JPS6277429A - Electron beam melting method - Google Patents

Electron beam melting method

Info

Publication number
JPS6277429A
JPS6277429A JP60218721A JP21872185A JPS6277429A JP S6277429 A JPS6277429 A JP S6277429A JP 60218721 A JP60218721 A JP 60218721A JP 21872185 A JP21872185 A JP 21872185A JP S6277429 A JPS6277429 A JP S6277429A
Authority
JP
Japan
Prior art keywords
melting
electron beam
metal
sponge
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60218721A
Other languages
Japanese (ja)
Other versions
JPH0717969B2 (en
Inventor
Hiroshi Kanayama
金山 宏志
Tatsuhiko Sodo
龍彦 草道
Tetsuhiro Muraoka
村岡 哲弘
Shinichi Harada
原田 新一
Yoshinobu Ishihara
石原 義信
Hideki Otsuka
秀樹 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP21872185A priority Critical patent/JPH0717969B2/en
Publication of JPS6277429A publication Critical patent/JPS6277429A/en
Publication of JPH0717969B2 publication Critical patent/JPH0717969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To prevent lowering of yield due to splash phenomenon, by surrounding electron beam irradiated domain for melting a material contg. spongy active metal with a heat resisting wall material to collect and recover molten globules scattering at melting time. CONSTITUTION:In a shielded case 1 connected to an evacuating device 5 and made to a prescribed vacuum degree, the material G contg. spongy active metal such as spongy Ti is supplied from a material supplying hopper 3 into a water cooled vessel 4 for melting the material. Thereat, the material G is melted by irradiating an electron beam B from an electron beam irradiating device 2 to obtain a molten metal M. In method for melting the material G, the heat resisting wall material 7 surrounding electron beam irradiated domain of the vessel 4 is provided to collect molten globules scattered at material melting time with the material 7. Further, metal adhered and solidified at the material 7 is melted and allowed to flow down by irradiating the beam B to recover it in the vessel 4. In this way, yield lowering is prevented and melting operability is stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、スポンジTiの如きスポンジ状活性金属を含
む原料を溶解するに当たり、ヌプラッシュと呼ばれる溶
滴飛散現象による溶解歩留りの低下を効果的に防止する
ことのできる技術に関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention effectively prevents a drop in melting yield due to a droplet scattering phenomenon called nuplash when melting a raw material containing a sponge-like active metal such as sponge Ti. It is related to technology that can prevent this.

[従来の技術] Ti等の活性金属の溶解には従来よりvAR(真空アー
ク再溶解)法が汎用されている。即ちvAR法とは、活
性金属を電極状に成形し高真空下(lθ−2〜l 0−
3torr程度)で該電極と水冷るつぼ内溶湯間にアー
クを発生させ、これにより電極を溶解させる方法である
。ところがこの方法では、アーク溶解に先立ってTi等
の活性金a製電極を製造する必要があり、工程が煩雑で
生産性及び経済性が低いという難点があった。
[Prior Art] The vAR (vacuum arc remelting) method has been widely used for melting active metals such as Ti. In other words, the vAR method involves forming an active metal into an electrode shape and applying it under high vacuum (lθ-2 to l0-
In this method, an arc is generated between the electrode and the molten metal in the water-cooled crucible at a pressure of about 3 torr), thereby melting the electrode. However, in this method, it is necessary to manufacture an electrode made of active gold such as Ti prior to arc melting, and the process is complicated, resulting in low productivity and low economic efficiency.

一方真空技術の進歩及び電子ビーム照射装置の大型化に
伴ない電子ビームを利用した溶解法が提案され注目を集
めている。即ち電子ビーム溶解法とは、高真空下(10
4−10−6torr程度)で溶解原料に電子ビームを
照射して溶解する方法であり、この方法であれば粒状原
料やスクラップ等をそのままの形態で溶解することがで
き、vAR法で必須とされる電極製造工程等が全く不要
である。しかも電磁場制御により電子ビームを自由方向
に走査させることができるので、異形の鋳塊でも容易に
溶製することができる。
On the other hand, as vacuum technology advances and electron beam irradiation equipment becomes larger, melting methods using electron beams have been proposed and are attracting attention. In other words, the electron beam melting method is performed under high vacuum (10
This is a method of melting raw materials by irradiating them with an electron beam at a pressure of about 4-10-6 torr).With this method, granular raw materials and scraps can be melted in their original form, which is essential for the vAR method. There is no need for any electrode manufacturing process. Moreover, since the electron beam can be scanned in any direction by electromagnetic field control, even irregularly shaped ingots can be easily melted.

この様に電子ビーム溶解法は種々の特徴を有しているが
、反面溶解原料が制限されるという欠点があり、特にス
ポンジTiの如きスポンジ状活性金属を溶解原料として
用いた場合には、溶解工程で溶湯が発泡状態を呈しつつ
飛散するという極めて好ましくない現象(スプラッシュ
現象)が発生し、溶湯の歩留り低下を招くばかりでなく
飛散した溶滴が溶解炉の内壁や電子ビーム照射装置等に
付着して操業上のトラブルを誘発し、メンテナンス作業
を煩雑且つ困難なものにしている。
As described above, the electron beam melting method has various characteristics, but on the other hand, it has the disadvantage that the raw material to be melted is limited.Especially when a sponge-like active metal such as sponge Ti is used as the raw material for melting, it is difficult to melt. During the process, an extremely undesirable phenomenon (splash phenomenon) occurs in which the molten metal becomes foamy and scatters, which not only causes a decrease in the yield of the molten metal, but also causes the scattered droplets to adhere to the inner walls of the melting furnace, electron beam irradiation equipment, etc. This causes operational troubles and makes maintenance work complicated and difficult.

即ちスポンジTiやスポンジZrの様なスポンジ状活性
金属を製造する最も一般的な方法は1例えばスポンジT
iの場合ではT i 02を塩素化してTiCl4とし
た後MgやNa等で還元する方法である。このうちMg
で還元する方法を採用した場合、TiCl4中の塩素外
はMgCl2等として分離される訳であるが、得られる
スポンジTi粗製物中にはMgCl2等や未反応のMg
が不純物として多量混入ルてくる為、これらの不純物を
除去する為精製(真空蒸留等)が行われる。
That is, the most common method for producing sponge-like active metals such as sponge Ti and sponge Zr is 1, for example, sponge T.
In the case of i, the method involves chlorinating T i 02 to form TiCl4 and then reducing it with Mg, Na, or the like. Of these, Mg
When the reduction method is adopted, the non-chlorine in TiCl4 is separated as MgCl2, etc., but the resulting sponge Ti crude product contains MgCl2, etc. and unreacted Mg.
Since a large amount of impurities are mixed in, purification (vacuum distillation, etc.) is performed to remove these impurities.

しかしこの様な精製処理を行った場合でも、スポンジT
i精製物中には依然として約11000pp程度のMg
Cl2等が除去しきれずに残留する。
However, even when such purification treatment is performed, sponge T
i The purified product still contains about 11,000 pp of Mg.
Cl2 etc. cannot be completely removed and remains.

一方TiC1a を金属Naで還元する方法を採用した
場合はスポンジTi粗製物中に多量のNaC1が混入し
てくるので、これを純水中に長時間浸漬してNaC1の
除去が行なわれる。しかしこうして得られたスポンジT
i精製物中には、Mg還元法の場合と同様的2000 
pp+n程度のNaC1(塩化物)が除去しきれずに残
留する。
On the other hand, if a method of reducing TiC1a with metallic Na is adopted, a large amount of NaC1 will be mixed into the crude Ti sponge, so NaC1 is removed by immersing it in pure water for a long time. However, the sponge T obtained in this way
i The purified product contains the same 2000 as in the case of the Mg reduction method.
About pp+n of NaCl (chloride) remains without being completely removed.

この様にMg還元法、Na還元法の伺れの方法を採るに
しても、スポンジTi精製物中には約1000〜200
0 ppm程度の塩化物(MgC12やNaC1)が含
まれている。またこうした不純塩化物の混入はスポンジ
Tiに限られるものではなく、スポンジZrの様な他の
スポンジ状活性金属にしても同様である。
In this way, even if the Mg reduction method and the Na reduction method are adopted, the sponge Ti purified product contains about 1000 to 200
Contains about 0 ppm of chlorides (MgC12 and NaC1). Further, the contamination of impurity chlorides is not limited to sponge Ti, but also applies to other sponge-like active metals such as sponge Zr.

この様な塩化物を含むスポンジ状活性金属を電子ビーム
溶解原料として使用すると、溶解時の熱で塩化物が蒸発
して発泡するが、電子ビーム溶解法では電子ビームを発
生させる必要上溶解雰囲気をVAR法よりも更に高い真
空状態にしなければならない為、塩化物の蒸発・発泡現
象(スプラッシュ現象)は非常に顕著となり、その結果
溶湯の歩留りが低下し更には飛散した溶滴が溶解炉内壁
や電子ビーム照射装置等に付着して操業上のトラブルを
招く。
When such a sponge-like active metal containing chloride is used as a raw material for electron beam melting, the chloride evaporates due to the heat during melting and foams. Since the vacuum state must be higher than that in the VAR method, the evaporation and foaming phenomenon (splash phenomenon) of chlorides becomes very noticeable, resulting in a decrease in the yield of molten metal and furthermore, the scattered droplets can damage the inner walls of the melting furnace and the like. It adheres to electron beam irradiation equipment, etc., causing operational troubles.

その為スポンジ状活性金属を含む原料を使用する場合、
電子ビーム溶解法を適用することは、実質的に困難であ
ると考えられている。
Therefore, when using raw materials containing sponge-like active metals,
Applying electron beam melting is considered to be substantially difficult.

[発明が解決しようとする問題点] 本発明はこうした事情に着目してなされたものであって
、その目的は、原料としてスポンジ状活性金属を使用し
た場合でもスプラッシュ現象による歩留り低下を生ずる
ことなく、且つ安定した操業性等を保障し得る様な電子
ビーム溶解方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of these circumstances, and its purpose is to solve the problem without causing a drop in yield due to the splash phenomenon even when a sponge-like active metal is used as a raw material. The purpose of the present invention is to provide an electron beam melting method that can ensure stable operability, etc.

[問題点を解決する為の手段] 上記の目的を達成した本発明の構成は、スポンジ状活性
金属を含む原料を溶解するに当たり、原料溶解容器の電
子ビーム照射領域を囲繞する如く耐熱性壁材を立設し、
原料溶解時に飛散する溶滴を上記壁材により捕集すると
共に、該壁材に付着し凝固した金属に電子ビームを照射
して流下させ前記容器内へ回収するところに要旨を有す
るものである。尚本発明では上記耐熱性壁材の立設によ
って、スポンジ状活性金属を含む原料を用いた場合にさ
けることのできないスプラッシュ現象による溶湯の飛散
を防止し、且つ壁面に付着し凝固した金属は適当な時期
に電子ビームを裏てて溶解し下部の溶解用容器へ回収す
る様にしたところに最大の特徴を有するものであるが、
該壁材で囲まれる」一方適所に塩化物袖丈用トラップを
設けて溶解時に発生するMgC+2やNaC1を捕集除
去したり、或は該壁材で囲繞された原料溶解用゛電子ビ
ームの照射領域を別系統の真空排気系統に接続して吸引
しMgCl2やNaC1を系外へ吸引排気する様にすれ
ば、これら塩化物に由来する他の1!’!I題点につい
ても可及的に防止することができる。
[Means for Solving the Problems] The configuration of the present invention that achieves the above object is that when melting a raw material containing a sponge-like active metal, a heat-resistant wall material is used to surround the electron beam irradiation area of the raw material melting container. erected,
The gist is that the droplets scattered during the melting of the raw materials are collected by the wall material, and the solidified metal adhering to the wall material is irradiated with an electron beam, allowed to flow down, and collected into the container. In the present invention, by installing the heat-resistant wall material mentioned above, it is possible to prevent the molten metal from scattering due to the splash phenomenon that cannot be avoided when raw materials containing sponge-like active metals are used, and to prevent the solidified metal from adhering to the wall surface. The main feature is that the electron beam is used to melt the material at a certain time, and the material is collected in the melting container at the bottom.
On the other hand, a chloride trap may be installed at a suitable location to collect and remove MgC+2 and NaC1 generated during melting, or an electron beam irradiation area for dissolving raw materials surrounded by the wall material may be used. If it is connected to a separate vacuum exhaust system and sucked in, and MgCl2 and NaCl are sucked out of the system, other 1! '! Problem I can also be prevented as much as possible.

[作用] スポンジ状活性金属を溶解する際に生ずるスプラッシュ
現象が当該金属中に含まれる塩化物に起因するものであ
ることは先に説[JI した通りであるが1本発明者等
はこうしたスプラッシュ現象に伴う溶湯の飛散状況や歩
留り低下等を定量的に把握すべく次の様な実験を行なっ
た。
[Function] It was previously explained that the splash phenomenon that occurs when a sponge-like active metal is dissolved is caused by the chloride contained in the metal. The following experiments were conducted to quantitatively understand the molten metal scattering situation and yield reduction caused by the phenomenon.

まず第6図(概略説明図、図中1はシールドケース、2
は電子ビーム照射装置、3は原料供給ホッパー、4は原
料溶解用容器、5は真空刊気系統、Bは電子ビーム、G
はスポンジ状活性金属、Mは金属溶湯を夫々示す)に示
す様な設備を用い、残留塩化物量の異なる数種類のスポ
ンジTiを使用した場合における溶融金属の歩留りを調
べた。結果は第7図に示す通りであり、スポンジTi中
の残留塩化物itr (ppm )と歩留り(%)とは
明らかに反比例の関係を有しており、残留塩化物量が増
加するにつれて歩留りは急激に低下してくる。従って歩
留りを高める為にはスポンジ状活性金属中の残留塩化物
量を少なくすればよい訳であるが、前述の如くスポンジ
状活性金属中の残留塩化物ら1を1ooo〜2000p
pm以下にまで低減することは非常に困難であるので、
相当量の塩化物を含むスポンジ状活性金属を使用した場
合〒も高歩留りを確保することのできる技術を開発する
必要がある0次にスプラッシュ現象によって生ずる溶湯
め飛散状況をFJJ確にする為、第8図(概略説明図、
図中1〜5.B、G、Mは前記と同じ意味、6は円筒形
金網を示す)に示す様な装置を使用してスポンジTiの
電子ビーム溶解を行ない、スプラッシュ現象に伴う金属
飛散量の高さ方向の分布を調べたところ、第9図に示す
結果が得られた。この図からも明らかな様に、溶融金属
の飛散付着量は原料溶解用容器4の上面位置で最も多く
、上方に行くに従って減少していることが分かる。また
この図によると、水冷容器4の内径に対応する高さを超
える位置では、飛散金属の付着は殆んど見られなくなる
First, Figure 6 (schematic explanatory diagram, 1 is the shield case, 2
3 is an electron beam irradiation device, 3 is a raw material supply hopper, 4 is a container for dissolving raw materials, 5 is a vacuum pumping system, B is an electron beam, G is
The yield of molten metal was investigated when several types of Ti sponges with different amounts of residual chloride were used using the equipment shown in (1) and (M), respectively, a sponge-like active metal and a molten metal. The results are shown in Figure 7, and there is clearly an inverse relationship between the residual chloride itr (ppm) in the Ti sponge and the yield (%), and as the amount of residual chloride increases, the yield rapidly increases. decreases to . Therefore, in order to increase the yield, it is sufficient to reduce the amount of residual chloride in the sponge-like active metal, but as mentioned above, the residual chloride in the sponge-like active metal can be
It is very difficult to reduce it to below pm, so
It is necessary to develop a technology that can ensure a high yield even when a sponge-like active metal containing a considerable amount of chloride is used. Figure 8 (schematic explanatory diagram,
1 to 5 in the figure. B, G, and M have the same meanings as above, and 6 indicates a cylindrical wire mesh). Electron beam melting of Ti sponge was carried out, and the distribution of the amount of metal scattering in the height direction due to the splash phenomenon was performed. When investigated, the results shown in Figure 9 were obtained. As is clear from this figure, the amount of molten metal scattered and deposited is greatest at the upper surface of the raw material melting container 4, and decreases as it goes upward. Further, according to this figure, at a position exceeding the height corresponding to the inner diameter of the water-cooled container 4, hardly any scattered metal is observed.

これらの結果からも明らかな様に、スプラー。As is clear from these results, splatter.

シュ現象に伴う溶融金属の飛散は、電子ビームの照射さ
れる金属溶解用容器4の上方部に、電子ビーム照射領域
を囲繞する如く飛散防止壁を設けることによって防止す
ることが可能である。但しそれだけでは、シールドケー
ス内部での溶融金属の飛散が防止されるだけで、歩留り
向上には直結しない、そこで本発明では上記飛散防止壁
を耐熱性壁材によって構成し、該壁材に付着した金属に
対し定期若しくは不定期に電子ビームを照射し、邑該金
属を下部の水冷容器4内へ流下させて回収することによ
って金属歩留りの向上を図ろうとするものであり、現に
こうした構成を採用することによってスポンジ状活性金
属の溶製歩留りを約5%高めることができる。即ち第1
図に示す如く水冷構造の原料溶解用容器4の開口部上方
に耐熱性壁材を構成する水冷銅板7を立設して(その他
の符号は第6,8図と同じ)スポンジTi(塩化物量:
約101000ppの電子ビーム溶解を行ない、水冷銅
板7に付着したTiを電子ビームで定期的に溶融回収し
たところ、TIの溶解歩留りは88.5%と非常に高い
値が得られ、水冷銅板7なしの実験で得た溶解歩留り(
94,1%)に対し4.4%も向上することが確認され
た。殊にTiやZrの様な活性金属は非常に高価であり
、溶解歩留りの向」−がたとえ数%といえどもその経済
的利益はすこぶる大きい、従ってこの様にして溶解した
活性金属溶湯を例えば後記実施例に示す如く順次水冷鋳
型へ流入し、鋳片引抜装置を用いて連続的に引抜く様に
すれば、溶解から鋳造に亘る一連の工程を円滑に遂行す
ることができる。尚上記では活性金属溶解用の容器とし
て水冷容器を用いたが、溶湯熱と電子ビーム照射に酎え
る耐熱性を有するものであれば水冷容器の他セラミック
ス容器等を使用することも勿論可能である。また耐熱性
壁材に付着した活性金属は、前述の如く電子ビーム照射
により再溶融させて容器に戻されるが、このときの熱源
は金属溶解用として用いられる電子ビーム照射装置をそ
のまま利用し、電子ビームの照射方向を変えて耐熱性壁
材の表面に沿って走査させればよい。
The scattering of the molten metal due to the flash phenomenon can be prevented by providing a scattering prevention wall above the metal melting container 4, which is irradiated with the electron beam, so as to surround the electron beam irradiation area. However, this alone only prevents the molten metal from scattering inside the shield case, but does not directly lead to an improvement in yield. Therefore, in the present invention, the above-mentioned scattering prevention wall is constituted by a heat-resistant wall material, and the molten metal that adheres to the wall material is The purpose is to improve the metal yield by irradiating metal with an electron beam periodically or irregularly, allowing the metal to flow down into the water-cooled container 4 at the bottom and collecting it, and this configuration is currently being adopted. By doing so, the yield of sponge-like active metal melting can be increased by about 5%. That is, the first
As shown in the figure, a water-cooled copper plate 7 constituting a heat-resistant wall material was erected above the opening of the raw material dissolving container 4 having a water-cooled structure (other symbols are the same as in Figures 6 and 8). :
When approximately 101,000 pp of electron beam melting was performed and the Ti adhering to the water-cooled copper plate 7 was periodically melted and recovered using the electron beam, a very high TI melting yield of 88.5% was obtained, indicating that no water-cooled copper plate 7 was used. The dissolution yield obtained in the experiment (
94.1%) was confirmed to be improved by 4.4%. In particular, active metals such as Ti and Zr are very expensive, and even if the melting yield is only a few percent, the economic benefit is extremely large. As shown in the examples below, if the slab is sequentially introduced into a water-cooled mold and continuously pulled out using a slab drawing device, a series of steps from melting to casting can be carried out smoothly. In the above, a water-cooled container was used as the container for dissolving the active metal, but it is of course possible to use a ceramic container other than the water-cooled container as long as it has heat resistance that can withstand the heat of the molten metal and electron beam irradiation. . In addition, the active metal adhering to the heat-resistant wall material is remelted by electron beam irradiation and returned to the container as described above, but the heat source at this time is the same as the electron beam irradiation equipment used for metal melting. What is necessary is to change the irradiation direction of the beam and scan it along the surface of the heat-resistant wall material.

[実施例] 第2図は上記の様な耐熱性壁材立設による歩留り向上効
果を、電子ビーム溶解・Pl造装ことして具体的に活用
し得る様にしたものであり、第1図においてlはシール
ドケース、2a、2bは゛電子ビーム照射装置、3は原
料供給ホッパー、4は水冷容器、5は真空排気系統、7
は水冷構造の耐熱性金属壁、8は水冷鋳型、9は鋳片引
抜装置、Bは電子ビーム、Gはスポンジ状活性金属、M
は金属溶湯、■は鋳片を夫々示し、スポンジ状活性金属
Gを水冷容器4内へ連続的に供給しつつ電子ビームBを
照射して溶解し、溶融金&!Mは水冷容器4の他端から
水冷鋳型8へ送って順次冷却凝固させ、鋳片引抜装置1
119により連続的に引抜いて行く、このとき、図示す
る如くスポンジ状活性金属溶解用電子ビーム照射装置2
aからの電子ビーム照射領域を囲繞する如く水冷容器4
の上部V水冷金属壁7を立設し、スポンジ状活性金属溶
解時のスプラッシュ現象によって飛散する溶融金属を該
水冷金属壁7によって捕集し、且つ捕集された該金属に
定期的に電子ビームを照射することによりこれを溶融し
て下部の水冷容器4へ流下させることによって、飛散に
よる活性金属のロスを防1ヒシ得る様に構成している。
[Example] Figure 2 shows how the yield improvement effect of installing heat-resistant wall materials as described above can be specifically utilized by electron beam melting and PL construction. 1 is a shield case, 2a and 2b are electron beam irradiation devices, 3 is a raw material supply hopper, 4 is a water cooling container, 5 is a vacuum exhaust system, 7
is a heat-resistant metal wall with a water-cooled structure, 8 is a water-cooled mold, 9 is a slab drawing device, B is an electron beam, G is a sponge-like active metal, M
indicates molten metal and ■ indicates slab, respectively. Sponge-like active metal G is continuously supplied into water-cooled container 4 and irradiated with electron beam B to melt the molten metal &! M is sent from the other end of the water-cooled container 4 to the water-cooled mold 8, where it is sequentially cooled and solidified.
119, and at this time, as shown in the figure, the electron beam irradiation device 2 for melting the sponge-like active metal
A water-cooled container 4 surrounds the electron beam irradiation area from a.
A water-cooled metal wall 7 is erected in the upper part of the V, and the molten metal scattered by the splash phenomenon when the sponge-like active metal is melted is collected by the water-cooled metal wall 7, and the collected metal is periodically exposed to an electron beam. The active metal is irradiated to melt it and flow down into the water-cooled container 4 at the bottom, thereby preventing loss of active metal due to scattering.

溶融された活性金属Mは容器4の他端に設けた溢流口4
aから水冷鋳型8へ流し込み、該水冷鋳型8で順次凝固
する鋳片Iはその下部に設けた鋳片引抜装置9により連
続的若しくは間欠的に引抜かれて行く、尚電子ビーム照
射装置2bから照射される電子ビームは、水冷容器4内
及び水冷pI型8表層部の活性金属Mを保熱し、活性金
属Mの円滑な流れを保障する役割りを果たすが、この時
点ではもはやスプラッシュ現象を起こすことはないので
、水冷金属壁等を配設する必要はない。
The molten active metal M flows through an overflow port 4 provided at the other end of the container 4.
The slab I is poured into a water-cooled mold 8 from a to the water-cooled mold 8 and solidified in the water-cooled mold 8 in sequence.The slab I is continuously or intermittently pulled out by a slab drawing device 9 provided at the bottom of the slab I, and is irradiated by an electron beam irradiation device 2b. The electron beam generated plays the role of retaining heat of the active metal M in the water-cooled container 4 and the surface layer of the water-cooled pI type 8, and ensures a smooth flow of the active metal M, but at this point it no longer causes a splash phenomenon. There is no need to install water-cooled metal walls, etc.

尚第2図に示した11は、水冷金属壁7の上方開口部に
必要により設けられる塩化物除去用トラップを示す、即
ちスプラッシュ現象がスポンジ状活性金属中に残留して
いる塩化物(MgC1?やNaC1)の蒸発によって発
生することは先に述べた通りであるが、これらの塩化物
はシールドケースlの内壁に付着して高真空引きを阻害
したり、或は真空排気系統の油拡散ポンプやロータリー
ポンプ等のオイルを汚染するといった多くのトラブルを
引き起こす、殊にMgCl2は吸湿性が高いので、操業
中断時にケーシング内を大気に曝らすと急速に吸湿し、
操業再開時の真空引きを著しく阻害する。こうした塩化
物刺着による問題を回避する為本例では1図示する如く
水冷金&I壁7で囲繞された上方開口部に塩化物捕集用
トラップ11を配設し、塩化物を吸着除去し得るように
構成している。
Reference numeral 11 shown in FIG. 2 indicates a trap for removing chloride, which is provided as necessary in the upper opening of the water-cooled metal wall 7. In other words, the splash phenomenon causes the chloride (MgC1? As mentioned above, these chlorides are generated by the evaporation of chlorides and NaCl1), but these chlorides can adhere to the inner wall of the shield case l and obstruct high vacuuming, or cause damage to the oil diffusion pump in the vacuum exhaust system. In particular, MgCl2 is highly hygroscopic, so if the inside of the casing is exposed to the atmosphere during interruptions in operation, it will rapidly absorb moisture.
This will significantly impede vacuuming when restarting operations. In order to avoid such problems caused by chloride adhesion, in this example, as shown in Figure 1, a chloride trap 11 is disposed in the upper opening surrounded by the water-cooled gold & I wall 7, and the chloride can be adsorbed and removed. It is configured as follows.

第3図は本発明の他の実施例を示す概略断面図であり、
本質的な構成は第2図の′例と同じである。但し本例で
は水冷容器4とpI型8の間に溶融金属1佇留容器10
を設け、水冷容器4で溶融した活性全屈溶湯を一旦該貯
留容器10に受けた後注入口10aから鋳型8へ流し込
む様にしている。
FIG. 3 is a schematic sectional view showing another embodiment of the present invention,
The essential configuration is the same as the example '' in FIG. However, in this example, the molten metal 1 holding container 10 is placed between the water-cooled container 4 and the pI type 8.
is provided so that the activated fully molten metal melted in the water-cooled container 4 is once received in the storage container 10 and then poured into the mold 8 through the injection port 10a.

電子ビーム照射!:装置2b、2cは夫々溶湯M保熱用
として使用される。尚第2.3図では溶湯注入口4a(
又は10a)に対し1つの水冷鋳型8を配設し1本の鋳
片Iを製造する例を示したが、必要によっては溶湯注入
口4a(又は10a)を複数箇所に設けて複数の水冷鋳
型へ注入できる様にし、複数本の鋳片を並行して製造し
得る様にすることも可能である。
Electron beam irradiation! :The devices 2b and 2c are used for heat retention of the molten metal M, respectively. In Fig. 2.3, the molten metal inlet 4a (
10a), an example is shown in which one water-cooled mold 8 is provided to produce one slab I, but if necessary, molten metal injection ports 4a (or 10a) may be provided at multiple locations to produce multiple water-cooled molds. It is also possible to manufacture a plurality of slabs in parallel.

第4,5図は本発明の更に他の実施例を示す概略断面説
明図であり、スポンジ状活性金属の電子ビーム溶解工程
で発生する塩化物の除去方式に変更が加えられている他
は第2.3図の例と実質的に同じである。即ちこれらの
例では、水冷容器4上に立設される水冷金属壁7により
りし子ビーム加熱溶融領域を側鎖すると共に、上方適所
に排気ライン12を接続して脱塩化物専用の真空排気系
統13に連結し、スポンジ状活性金属の溶融工程で生ず
る塩化物を順次系外へ排出し得る様にgJ成している0
図中14は塩化物除去用のトラップを示し、真空排気系
統13が塩化物により汚染されるの防止する為に配設さ
れている。この場合トラップ14をカセットタイプの着
脱可能なものとしておけば塩化物の吸着量が飽和した時
点での交換作業を簡単に行なうことができるので好まし
い、尚上記実施例では本発明の特徴をスポンジ状活性金
属を用いた溶解・鋳造法として活用する例を示したが、
木発すjはあくまでもスポンジ状活性金属を含む原料の
溶解時に生ずるスプラッシュ現象に伴う歩留り低下を防
+hするところに特徴を有するものであるから、この種
の活性金属の中なる溶解乃至溶製法として、或はバッチ
式鋳造法若しくはその他の溶湯処理法と組合せて実用化
することも勿論可能であり、それらはすべて本発明の範
囲に含まれる。
4 and 5 are schematic cross-sectional explanatory views showing still other embodiments of the present invention, except that the method for removing chlorides generated in the electron beam melting process of sponge-like active metals has been changed. This is substantially the same as the example in Figure 2.3. That is, in these examples, the Rishiko beam heating and melting region is side-chained by the water-cooled metal wall 7 installed on the water-cooled container 4, and an exhaust line 12 is connected to an appropriate position above to provide a vacuum exclusively for dechlorination. It is connected to system 13 and has a gJ system so that the chlorides generated in the process of melting the active metal in the form of a sponge can be sequentially discharged from the system.
In the figure, reference numeral 14 indicates a trap for removing chlorides, which is provided to prevent the vacuum exhaust system 13 from being contaminated with chlorides. In this case, it is preferable to make the trap 14 a removable cassette type trap because it can be replaced easily when the amount of chloride adsorbed is saturated. Although we showed an example of using it as a melting/casting method using metal,
Kizawa J is characterized by its ability to prevent a drop in yield due to the splash phenomenon that occurs when a raw material containing a sponge-like active metal is melted. Alternatively, it is of course possible to put it into practical use in combination with a batch casting method or other molten metal processing methods, and all of these are included within the scope of the present invention.

[発明の効果] 本発明は以上の様に構成されているので、スポンジ状活
性金属を含む原料の溶解工程で生じるスプラッシュ現象
による歩留り低下をはじめとする種々の問題を一挙に解
消し得ることになった。
[Effects of the Invention] Since the present invention is configured as described above, various problems such as a decrease in yield due to the splash phenomenon that occurs during the melting process of raw materials containing sponge-like active metals can be solved at once. became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的な実施例を示す概略断面説明図
、第2〜5図は本発明を連続朽造法と組合せて具体化し
た場合の実施例を示す概略断面説明図、第6.8図は予
備実験法を示す説明図、第7図はスポンジTi中の残留
塩化物r@髪と溶解時の歩留りの関係を示すグラフ、第
9図は金属溶解用容器上に立設した金網の高さ方向位と
と金属付着;Ij、の関係を示すグラフである。 1:シールドケース 2:電子ビーム照射装置 3:原料供給ホッパー
FIG. 1 is a schematic cross-sectional explanatory diagram showing a basic embodiment of the present invention, and FIGS. Figure 6.8 is an explanatory diagram showing the preliminary experimental method, Figure 7 is a graph showing the relationship between residual chloride r@hair in sponge Ti and the yield during dissolution, and Figure 9 is a graph showing the relationship between the residual chloride r@hair in sponge Ti and the yield during dissolution. It is a graph showing the relationship between the height direction of the wire mesh and metal adhesion; Ij. 1: Shield case 2: Electron beam irradiation device 3: Raw material supply hopper

Claims (1)

【特許請求の範囲】[Claims] スポンジ状活性金属を含む原料を溶解するに当たり、原
料溶解容器の電子ビーム照射領域を囲繞する如く耐熱性
壁材を立設し、原料溶解時に飛散する溶滴を上記壁材に
より捕集すると共に、該壁材に付着し凝固した金属に電
子ビームを照射して流下させ前記容器内へ回収すること
を特徴とするスポンジ状活性金属を含む原料の電子ビー
ム溶解方法。
When melting a raw material containing a sponge-like active metal, a heat-resistant wall material is erected to surround the electron beam irradiation area of the raw material melting container, and droplets scattered during the raw material melting are collected by the wall material, A method for electron beam melting of raw material containing a sponge-like active metal, characterized in that the metal solidified adhering to the wall material is irradiated with an electron beam, allowed to flow down, and collected into the container.
JP21872185A 1985-09-30 1985-09-30 Electronic beam melting method Expired - Lifetime JPH0717969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21872185A JPH0717969B2 (en) 1985-09-30 1985-09-30 Electronic beam melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21872185A JPH0717969B2 (en) 1985-09-30 1985-09-30 Electronic beam melting method

Publications (2)

Publication Number Publication Date
JPS6277429A true JPS6277429A (en) 1987-04-09
JPH0717969B2 JPH0717969B2 (en) 1995-03-01

Family

ID=16724395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21872185A Expired - Lifetime JPH0717969B2 (en) 1985-09-30 1985-09-30 Electronic beam melting method

Country Status (1)

Country Link
JP (1) JPH0717969B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068140A1 (en) * 2008-12-10 2010-06-17 Volkov Anatoliy Evgenevich Method and apparatus for electron-beam or plasma-jet melting of metal from a crystallizer into a crystallizer
RU2598020C2 (en) * 2012-02-08 2016-09-20 Общество с ограниченной ответственностью "Научно-производственная фирма "Рутений" Method and device for production of laminated ingots
RU2612867C2 (en) * 2012-02-15 2017-03-13 Общество с ограниченной ответственностью "Научно-производственная фирма "Рутений" Method of melting highly reactive metals and alloys based thereon and device therefor
RU2630138C2 (en) * 2012-12-27 2017-09-05 Общество с ограниченной ответственностью "Научно-производственная фирма "Рутений" Melting method of reactive metals and alloys on its basis
RU2660784C2 (en) * 2014-01-09 2018-07-09 Анатолий Евгеньевич Волков Device for vacuum melting of refractory and reactive metals
WO2021171743A1 (en) * 2020-02-27 2021-09-02 東邦チタニウム株式会社 Method for analyzing oxygen concentration of sponge titanium

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010068140A1 (en) * 2008-12-10 2010-06-17 Volkov Anatoliy Evgenevich Method and apparatus for electron-beam or plasma-jet melting of metal from a crystallizer into a crystallizer
RU2598020C2 (en) * 2012-02-08 2016-09-20 Общество с ограниченной ответственностью "Научно-производственная фирма "Рутений" Method and device for production of laminated ingots
RU2612867C2 (en) * 2012-02-15 2017-03-13 Общество с ограниченной ответственностью "Научно-производственная фирма "Рутений" Method of melting highly reactive metals and alloys based thereon and device therefor
RU2630138C2 (en) * 2012-12-27 2017-09-05 Общество с ограниченной ответственностью "Научно-производственная фирма "Рутений" Melting method of reactive metals and alloys on its basis
RU2660784C2 (en) * 2014-01-09 2018-07-09 Анатолий Евгеньевич Волков Device for vacuum melting of refractory and reactive metals
WO2021171743A1 (en) * 2020-02-27 2021-09-02 東邦チタニウム株式会社 Method for analyzing oxygen concentration of sponge titanium
JP2021135198A (en) * 2020-02-27 2021-09-13 東邦チタニウム株式会社 Method for analyzing oxygen concentration of titanium sponge
JP2021135302A (en) * 2020-02-27 2021-09-13 東邦チタニウム株式会社 Method for analyzing oxygen concentration of titanium sponge

Also Published As

Publication number Publication date
JPH0717969B2 (en) 1995-03-01

Similar Documents

Publication Publication Date Title
US5972282A (en) Straight hearth furnace for titanium refining
US3343828A (en) High vacuum furnace
WO2010068140A1 (en) Method and apparatus for electron-beam or plasma-jet melting of metal from a crystallizer into a crystallizer
JP3537798B2 (en) Electron beam melting method for metallic materials
JPH07309614A (en) Method for purifying silicon
JPS6277429A (en) Electron beam melting method
JP2021091922A (en) Vapor deposition material and method for manufacturing the same
JP2008190024A (en) Method for producing titanium sponge
JPS62156233A (en) Electron beam melting method
US2763542A (en) Method of producing refractory metals
JP2001335854A (en) Apparatus and method for refining high purity metal
JPS6277427A (en) Electron beam melting and casting apparatus
JPH06504325A (en) Vacuum processing of particulate reactive metals
JPH07315827A (en) Method for purifying silicon and purifying device therefor
JPS6277430A (en) Electron beam melting and casting apparatus
JP3759933B2 (en) Electron beam melting method for refractory metals
JPS6277428A (en) Electron beam melting method for material containing spongy active metal
JP3464380B2 (en) Continuous vacuum purification method and device for aluminum alloy scrap
JP4261328B2 (en) Molten metal chloride electrolyzer
JP4906209B2 (en) Purification hearth
JPH11242098A (en) Device and method for melting and ingot-making
JPH0925522A (en) Production of high purity metallic material
US3660074A (en) Method for treating titanium scrap
JPH0622533Y2 (en) Vacuum melting device
JP4299117B2 (en) Method for electrolysis of molten metal chloride