JP2007154310A - Vacuum deposition method for forming alloy film on surface of piece by vapor deposition - Google Patents
Vacuum deposition method for forming alloy film on surface of piece by vapor deposition Download PDFInfo
- Publication number
- JP2007154310A JP2007154310A JP2006301908A JP2006301908A JP2007154310A JP 2007154310 A JP2007154310 A JP 2007154310A JP 2006301908 A JP2006301908 A JP 2006301908A JP 2006301908 A JP2006301908 A JP 2006301908A JP 2007154310 A JP2007154310 A JP 2007154310A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- alloy
- vacuum
- alloy wire
- deposition method
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Physical Vapour Deposition (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
本発明は、Alを主成分とする合金被膜などを希土類系永久磁石などの個片の表面に蒸着形成する際に有用な真空蒸着方法に関する。 The present invention relates to a vacuum deposition method useful for depositing an alloy film containing Al as a main component on the surface of an individual piece such as a rare earth permanent magnet.
従来から、希土類系永久磁石に耐塩水性を付与する方法として、その表面にAlを主成分とする合金被膜を蒸着形成する方法が知られており、特許文献1には、Alを主成分とする合金被膜を希土類系永久磁石の表面に蒸着形成する方法として、Mgを含むワイヤー状Al蒸着材料を加熱した溶融蒸発部に連続供給しながら蒸発させることによる方法が記載されている。
しかしながら、特許文献1に記載の方法では、磁石の表面に蒸着形成される合金被膜の金属組成は合金ワイヤーの金属組成に近似したものになることから、種々の金属組成の合金被膜を蒸着形成したい場合には、その金属組成に対応した複数の合金ワイヤーを用意しなければならないという問題がある。
そこで本発明は、種々の金属組成の合金被膜を希土類系永久磁石などの個片の表面に簡易に蒸着形成するための方法を提供することを目的とする。
However, in the method described in Patent Document 1, the metal composition of the alloy film formed by vapor deposition on the surface of the magnet is similar to the metal composition of the alloy wire. In some cases, there is a problem that a plurality of alloy wires corresponding to the metal composition must be prepared.
Accordingly, an object of the present invention is to provide a method for easily vapor-depositing an alloy film having various metal compositions on the surface of an individual piece such as a rare earth permanent magnet.
本発明者は、上記の点に鑑みて鋭意研究を重ねた結果、真空処理室の内部の坩堝に低蒸気圧金属の固体を収容するとともに、坩堝の直上方に低蒸気圧金属と高蒸気圧金属を含む合金ワイヤーを所定の送り速度で案内し、低蒸気圧金属の固体と合金ワイヤーに対して電子線を照射して両者を同時に溶融蒸発させた場合、合金ワイヤーの送り速度を調節することにより個片の表面に蒸着形成される合金被膜の金属組成を容易に調整できることを見出した。なお、特開2001−59158号公報には、坩堝内の低蒸気圧金属材に電子線を照射してこれを溶融蒸発させるとともに、坩堝内に高蒸気圧金属を主成分とする合金ワイヤーを供給することで、均一組成からなる合金被膜を帯状薄膜の表面に蒸着形成できることが記載されている。しかしながら、この特許文献に記載の方法は個片の表面に合金被膜を蒸着形成するためのものではない。また、この特許文献には個片の表面に蒸着形成される合金被膜の金属組成を合金ワイヤーの送り速度を調節することで調整できることについては記載も示唆もない。 As a result of intensive studies in view of the above points, the present inventor has housed a low vapor pressure metal solid in a crucible inside the vacuum processing chamber, and a low vapor pressure metal and a high vapor pressure directly above the crucible. When the alloy wire containing metal is guided at a predetermined feed rate and the solid vapor of the low vapor pressure metal and the alloy wire are irradiated with an electron beam and both are melted and evaporated simultaneously, the feed rate of the alloy wire should be adjusted. Thus, it was found that the metal composition of the alloy coating formed on the surface of the individual piece can be easily adjusted. In JP 2001-59158 A, a low vapor pressure metal material in a crucible is irradiated with an electron beam to melt and evaporate it, and an alloy wire mainly composed of a high vapor pressure metal is supplied into the crucible. Thus, it is described that an alloy film having a uniform composition can be deposited on the surface of a strip-shaped thin film. However, the method described in this patent document is not for depositing an alloy film on the surface of an individual piece. Further, this patent document neither describes nor suggests that the metal composition of the alloy coating formed on the surface of the individual piece can be adjusted by adjusting the feeding speed of the alloy wire.
上記の知見に基づいてなされた本発明の真空蒸着方法は、請求項1記載の通り、金属Aと金属Bの2種類の金属を少なくとも含む合金被膜(但し金属Bは金属Aよりも高蒸気圧である)を被処理物である個片の表面に蒸着形成するための真空蒸着方法であって、真空処理室の内部の被膜原料溶融蒸発部において、坩堝内の金属Aの固体と坩堝の直上方に所定の送り速度で案内される金属Aと金属Bを含む合金ワイヤーに対して電子線を照射し、金属Aの固体と合金ワイヤーを同時に溶融蒸発させることで、合金ワイヤーの送り速度に応じた金属組成の合金被膜を被膜原料溶融蒸発部の上方に位置する個片の表面に蒸着形成することを特徴とする。
また、請求項2記載の真空蒸着方法は、請求項1記載の真空蒸着方法において、個片の温度を150℃以下に制御して行うことを特徴とする。
また、請求項3記載の真空蒸着方法は、請求項1または2記載の真空蒸着方法において、電子線を発生させる電子銃の駆動電力を50kW以下に制御して行うことを特徴とする。
また、請求項4記載の真空蒸着方法は、請求項1乃至3のいずれかに記載の真空蒸着方法において、合金ワイヤーの送り速度を0.1g/分〜10g/分の範囲において制御することを特徴とする。
また、請求項5記載の真空蒸着方法は、請求項1乃至4のいずれかに記載の真空蒸着方法において、合金ワイヤーの金属組成が金属Aを90mass%〜99mass%含むものであることを特徴とする。
また、請求項6記載の真空蒸着方法は、請求項1乃至5のいずれかに記載の真空蒸着方法において、合金ワイヤーが水素を含有してなることを特徴とする。
また、請求項7記載の真空蒸着方法は、請求項6記載の真空蒸着方法において、水素の含有量が0.5ppm〜20ppmであることを特徴とする。
また、請求項8記載の真空蒸着方法は、請求項1乃至7のいずれかに記載の真空蒸着方法において、水平方向の軸線を中心に公転自在なメッシュ構造の筒型バレルに個片を収容し、筒型バレルを公転させながら、その公転軸線上または近傍に配置した被膜原料溶融蒸発部おいて金属Aの固体と合金ワイヤーを同時に溶融蒸発させ、被膜原料溶融蒸発部の上方に位置する筒型バレルに収容された個片の表面に合金被膜を蒸着形成することを特徴とする。
また、請求項9記載の真空蒸着方法は、請求項1乃至8のいずれかに記載の真空蒸着方法において、合金被膜の金属組成が金属Aを85mass%以上含むものであることを特徴とする。
また、請求項10記載の真空蒸着方法は、請求項1乃至9のいずれかに記載の真空蒸着方法において、金属AがAlで、金属BがMg,Mn,Znから選ばれる少なくとも1種類であることを特徴とする。
また、請求項11記載の真空蒸着方法は、請求項1乃至10のいずれかに記載の真空蒸着方法において、個片が希土類系永久磁石であることを特徴とする。
また、請求項12記載の真空蒸着方法は、請求項1乃至11のいずれかに記載の真空蒸着方法において、蒸着処理中に合金ワイヤーの送り速度を変化させることで、個片の表面に蒸着形成される合金被膜に対してその厚み方向に組成勾配を持たせることを特徴とする。
また、請求項13記載の真空蒸着方法は、請求項12記載の真空蒸着方法において、合金ワイヤーの送り速度を蒸着処理の開始時よりも終了時の方が遅くなるように変化させることで、個片の表面に蒸着形成される合金被膜の金属組成を個片との界面側よりも外面側の方が金属Aの比率が高くなるようにすることを特徴とする。
また、本発明の希土類系永久磁石は、請求項14記載の通り、請求項1記載の真空蒸着方法で所定の金属組成の合金被膜が表面に蒸着形成されてなることを特徴とする。
また、請求項15記載の希土類系永久磁石は、請求項14記載の希土類系永久磁石において、合金被膜がその厚み方向に組成勾配を有することを特徴とする。
また、本発明の真空蒸着装置は、請求項16記載の通り、金属Aと金属Bの2種類の金属を少なくとも含む合金被膜(但し金属Bは金属Aよりも高蒸気圧である)を被処理物である個片の表面に蒸着形成するための真空蒸着装置であって、真空処理室の内部の被膜原料溶融蒸発部が、坩堝内の金属Aの固体と坩堝の直上方に所定の送り速度で案内される金属Aと金属Bを含む合金ワイヤーに対して電子線を照射し、金属Aの固体と合金ワイヤーを同時に溶融蒸発させるように構成されてなることを特徴とする。
The vacuum vapor deposition method of the present invention made based on the above knowledge is an alloy film containing at least two kinds of metals, metal A and metal B (wherein metal B is higher in vapor pressure than metal A). Is formed on the surface of an individual piece to be processed, in a coating material melting and evaporating section inside the vacuum processing chamber, and the metal A solid in the crucible and the crucible directly According to the feed rate of the alloy wire, the alloy wire including the metal A and the metal B guided upward at a predetermined feed rate is irradiated with an electron beam, and the solid of the metal A and the alloy wire are simultaneously melted and evaporated. An alloy film having a metal composition is formed by vapor deposition on the surface of an individual piece located above the coating material melting and evaporating part.
The vacuum deposition method according to claim 2 is characterized in that in the vacuum deposition method according to claim 1, the temperature of the individual piece is controlled to 150 ° C. or lower.
The vacuum deposition method according to claim 3 is characterized in that in the vacuum deposition method according to claim 1 or 2, the driving power of an electron gun for generating an electron beam is controlled to 50 kW or less.
In addition, the vacuum vapor deposition method according to claim 4 is the vacuum vapor deposition method according to any one of claims 1 to 3, wherein the feeding speed of the alloy wire is controlled within a range of 0.1 g / min to 10 g / min. Features.
The vacuum deposition method according to claim 5 is characterized in that, in the vacuum deposition method according to any one of claims 1 to 4, the metal composition of the alloy wire includes 90 mass% to 99 mass% of metal A.
A vacuum vapor deposition method according to claim 6 is the vacuum vapor deposition method according to any one of claims 1 to 5, wherein the alloy wire contains hydrogen.
A vacuum deposition method according to claim 7 is the vacuum deposition method according to claim 6, wherein the hydrogen content is 0.5 ppm to 20 ppm.
The vacuum deposition method according to claim 8 is the vacuum deposition method according to any one of claims 1 to 7, wherein the individual pieces are housed in a cylindrical barrel having a mesh structure that can revolve around a horizontal axis. In the coating material melting and evaporating part disposed on or near the revolution axis while revolving the cylindrical barrel, the metal A solid and the alloy wire are simultaneously melted and evaporated, and the cylindrical shape located above the coating material melting and evaporating part. An alloy film is formed by vapor deposition on the surface of the individual piece accommodated in the barrel.
The vacuum deposition method according to claim 9 is characterized in that, in the vacuum deposition method according to any one of claims 1 to 8, the metal composition of the alloy coating contains 85 mass% or more of metal A.
The vacuum vapor deposition method according to claim 10 is the vacuum vapor deposition method according to any one of claims 1 to 9, wherein the metal A is at least one selected from Al and the metal B is selected from Mg, Mn, and Zn. It is characterized by that.
The vacuum vapor deposition method according to claim 11 is the vacuum vapor deposition method according to any one of claims 1 to 10, wherein each piece is a rare earth permanent magnet.
A vacuum deposition method according to claim 12 is the vacuum deposition method according to any one of claims 1 to 11, wherein vapor deposition is formed on the surface of an individual piece by changing a feeding speed of an alloy wire during the deposition process. The alloy coating is provided with a composition gradient in the thickness direction.
Further, the vacuum vapor deposition method according to claim 13 is the vacuum vapor deposition method according to claim 12, wherein the feeding speed of the alloy wire is changed so as to be slower at the end time than at the start time of the vapor deposition treatment. The metal composition of the alloy film formed by vapor deposition on the surface of the piece is characterized in that the ratio of the metal A is higher on the outer surface side than on the interface side with the piece.
Moreover, the rare earth-based permanent magnet of the present invention is characterized in that, as described in claim 14, an alloy film having a predetermined metal composition is deposited on the surface by the vacuum evaporation method according to claim 1.
The rare earth permanent magnet according to claim 15 is the rare earth permanent magnet according to claim 14, wherein the alloy film has a composition gradient in the thickness direction.
In addition, the vacuum deposition apparatus of the present invention, as described in claim 16, treats an alloy film containing at least two kinds of metals, metal A and metal B (where metal B has a higher vapor pressure than metal A). A vacuum deposition apparatus for forming a vapor deposition on the surface of an individual piece that is a product, wherein a coating material melting and evaporating part inside a vacuum processing chamber is fed at a predetermined feed rate directly above the solid of metal A in the crucible and the crucible The alloy wire including the metal A and the metal B guided in step 1 is irradiated with an electron beam, and the solid of the metal A and the alloy wire are melted and evaporated at the same time.
本発明によれば、種々の金属組成の合金被膜を希土類系永久磁石などの個片の表面に簡易に蒸着形成するための方法を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the method for carrying out the vapor deposition formation of the alloy film of various metal compositions on the surface of individual pieces, such as rare earth type permanent magnets, can be provided.
本発明の真空蒸着方法は、金属Aと金属Bの2種類の金属を少なくとも含む合金被膜(但し金属Bは金属Aよりも高蒸気圧である)を被処理物である個片の表面に蒸着形成するための真空蒸着方法であって、真空処理室の内部の被膜原料溶融蒸発部において、坩堝内の金属Aの固体と坩堝の直上方に所定の送り速度で案内される金属Aと金属Bを含む合金ワイヤーに対して電子線を照射し、金属Aの固体と合金ワイヤーを同時に溶融蒸発させることで、合金ワイヤーの送り速度に応じた金属組成の合金被膜を被膜原料溶融蒸発部の上方に位置する個片の表面に蒸着形成することを特徴とするものである。 The vacuum deposition method of the present invention deposits an alloy film containing at least two kinds of metals, metal A and metal B (however, metal B has a higher vapor pressure than metal A) on the surface of a piece to be processed. A vacuum deposition method for forming a metal material A and a metal B, which is guided at a predetermined feed rate immediately above the solid of the metal A in the crucible and directly above the crucible in the coating material melting and evaporating part inside the vacuum processing chamber. By irradiating an alloy wire containing an electron beam and simultaneously melting and evaporating the solid of metal A and the alloy wire, an alloy film having a metal composition corresponding to the feeding speed of the alloy wire is formed above the coating material melting and evaporating part. Vapor deposition is performed on the surface of the individual pieces located.
図1は、本発明の真空蒸着方法を実施するために好適な真空蒸着装置の一例の真空処理室の内部の模式的正面図である。図略の真空排気系に連なる真空処理室1の内部には、水平方向の軸線を中心に公転自在なメッシュ構造の筒型バレル2が軸線の周方向の外方に環状に12個設置されており、その公転軸線上に坩堝3を中心に構成された被膜原料溶融蒸発部が配置されている。坩堝3には金属Aの固体X(インゴットやペレットのような形状のものが例示されるがこれらに限定されるものではない)が収容され、坩堝3の直上方には金属Aと金属Aよりも高蒸気圧である金属Bを含む合金ワイヤーYがボビン4から繰り出しギア5により所定の送り速度で矢示したように案内される。水平方向の軸線を中心に筒型バレル2を矢示したように公転させながら、被膜原料溶融蒸発部において金属Aの固体Xと合金ワイヤーYに図略の電子銃から発せられた電子線Eを照射することによりこれらを同時に溶融蒸発させると、ワイヤーYに含まれる金属Bは金属Aよりも優先的に蒸発する一方、ワイヤーYに含まれる金属Aは溶融して坩堝3内に滴下し(一部は金属Aも蒸発する)、坩堝3内の金属Aの固体Xの溶融物とともに蒸発することで一定の組成からなる金属Aと金属Bの蒸気が生成し、生成した蒸気によって被膜原料溶融蒸発部の上方に位置する筒型バレル2に収容された個片11の表面に合金被膜が蒸着形成される。この際、合金ワイヤーYの送り速度を早くすれば、生成した蒸気に占める金属Bの比率を高くすることができる一方、送り速度を遅くすれば、生成した蒸気に占める金属Aの比率を高くすることができる(金属Bの比率を低くすることができる)。従って、合金ワイヤーYの送り速度を調節することにより個片11の表面に蒸着形成される合金被膜の金属組成を容易に調整できる。また、蒸着処理中に合金ワイヤーの送り速度を変化させれば、個片の表面に蒸着形成される合金被膜に対してその厚み方向に組成勾配を持たせることができる。例えば、合金ワイヤーの送り速度を蒸着処理の開始時から終了時にかけて徐々に遅くしていけば、個片の表面に蒸着形成される合金被膜の金属組成を個片との界面側から外面側にかけて金属Aの比率が徐々に高く(金属Bの比率が徐々に低く)なるようにすることができる。これまで、個片の表面に形成する合金被膜を複数の金属組成から構成されるようにしたい場合(例えば個片との界面側で要請される金属組成と外面側で要請される金属組成が異なる場合など)、個々の金属組成を有する合金被膜を積層形成する方法が採用されてきたが、複数の合金被膜を積層形成する方法には、工程数が多くなるといった問題や、合金被膜と合金被膜の界面における密着性が劣るといった問題がある。しかしながら、この方法によれば、合金被膜に対してその厚み方向に組成勾配を持たせることができるので、複数の合金被膜を積層形成する方法が有する問題を引き起こすことなく、個片の表面に形成する合金被膜を複数の金属組成から構成されるようにすることができる。 FIG. 1 is a schematic front view of the inside of a vacuum processing chamber as an example of a vacuum deposition apparatus suitable for carrying out the vacuum deposition method of the present invention. Inside the vacuum processing chamber 1 connected to an unillustrated evacuation system, twelve cylindrical barrels 2 having a mesh structure that can revolve around a horizontal axis are annularly arranged outward in the circumferential direction of the axis. In addition, a coating material melting and evaporating part constituted around the crucible 3 is arranged on the revolution axis. The crucible 3 contains a solid X of metal A (such as ingots and pellets, but is not limited thereto). The metal A and the metal A are directly above the crucible 3. The alloy wire Y containing the metal B having a high vapor pressure is guided from the bobbin 4 by the feeding gear 5 as indicated by an arrow at a predetermined feed rate. An electron beam E emitted from an unillustrated electron gun is applied to the solid X of the metal A and the alloy wire Y in the coating material melting and evaporating part while revolving as indicated by the arrow of the cylindrical barrel 2 around the horizontal axis. When these are simultaneously melted and evaporated by irradiation, the metal B contained in the wire Y evaporates preferentially over the metal A, while the metal A contained in the wire Y is melted and dropped into the crucible 3 (one The metal A also evaporates), and vapors of the metal A and metal B having a constant composition are generated by evaporating together with the solid X melt of the metal A in the crucible 3. An alloy film is deposited on the surface of the piece 11 accommodated in the cylindrical barrel 2 located above the part. At this time, if the feeding speed of the alloy wire Y is increased, the ratio of the metal B in the generated steam can be increased. On the other hand, if the feeding speed is decreased, the ratio of the metal A in the generated steam is increased. (The ratio of metal B can be reduced). Therefore, by adjusting the feeding speed of the alloy wire Y, the metal composition of the alloy coating formed on the surface of the piece 11 can be easily adjusted. Further, if the feeding speed of the alloy wire is changed during the vapor deposition process, a composition gradient can be provided in the thickness direction with respect to the alloy film deposited on the surface of the piece. For example, if the feeding speed of the alloy wire is gradually slowed from the start to the end of the vapor deposition process, the metal composition of the alloy film deposited on the surface of the individual piece is spread from the interface side to the outer surface side of the individual piece. The ratio of the metal A can be gradually increased (the ratio of the metal B is gradually decreased). Up to now, when it is desired that the alloy coating formed on the surface of the individual piece is composed of a plurality of metal compositions (for example, the metal composition required on the interface side with the individual piece is different from the metal composition required on the outer surface side) In some cases, a method of laminating and forming alloy coatings having individual metal compositions has been adopted. However, the method of laminating and forming a plurality of alloy coatings has a problem that the number of processes is increased, and the alloy coating and the alloy coating. There is a problem that the adhesiveness at the interface is inferior. However, according to this method, it is possible to give a composition gradient in the thickness direction of the alloy film, so that it is formed on the surface of an individual piece without causing the problems of the method of laminating a plurality of alloy films. The alloy film to be formed can be composed of a plurality of metal compositions.
筒型バレル2に収容された個片11は好適にはその温度が150℃以下に制御される。その理由は、個片11の温度が150℃を超えるとその表面に蒸着形成された合金被膜が個片同士の衝突などによって損傷を受けて削れやすくなり、削れた被膜が粒状化して他の被膜に被着することで被膜に突起物が生成しやすくなるからである。電子線Eを発生させる電子銃の駆動電力が50kWを越えると真空処理室1の内部の温度が高くなりすぎて筒型バレル2に収容された個片11の温度が150℃を超えてその表面に蒸着形成される合金被膜に突起物が生成しやすくなる。従って、電子銃は好適にはその駆動電力が50kW以下に制御される。なお、電子銃の駆動電力の下限値は効率的に個片11の表面に合金被膜を蒸着形成するためには10kWとすることが望ましい。また、合金ワイヤーYの送り速度は好適には0.1g/分〜10g/分の範囲において制御される。このような送り速度を採用することにより合金ワイヤーYの送り速度に応じた金属組成の合金被膜を個片11の表面に効率的に蒸着形成することができる。 The temperature of the individual pieces 11 accommodated in the cylindrical barrel 2 is preferably controlled to 150 ° C. or lower. The reason for this is that when the temperature of the piece 11 exceeds 150 ° C., the alloy film deposited on the surface is easily damaged due to collision between pieces, and the cut film becomes granular and other films are formed. This is because protrusions are easily generated on the coating film. If the driving power of the electron gun for generating the electron beam E exceeds 50 kW, the temperature inside the vacuum processing chamber 1 becomes too high, and the temperature of the individual piece 11 accommodated in the cylindrical barrel 2 exceeds 150 ° C. Protrusions are likely to be formed on the alloy film formed by evaporation. Therefore, the driving power of the electron gun is preferably controlled to 50 kW or less. The lower limit value of the driving power of the electron gun is desirably 10 kW in order to efficiently deposit an alloy film on the surface of the piece 11. The feeding speed of the alloy wire Y is preferably controlled in the range of 0.1 g / min to 10 g / min. By adopting such a feed rate, an alloy film having a metal composition corresponding to the feed rate of the alloy wire Y can be efficiently deposited on the surface of the piece 11.
本発明の蒸着被膜形成方法において使用する金属Aと金属Bを含む合金ワイヤーはその金属組成が金属Aを90mass%〜99mass%含むものであることが望ましい。合金ワイヤーの金属組成をこのようなものとすることで合金ワイヤーの送り速度に応じた金属組成の合金被膜を個片の表面に効率的に蒸着形成することができる。また、合金ワイヤーは水素を含有してなることが望ましい。合金ワイヤーを溶融蒸発させた際、真空処理室の内部に水素を供給することができるので、別途の手段で真空処理室の外部から水素を供給しなくても、真空処理室の内部を還元性雰囲気にして、溶融させた段階や蒸発させた段階の蒸着材料の酸化を防止することができるからである。合金ワイヤーの水素含有量は0.5ppm〜20ppmであることが望ましく、1ppm〜10ppmであることがより望ましい。0.5ppm未満であると真空処理室の内部に水素を十分に供給することができない恐れがある一方、20ppmを超えると合金ワイヤーの溶融物が坩堝に滴下した際にスプラッシュを引き起こす恐れがあるからである。 As for the alloy wire containing the metal A and the metal B used in the vapor deposition film forming method of this invention, it is desirable for the metal composition to contain the metal A 90 mass%-99 mass%. By setting the metal composition of the alloy wire as described above, an alloy film having a metal composition corresponding to the feeding speed of the alloy wire can be efficiently deposited on the surface of the piece. The alloy wire desirably contains hydrogen. When the alloy wire is melted and evaporated, hydrogen can be supplied to the inside of the vacuum processing chamber, so that the inside of the vacuum processing chamber can be reduced without supplying hydrogen from the outside of the vacuum processing chamber by a separate means. This is because it is possible to prevent oxidation of the vapor deposition material at the melted stage or the evaporated stage in the atmosphere. The hydrogen content of the alloy wire is preferably 0.5 ppm to 20 ppm, and more preferably 1 ppm to 10 ppm. If it is less than 0.5 ppm, hydrogen may not be sufficiently supplied to the inside of the vacuum processing chamber, whereas if it exceeds 20 ppm, splashing may occur when the alloy wire melt drops on the crucible. It is.
本発明の蒸着被膜形成方法は、金属組成が金属Aを85mass%以上含む合金被膜を個片の表面に蒸着形成する際に好適である(金属Aの上限値は99.5mass%程度であり金属Bの下限値は0.5mass%程度である)。なお、金属AとしてはAlが例示され、Alよりも高蒸気圧である金属BとしてはMg,Mn,Znが例示されるが、低蒸気圧金属である金属Aと高蒸気圧金属である金属Bの組み合わせはこれらに限定されるものではない。また、被処理物である個片としては希土類系永久磁石(焼結磁石であってもよいしボンド磁石であってもよい)が例示されるが、個片は希土類系永久磁石に限定されるものではない。 The vapor deposition film forming method of the present invention is suitable when vapor-depositing an alloy film containing 85% by mass or more of metal A on the surface of a piece (the upper limit of metal A is about 99.5% by mass, The lower limit of B is about 0.5 mass%). The metal A is exemplified by Al, and the metal B having a higher vapor pressure than Al is exemplified by Mg, Mn, Zn. The metal A is a low vapor pressure metal and the metal is a high vapor pressure metal. The combination of B is not limited to these. Moreover, although the rare earth permanent magnet (which may be a sintered magnet or a bonded magnet) is exemplified as the individual piece to be processed, the individual piece is limited to the rare earth permanent magnet. It is not a thing.
以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。なお、以下の実施例は、例えば、米国特許4770723号公報や米国特許4792368号公報に記載されているようにして、公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処理、表面加工を行うことによって得られた14Nd−79Fe−6B−1Co組成(at%)の23mm×10mm×6mm寸法の焼結磁石(以下、磁石体試験片と称する)を用いて行った。また、真空蒸着装置は、図1に示した機構を備えるものを使用した。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted. In the following examples, as described in, for example, US Pat. No. 4,770,723 and US Pat. No. 4,792,368, a known cast ingot is pulverized, and after fine pulverization, molding, sintering, heat treatment, surface processing This was performed using a sintered magnet (hereinafter referred to as a magnet test piece) having a size of 23 mm × 10 mm × 6 mm having a composition (at%) of 14Nd-79Fe-6B-1Co obtained by performing the above. Moreover, what was equipped with the mechanism shown in FIG. 1 was used for the vacuum evaporation system.
実施例1〜実施例4:
磁石体試験片に対し、ショットブラスト加工を行い、前工程の表面加工で生じた試験片の表面の酸化層を除去した。酸化層が除去された磁石体試験片を1つの筒型バレルに対して複数個ずつ収容し、真空処理室の内部が2×10−3Paになるまで真空排気した後、Arガスを真空処理室の内部の圧力が1.0Paになるように供給した。その後、筒型バレルを1.5rpmで公転させながらバイアス電圧−0.3kVの条件下、15分間グロー放電を行って磁石体試験片の表面を清浄化した。続いて、真空処理室の内部が5×10−4Paになるまで真空排気した後、電子銃の駆動電力を16kW(10kV,1.6A)に設定し、坩堝に収容した99.99%高純度Alペレット(住化アルケム社製)を溶融蒸発させた後、表1に記載の金属組成を有する合金ワイヤーを使用し、表1に記載の送り速度で合金ワイヤーを坩堝の直上方に100分間案内することにより合金ワイヤーもAlペレットと共に同時に溶融蒸発させることで磁石体試験片の表面に合金被膜を蒸着形成した。なお、処理中に磁石体試験片の温度がどの程度まで上昇するかを調べるために、各指示温度を示す複数のサーモクレヨン(日油技研工業株式会社製)を削ったものを包んだアルミニウム箔を巻き付けた磁石体試験片を筒型バレルに収容し、処理後にどの温度に対応するサーモクレヨンが溶融したかを確認した。
Example 1 to Example 4:
Shot blasting was performed on the magnet test piece, and the oxide layer on the surface of the test piece generated by the surface processing in the previous step was removed. A plurality of magnet test specimens from which the oxide layer has been removed are accommodated in one cylindrical barrel, and the vacuum processing chamber is evacuated until the inside of the vacuum processing chamber reaches 2 × 10 −3 Pa, and then the Ar gas is vacuum processed. It supplied so that the pressure inside a chamber might be set to 1.0 Pa. Thereafter, glow discharge was performed for 15 minutes under the condition of a bias voltage of −0.3 kV while revolving the cylindrical barrel at 1.5 rpm to clean the surface of the magnet specimen. Subsequently, after evacuating the inside of the vacuum processing chamber to 5 × 10 −4 Pa, the driving power of the electron gun was set to 16 kW (10 kV, 1.6 A), and 99.99% high housed in the crucible. After melting and evaporating the purity Al pellets (manufactured by Sumika Alchem Co., Ltd.), an alloy wire having the metal composition described in Table 1 is used, and the alloy wire is placed immediately above the crucible for 100 minutes at the feed rate shown in Table 1. By guiding, the alloy wire was melted and evaporated simultaneously with the Al pellets to form an alloy film on the surface of the magnet specimen. In addition, in order to investigate how much the temperature of the magnet specimen rises during processing, aluminum foil wrapped with a plurality of thermocrayons (manufactured by NOF Corporation) showing each indicated temperature The magnet test piece wound with was stored in a cylindrical barrel, and it was confirmed after processing that the thermocrayon corresponding to the temperature was melted.
比較例1:
表1に記載の金属組成を有する合金ワイヤーを表1に記載の送り速度で坩堝内に案内し、坩堝内で合金ワイヤーのみを溶融蒸発させること以外は実施例と同様にして磁石体試験片の表面に合金被膜を蒸着形成した。
Comparative Example 1:
An alloy wire having the metal composition shown in Table 1 was guided into the crucible at the feed rate shown in Table 1, and only the alloy wire was melted and evaporated in the crucible. An alloy film was deposited on the surface.
参考例1:
表1に記載の金属組成を有する合金ワイヤーと同一の金属組成を有する合金ペレットを坩堝に収容して溶融蒸発させ、合金ワイヤーを坩堝の直上方に案内することをしないこと以外は実施例と同様にして磁石体試験片の表面に合金被膜を蒸着形成した。
Reference example 1:
Same as Example except that alloy pellets having the same metal composition as the alloy wires shown in Table 1 are accommodated in a crucible and melted and evaporated, and the alloy wire is not guided directly above the crucible. Then, an alloy film was deposited on the surface of the magnet specimen.
実施例1〜実施例4、比較例1、参考例1において磁石体試験片の表面に蒸着形成された合金被膜の金属組成、膜厚、水素含有量を表1に示す。なお、合金ワイヤーの金属組成は、原子発光分析装置(ICP−AES:島津製作所社製ICPS−7500)により測定した。合金被膜の金属組成は、磁石体試験片と共に筒型バレルに収容したガラス板の表面に蒸着形成された合金被膜の金属組成を上記の原子発光分析装置により測定することで求めた。合金被膜の膜厚は蛍光X線膜厚計(SFT−7000:セイコー電子社製)により測定した。合金ワイヤーと合金被膜の水素含有量は水素分析装置(EMGA−11:堀場製作所社製)により測定した。 Table 1 shows the metal composition, film thickness, and hydrogen content of the alloy coating deposited on the surface of the magnet test piece in Examples 1 to 4, Comparative Example 1, and Reference Example 1. In addition, the metal composition of the alloy wire was measured with an atomic emission spectrometer (ICP-AES: ICPS-7500 manufactured by Shimadzu Corporation). The metal composition of the alloy coating was determined by measuring the metal composition of the alloy coating deposited on the surface of the glass plate accommodated in the cylindrical barrel together with the magnet specimen by the above atomic emission spectrometer. The film thickness of the alloy film was measured with a fluorescent X-ray film thickness meter (SFT-7000: manufactured by Seiko Electronics Co., Ltd.). The hydrogen content of the alloy wire and the alloy coating was measured with a hydrogen analyzer (EMGA-11: manufactured by Horiba, Ltd.).
表1から明らかなように、実施例1〜実施例4によれば、合金ワイヤーの送り速度を調節することで合金被膜の金属組成を容易に調整できること、合金ワイヤーの送り速度と合金被膜のMg含有量との間には比例関係が存在することがわかった。なお、実施例1〜実施例4において磁石体試験片の表面に蒸着形成された合金被膜の膜内組成分布を電子線マイクロアナライザ(EPMA−1610:島津製作所社製)により測定したところ、いずれの合金被膜も均一な膜内組成分布を有していることが確認できた。また、目視観察において、いずれの合金被膜の表面にも目立った損傷や突起物は確認できなかった。処理中の磁石体試験片の温度は最高で70℃程度であった。 As is apparent from Table 1, according to Examples 1 to 4, the metal composition of the alloy coating can be easily adjusted by adjusting the feeding speed of the alloy wire, the feeding speed of the alloy wire and the Mg of the alloy coating. It was found that there is a proportional relationship with the content. In Example 1 to Example 4, the in-film composition distribution of the alloy coating deposited on the surface of the magnet body test piece was measured with an electron beam microanalyzer (EPMA-1610: manufactured by Shimadzu Corporation). It was confirmed that the alloy coating also has a uniform in-film composition distribution. Further, in visual observation, no conspicuous damage or protrusions could be confirmed on the surface of any alloy coating. The maximum temperature of the magnetic specimen during the treatment was about 70 ° C.
実施例5:
上記の実施例1〜実施例4では、100分間の蒸着処理の開始時から終了時まで合金ワイヤーの送り速度を一定にして磁石体試験片の表面に合金被膜を蒸着形成したが、実施例5では、蒸着処理の開始時から終了時にかけて合金ワイヤーの送り速度を連続的に徐々に遅くして(4.0g/分×10分→3.5g/分×10分→3.0g/分×10分→2.5g/分×10分→2.0g/分×10分→1.5g/分×10分→1.0g/分×10分→0.5g/分×10分→0g/分×20分)磁石体試験片の表面に合金被膜を蒸着形成した(合金ワイヤーの送り速度を変化させること以外の実験条件は実施例1〜実施例4の実験条件と同じ)。磁石体試験片の表面に蒸着形成された合金被膜(膜厚11.9μm、水素含有量0.8ppm)の膜内組成分布を電子線マイクロアナライザ(EPMA−1610:島津製作所社製)により測定した結果を図2に示す。
図2から明らかなように、磁石体試験片の表面に蒸着形成された合金被膜のMgの比率は、蒸着開始直後は約9mass%であったが、時間の経過とともに連続的に徐々に低くなり、蒸着終了時は約5mass%であった(合金ワイヤーの送り速度を最終的に0g/分×20分、即ち、合金ワイヤーを坩堝の直方上に案内しないにもかかわらずMgの比率が蒸着終了時に0mass%にならないのは、合金ワイヤーを案内していた段階で坩堝内に溶け落ちた合金ワイヤー中のMgが坩堝内から蒸発を続けているためであり、合金ワイヤーを案内せずにさらに蒸着処理を続けるとMgの比率は0mass%になる)。
以上の結果から、この方法によれば、磁石体試験片の表面に蒸着形成されたAlを主成分としてMgを含む合金被膜の金属組成を、磁石体試験片との界面側よりも外面側の方がAlの比率が高く(Mgの比率が低く)なるようにすることができるので、Alを主成分としてMgを含む合金被膜に対し、合金被膜が本来的に有する被膜硬度や平滑性に優れるとともに膜欠陥が少ないといった特性に加え、Alが有する高い接着信頼性を外面側において付与できることがわかった。
Example 5:
In Example 1 to Example 4 above, the alloy film was deposited on the surface of the magnet test piece while keeping the feeding speed of the alloy wire constant from the start to the end of the 100 minute deposition process. Then, the feed rate of the alloy wire is gradually decreased gradually from the start to the end of the vapor deposition process (4.0 g / min × 10 minutes → 3.5 g / min × 10 minutes → 3.0 g / min × 10 min → 2.5 g / min × 10 min → 2.0 g / min × 10 min → 1.5 g / min × 10 min → 1.0 g / min × 10 min → 0.5 g / min × 10 min → 0 g / (Minute x 20 minutes) An alloy film was formed by vapor deposition on the surface of the magnet body test piece (experimental conditions other than changing the feeding speed of the alloy wire were the same as those in Examples 1 to 4). The composition distribution in the film of the alloy film (film thickness 11.9 μm, hydrogen content 0.8 ppm) formed by vapor deposition on the surface of the magnet body test piece was measured with an electron beam microanalyzer (EPMA-1610: manufactured by Shimadzu Corporation). The results are shown in FIG.
As can be seen from FIG. 2, the Mg ratio of the alloy coating formed on the surface of the magnet specimen was about 9 mass% immediately after the start of the deposition, but gradually decreased gradually over time. At the end of the deposition, it was about 5 mass% (the alloy wire feed rate was finally 0 g / min × 20 minutes, that is, the Mg ratio was completed even though the alloy wire was not guided directly above the crucible. Sometimes it does not become 0 mass% because Mg in the alloy wire melted into the crucible at the stage where the alloy wire was being guided continues to evaporate from the crucible, and further vapor deposition without guiding the alloy wire. If the treatment is continued, the ratio of Mg becomes 0 mass%).
From the above results, according to this method, the metal composition of the alloy film containing Mg as a main component deposited on the surface of the magnet body test piece and containing Mg is more on the outer surface side than the interface side with the magnet body test piece. Since the ratio of Al can be higher (the ratio of Mg is lower), the alloy film inherently has excellent film hardness and smoothness compared to an alloy film containing Al as a main component and containing Mg. In addition to the characteristics that there are few film defects, it has been found that high adhesion reliability of Al can be imparted on the outer surface side.
実施例6:
実施例5とは反対に、蒸着処理の開始時から終了時にかけて合金ワイヤーの送り速度を連続的に徐々に速くして磁石体試験片の表面に合金被膜を蒸着形成したところ、合金組成が磁石体試験片との界面側から外面側にかけてAlの比率が連続的に徐々に低くなった合金被膜を磁石体試験片の表面に蒸着形成することができた。
Example 6:
Contrary to Example 5, when the deposition speed of the alloy wire was continuously increased gradually from the start to the end of the deposition process to form an alloy film on the surface of the magnet test piece, the alloy composition was a magnet. An alloy film in which the Al ratio gradually decreased gradually from the interface side to the outer surface side with the body test piece could be deposited on the surface of the magnet body test piece.
本発明は、種々の金属組成の合金被膜を希土類系永久磁石などの個片の表面に簡易に蒸着形成するための方法を提供できる点において産業上の利用可能性を有する。 INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that it can provide a method for easily depositing an alloy film having various metal compositions on the surface of an individual piece such as a rare earth permanent magnet.
1 真空蒸着装置の真空処理室
2 筒型バレル
3 坩堝
4 ボビン
5 繰り出しギア
11 個片(被処理物)
E 電子線
X 金属Aの固体
Y 合金ワイヤー
DESCRIPTION OF SYMBOLS 1 Vacuum processing chamber of vacuum evaporation apparatus 2 Cylindrical barrel 3 Crucible 4 Bobbin 5 Feeding gear 11 Pieces (object to be processed)
E Electron beam X Metal A solid Y Alloy wire
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006301908A JP2007154310A (en) | 2005-11-09 | 2006-11-07 | Vacuum deposition method for forming alloy film on surface of piece by vapor deposition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005324627 | 2005-11-09 | ||
JP2006301908A JP2007154310A (en) | 2005-11-09 | 2006-11-07 | Vacuum deposition method for forming alloy film on surface of piece by vapor deposition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007154310A true JP2007154310A (en) | 2007-06-21 |
Family
ID=38239039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006301908A Withdrawn JP2007154310A (en) | 2005-11-09 | 2006-11-07 | Vacuum deposition method for forming alloy film on surface of piece by vapor deposition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007154310A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009054716A (en) * | 2007-08-24 | 2009-03-12 | Hitachi Metals Ltd | RARE EARTH-BASED PERMANENT MAGNET HAVING Mg-CONTAINING Al COATING ON SURFACE THEREOF, AND MANUFACTURING METHOD THEREOF |
CN102522193A (en) * | 2012-01-11 | 2012-06-27 | 中国科学院宁波材料技术与工程研究所 | Device and method for improving coercivity of magnet |
JP2021091922A (en) * | 2019-12-06 | 2021-06-17 | 松田産業株式会社 | Vapor deposition material and method for manufacturing the same |
-
2006
- 2006-11-07 JP JP2006301908A patent/JP2007154310A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009054716A (en) * | 2007-08-24 | 2009-03-12 | Hitachi Metals Ltd | RARE EARTH-BASED PERMANENT MAGNET HAVING Mg-CONTAINING Al COATING ON SURFACE THEREOF, AND MANUFACTURING METHOD THEREOF |
CN102522193A (en) * | 2012-01-11 | 2012-06-27 | 中国科学院宁波材料技术与工程研究所 | Device and method for improving coercivity of magnet |
JP2021091922A (en) * | 2019-12-06 | 2021-06-17 | 松田産業株式会社 | Vapor deposition material and method for manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3801418B2 (en) | Surface treatment method | |
JP4747802B2 (en) | Vacuum film forming method and vacuum film forming apparatus | |
US9951412B2 (en) | Sputtering target and/or coil, and process for producing same | |
JP6697073B2 (en) | Metal evaporation material | |
JP5056267B2 (en) | Rare earth permanent magnet having Al coating containing Mg on its surface and method for producing the same | |
JP4241901B2 (en) | Rare earth permanent magnet manufacturing method | |
JP2007154310A (en) | Vacuum deposition method for forming alloy film on surface of piece by vapor deposition | |
JP2006118055A (en) | Surface treatment apparatus and surface treated rare earth based permanent magnet | |
JP4529763B2 (en) | Method of forming a deposition film of Al or its alloy on the surface of a workpiece | |
JP7160531B2 (en) | Surface treatment equipment | |
JPS63137159A (en) | Formation of thin crystalline metallic film | |
JP2005191276A (en) | Rare earth-based permanent magnet excellent in saline water resistance, and saline water resistance imparting method thereto | |
JP5326730B2 (en) | Method for producing rare earth permanent magnets with excellent salt water resistance | |
JP5423438B2 (en) | Method for improving denseness of metal film formed by vapor deposition | |
JP2005105311A (en) | SURFACE TREATMENT METHOD FOR OBJECT TO BE TREATED, SURFACE-TREATED RARE EARTH PERMANENT MAGNET AND METHOD FOR INCREASING HARDNESS OF Al COATING FILM | |
JP5381577B2 (en) | Method for producing corrosion-resistant R—Fe—B sintered magnet | |
JP4729815B2 (en) | Method for supplying hydrogen gas into the processing chamber of a vapor deposition apparatus | |
JP5223761B2 (en) | Method for improving salt water resistance of rare earth permanent magnets with Al film containing Mg deposited on the surface | |
JPH1068069A (en) | Formation of metallic boride coating film | |
JP2004076162A (en) | Surface treatment method and surface treated rare earth based permanent magnet | |
JP2011216674A (en) | Method of manufacturing rare-earth-based permanent magnet having vapor-deposited film of aluminum or alloy thereof on surface | |
JPH01184272A (en) | Vapor deposition equipment | |
JP2010095754A (en) | Vapor-deposition material of tantalum oxide, production method therefor, and method for producing vapor-deposition film of tantalum oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20070605 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100202 |