JP2005171353A - Method of electrolyzing molten metal chloride - Google Patents

Method of electrolyzing molten metal chloride Download PDF

Info

Publication number
JP2005171353A
JP2005171353A JP2003416002A JP2003416002A JP2005171353A JP 2005171353 A JP2005171353 A JP 2005171353A JP 2003416002 A JP2003416002 A JP 2003416002A JP 2003416002 A JP2003416002 A JP 2003416002A JP 2005171353 A JP2005171353 A JP 2005171353A
Authority
JP
Japan
Prior art keywords
molten metal
metal chloride
electrolytic cell
electrolytic
chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003416002A
Other languages
Japanese (ja)
Other versions
JP4299117B2 (en
Inventor
Susumu Kosemura
晋 小瀬村
Ryoji Murayama
良治 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Titanium Co Ltd
Original Assignee
Toho Titanium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co Ltd filed Critical Toho Titanium Co Ltd
Priority to JP2003416002A priority Critical patent/JP4299117B2/en
Publication of JP2005171353A publication Critical patent/JP2005171353A/en
Application granted granted Critical
Publication of JP4299117B2 publication Critical patent/JP4299117B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of electrolyzing molten metal chloride where the turbulence in the flow of a bath within an electrolytic cell is suppressed, the winding-up of impurities stored at the bottom part of the electrolytic cell is prevented, and the reduction of current efficiency is suppressed. <P>SOLUTION: For example, at the time of electrolyzing the molten chloride of magnesium to obtain molten metal, a buffer body 11 is arranged in an electrolytic bath comprising the molten metal chloride held in the electrolytic cell 1, suitably, in the lower part of the section at which the molten metal chloride reaches the electrolytic bath. Further, the injection rate of the molten metal chloride to the electrolytic cell is controlled to ≤100 cm/s. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高温融体である溶融金属塩化物の電解方法に係り、とくに、電流効率の低下を抑制する電解技術に関する。   The present invention relates to a method for electrolyzing a molten metal chloride that is a high-temperature melt, and particularly to an electrolysis technique that suppresses a decrease in current efficiency.

クロール法によるスポンジチタンの製造技術においては、四塩化チタンの還元剤として溶融マグネシウムが使用される。この還元反応で副生した溶融塩化マグネシウムは、溶融塩電解(以下、単に「電解」と称する場合がある。)により、マグネシウムと塩素ガスとに再生される。   In the manufacturing technology of sponge titanium by the crawl method, molten magnesium is used as a reducing agent for titanium tetrachloride. The molten magnesium chloride by-produced by this reduction reaction is regenerated into magnesium and chlorine gas by molten salt electrolysis (hereinafter sometimes simply referred to as “electrolysis”).

したがって、前記した製造工程においては溶融マグネシウムや溶融塩化マグネシウムを頻繁に取り扱う場面が多いが溶融マグネシウムは、大気中の酸素ガスや窒素ガスと容易に反応するため、これらを取り扱うに際し、大気との接触を避けるように配慮しなければならない。   Therefore, in the manufacturing process described above, there are many occasions where molten magnesium and molten magnesium chloride are frequently handled, but since molten magnesium easily reacts with oxygen gas and nitrogen gas in the atmosphere, when handling these, contact with the atmosphere Care must be taken to avoid.

しかしながら、たとえば電解槽から溶融マグネシウムを運搬容器に汲み出す場合や、運搬容器から還元容器に溶融マグネシウムを注入する場合には、装置構造上、溶融マグネシウムが大気と接触することを回避することは難しく酸化物や窒化物の生成を皆無にすることは難しい。   However, for example, when pumping molten magnesium from an electrolytic cell into a transport container or injecting molten magnesium from a transport container into a reduction container, it is difficult to avoid contact of the molten magnesium with the atmosphere due to the device structure. It is difficult to eliminate the generation of oxides and nitrides.

このような問題を解決すべく、溶解炉の雰囲気中に維持したアルゴンガス中の酸素濃度を常時監視し、異常があった場合には溶解炉への原料供給や溶融金属の排出を停止することでマグネシウム酸化物の生成を抑制する技術が開示されている(特許文献1参照)。   In order to solve such problems, the oxygen concentration in the argon gas maintained in the melting furnace atmosphere is constantly monitored, and if there is an abnormality, supply of raw materials to the melting furnace and discharge of molten metal should be stopped. Discloses a technique for suppressing the formation of magnesium oxide (see Patent Document 1).

特開2002−059254号公報JP 2002-059254 A

しかしながら、上記特許文献1に記載した技術においては、装置の構成上、溶融マグネシウムと大気との接触を完全に断つことは困難である。このため、この装置を使用した場合には、マグネシウムの酸化物および窒化物を主成分とする不純物の生成は避けられない。溶融マグネシウムの電解浴中にこれら不純物が混入した場合には、陽極表面に不純物の一部が沈積して、塩素ガスの発生を阻害するおそれがあるだけでなく、陰極では生成した溶融マグネシウムと塩素ガスとの再結合を促すおそれもある。したがって、上記不純物が電解浴中を浮遊することは好ましくない。   However, in the technique described in Patent Document 1, it is difficult to completely disconnect the contact between the molten magnesium and the atmosphere due to the configuration of the apparatus. For this reason, when this apparatus is used, the production | generation of the impurity which has a magnesium oxide and nitride as a main component is unavoidable. If these impurities are mixed in the molten magnesium electrolytic bath, some of the impurities may be deposited on the anode surface and hinder the generation of chlorine gas. There is also a risk of promoting recombination with gas. Therefore, it is not preferable that the impurities float in the electrolytic bath.

このような不純物は、電解浴よりも比重が大きいため、電解浴を静置した場合には電解槽底部に沈降分離する。しかしながら、電解槽を継続して稼働させる際には、マグネシウムの原料である溶融塩化マグネシウムを電解槽に供給する必要があり、この際に電解浴の流れが乱れ、電解槽底部に沈積していた不純物を浴流れ中に巻き上げるおそれがある。この結果、陽極および陰極での上記不具合が生じ、その結果、電流効率が一時的に低下するという問題がある。   Since such impurities have a higher specific gravity than the electrolytic bath, they settle and separate at the bottom of the electrolytic bath when the electrolytic bath is left standing. However, when the electrolytic cell is continuously operated, it is necessary to supply molten magnesium chloride, which is a raw material of magnesium, to the electrolytic cell. At this time, the flow of the electrolytic bath is disturbed and deposited at the bottom of the electrolytic cell. Impurities can be rolled up in the bath flow. As a result, there arises a problem that the above-mentioned troubles occur in the anode and the cathode, and as a result, the current efficiency is temporarily lowered.

本発明は、上記事情に鑑みてなされたものであり、溶融塩電解を行う電解槽(以下、単に「電解槽」と称する場合がある)に溶融塩化マグネシウムを加える際に電解槽内の浴流れの乱れを抑制し、その結果電流効率の低下を抑制した溶融金属塩化物の電解方法を提供することを目的としている。   The present invention has been made in view of the above circumstances, and a bath flow in an electrolytic cell is added when molten magnesium chloride is added to an electrolytic cell for performing molten salt electrolysis (hereinafter sometimes simply referred to as “electrolytic cell”). It is an object of the present invention to provide a molten metal chloride electrolysis method that suppresses the disturbance of electric current and consequently suppresses the decrease in current efficiency.

本発明者らは、上記課題を解決すべく鋭意検討したところ、電解浴中の溶融金属塩化物を加える領域付近に緩衝体を設けることで、浴の流れが局所的に乱流となることを緩和し、これにより電解槽の底部に蓄積された不純物の浴流れ中への巻き上げを防止して、電流効率の低下を抑制することができるとの知見を得た。本発明は、上記知見に基づいてなされたものである。   The present inventors diligently studied to solve the above-mentioned problem. By providing a buffer in the vicinity of the region where the molten metal chloride is added in the electrolytic bath, the flow of the bath is locally turbulent. It has been found that it is possible to relax, thereby preventing the impurities accumulated in the bottom of the electrolytic cell from being rolled up into the bath flow and suppressing a decrease in current efficiency. The present invention has been made based on the above findings.

すなわち、本発明の一の溶融金属塩化物の電解方法は、溶融金属塩化物を電解して溶融金属を得るにあたり、電解槽に保持した溶融金属塩化物を含む電解浴中に緩衝体を配設することを特徴としている。   That is, according to one molten metal chloride electrolysis method of the present invention, in obtaining molten metal by electrolyzing molten metal chloride, a buffer is disposed in an electrolytic bath containing molten metal chloride held in an electrolytic cell. It is characterized by doing.

また、本発明者らは、溶融金属塩化物を電解槽に注入する際に、電解槽への溶融金属塩化物の注入速度を従来に比して小さくすることで、電解浴中の溶融金属塩化物を加える領域付近の浴の流れが局所的に乱流となることを緩和し、これにより電解槽の底部に蓄積された不純物の浴流れ中への巻き上げを防止して、電流効率の低下を抑制することができるとの知見を得た。本発明は、上記知見に基づいてなされたものである。   In addition, when the molten metal chloride is injected into the electrolytic cell, the present inventors have made the molten metal chloride in the electrolytic bath smaller by reducing the injection rate of the molten metal chloride into the electrolytic cell as compared with the conventional method. Reduces the current efficiency by mitigating local turbulent flow in the vicinity of the area where the material is added, thereby preventing the accumulation of impurities accumulated in the bottom of the electrolytic cell into the bath flow. The knowledge that it can suppress was obtained. The present invention has been made based on the above findings.

すなわち、本発明の他の溶融金属塩化物の電解方法は、溶融金属塩化物を電解して溶融金属を得るにあたり、電解槽への溶融金属塩化物の注入速度を100cm/秒以下とすることを特徴としている。なお、このような溶融金属塩化物の注入速度の適正化と、上記した緩衝体の配設とを組み合わせることで、電流効率の低下をさらに抑制することができる。   That is, in another molten metal chloride electrolysis method of the present invention, in obtaining molten metal by electrolyzing molten metal chloride, the injection rate of molten metal chloride into an electrolytic cell is set to 100 cm / second or less. It is a feature. In addition, the fall of current efficiency can further be suppressed by combining the optimization of the injection | pouring speed | rate of such molten metal chloride, and arrangement | positioning of an above described buffer.

このような溶融金属塩化物の電解方法においては、上記溶融金属がマグネシウムであり、上記溶融金属塩化物が塩化マグネシウムであることや、上記緩衝体が板または錐体であることや、上記緩衝体を上記電解浴中の上下方向に複数個配設することが、とくに優れた電流効率を得ることができる点で好適である。   In such a molten metal chloride electrolysis method, the molten metal is magnesium, the molten metal chloride is magnesium chloride, the buffer is a plate or a cone, and the buffer It is preferable to arrange a plurality of layers in the vertical direction in the electrolytic bath from the viewpoint that particularly excellent current efficiency can be obtained.

本発明の溶融金属塩化物の電解方法によれば、電解浴中の溶融金属塩化物を加える部位に緩衝体を設けることや、溶融金属塩化物を電解槽に注入する際に、電解槽への溶融金属塩化物の注入速度を従来に比して小さくすること、すなわち、電解浴の流れが局所的に乱流となることを緩和する方法を採用し、これにより電解槽の底部に蓄積された不純物の浴流れ中への巻き上げを防止して、電流効率の低下を抑制することができる。   According to the molten metal chloride electrolysis method of the present invention, when the molten metal chloride is added to the portion of the electrolytic bath where the molten metal chloride is added, or when the molten metal chloride is injected into the electrolytic cell, Adopting a method of reducing the injection rate of the molten metal chloride compared to the conventional method, that is, reducing the local turbulent flow of the electrolytic bath, thereby accumulating at the bottom of the electrolytic cell Impurities can be prevented from being rolled up in the bath flow, and a decrease in current efficiency can be suppressed.

以下、本発明の好適な実施形態を図面に沿って詳細に説明する。
図1は、本発明の溶融金属塩化物の電解方法を実施するための一の電解装置を示す図であり、図中符号1は塩化マグネシウムの電解槽、2は電解槽1の上部に配設された溶融塩化マグネシウム用コンテナである。同図に示すように、電解槽1は、鉄製外板3、断熱煉瓦層4、および耐火煉瓦層5を備えるとともに、断熱煉瓦層4からなる上壁部から第1隔壁6および第2隔壁7が垂下された構造となっている。また、電解総の内部は、第1隔壁6によって、溶融金属の貯留室8と、貯留室8と連なる電解室9とに区画されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a view showing one electrolysis apparatus for carrying out the molten metal chloride electrolysis method of the present invention. In FIG. This is a container for molten magnesium chloride. As shown in FIG. 1, the electrolytic cell 1 includes an iron outer plate 3, a heat insulating brick layer 4, and a refractory brick layer 5, and a first partition wall 6 and a second partition wall 7 from an upper wall portion made of the heat insulating brick layer 4. It has a structure that hangs down. The inside of the electrolysis total is partitioned by a first partition wall 6 into a molten metal storage chamber 8 and an electrolytic chamber 9 connected to the storage chamber 8.

電解槽1には、溶融塩化マグネシウムを含む高温融体が、図1の電解浴レベル10まで満たされている。また、貯留室8には電解浴中に緩衝体11が配設されており、電解室9には、鉄製の陰極12とグラファイト陽極13とが外部からそれぞれ挿入配置されている。   The electrolytic bath 1 is filled with a high-temperature melt containing molten magnesium chloride up to an electrolytic bath level 10 in FIG. In addition, a buffer 11 is disposed in the electrolytic bath in the storage chamber 8, and an iron cathode 12 and a graphite anode 13 are inserted into the electrolysis chamber 9 from the outside.

以下に、上述した構成の装置を使用して本発明の電解方法を実施する場合について説明する。
スポンジチタンの製造工程で副生した溶融塩化マグネシウムは、コンテナ2から電解槽1の給排出口14を経て電解槽1内に注入される。次に、溶融塩化マグネシウムは、緩衝体11によってその進行速度が低下するとともに、その進路を図1中の左下方向に変更し、同図中の環状矢印の方向に沿って環流する。
Below, the case where the electrolysis method of this invention is implemented using the apparatus of the structure mentioned above is demonstrated.
Molten magnesium chloride by-produced in the production process of titanium sponge is injected into the electrolytic cell 1 from the container 2 through the supply / discharge port 14 of the electrolytic cell 1. Next, the traveling speed of the molten magnesium chloride is lowered by the buffer 11, and the course thereof is changed to the lower left direction in FIG. 1 and circulates along the direction of the annular arrow in the same figure.

このようにコンテナ2から注入された溶融塩化マグネシウム中には、電堆と呼ばれる不純物が混入している。図1に示すように、電堆15は溶融塩化マグネシウムよりも比重が大きいため、電解槽1の左下の角部に堆積する。   Thus, in the molten magnesium chloride poured from the container 2, an impurity called an electric stack is mixed. As shown in FIG. 1, the electric stack 15 has a specific gravity greater than that of molten magnesium chloride, and therefore deposits at the lower left corner of the electrolytic cell 1.

このように電堆15が重力により自然分離された溶融塩化マグネシウムは、さらに矢印の方向に進路を変更し、第1隔壁6の下方を通過して貯留室8から電解室9に入る。電解室9内では、溶融塩化マグネシウムが溶融マグネシウムと塩素ガスとに電気分解される。   In this way, the molten magnesium chloride from which the electrode stack 15 is naturally separated by gravity further changes the course in the direction of the arrow, passes under the first partition 6 and enters the electrolytic chamber 9 from the storage chamber 8. In the electrolysis chamber 9, molten magnesium chloride is electrolyzed into molten magnesium and chlorine gas.

次いで、このように電気分解された溶融マグネシウムおよび塩素ガスは、図1の矢印の方向に進路を変更し、第1隔壁6の穴部6aを通過し、溶融マグネシウムは第2隔壁7の下方を通過し、塩素ガスは開口16から外部に排出される。最後に、貯留室8に到達した溶融マグネシウムが給排出口14から外部に取り出される。   Next, the molten magnesium and chlorine gas electrolyzed in this way change the course in the direction of the arrow in FIG. 1 and pass through the hole 6 a of the first partition 6, and the molten magnesium passes under the second partition 7. The chlorine gas passes through and is discharged to the outside through the opening 16. Finally, the molten magnesium that has reached the storage chamber 8 is taken out from the supply / discharge port 14.

以上が電解槽1に溶融塩化マグネシウムを注入し、電気分解して得られた溶融マグネシウムを取り出すまでの一連の流れであるが、電気分解の継続に伴って電解槽1内の溶融塩化マグネシウムの量は次第に減少する。このため、電解槽1の稼働後一定時間が経過したところで、溶融塩化マグネシウムを電解槽1に供給する必要がある。この際、溶融塩化マグネシウムは、電解室9側に供給することもできるが、この場合には供給された溶融塩化マグネシウムが電解室9で塩素ガスの発生や溶融マグネシウムの析出反応を阻害するおそれがある。したがって、溶融塩化マグネシウムは、図1に示すように、貯留室8側に供給することが好ましい。   The above is a series of flow from injecting molten magnesium chloride into the electrolytic cell 1 and taking out the molten magnesium obtained by electrolysis. The amount of molten magnesium chloride in the electrolytic cell 1 as electrolysis continues. Gradually decreases. For this reason, it is necessary to supply molten magnesium chloride to the electrolytic cell 1 when a certain time has elapsed after the operation of the electrolytic cell 1. At this time, molten magnesium chloride can also be supplied to the electrolysis chamber 9 side, but in this case, the supplied molten magnesium chloride may hinder generation of chlorine gas or precipitation reaction of molten magnesium in the electrolysis chamber 9. is there. Accordingly, the molten magnesium chloride is preferably supplied to the storage chamber 8 side as shown in FIG.

また、図1に示す電解槽1内の溶融金属の貯留室8の底部には、溶融塩化マグネシウムと溶融マグネシウムとの分離ゾーンが構成されている。このため、溶融塩化マグネシウムを供給する場合には、これらの分離ゾーンの浴流れをできる限り抑制するように行うことが好ましい。   Further, a separation zone for molten magnesium chloride and molten magnesium is formed at the bottom of the molten metal storage chamber 8 in the electrolytic cell 1 shown in FIG. For this reason, when supplying molten magnesium chloride, it is preferable to suppress the bath flow in these separation zones as much as possible.

上記分離ゾーンの浴流れをできる限り抑制する一の手段としては、図1に示すように、溶融塩化マグネシウムが電解浴に到達する部位の下方に浴流れの緩衝体11を設けることが好適である。緩衝体11は、浴中に水平方向に保持することが好ましい。また、緩衝体11は単なる板状とすることができ、その板に複数の貫通孔を設けることもできる。このような多孔板を設けることで、溶融塩化マグネシウムが達する電解浴面近傍で発生する下降流を適度に抑制しつつ、溶融塩化マグネシウムを電解浴底部に移動拡散させて、電解浴内に形成されている貯留室8から電解室9に至る流れと合体させることができる。このような緩衝体11を電解浴中の上下方向に複数個配設した場合には、上記分離ゾーンの浴流れを一層抑制することができる。   As one means for suppressing the bath flow in the separation zone as much as possible, it is preferable to provide a bath flow buffer 11 below the portion where the molten magnesium chloride reaches the electrolytic bath, as shown in FIG. . It is preferable to hold the buffer body 11 in the horizontal direction in the bath. Moreover, the buffer body 11 can be made into a simple plate shape, and a plurality of through holes can be provided in the plate. By providing such a perforated plate, it is formed in the electrolytic bath by moving and diffusing molten magnesium chloride to the bottom of the electrolytic bath while appropriately suppressing the downward flow generated near the electrolytic bath surface where the molten magnesium chloride reaches. The flow from the storage chamber 8 to the electrolysis chamber 9 can be combined. When a plurality of such buffer bodies 11 are arranged in the vertical direction in the electrolytic bath, the bath flow in the separation zone can be further suppressed.

また、緩衝体11に設ける上記孔の大きさおよび数は適宜決定することができるが、緩衝体11に電解浴中の不純物である電堆15が蓄積した場合には、電解槽1の底部への電堆15の蓄積が遮られるので、緩衝体11にはある程度の大きさの孔を貫通させておくことが好ましい。また、緩衝体11は、耐火物もしくはカーボンで構成することができ、または炭素鋼で構成することもできる。緩衝体11を炭素鋼で構成する場合には、定期的に抜き出して表面の腐食状況を確認することが好ましい。   In addition, the size and number of the holes provided in the buffer 11 can be determined as appropriate. However, when the deposit 15 that is an impurity in the electrolytic bath accumulates in the buffer 11, the bottom of the electrolytic cell 1 is reached. Therefore, it is preferable that a hole having a certain size is made to pass through the buffer body 11. Moreover, the buffer body 11 can be comprised with a refractory material or carbon, or can also be comprised with carbon steel. In the case where the buffer body 11 is made of carbon steel, it is preferable to periodically extract the buffer body 11 and check the surface corrosion status.

上記分離ゾーンの浴流れをできる限り抑制する他の手段としては、電解槽1への溶融塩化マグネシウムの注入速度を100cm/秒以下とすることが挙げられる。また、電解槽1に注入される溶融塩化マグネシウムは、溶融マグネシウムコンテナ2から供給されるが、溶融塩化マグネシウムの供給ノズル(図示せず)は複数本設けることが好ましい。このように、複数のノズルを介して溶融塩化マグネシウムを電解槽1に供給することで、溶融塩化マグネシウムの供給する際の浴の乱れをさらに分散させることができる。このような装置構成を採用した場合には、貯留室8内の底部において、電解浴からの溶融マグネシウムの浮上分離による浴の乱れを一層抑制することができる。   Another means for suppressing the bath flow in the separation zone as much as possible is to set the injection rate of molten magnesium chloride into the electrolytic cell 1 to 100 cm / second or less. Moreover, although the molten magnesium chloride poured into the electrolytic cell 1 is supplied from the molten magnesium container 2, it is preferable to provide a plurality of molten magnesium chloride supply nozzles (not shown). In this way, by supplying molten magnesium chloride to the electrolytic cell 1 through a plurality of nozzles, it is possible to further disperse the disturbance of the bath when supplying molten magnesium chloride. When such an apparatus configuration is employed, the turbulence of the bath due to the floating separation of the molten magnesium from the electrolytic bath can be further suppressed at the bottom in the storage chamber 8.

図2は、本発明の溶融金属塩化物の電解方法を実施するための他の電解装置を示す図である。同図に示す装置は、緩衝体21の形状以外は、図1に示す装置と同じである。よって、図1に示す装置と重複する構成要素については、符号は省略した。この装置は、緩衝体21が円錐状をなしており、この形状により溶融塩化マグネシウムの注入の際に発生する浴流れを効果的に抑制することができる。なお、緩衝体の形状は、上記効果が得られるものであれば、板状あるいは円錐状に限ることはなく、その他の形状とすることもできる。   FIG. 2 is a diagram showing another electrolysis apparatus for carrying out the molten metal chloride electrolysis method of the present invention. The apparatus shown in the figure is the same as the apparatus shown in FIG. 1 except for the shape of the buffer 21. Therefore, the reference numerals are omitted for the same components as those in the apparatus shown in FIG. In this apparatus, the buffer body 21 has a conical shape, and this shape can effectively suppress the bath flow generated when pouring molten magnesium chloride. The shape of the buffer is not limited to a plate shape or a conical shape as long as the above-described effects can be obtained, and other shapes can also be used.

このように、図1または図2に示す緩衝体11,21を電解浴中に設けることで、電解浴からの溶融マグネシウムの浮上分離が抑制される、しかも、電解槽底部に堆積した電堆が巻き上げられて電解浴の流れに乗ることで電解室に入って悪影響を及ぼす問題も抑制することができる。   Thus, by providing the buffer bodies 11 and 21 shown in FIG. 1 or FIG. 2 in the electrolytic bath, the floating separation of the molten magnesium from the electrolytic bath is suppressed, and the deposits deposited on the bottom of the electrolytic bath are The problem of having an adverse effect upon entering the electrolytic chamber by being wound up and riding on the flow of the electrolytic bath can also be suppressed.

(実験例1)
図1に示す装置を使用し、電解槽1内の貯留室8側の電解浴中に多孔板(同図中符号11の上記緩衝体に相当)を浸漬配置するとともに、溶融塩化マグネシウムの電解槽への注入速度を60cm/秒として、15ヶ月間電解槽を運転した。その結果、溶融塩化マグネシウムの注入直後に発生する電流効率の低下は殆ど見られず、また、運転期間を通じての電流効率は80%であった。
(Experimental example 1)
The apparatus shown in FIG. 1 is used, and a porous plate (corresponding to the buffer body of 11 in the figure) is immersed in an electrolytic bath on the side of the storage chamber 8 in the electrolytic cell 1, and an electrolytic cell for molten magnesium chloride The electrolytic cell was operated for 15 months at a rate of 60 cm / sec. As a result, almost no decrease in the current efficiency generated immediately after the injection of molten magnesium chloride was observed, and the current efficiency throughout the operation period was 80%.

(実験例2)
実験例1と同様の装置を使用した。しかしながら、上記多孔板は浸漬配置せず、しかも溶融塩化マグネシウムの電解槽への注入速度を従来と同様の200cm/秒として、15ヶ月間電解槽を運転した。その結果、溶融塩化マグネシウムの注入直後に発生する電流効率の低下が見られ、また、運転期間を通じての電流効率は75%であった。
(Experimental example 2)
The same device as in Experimental Example 1 was used. However, the perforated plate was not soaked, and the electrolytic cell was operated for 15 months at the same injection rate of molten magnesium chloride into the electrolytic cell as 200 cm / second. As a result, a decrease in current efficiency generated immediately after injection of molten magnesium chloride was observed, and the current efficiency throughout the operation period was 75%.

以上説明したように、本発明によれば、電解浴の流れが局所的に乱流となることを緩和する方法を採用し、これにより電解槽の底部に蓄積された不純物の浴流れ中への巻き上げを防止して、電流効率の低下を抑制することができる。よって、本発明は、クロール法によるスポンジチタン製造の際に副生される溶融塩化マグネシウムの溶融塩電解に代表される溶融塩電解に利用することができる。   As described above, according to the present invention, a method of mitigating local turbulent flow of the electrolytic bath is employed, and thereby impurities accumulated in the bottom of the electrolytic cell are introduced into the bath flow. Winding up can be prevented, and a decrease in current efficiency can be suppressed. Therefore, the present invention can be used for molten salt electrolysis represented by molten salt electrolysis of molten magnesium chloride by-produced during the production of sponge titanium by the crawl method.

本発明の溶融金属塩化物の電解方法を実施するための一の電解装置を示す図である。It is a figure which shows one electrolysis apparatus for enforcing the electrolytic method of the molten metal chloride of this invention. 本発明の溶融金属塩化物の電解方法を実施するための他の電解装置を示す図である。It is a figure which shows the other electrolysis apparatus for enforcing the electrolytic method of the molten metal chloride of this invention.

符号の説明Explanation of symbols

1 …電解槽
2 …コンテナ
3 …鉄製外板
4 …断熱煉瓦層
5 …耐火煉瓦層
6 …第1隔壁
6a…穴部
7 …第2隔壁
8 …貯留室
9 …電解室
10 …電解浴レベル
11 …緩衝体
12 …鉄製の陰極
13 …グラファイト陽極
14 …給排出口
15 …電堆
16 …開口
DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell 2 ... Container 3 ... Iron outer plate 4 ... Heat insulation brick layer 5 ... Fireproof brick layer 6 ... 1st partition 6a ... Hole 7 ... 2nd partition 8 ... Storage chamber 9 ... Electrolytic chamber 10 ... Electrolytic bath level 11 ... buffer 12 ... iron cathode 13 ... graphite anode 14 ... supply / discharge port 15 ... electrode 16 ... opening

Claims (6)

溶融金属塩化物を電解して溶融金属を得るにあたり、電解槽に保持した溶融金属塩化物を含む電解浴中に緩衝体を配設することを特徴とする溶融金属塩化物の電解方法。   A method for electrolyzing a molten metal chloride comprising disposing a buffer in an electrolytic bath containing a molten metal chloride held in an electrolytic bath when the molten metal chloride is electrolyzed to obtain a molten metal. 溶融金属塩化物を電解して溶融金属を得るにあたり、電解槽への溶融金属塩化物の注入速度を100cm/秒以下とすることを特徴とする溶融金属塩化物の電解方法。   A method for electrolyzing a molten metal chloride, characterized in that when the molten metal chloride is electrolyzed to obtain a molten metal, the injection rate of the molten metal chloride into the electrolytic cell is 100 cm / second or less. 溶融金属塩化物を電解して溶融金属を得るにあたり、電解槽に保持した溶融金属塩化物を含む電解浴中に緩衝体を配設するとともに、電解槽への溶融金属塩化物の注入速度を100cm/秒以下とすることを特徴とする溶融金属塩化物の電解方法。   In obtaining molten metal by electrolyzing the molten metal chloride, a buffer is disposed in the electrolytic bath containing the molten metal chloride held in the electrolytic cell, and the injection rate of the molten metal chloride into the electrolytic cell is 100 cm. A method for electrolyzing molten metal chloride, characterized in that the rate is not more than 1 second. 前記溶融金属塩化物が塩化マグネシウムであり、前記溶融金属がマグネシウムであることを特徴とする請求項1〜3のいずれかに記載の溶融金属塩化物の電解方法。   The method for electrolyzing a molten metal chloride according to any one of claims 1 to 3, wherein the molten metal chloride is magnesium chloride, and the molten metal is magnesium. 前記緩衝体が板または錐体であることを特徴とする請求項1〜4のいずれかに記載の溶融金属塩化物の電解方法。   5. The molten metal chloride electrolysis method according to claim 1, wherein the buffer is a plate or a cone. 前記緩衝体を前記電解浴中の上下方向に複数個配設することを特徴とする請求項1〜5のいずれかに記載の溶融金属塩化物の電解方法。   The method for electrolyzing molten metal chloride according to any one of claims 1 to 5, wherein a plurality of the buffer bodies are arranged in a vertical direction in the electrolytic bath.
JP2003416002A 2003-12-15 2003-12-15 Method for electrolysis of molten metal chloride Expired - Lifetime JP4299117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003416002A JP4299117B2 (en) 2003-12-15 2003-12-15 Method for electrolysis of molten metal chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003416002A JP4299117B2 (en) 2003-12-15 2003-12-15 Method for electrolysis of molten metal chloride

Publications (2)

Publication Number Publication Date
JP2005171353A true JP2005171353A (en) 2005-06-30
JP4299117B2 JP4299117B2 (en) 2009-07-22

Family

ID=34735315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003416002A Expired - Lifetime JP4299117B2 (en) 2003-12-15 2003-12-15 Method for electrolysis of molten metal chloride

Country Status (1)

Country Link
JP (1) JP4299117B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101192290B1 (en) 2012-06-27 2012-10-17 한국지질자원연구원 Continuous electrolytic apparatus for molten salt
KR101192292B1 (en) 2012-06-27 2012-10-17 한국지질자원연구원 Electrolytic method of molten salt using all-in-one chamber
JP2012251221A (en) * 2011-06-03 2012-12-20 Osaka Titanium Technologies Co Ltd Fused salt electrolytic method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012251221A (en) * 2011-06-03 2012-12-20 Osaka Titanium Technologies Co Ltd Fused salt electrolytic method
KR101192290B1 (en) 2012-06-27 2012-10-17 한국지질자원연구원 Continuous electrolytic apparatus for molten salt
KR101192292B1 (en) 2012-06-27 2012-10-17 한국지질자원연구원 Electrolytic method of molten salt using all-in-one chamber

Also Published As

Publication number Publication date
JP4299117B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
EP1445350B1 (en) Method and apparatus for smelting titanium metal
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
JP4193984B2 (en) Metal manufacturing equipment
JPWO2007034605A1 (en) Reducing metal molten salt electrolysis apparatus, electrolysis method thereof, and method for producing refractory metal using reducing metal
JPS586991A (en) Electrolytic reduction cell
JPS589991A (en) Electrolytic reduction cell
RU2005121903A (en) ELECTROCHEMICAL REDUCTION OF METAL OXIDES
JP2005068539A5 (en)
JP4299117B2 (en) Method for electrolysis of molten metal chloride
EA009106B1 (en) Electrochemical reduction of metal oxides
JP2007084847A (en) METHOD AND DEVICE FOR PRODUCING Ti
JP4261328B2 (en) Molten metal chloride electrolyzer
JP2005133195A (en) METHOD OF PRODUCING Ti OR Ti ALLOY THROUGH CIRCULATION OF Ca SOURCE
JP2009019250A (en) Method and apparatus for producing metal
JP2005171354A (en) Electrolyzer for molten metal chloride
JPH10176296A (en) Electrolytic formation of neodymium without being companied with perfluorocarbon compound in waste gas
JP2004523662A (en) Electrolytic reduction of metal oxides
CA2760352C (en) Metallurgical melting and processing unit
JP4502617B2 (en) Metal oxide reduction method and metal oxide reduction apparatus
JP6156879B2 (en) Molten salt electrolytic cell
CN104520476B (en) Electrolytic cell for the production of rare earth metal
JP4513297B2 (en) Metal oxide reduction method and metal oxide reduction apparatus
JPS6033906B2 (en) Electrolytic reduction tank
JPS6277429A (en) Electron beam melting method
US4686025A (en) Apparatus for the production of a metal by electrolyzing halides in a molten salt bath, by a simultaneous continuous double deposit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090416

R150 Certificate of patent or registration of utility model

Ref document number: 4299117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term