JP2021091922A - Vapor deposition material and method for manufacturing the same - Google Patents

Vapor deposition material and method for manufacturing the same Download PDF

Info

Publication number
JP2021091922A
JP2021091922A JP2019221188A JP2019221188A JP2021091922A JP 2021091922 A JP2021091922 A JP 2021091922A JP 2019221188 A JP2019221188 A JP 2019221188A JP 2019221188 A JP2019221188 A JP 2019221188A JP 2021091922 A JP2021091922 A JP 2021091922A
Authority
JP
Japan
Prior art keywords
vapor deposition
wtppm
content
crucible
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019221188A
Other languages
Japanese (ja)
Other versions
JP7175456B2 (en
Inventor
英士 高田
Eiji Takada
英士 高田
孝博 小林
Takahiro Kobayashi
孝博 小林
幸健 仲野
Yukitake NAKANO
幸健 仲野
秀司 中越
Shuji Nakakoshi
秀司 中越
達也 塩田
Tatsuya Shioda
達也 塩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda Sangyo Co Ltd
Yamakin Co Ltd
Original Assignee
Matsuda Sangyo Co Ltd
Yamakin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda Sangyo Co Ltd, Yamakin Co Ltd filed Critical Matsuda Sangyo Co Ltd
Priority to JP2019221188A priority Critical patent/JP7175456B2/en
Priority to PCT/JP2020/028192 priority patent/WO2021020223A1/en
Priority to TW109125827A priority patent/TW202122610A/en
Publication of JP2021091922A publication Critical patent/JP2021091922A/en
Application granted granted Critical
Publication of JP7175456B2 publication Critical patent/JP7175456B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

To provide a vapor deposition material used in a vacuum evaporation method and capable of suppressing a bumping phenomenon when melting the vapor deposition material, and a method for manufacturing the same.SOLUTION: A vapor deposition member has a hydrogen content of 10 wt ppm or less in the vapor deposition member. A method for manufacturing the vapor deposition member comprises: melting and casting a raw material to form an ingot and draw the ingot to prepare a vapor deposition material or melting the raw material to subject the molten material to shooting and prepare the vapor deposition material; and cleaning the surface layer part of the vapor deposition material after drawing or shooting.SELECTED DRAWING: None

Description

本発明は、真空蒸着法で用いられる蒸着材料及びその製造方法に関する。 The present invention relates to a vapor deposition material used in a vacuum vapor deposition method and a method for producing the same.

真空蒸着法とは、成膜技術の一つであり、真空中で蒸発材料を加熱して、気体分子となった蒸着材料が基板に付着することによって薄膜を形成する技術である。真空蒸着法は、電子部品、半導体デバイス、光学薄膜、磁気デバイス、LED、有機EL、LCD等における素子の形成に広く利用されている。また、真空蒸着法は、金属だけでなく、酸化物等の非金属の成膜も可能である。 The vacuum vapor deposition method is one of the film forming techniques, and is a technique of heating an evaporative material in a vacuum and forming a thin film by adhering the vaporized material which has become gas molecules to a substrate. The vacuum vapor deposition method is widely used for forming elements in electronic components, semiconductor devices, optical thin films, magnetic devices, LEDs, organic ELs, LCDs and the like. In addition, the vacuum vapor deposition method can form not only metals but also non-metals such as oxides.

従来、蒸着材料を坩堝に充填し、電子ビーム等を用いて溶解する際、蒸発材料に含まれる不純物等が揮発して、突沸現象が発生し、基板上にパーティクルが付着するという問題が生じていた。この突沸現象の問題に関して、特許文献1には、不純物を低減する方法が提案されている。また、特許文献2には、添加金属を添加する方法が、さらに、特許文献3は、最表面の酸素量を制御する方法が提案されている。 Conventionally, when a vaporized material is filled in a crucible and melted by using an electron beam or the like, impurities contained in the evaporated material volatilize, a bumping phenomenon occurs, and particles adhere to the substrate. It was. Regarding the problem of this bumping phenomenon, Patent Document 1 proposes a method for reducing impurities. Further, Patent Document 2 proposes a method of adding an additive metal, and Patent Document 3 proposes a method of controlling the amount of oxygen on the outermost surface.

特開平1−180961号公報Japanese Unexamined Patent Publication No. 1-180961 国際公開第2017/199873号International Publication No. 2017/199873 特開2000−212728号公報Japanese Unexamined Patent Publication No. 2000-21728

本発明は、真空蒸着法で用いる蒸着材料であって、蒸着材料の溶解の際に突沸現象を抑制することができる蒸着材料及びその製造方法を提供することを課題とする。 An object of the present invention is to provide a thin-film deposition material used in a vacuum vapor deposition method, which can suppress a bumping phenomenon when the vapor-filmed material is melted, and a method for producing the same.

上記課題を解決することができる本発明の実施形態は、真空蒸着法で用いられる蒸着材料であって、水素含有量が10wtppm以下であることを特徴特する蒸着材料及びその製造方法である。 An embodiment of the present invention capable of solving the above problems is a thin-film deposition material used in a vacuum vapor deposition method, characterized in that the hydrogen content is 10 wtppm or less, and a method for producing the same.

本発明によれば、蒸着材料の溶解の際に、突沸現象を効果的に抑制することができ、これにより基板上に付着するパーティクルを低減することができる。したがって、製品の歩留まり改善に寄与することができる。 According to the present invention, when the vapor-deposited material is melted, the bumping phenomenon can be effectively suppressed, whereby the particles adhering to the substrate can be reduced. Therefore, it can contribute to the improvement of the yield of the product.

真空蒸着法で用いられる蒸着材料は、通常、原料をアルミナ等のセラミック坩堝やカーボン坩堝等で溶解し、溶湯を鋳型に流し込んでインゴットを作製し、得られたインゴットを適当な形状(ペレット状)に機械加工した後、表面を酸や有機溶媒で洗浄して、作製する。原料として、純度3N(99.9wt%)以上のものを使用し、また、機械加工後は、表面を化学的に洗浄して、付着物を除去する。 In the vapor deposition material used in the vacuum vapor deposition method, the raw material is usually melted in a ceramic crucible such as alumina or a carbon crucible, and the molten metal is poured into a mold to prepare an ingot, and the obtained ingot is formed into an appropriate shape (pellet shape). After machining into a crucible, the surface is washed with an acid or an organic solvent to prepare the crucible. As a raw material, a material having a purity of 3N (99.9 wt%) or higher is used, and after machining, the surface is chemically washed to remove deposits.

ところが、このように純度が高い原料を使用し、洗浄された蒸着材料を用いた場合であっても、蒸着(溶解)時に、突沸現象が発生して、基板上にパーティクルが多く発生して、製品歩留まりを低下させるという問題が生じていた。また、突沸により、装置や坩堝内を汚染して、装置洗浄の頻度が増加するという問題が発生した。このような問題について検討したところ、溶解時に、蒸着材料の表面に非金属介在物が浮遊し、それが原因で突沸現象を生じさせていることが判明した。 However, even when such a high-purity raw material is used and a washed vapor deposition material is used, a bumping phenomenon occurs at the time of vapor deposition (melting), and many particles are generated on the substrate. There was a problem of lowering the product yield. In addition, bumping contaminates the equipment and the inside of the crucible, resulting in an increase in the frequency of cleaning the equipment. As a result of examining such a problem, it was found that non-metal inclusions floated on the surface of the vapor-deposited material at the time of melting, which caused a bumping phenomenon.

そこで、本発明者は鋭意研究したところ、蒸着材料中に不純物として存在する非金属介在物、特に、水素が突沸を発生させる原因となっていることを見出した。このようなことから、不純物の中でも特に水素を極力低減することにより、蒸着材料の溶解時、非金属介在物に起因する突沸現象を抑制することができるとの知見が得られた。この知見に基づき、本発明の実施の形態に係る蒸着材料は、蒸着材料中に存在する水素の合有量が10wtppm以下であることを特徴とするものである。 Therefore, as a result of diligent research, the present inventor has found that non-metallic inclusions present as impurities in the vapor-deposited material, particularly hydrogen, are the cause of bumping. From these facts, it was found that by reducing hydrogen as much as possible among impurities, bumping phenomenon caused by non-metal inclusions can be suppressed when the vapor-deposited material is dissolved. Based on this finding, the vapor-deposited material according to the embodiment of the present invention is characterized in that the total amount of hydrogen present in the vapor-deposited material is 10 wtppm or less.

蒸着材料中に不純物として存在する水素の含有量を10wtppm以下とすることにより、蒸着材料の溶解時に起因する突沸現象を効果的に抑制することができる。またカーボン(C)、酸素(O)、さらには、燐(P)及び硫黄(S)も非金属介在物を形成し易いことから、C含有量を10wtppm以下、O含有量を100wtppm以下、P及びSの合計含有量を10wtppm以下とすることが好ましい。これらの元素は、固溶することもあるが、溶解時に解離して突沸の原因となる。非金属介在物は、蒸着材料(金属材料)に比べて比重が軽く、また解離しやすいため、蒸着材料の溶解時に突発現象の原因となる。したがって、このような非金属介在物を意識的に排除することが重要である。 By setting the content of hydrogen present as an impurity in the vapor-deposited material to 10 wtppm or less, the bumping phenomenon caused by the dissolution of the vapor-deposited material can be effectively suppressed. Further, since carbon (C), oxygen (O), and phosphorus (P) and sulfur (S) also easily form non-metal inclusions, the C content is 10 wtppm or less, the O content is 100 wtppm or less, and P. The total content of and S is preferably 10 wtppm or less. These elements may dissolve in solid solution, but dissociate during dissolution and cause bumping. Non-metal inclusions have a lighter specific gravity than the vapor-deposited material (metal material) and are easily dissociated, which causes a sudden phenomenon when the vapor-deposited material is dissolved. Therefore, it is important to consciously eliminate such non-metallic inclusions.

本実施形態に係る蒸着材料は、主に貴金属材料、特にAu、Ag、Pt、Pdに適用することが好ましく、また、これらとGe、Si、Sn、As、Sbとの合金(例えば、Au−Sn、Au−Ge)にも適用できる。これらの材料は電子部品、半導体デバイス、光学薄膜、磁気デバイス、LED、有機EL、LCD等において、比較的広く使用されている材料である。特に貴金属材料は高価なため、突沸現象による不必要な飛散を防止することで、コスト的なメリットを享受することができる。 The vapor-deposited material according to the present embodiment is preferably applied mainly to precious metal materials, particularly Au, Ag, Pt, and Pd, and alloys of these with Ge, Si, Sn, As, and Sb (for example, Au-). It can also be applied to Sn, Au-Ge). These materials are relatively widely used in electronic components, semiconductor devices, optical thin films, magnetic devices, LEDs, organic ELs, LCDs and the like. In particular, since precious metal materials are expensive, cost advantages can be enjoyed by preventing unnecessary scattering due to the bumping phenomenon.

本実施形態に係る蒸着材料は、純度が3N(99.9wt%)以上であることが好ましく、より好ましくは4N (99.99wt%)以上である。不純物量を低減することにより、それに伴う突沸現象を抑制することができる。しかし、原料として、いわゆる高純度のものを使用しても、その純度の計算において、非金属介在物を形成し易いガス成分の水素、カーボン、酸素、硫黄、リンを不純物として考慮していない場合があり、また、製造工程でもこれらの不純物が混入することもあるので、高純度原料をそのまま蒸着材料として使用しても、突沸を防げることができるというものではない。また、水素、酸素は、溶解初期に金属から解離するために、カーボン、硫黄、リンは、蒸着中に溶融金属表面を覆い突沸が起きる原因となる。 The vapor-deposited material according to the present embodiment preferably has a purity of 3N (99.9 wt%) or more, more preferably 4N (99.99 wt%) or more. By reducing the amount of impurities, the accompanying bumping phenomenon can be suppressed. However, even if a so-called high-purity raw material is used, hydrogen, carbon, oxygen, sulfur, and phosphorus, which are gas components that easily form non-metal inclusions, are not considered as impurities in the calculation of the purity. In addition, since these impurities may be mixed in the manufacturing process, it is not possible to prevent bumping even if the high-purity raw material is used as it is as a vapor deposition material. Further, since hydrogen and oxygen dissociate from the metal at the initial stage of melting, carbon, sulfur and phosphorus cover the surface of the molten metal during vapor deposition and cause bumping.

本実施形態に係る蒸着材料は、たとえば、以下のようにして作製することができる。
純度3N(99.9wt%)以上の金属原料を大気中、真空中又は不活性ガス雰囲気より好ましくは真空中で溶解し、これを鋳造してインゴットを作製する。ここで、溶解時に原料に含まれる非金属介在物は表面に浮遊するため、鋳造インゴットを観察して、非金属介在物が多く存在する表層部を酸洗浄又は切削除去する。表層部の除去量は、量にもよるが、1μm以上が好ましい。
The vapor-deposited material according to the present embodiment can be produced, for example, as follows.
A metal raw material having a purity of 3N (99.9 wt%) or higher is melted in the air, vacuum or preferably in a vacuum rather than an inert gas atmosphere, and this is cast to prepare an ingot. Here, since the non-metal inclusions contained in the raw material are suspended on the surface at the time of melting, the cast ingot is observed and the surface layer portion in which a large amount of non-metal inclusions is present is pickled or removed by acid cleaning or cutting. The amount of the surface layer removed depends on the amount, but is preferably 1 μm or more.

一方、溶解時に溶湯表面時に浮遊した非金属介在物を巻き込まないように、坩堝の底から鋳造し、全量出湯せずに一部を坩堝内に残す、あるいは最後の溶湯を除去することにより、酸洗浄又は切削除去が不要となる。また、坩堝を傾けて出湯する場合は、坩堝の上部に堰を設けたりして、非金属介在物等の異物を除去することができる。
このとき、坩堝内に残して使用しない溶湯の割合は、0.1wt%以上が好ましい。より好ましくは1wt%以上である。また、帯溶融精製等により、非金属介在物を浮遊除去することもできる。
On the other hand, the acid is formed by casting from the bottom of the crucible so as not to involve non-metal inclusions floating on the surface of the molten metal during melting, leaving a part in the crucible without discharging the entire amount, or removing the last molten metal. No cleaning or cutting removal is required. Further, when the crucible is tilted to discharge hot water, a weir may be provided at the upper part of the crucible to remove foreign substances such as non-metal inclusions.
At this time, the ratio of the molten metal left in the crucible and not used is preferably 0.1 wt% or more. More preferably, it is 1 wt% or more. In addition, non-metal inclusions can be suspended and removed by band melt purification or the like.

次に、非金属介在物を除去したインゴットを線引き(伸線)加工する。線引き加工の際、通常加工油を使用するが、加工油はカーボン等の汚染原因になることから、加工油は使用せずに所定の形状に線引き加工することが好ましい。また、線引き加工前後及び加工途中で熱処理(脱ガスや軟化処理)してもよい。熱処理の温度は材料にもよるが、通常100℃以上、融点以下の温度で行うことが好ましい。 Next, the ingot from which the non-metal inclusions have been removed is drawn (drawn). Normally, processing oil is used for the drawing process, but since the processing oil causes contamination of carbon and the like, it is preferable to draw the line into a predetermined shape without using the processing oil. In addition, heat treatment (degassing or softening treatment) may be performed before, after, and during the drawing process. The temperature of the heat treatment depends on the material, but is usually preferably 100 ° C. or higher and lower than the melting point.

ショット化する場合には、溶湯を坩堝の底から水中や有機溶媒中に落下させる。この場合も、最後の溶湯には非金属介在物等の異物が多く存在するため、製品中に入れないことが必要である。 When making a shot, the molten metal is dropped from the bottom of the crucible into water or an organic solvent. In this case as well, since many foreign substances such as non-metal inclusions are present in the final molten metal, it is necessary not to put them in the product.

線引き加工又はショット化後は、酸や有機溶媒等を用いて表面を洗浄して、表面に付着した異物等を除去することができる。但し、酸や有機溶媒を用いた場合、純水や揮発性成分で十分洗浄して、表面の酸化や残留カーボンが除去することが必要である。特に酸を用いると、水素が金属内に侵入したり非金属介在物を形成する場合があるので慎重に行うことが好ましい。 After the drawing process or the shot formation, the surface can be washed with an acid, an organic solvent, or the like to remove foreign substances and the like adhering to the surface. However, when an acid or an organic solvent is used, it is necessary to thoroughly wash with pure water or a volatile component to remove surface oxidation and residual carbon. In particular, when an acid is used, hydrogen may enter the metal or form non-metal inclusions, so it is preferable to use the acid carefully.

次に、本発明の実施例等について説明する。なお、以下の実施例は、あくまで代表的な例を示しているもので、本発明はこれらの実施例に制限される必要はなく、明細書の記載される技術思想の範囲で解釈されるべきものである。 Next, examples and the like of the present invention will be described. It should be noted that the following examples are merely representative examples, and the present invention need not be limited to these examples and should be interpreted within the scope of the technical idea described in the specification. It is a thing.

(実施例1)
純度4NのAu原料を、Cu坩堝を用いて、真空中でEB(電子ビーム)溶解して、インゴットを作製した。次に、得られたインゴットを観察し、非金属介在物が多い表層部を切削して除去した。その後、加工油を使用せずに線引き加工を行って、所定の形状に仕上げた。
この蒸着材料中のH含有量を不活性ガス溶融−ガスクロマトグラフ(LECO製)を用いて分析した結果、1wtppm未満であった。C含有量について、酸素気流中非拡散赤外吸収法(HORIBA製)を用いて分析した結果、1wtppm未満であった。また、O含有量を不活性ガス溶融−ガスクロマトグラフ(LECO製)を用いて分析した結果、10wtppm未満であった。さらに、S及びP含有量をGD−MS法で分析した結果、合計で1wtppm未満であった。なお、以下、H、C、O、S、及びPの含有量について、同様の手段を用いて分析を行った。
次に、この蒸着材料(Au)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は0個であり、非常に良好であった。
(Example 1)
An Au raw material having a purity of 4N was melted by EB (electron beam) in a vacuum using a Cu crucible to prepare an ingot. Next, the obtained ingot was observed, and the surface layer portion containing many non-metal inclusions was cut and removed. After that, a wire drawing process was performed without using processing oil to finish the shape into a predetermined shape.
The H content in the vapor-deposited material was analyzed using an inert gas molten-gas chromatograph (manufactured by LECO) and found to be less than 1 wtppm. The C content was less than 1 wtppm as a result of analysis using a non-diffusion infrared absorption method (manufactured by HORIBA) in an oxygen stream. Further, the O content was analyzed using an inert gas molten gas chromatograph (manufactured by LECO) and found to be less than 10 wtppm. Further, as a result of analyzing the S and P contents by the GD-MS method, the total content was less than 1 wtppm. Hereinafter, the contents of H, C, O, S, and P were analyzed by using the same means.
Next, this vapor deposition material (Au) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was 0, which was very good.

(実施例2)
純度4NのAu原料を、高純度カーボン坩堝を用いて、Ar雰囲気下で溶解し、インゴットを作製した。その後、加工油を使用せずに線引き加工を行って、所定の形状に仕上げた。
この蒸着材料中のH含有量を分析した結果、1wtppm未満であった。また、C含有量は8wtppm、O含有量は10wtppm未満であり、さらに、S及びPの合計含有量は3wtppmであった。次に、この蒸着材料(Au)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は数個であり、良好であった。
(Example 2)
An Au raw material having a purity of 4N was dissolved in an Ar atmosphere using a high-purity carbon crucible to prepare an ingot. After that, a wire drawing process was performed without using processing oil to finish the shape into a predetermined shape.
As a result of analyzing the H content in this thin-film deposition material, it was less than 1 wtppm. The C content was 8 wtppm, the O content was less than 10 wtppm, and the total content of S and P was 3 wtppm. Next, this vapor deposition material (Au) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several, which was good.

(実施例3)
純度3NのAu原料を、高純度アルミナ坩堝を用いて、大気溶解し、インゴットを作製した。坩堝内に1%ほどAuを残して鋳造した。次に、得られたインゴットを観察し、非金属介在物が多い表層部を切削除去した。その後、加工油を使用して線引き加工を行って、所定の形状に仕上げた。その後、希酸で洗浄後、アセトン洗浄して乾燥させた。
この蒸着材料中のH含有量を分析した結果、10wtppmであった。また、C含有量は2wtppm、O含有量は20wtppmであり、さらに、S及びPの合計含有量は8wtppmであった。次に、この蒸着材料(Au)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は数十個であり、やや良好であった。
(Example 3)
An Au raw material having a purity of 3N was dissolved in the atmosphere using a high-purity alumina crucible to prepare an ingot. Casting was performed leaving about 1% Au in the crucible. Next, the obtained ingot was observed, and the surface layer portion containing many non-metal inclusions was cut off. Then, a line drawing process was performed using processing oil to finish the shape into a predetermined shape. Then, after washing with dilute acid, it was washed with acetone and dried.
As a result of analyzing the H content in this thin-film deposition material, it was 10 wtppm. The C content was 2 wtppm, the O content was 20 wtppm, and the total content of S and P was 8 wtppm. Next, this vapor deposition material (Au) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several tens, which was somewhat good.

(実施例4)
純度4NのPt原料を、Cu坩堝を用いて、真空中でEB溶解し、インゴットを作製した。次に、得られたインゴットを観察し、非金属介在物が多い表層部を切削除去した。その後、1000℃で熱処理をしながら線引き加工を行って、所定の形状に仕上げた。その後、表面洗浄せず、そのまま蒸着材料とした。
この蒸着材料中のH含有量を分析した結果、1wtppm未満であった。また、C含有量は1wtppm未満、O含有量は10wtppm未満あった。さらに、S及びPの合計含有量は1wtppm未満であった。次に、この蒸着材料(Pt)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は0個であり、非常に良好であった。
(Example 4)
A Pt raw material having a purity of 4N was EB-dissolved in a vacuum using a Cu crucible to prepare an ingot. Next, the obtained ingot was observed, and the surface layer portion containing many non-metal inclusions was cut off. Then, a wire drawing process was performed while heat-treating at 1000 ° C. to finish the shape into a predetermined shape. After that, the surface was not cleaned and the vapor-deposited material was used as it was.
As a result of analyzing the H content in this thin-film deposition material, it was less than 1 wtppm. The C content was less than 1 wtppm and the O content was less than 10 wtppm. Furthermore, the total content of S and P was less than 1 wtppm. Next, this vapor deposition material (Pt) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and a bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was 0, which was very good.

(実施例5)
純度3NのPt原料を、市販品のカーボン坩堝を用いて、大気溶解し、インゴットを作製した。次に、得られたインゴットを観察し、非金属介在物が多い表層部を切削除去した。その後、1000℃で熱処理をしながら線引き加工を行って、所定の形状に仕上げた。その後、純水で洗浄乾燥後、蒸着材料とした。
この蒸着材料中のH含有量を分析した結果、6wtppmであった。また、C含有量は10wtppm、O含有量は70wtppmあった。さらに、S及びPの合計含有量は6wtppmであった。次に、この蒸着材料(Pt)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は数十個であり、やや良好であった。
(Example 5)
A Pt raw material having a purity of 3N was dissolved in the atmosphere using a commercially available carbon crucible to prepare an ingot. Next, the obtained ingot was observed, and the surface layer portion containing many non-metal inclusions was cut off. Then, a wire drawing process was performed while heat-treating at 1000 ° C. to finish the shape into a predetermined shape. Then, after washing and drying with pure water, it was used as a vapor deposition material.
As a result of analyzing the H content in this thin-film deposition material, it was 6 wtppm. The C content was 10 wtppm and the O content was 70 wtppm. Furthermore, the total content of S and P was 6 wtppm. Next, this vapor deposition material (Pt) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and a bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several tens, which was somewhat good.

(実施例6)
純度4NのPd原料を、Cu坩堝を用いて、真空中でEB溶解し、インゴットを作製した。得られたインゴットを観察し、非金属介在物が多い表層部を切削して除去した。次に、加工油を使用せずに線引き加工を行って、所定の形状に仕上げた。その後、1000℃で真空脱ガス処理を行って蒸着材料とした。
この蒸着材料中のH含有量は1wtppmであった。また、C含有量は1wtppm未満、O含有量は10wtppmであった。さらに、S及びPの合計含有量は1wtppm未満であった。
次に、この蒸着材料(Pd)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は0個であり、非常に良好であった。
(Example 6)
A Pd raw material having a purity of 4N was EB-dissolved in a vacuum using a Cu crucible to prepare an ingot. The obtained ingot was observed, and the surface layer portion containing many non-metal inclusions was cut and removed. Next, a wire drawing process was performed without using processing oil to finish the product in a predetermined shape. Then, it was vacuum degassed at 1000 ° C. to obtain a vapor-deposited material.
The H content in this thin-film deposition material was 1 wtppm. The C content was less than 1 wtppm and the O content was 10 wtppm. Furthermore, the total content of S and P was less than 1 wtppm.
Next, this vapor deposition material (Pd) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and a bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was 0, which was very good.

(実施例7)
純度4NのPd原料を、高純度アルミナ坩堝を用いて、真空溶解し、溶解した坩堝の底から溶湯を出して引き抜き、切断等で所定の形状を作製した。但し、全量出湯せずに坩堝内に1%ほど残すことで、坩堝の底に残留する非金属介在物を排除した。この蒸着材料中のH含有量は8wtppmであった。また、Cは含有量1wtppm、O含有量は100wtppmであった。さらに、S及びPの合計含有量は1wtppmであった。
次に、この蒸着材料(Pd)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は数個であり、良好であった。
(Example 7)
A Pd raw material having a purity of 4N was melted in a vacuum using a high-purity alumina crucible, and a molten metal was drawn out from the bottom of the melted crucible and pulled out to prepare a predetermined shape by cutting or the like. However, the non-metal inclusions remaining on the bottom of the crucible were eliminated by leaving about 1% in the crucible without discharging the entire amount. The H content in this vapor deposition material was 8 wtppm. The C content was 1 wtppm and the O content was 100 wtppm. Further, the total content of S and P was 1 wtppm.
Next, this vapor deposition material (Pd) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and a bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several, which was good.

(実施例8)
純度3NのPd原料を、市販品のカーボン坩堝を用いて、Ar雰囲気下で溶解し、溶解した坩堝の底から溶湯を出して引き抜き、切断等で所定の形状を作製した。但し、全量出湯せずに坩堝内に0.1%ほど残すことで、坩堝の底に残留する非金属介在物を排除した。この蒸着材料中のH含有量は10wtppmであった。また、C含有量は10wtppm、O含有量は100wtppmであった。さらに、S及びPの合計含有量は10wtppmであった。
次に、この蒸着材料(Pd)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は数十個であり、やや良好であった。
(Example 8)
A Pd raw material having a purity of 3N was melted in an Ar atmosphere using a commercially available carbon crucible, and a molten metal was drawn out from the bottom of the melted crucible and pulled out to prepare a predetermined shape by cutting or the like. However, the non-metal inclusions remaining on the bottom of the crucible were eliminated by leaving about 0.1% in the crucible without discharging the entire amount of hot water. The H content in this vapor deposition material was 10 wtppm. The C content was 10 wtppm and the O content was 100 wtppm. Furthermore, the total content of S and P was 10 wtppm.
Next, this vapor deposition material (Pd) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and a bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several tens, which was somewhat good.

(実施例9)
純度4NのAg原料を、Cu坩堝を用いて、真空中でEB溶解し、インゴットを作製した。次に、得られたインゴットを観察し、非金属介在物が多い表層部を切削して除去した。その後、加工油を使用せずに線引き加工を行って、所定の形状に仕上げた。
この蒸着材料中のH含有量は1wtppm未満であった。また、C含有量は1wtppm未満、O含有量を10wtppmであった。さらに、S及びPの合計含有量は2wtppmであった。次に、この蒸着材料(Ag)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は0個であり、非常に良好であった。
(Example 9)
An Ag raw material having a purity of 4N was EB-dissolved in a vacuum using a Cu crucible to prepare an ingot. Next, the obtained ingot was observed, and the surface layer portion containing many non-metal inclusions was cut and removed. After that, a wire drawing process was performed without using processing oil to finish the shape into a predetermined shape.
The H content in this vapor deposition material was less than 1 wtppm. The C content was less than 1 wtppm and the O content was 10 wtppm. Furthermore, the total content of S and P was 2 wtppm. Next, this vapor deposition material (Ag) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was 0, which was very good.

(実施例10)
純度3NのAg原料を、高純度カーボン坩堝を用いて、大気溶解し、インゴットを作製した。その後、加工油を使用せずに線引き加工を行って、所定の形状に仕上げた。
この蒸着材料中のH含有量は7wtppmであった。また、C含有量は10wtppm、O含有量は50wtppmであった。さらに、S及びPの合計含有量は10wtppmであった。次に、この蒸着材料(Ag)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は数十個であり、やや良好であった。
(Example 10)
An Ag raw material having a purity of 3N was dissolved in the atmosphere using a high-purity carbon crucible to prepare an ingot. After that, a wire drawing process was performed without using processing oil to finish the shape into a predetermined shape.
The H content in this vapor deposition material was 7 wtppm. The C content was 10 wtppm and the O content was 50 wtppm. Furthermore, the total content of S and P was 10 wtppm. Next, this vapor deposition material (Ag) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several tens, which was somewhat good.

(実施例11)
純度4NのAu−Sn原料を、高純度のカーボン坩堝を用いて、真空溶解し、溶解した坩堝の底から溶湯を出して引き抜き、切断等で所定の形状を作製した。但し、全量出湯せずに坩堝内に0.1%ほど残すことで、坩堝の底に残留する非金属介在物を排除した。
この蒸着材料中のH含有量を分析した結果、1wtppmであった。また、C含有量は10wtppm、O含有量は10wtppmであった。さらに、S及びPの合計含有量は5wtppmであった。
次に、このAu−Sn(蒸着材料)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は数個であり、良好であった。
(Example 11)
A Au-Sn raw material having a purity of 4N was melted in a vacuum using a high-purity carbon crucible, and a molten metal was drawn out from the bottom of the melted crucible and pulled out to prepare a predetermined shape by cutting or the like. However, the non-metal inclusions remaining at the bottom of the crucible were eliminated by leaving about 0.1% in the crucible without discharging the entire amount of hot water.
As a result of analyzing the H content in this thin-film deposition material, it was 1 wtppm. The C content was 10 wtppm and the O content was 10 wtppm. Furthermore, the total content of S and P was 5 wtppm.
Next, this Au-Sn (deposited material) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several, which was good.

(実施例12)
純度3NのAu−Sn原料を、低純度のカーボン坩堝を用いて、大気溶解し、溶解した坩堝の底から溶湯を出して引き抜き、切断等で所定の形状を作製した。但し、全量出湯せずに坩堝内に1%ほど残すことで、坩堝の底に残留する非金属介在物を排除した。
この蒸着材料中のH含有量を分析した結果、5wtppmであった。また、C含有量は10wtppm、O含有量は90wtppmであった。さらに、S及びPの合計含有量は9wtppmであった。
次に、このAu−Sn(蒸着材料)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は数十個であり、やや良好であった。
(Example 12)
An Au-Sn raw material having a purity of 3N was melted in the atmosphere using a low-purity carbon crucible, and a molten metal was drawn out from the bottom of the melted crucible and pulled out to prepare a predetermined shape by cutting or the like. However, the non-metal inclusions remaining on the bottom of the crucible were eliminated by leaving about 1% in the crucible without discharging the entire amount.
As a result of analyzing the H content in this thin-film deposition material, it was 5 wtppm. The C content was 10 wtppm and the O content was 90 wtppm. Furthermore, the total content of S and P was 9 wtppm.
Next, this Au-Sn (deposited material) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several tens, which was somewhat good.

以上の結果を表1に示す。

Figure 2021091922
The above results are shown in Table 1.
Figure 2021091922

(比較例1)
純度3NのAu原料を、低純度のカーボン坩堝を用いて大気溶解し、インゴットを作製した。次に、得られたインゴットの表層部の酸洗浄又は切削除去せず、線引き加工を行って、所定の形状に仕上げた。なお、線引き加工の際、加工油を使用した。その後、表面を酸で洗浄し、乾燥後蒸着材料とした。
この蒸着材料中のH含有量は12wtppmであった。また、C含有量は25wtppm、O含有量は110wtppmであった。さらに、S及びPの合計含有量は15wtppmであった。次に、この蒸着材料(Au)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は、数百個であった。
(Comparative Example 1)
An Au raw material having a purity of 3N was dissolved in the atmosphere using a low-purity carbon crucible to prepare an ingot. Next, the surface layer of the obtained ingot was not acid-cleaned or cut off, but was drawn to form a predetermined shape. Processing oil was used during the drawing process. Then, the surface was washed with an acid, dried and used as a vapor deposition material.
The H content in this vapor deposition material was 12 wtppm. The C content was 25 wtppm and the O content was 110 wtppm. Furthermore, the total content of S and P was 15 wtppm. Next, this vapor deposition material (Au) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several hundred.

(比較例2)
純度3NのPt原料を、低純度のカーボン坩堝を用いて、大気溶解し、インゴットを作製した。次に、得られたインゴットの表層部を酸洗浄又は切削除去せず、線引き加工を行って、所定の形状に仕上げた。なお、線引き加工の際、加工油を使用した。その後、表面をアセトンで洗浄し、乾燥後蒸着材料とした。
この蒸着材料中のH含有量は11wtppmであった。また、C含有量は110wtppm、O含有量は120wtppmであった。さらに、S及びPの合計含有量は11wtppmであった。次に、このPt(蒸着材料)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は、数百個であった。
(Comparative Example 2)
A Pt raw material having a purity of 3N was dissolved in the atmosphere using a low-purity carbon crucible to prepare an ingot. Next, the surface layer portion of the obtained ingot was not pickled or removed by cutting, but was drawn by drawing to finish it into a predetermined shape. Processing oil was used during the drawing process. Then, the surface was washed with acetone, dried and used as a vapor deposition material.
The H content in this vapor deposition material was 11 wtppm. The C content was 110 wtppm and the O content was 120 wtppm. Furthermore, the total content of S and P was 11 wtppm. Next, this Pt (deposited material) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and the bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several hundred.

(比較例3)
純度3NのPd原料を、低純度のカーボン坩堝を用いて、弱減圧下で溶解し、溶解した坩堝の底から溶湯を出して引き抜き、切断等で所定の形状を作製した。但し、全量を出湯した。
この蒸着材料中のH含有量は20wtppmであった。また、C含有量は20wtppm、O含有量は250wtppmであった。さらに、S及びPの合計含有量は20wtppmであった。次に、この蒸着材料(Pd)を真空蒸着装置の坩堝内に充填し、電子ビームで予備加熱後、溶融させて、突沸現象を観察した。その結果、突沸現象に起因するウエハー上の欠陥(パーティクル)は、数百個であった。
(Comparative Example 3)
A Pd raw material having a purity of 3N was melted under a weak reduced pressure using a low-purity carbon crucible, and a molten metal was drawn out from the bottom of the melted crucible and pulled out to prepare a predetermined shape by cutting or the like. However, the whole amount was discharged.
The H content in this vapor deposition material was 20 wtppm. The C content was 20 wtppm and the O content was 250 wtppm. Furthermore, the total content of S and P was 20 wtppm. Next, this vapor deposition material (Pd) was filled in the crucible of the vacuum vapor deposition apparatus, preheated with an electron beam, and then melted, and a bumping phenomenon was observed. As a result, the number of defects (particles) on the wafer due to the bumping phenomenon was several hundred.

以上の結果を表2に示す。

Figure 2021091922
The above results are shown in Table 2.
Figure 2021091922

本発明によれば、蒸着材料の溶解の際に突沸現象を抑制することができ、これにより基板上に付着するパーティクルを低減することができる。本実施形態に係る蒸着材料は真空蒸着法を用いた、電子部品、半導体デバイス、光学薄膜、磁気デバイス、LED、有機EL、LCD等における素子の形成に広く利用することができる。
According to the present invention, it is possible to suppress the bumping phenomenon when the vapor-deposited material is melted, thereby reducing the number of particles adhering to the substrate. The thin-film deposition material according to this embodiment can be widely used for forming elements in electronic components, semiconductor devices, optical thin films, magnetic devices, LEDs, organic ELs, LCDs, etc. using a vacuum vapor deposition method.

Claims (8)

蒸着部材中の蒸着部材中の水素含有量が10wtppm以下であることを特徴とする蒸着部材。 A thin-film deposition member having a hydrogen content of 10 wtppm or less in the thin-film deposition member. 蒸着部材中のカーボン含有量が10wtppm以下であることを特徴とする請求項1に記載の蒸着部材。 The vapor-deposited member according to claim 1, wherein the carbon content in the vapor-deposited member is 10 wtppm or less. 蒸着部材中の酸素含有量が100wtppm以下であることを特徴とする請求項1又は2に記載の蒸着部材。 The vapor-deposited member according to claim 1 or 2, wherein the oxygen content in the vapor-deposited member is 100 wtppm or less. 硫黄及びリンの合計含有量が10wtppm以下であることを特徴とする請求項1〜3のいずれか一項に記載の蒸着部材。 The vapor-deposited member according to any one of claims 1 to 3, wherein the total content of sulfur and phosphorus is 10 wtppm or less. 前記蒸着材料が、Au、Ag、Pt、Pd及びこれらの合金のいずれか一種以上からなることを特徴とする請求項1〜4のいずれか一項に記載の蒸着部材。 The vapor deposition member according to any one of claims 1 to 4, wherein the vapor deposition material is composed of any one or more of Au, Ag, Pt, Pd and an alloy thereof. 請求項1〜5のいずれか一項に記載の蒸着部材の製造方法であって、原料を溶解鋳造してインゴットとした後、線引き加工して蒸着材料を作製する、又は、原料を溶解後、ショット化して蒸着材料を作製するものであって、線引き加工後又はショット化後に、その表層部を洗浄することを特徴とする蒸着部材の製造方法。 The method for manufacturing a thin-film deposition member according to any one of claims 1 to 5, wherein the raw material is melt-cast to form an ingot and then drawn to produce a vapor-deposited material, or the raw material is melted and then melted. A method for producing a thin-film deposition member, which comprises making a shot to produce a vapor-deposited material, and cleaning the surface layer portion thereof after drawing or shot-making. 請求項1〜5のいずれか一項に記載の蒸着部材の製造方法であって、原料を溶解鋳造してインゴットとした後、線引き加工して蒸着材料を作製する、又は、原料を溶解後、ショット化して蒸着材料を作製するものであって、原料溶解後、その溶湯の0.1wt%以上を坩堝内に残して、鋳造インゴットとする、又はショット化することを特徴とする蒸着部材の製造方法。 The method for manufacturing a thin-film deposition member according to any one of claims 1 to 5, wherein the raw material is melt-cast to form an ingot and then drawn to produce a vapor-deposited material, or the raw material is melted and then melted. A film-deposited member is produced by making a shot, and after the raw material is melted, 0.1 wt% or more of the molten metal is left in a crucible to form a cast ingot or a shot. Method. 前記線引き加工前後及び加工途中で熱処理することを特徴とする請求項6又は7に記載の蒸着部材の製造方法。 The method for manufacturing a vapor-deposited member according to claim 6 or 7, wherein the heat treatment is performed before, after, and during the drawing process.
JP2019221188A 2019-07-26 2019-12-06 Evaporation material and its manufacturing method Active JP7175456B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019221188A JP7175456B2 (en) 2019-12-06 2019-12-06 Evaporation material and its manufacturing method
PCT/JP2020/028192 WO2021020223A1 (en) 2019-07-26 2020-07-21 Vapor deposition material and method for manufacturing same
TW109125827A TW202122610A (en) 2019-12-06 2020-07-30 Vapor deposition material and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019221188A JP7175456B2 (en) 2019-12-06 2019-12-06 Evaporation material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021091922A true JP2021091922A (en) 2021-06-17
JP7175456B2 JP7175456B2 (en) 2022-11-21

Family

ID=76311886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019221188A Active JP7175456B2 (en) 2019-07-26 2019-12-06 Evaporation material and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7175456B2 (en)
TW (1) TW202122610A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116904934A (en) * 2023-09-12 2023-10-20 华通芯电(南昌)电子科技有限公司 Method for evaporating gold-plated metal layer on wafer and electronic equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115094389B (en) * 2022-07-11 2023-12-29 威科赛乐微电子股份有限公司 Method for evaporating palladium by electron beam

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472906A (en) * 1987-09-11 1989-03-17 Dowa Mining Co Method for refining tellurium
JPH036368A (en) * 1989-06-05 1991-01-11 Hitachi Maxell Ltd Vacuum deposition device
JPH0364453A (en) * 1989-07-31 1991-03-19 Hitachi Cable Ltd Copper material for vapor deposition
JPH05245611A (en) * 1992-03-04 1993-09-24 Mitsubishi Electric Corp Device for supplying fixed quantity of molten metal in high accuracy
JPH06108188A (en) * 1992-09-30 1994-04-19 Sumitomo Electric Ind Ltd Vapor deposition material
JPH06240442A (en) * 1992-05-11 1994-08-30 Sumitomo Electric Ind Ltd Production of material for vapor deposition
JPH06279992A (en) * 1993-03-25 1994-10-04 Tanaka Kikinzoku Kogyo Kk High purity ag for vapor deposition
JPH06280005A (en) * 1993-03-23 1994-10-04 Mitsubishi Kasei Corp Sputtering target and its production
JPH07258830A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Ag material for vapor deposition and its production
JPH07258829A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Ag material for vapor deposition and its production
JP2002275561A (en) * 2001-03-13 2002-09-25 Vacuum Metallurgical Co Ltd Gold or gold-alloy material for thin film deposition and its manufacturing method, and hearth ingot using the gold or gold alloy and its manufacturing method
WO2006025195A1 (en) * 2004-09-01 2006-03-09 Sumitomo Titanium Corporation SiO DEPOSITION MATERIAL, RAW MATERIAL Si POWDER, AND METHOD FOR PRODUCING SiO DEPOSITION MATERIAL
JP2006118055A (en) * 1999-05-14 2006-05-11 Neomax Co Ltd Surface treatment apparatus and surface treated rare earth based permanent magnet
JP2006274424A (en) * 2005-03-30 2006-10-12 Neomax Co Ltd METHOD FOR DEPOSITING VAPOR-DEPOSITED FILM OF Al OR Al ALLOY ON THE SURFACE OF WORK
JP2007051351A (en) * 2005-08-19 2007-03-01 Mitsubishi Materials Corp Mn-CONTAINED COPPER ALLOY SPUTTERING TARGET WITH LESS OCCURRENCE OF PARTICLE
JP2007154310A (en) * 2005-11-09 2007-06-21 Neomax Co Ltd Vacuum deposition method for forming alloy film on surface of piece by vapor deposition
JP2009074175A (en) * 2008-09-29 2009-04-09 Mitsubishi Materials Corp Stock for vapor deposition, and information recording medium
JP2018059661A (en) * 2016-10-05 2018-04-12 助川電気工業株式会社 Melting holding furnace
JP2018123389A (en) * 2017-02-02 2018-08-09 株式会社アルバック Gold material for vapor deposition, and production method of gold material for vapor deposition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279992B2 (en) 2014-07-18 2018-02-14 林テレンプ株式会社 Interior materials for vehicles

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6472906A (en) * 1987-09-11 1989-03-17 Dowa Mining Co Method for refining tellurium
JPH036368A (en) * 1989-06-05 1991-01-11 Hitachi Maxell Ltd Vacuum deposition device
JPH0364453A (en) * 1989-07-31 1991-03-19 Hitachi Cable Ltd Copper material for vapor deposition
JPH05245611A (en) * 1992-03-04 1993-09-24 Mitsubishi Electric Corp Device for supplying fixed quantity of molten metal in high accuracy
JPH06240442A (en) * 1992-05-11 1994-08-30 Sumitomo Electric Ind Ltd Production of material for vapor deposition
JPH06108188A (en) * 1992-09-30 1994-04-19 Sumitomo Electric Ind Ltd Vapor deposition material
JPH06280005A (en) * 1993-03-23 1994-10-04 Mitsubishi Kasei Corp Sputtering target and its production
JPH06279992A (en) * 1993-03-25 1994-10-04 Tanaka Kikinzoku Kogyo Kk High purity ag for vapor deposition
JPH07258830A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Ag material for vapor deposition and its production
JPH07258829A (en) * 1994-03-18 1995-10-09 Tanaka Kikinzoku Kogyo Kk Ag material for vapor deposition and its production
JP2006118055A (en) * 1999-05-14 2006-05-11 Neomax Co Ltd Surface treatment apparatus and surface treated rare earth based permanent magnet
JP2002275561A (en) * 2001-03-13 2002-09-25 Vacuum Metallurgical Co Ltd Gold or gold-alloy material for thin film deposition and its manufacturing method, and hearth ingot using the gold or gold alloy and its manufacturing method
WO2006025195A1 (en) * 2004-09-01 2006-03-09 Sumitomo Titanium Corporation SiO DEPOSITION MATERIAL, RAW MATERIAL Si POWDER, AND METHOD FOR PRODUCING SiO DEPOSITION MATERIAL
JP2006274424A (en) * 2005-03-30 2006-10-12 Neomax Co Ltd METHOD FOR DEPOSITING VAPOR-DEPOSITED FILM OF Al OR Al ALLOY ON THE SURFACE OF WORK
JP2007051351A (en) * 2005-08-19 2007-03-01 Mitsubishi Materials Corp Mn-CONTAINED COPPER ALLOY SPUTTERING TARGET WITH LESS OCCURRENCE OF PARTICLE
JP2007154310A (en) * 2005-11-09 2007-06-21 Neomax Co Ltd Vacuum deposition method for forming alloy film on surface of piece by vapor deposition
JP2009074175A (en) * 2008-09-29 2009-04-09 Mitsubishi Materials Corp Stock for vapor deposition, and information recording medium
JP2018059661A (en) * 2016-10-05 2018-04-12 助川電気工業株式会社 Melting holding furnace
JP2018123389A (en) * 2017-02-02 2018-08-09 株式会社アルバック Gold material for vapor deposition, and production method of gold material for vapor deposition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116904934A (en) * 2023-09-12 2023-10-20 华通芯电(南昌)电子科技有限公司 Method for evaporating gold-plated metal layer on wafer and electronic equipment
CN116904934B (en) * 2023-09-12 2023-12-12 华通芯电(南昌)电子科技有限公司 Method for evaporating gold-plated metal layer on wafer and electronic equipment

Also Published As

Publication number Publication date
TW202122610A (en) 2021-06-16
JP7175456B2 (en) 2022-11-21

Similar Documents

Publication Publication Date Title
JP4620185B2 (en) High purity copper and method for producing high purity copper by electrolysis
JP6716452B2 (en) Method for manufacturing regenerated sputtering target and regenerated sputtering
JP7175456B2 (en) Evaporation material and its manufacturing method
JP6720087B2 (en) Copper alloy sputtering target and manufacturing method thereof
JP2005330591A (en) Sputtering target
WO2021020223A1 (en) Vapor deposition material and method for manufacturing same
WO2017199873A1 (en) Metal evaporation material
TWI714491B (en) Evaporation material
CN107760902B (en) A kind of method of refining of aluminium silicon systems cast aluminium alloy gold
JP3673919B2 (en) High-purity titanium recovery method
JP7021448B1 (en) Gold vapor deposition material
CN112746183A (en) Method for synchronously removing high-density impurities and low-density impurities in high-temperature alloy
JP6829340B1 (en) Gold vapor deposition material
JP4900350B2 (en) Manufacturing method to obtain high purity manganese
TWI807395B (en) Gold evaporation material
JP6339625B2 (en) Sputtering target
JP7167795B2 (en) AlP compound refinement method and aluminum alloy casting
JP2018145518A (en) Cu-Ni alloy sputtering target
JP5950632B2 (en) Manufacturing method of sputtering target
JPS62156233A (en) Electron beam melting method
JP5406157B2 (en) Manufacturing method of high purity chromium, manufacturing method of sputtering target made of high purity chromium, and manufacturing method of thin film made of high purity chromium
JP4406280B2 (en) Na removal method in silicon refining
JP2022113107A (en) Ag ALLOY FILM, AND Ag ALLOY SPUTTERING TARGET
JP2016079450A (en) Cu-Ga alloy sputtering target
TWI614212B (en) Method for recycling silicon and silicon carbide from silicon slurry

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191223

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201118

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201118

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201210

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201215

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210219

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210302

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211116

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211221

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220425

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220830

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220927

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221027

R150 Certificate of patent or registration of utility model

Ref document number: 7175456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150