亜鉛の電解を行った。
電解室の高さは160cm、幅100cm、奥行き100cm、抜き出し室の高さ(h2Zn)は70cm、幅30cm、奥行き100cm、連通部の高さは10cmとした。
電極材料は陰極、陽極、複極全てにグラファイトを使用し、電解液は無水塩化亜鉛溶融塩を用意した。溶融塩の密度(ρ)は2.4g/cmである。溶融塩電解槽内を加温してアルゴンガスパージを行い、雰囲気中への水分、酸素の混入を防止した。そこへ溶融した金属亜鉛3200kg(密度(ρZn)=6.5g/cm)を投入し、次いで溶融塩化亜鉛3000kgを投入した。この時の電解室の溶融塩化亜鉛の高さ(h)は100cm、溶融亜鉛(h1Zn)の高さは30cm、抜き出し室の溶融亜鉛の高さは67cmであった。電極の電解液への浸漬深さは55cmとした。電解室底部から電極下端までの距離は75cmとなる。溶融塩電解槽内の融液温度を550℃に保持した後、電流密度0.3A/cmにて電解を行った。
[Example 1]
Zinc chloride was electrolyzed using the bipolar molten salt electrolytic cell shown in FIG.
The height of the electrolysis chamber was 160 cm, the width was 100 cm, the depth was 100 cm, the height of the extraction chamber (h 2Zn ) was 70 cm, the width was 30 cm, the depth was 100 cm, and the height of the communicating portion was 10 cm.
As the electrode material, graphite was used for all of the cathode, the anode, and the bipolar electrode, and anhydrous zinc chloride molten salt was prepared as the electrolyte. The density (ρ s ) of the molten salt is 2.4 g / cm 3 . The inside of the molten salt electrolyzer was heated and purged with argon gas to prevent moisture and oxygen from being mixed into the atmosphere. The molten metal zinc 3200kg (density ((rho) Zn ) = 6.5g / cm < 3 >)) was injected | thrown-in there, and then the molten zinc chloride 3000kg was injected | thrown-in. At this time, the height (h s ) of molten zinc chloride in the electrolytic chamber was 100 cm, the height of molten zinc (h 1Zn ) was 30 cm, and the height of molten zinc in the extraction chamber was 67 cm. The immersion depth of the electrode in the electrolytic solution was 55 cm. The distance from the bottom of the electrolysis chamber to the lower end of the electrode is 75 cm. After maintaining the melt temperature in the molten salt electrolytic cell at 550 ° C., electrolysis was performed at a current density of 0.3 A / cm 2 .

電解が進行するとともに電解液の液面は低下する。電解室の液面高さが電解開始時と同じになるように保持するため、電解により消費する塩化亜鉛を60分ごとに追加投入した。投入前の電解室の液面高さの低下は約2.5cm(電解室の溶融塩5のレベル(h+h1Zn)に対して約2%)であった。電解開始から60分経過後から抜き出し室上部開口部から溶融金属亜鉛がオーバーフローし、この溶融金属亜鉛を回収した。 As the electrolysis progresses, the liquid level of the electrolytic solution decreases. In order to keep the liquid level in the electrolysis chamber the same as when electrolysis was started, zinc chloride consumed by electrolysis was added every 60 minutes. The drop in liquid level in the electrolysis chamber before charging was about 2.5 cm (about 2% with respect to the level of molten salt 5 in the electrolysis chamber (h s + h 1Zn )). After 60 minutes from the start of electrolysis, the molten metal zinc overflowed from the upper opening of the extraction chamber, and this molten metal zinc was recovered.

電解中のh、h1Znは、上記(3)式、および電解液の液面高さ=h1Zn+h =130cmより、
1Zn =(ρZn×h2Zn −ρ×h)/ρZn・・・・(3)
1Zn =(ρZn×h2Zn −ρ×(130−h1Zn))/ρZn
1Zn =(ρZn×h2Zn −ρ×130)/(ρZn −ρ)=35cm
=95cm
で推移する。従って、電解中、電極と電解室底部の溶融亜鉛が接触することはない。
H s and h 1Zn during electrolysis are the above equation (3) and the liquid level height of the electrolytic solution = h 1Zn + h s = 130 cm,
h 1Zn = (ρ Zn × h 2Zn -ρ s × h s) / ρ Zn ···· (3)
h1Zn = ([rho] Zn * h2Zn- [ rho] s * (130- h1Zn )) / [rho] Zn
h1Zn = ([rho] Zn * h2Zn- [ rho] s * 130) / ([rho] Zn- [ rho] s ) = 35 cm
h s = 95cm
It changes in. Therefore, the electrode and the molten zinc at the bottom of the electrolysis chamber do not contact during electrolysis.

電解を24時間行い、総量で123kgの溶融金属亜鉛を回収した。電流効率は85%であった。   Electrolysis was performed for 24 hours, and 123 kg of molten metal zinc was recovered in total. The current efficiency was 85%.

[実施例2]
図2に示すバイポーラ方式の溶融塩電解槽を用いて塩化亜鉛の電解を行った。
電解室の高さは220cm、幅100cm、奥行き100cmであり、抜き出し室の高さ(h2Zn)は100cm、幅30cm、奥行き30cmとした。連通部の高さは10cmとした。
[Example 2]
Zinc chloride was electrolyzed using the bipolar molten salt electrolytic cell shown in FIG.
The height of the electrolytic chamber was 220 cm, the width was 100 cm, and the depth was 100 cm, and the height (h 2Zn ) of the extraction chamber was 100 cm, the width was 30 cm, and the depth was 30 cm. The height of the communication part was 10 cm.

電極材料は陰極、陽極、複極全てにグラファイトを使用し、電解液として無水塩化亜鉛溶融塩と支持電解質として20モル%量の塩化ナトリウムの混合溶融塩を用意した。溶融塩の密度(ρ)は2.3g/cmである。溶融塩電解槽内を加温してアルゴンガスパージを行い、雰囲気中への水分、酸素の混入を防止した。そこへ溶融した金属亜鉛1400kg(密度(ρZn)=6.5 g/cm)を投入し、次いで混合溶融塩4000kgを投入した。この時の電解室の溶融塩化亜鉛の高さは160cm、溶融亜鉛の高さは40cm、抜き出し室の溶融亜鉛の高さは97cmであった。電極の電解液への浸漬深さは100cmとした。電解室底部から電極下端までの距離は100cmとなる。溶融塩電解槽内の融液温度を450℃に保持した後、電流密度1.0A/cmにて電解を行った。 As the electrode material, graphite was used for all of the cathode, the anode, and the bipolar electrode, and a mixed molten salt of anhydrous zinc chloride molten salt as an electrolytic solution and 20 mol% of sodium chloride as a supporting electrolyte was prepared. The density (ρ s ) of the molten salt is 2.3 g / cm 3 . The inside of the molten salt electrolyzer was heated and purged with argon gas to prevent moisture and oxygen from being mixed into the atmosphere. 1400 kg of molten metal zinc (density (ρ Zn ) = 6.5 g / cm 3 ) was added thereto, and then 4000 kg of mixed molten salt was added. At this time, the height of molten zinc chloride in the electrolytic chamber was 160 cm, the height of molten zinc was 40 cm, and the height of molten zinc in the extraction chamber was 97 cm. The immersion depth of the electrode in the electrolytic solution was 100 cm. The distance from the bottom of the electrolysis chamber to the lower end of the electrode is 100 cm. After maintaining the melt temperature in the molten salt electrolytic cell at 450 ° C., electrolysis was performed at a current density of 1.0 A / cm 2 .

電解が進行するとともに電解液の液面は低下する。電解室の液面高さが電解開始時と同じになるように保持するため、電解により消費する塩化亜鉛を20分ごとに追加投入した。投入前の電解室の液面高さの低下は約2cm(電解室の溶融塩5のレベル(h+h1Zn)に対して約1%)であった。電解開始から20分経過後から抜き出し室上部開口部から溶融亜鉛がオーバーフローし、この溶融亜鉛を回収した。電解中のh、h1Znは、上記(3)式、および電解液の液面高さ=h1Zn+h =200cmより、
1Zn =(ρZn×h2Zn −ρ×200)/(ρZn −ρ)=45cm
=155cm
で推移する。従って、電解中、電極と電解室底部の溶融亜鉛が接触することはない。
As the electrolysis progresses, the liquid level of the electrolytic solution decreases. In order to keep the liquid level in the electrolysis chamber the same as at the start of electrolysis, additional zinc chloride consumed by electrolysis was added every 20 minutes. The drop in liquid level in the electrolysis chamber before charging was about 2 cm (about 1% with respect to the level of molten salt 5 in the electrolysis chamber (h s + h 1Zn )). After 20 minutes from the start of electrolysis, the molten zinc overflowed from the upper opening of the extraction chamber, and this molten zinc was recovered. H s and h 1Zn during electrolysis are the above formula (3) and the liquid level height of the electrolytic solution = h 1Zn + h s = 200 cm,
h1Zn = ([rho] Zn * h2Zn- [ rho] s * 200) / ([rho] Zn- [ rho] s ) = 45 cm
h s = 155cm
It changes in. Therefore, the electrode and the molten zinc at the bottom of the electrolysis chamber do not contact during electrolysis.

電解を50時間行い、総量で1646kgの溶融亜鉛を回収した。電流効率は90%であった。   Electrolysis was carried out for 50 hours, and a total of 1646 kg of molten zinc was recovered. The current efficiency was 90%.

本発明の溶融塩電解方法、溶融塩電解槽は、塩化亜鉛からの金属亜鉛の回収、多結晶シリコン製造法として注目される亜鉛還元法などに利用できる。   The molten salt electrolysis method and molten salt electrolysis tank of the present invention can be used for recovery of zinc metal from zinc chloride, zinc reduction method which is attracting attention as a method for producing polycrystalline silicon, and the like.

1…溶融塩電解槽
2…電解室
3…抜き出し室
4…連通部
5…塩化亜鉛を含む溶融塩
6…溶融金属亜鉛
7…開口部
11…陽極
12…陰極
13…中間電極
14…投入口
15…塩素吸引配管
21…流通口
22…流通口
23…隔壁

DESCRIPTION OF SYMBOLS 1 ... Molten salt electrolytic cell 2 ... Electrolytic chamber 3 ... Extraction chamber 4 ... Communication part 5 ... Molten salt 6 containing zinc chloride ... Molten metal zinc 7 ... Opening part 11 ... Anode 12 ... Cathode 13 ... Intermediate electrode 14 ... Input port 15 ... Chlorine suction pipe 21 ... Distribution port 22 ... Distribution port 23 ... Partition

Claims (1)

塩化亜鉛を含む溶融塩を収容し、前記溶融塩を電解して溶融金属亜鉛と塩素を生成する電解室と、生成した前記溶融金属亜鉛を収容し、前記溶融金属亜鉛を回収する開口部を有する抜き出し室と、前記電解室および前記抜き出し室を底部で互いに連通し前記溶融金属亜鉛で満たされた連通部とを有する溶融塩電解槽を用い、前記塩化亜鉛を含む溶融塩を電解し金属亜鉛を製造する溶融塩電解方法であって、
前記開口部の高さを、前記電解室の塩化亜鉛を含む溶融塩と溶融金属亜鉛との界面の液位より高く、前記電解室に収容された塩化亜鉛を含む溶融塩の液位より低くなるように設定し、前記電解室に収容された塩化亜鉛を含む溶融塩の液面の高さが一定となるように前記塩化亜鉛を含む溶融塩を前記電解室へ加えながら、塩化亜鉛を電解することを特徴とする溶融塩電解方法。
An electrolytic chamber for containing a molten salt containing zinc chloride, electrolyzing the molten salt to generate molten metal zinc and chlorine, and an opening for receiving the generated molten metal zinc and collecting the molten metal zinc Using a molten salt electrolysis tank having an extraction chamber, and the electrolysis chamber and the extraction chamber communicating with each other at the bottom and filled with the molten metal zinc, the molten salt containing zinc chloride is electrolyzed to obtain the metal zinc A molten salt electrolysis method to be manufactured, comprising:
The height of the opening is higher than the liquid level at the interface between the molten salt containing zinc chloride and the molten metal zinc in the electrolytic chamber and lower than the liquid level of the molten salt contained in the electrolytic chamber. The zinc chloride is electrolyzed while adding the molten salt containing zinc chloride to the electrolytic chamber so that the liquid level of the molten salt containing zinc chloride contained in the electrolytic chamber is constant. A molten salt electrolysis method characterized by the above.
JP2011089270A 2011-04-13 2011-04-13 Molten salt electrolysis method Active JP5766492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011089270A JP5766492B2 (en) 2011-04-13 2011-04-13 Molten salt electrolysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011089270A JP5766492B2 (en) 2011-04-13 2011-04-13 Molten salt electrolysis method

Publications (2)

Publication Number Publication Date
JP2012219360A JP2012219360A (en) 2012-11-12
JP5766492B2 true JP5766492B2 (en) 2015-08-19

Family

ID=47271206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011089270A Active JP5766492B2 (en) 2011-04-13 2011-04-13 Molten salt electrolysis method

Country Status (1)

Country Link
JP (1) JP5766492B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7127984B2 (en) * 2017-12-27 2022-08-30 東邦チタニウム株式会社 Method for operating molten salt electrolyzer and method for producing molten metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113782A (en) * 1984-11-07 1986-05-31 Japan Metals & Chem Co Ltd Method and device for producing sr-al alloy
WO2009122705A1 (en) * 2008-03-31 2009-10-08 株式会社キノテック・ソーラーエナジー Electrolysis vessel

Also Published As

Publication number Publication date
JP2012219360A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
US2861030A (en) Electrolytic production of multivalent metals from refractory oxides
EA011903B1 (en) Metal producing method and producing device by molten salt electrolysis
CN104047025B (en) The system and method for protecting electrolytic cell side wall
JP6465816B2 (en) HYDROGEN GAS DIFFUSION ANODE ASSEMBLY DEVICE FOR GENERATING HCl AND ELECTROLYTIC CELL INCLUDING THE ASSEMBLY DEVICE
CN203938739U (en) Electrolytic cell assembly, electrolyzer system and electrolyzer assembly
US3114685A (en) Electrolytic production of titanium metal
US3254010A (en) Refining of silicon and germanium
Hryn et al. Initial 1000A aluminum electrolysis testing in potassium cryolite-based electrolyte
CN103898553B (en) A kind of electrodeposition and refine are synchronously performed the method producing calcium metal
CN104313643A (en) High-purity antimony producing method by two-section fused salt electrolysis method
CN200952043Y (en) Liquid cathode electrolytic tank for electrolytic production rare earth metal and alloy thereof
CN102534663A (en) Device for generating metal magnesium by electrolyzing magnesium chloride
US2951021A (en) Electrolytic production of titanium
JP6501886B2 (en) Molten salt electrolytic cell, method of producing metallic magnesium using the same, and method of producing titanium sponge
JP5766492B2 (en) Molten salt electrolysis method
JP4092129B2 (en) Sponge titanium manufacturing method and manufacturing apparatus
WO2013170310A1 (en) Drained cathode electrolysis cell for production of rare earth metals
US3103472A (en) Electrolytic production of aluminum
EP2142476B1 (en) A method and a reactor for production of high-purity silicon
US3464900A (en) Production of aluminum and aluminum alloys from aluminum chloride
JP4198434B2 (en) Method for smelting titanium metal
RU2402643C1 (en) Procedure for production of hafnium by electrolysis of melted salts and installation for implementation of this procedure
JP4934012B2 (en) Method for producing metallic calcium
JP2012172194A (en) Electrolytic apparatus and electrowinning method using the same
JP2003328173A (en) Electrolyzer for fused salt

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140224

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140403

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20141016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20141016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150617

R150 Certificate of patent or registration of utility model

Ref document number: 5766492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250