JP5223761B2 - Method for improving salt water resistance of rare earth permanent magnets with Al film containing Mg deposited on the surface - Google Patents

Method for improving salt water resistance of rare earth permanent magnets with Al film containing Mg deposited on the surface Download PDF

Info

Publication number
JP5223761B2
JP5223761B2 JP2009094126A JP2009094126A JP5223761B2 JP 5223761 B2 JP5223761 B2 JP 5223761B2 JP 2009094126 A JP2009094126 A JP 2009094126A JP 2009094126 A JP2009094126 A JP 2009094126A JP 5223761 B2 JP5223761 B2 JP 5223761B2
Authority
JP
Japan
Prior art keywords
coating
rare earth
film
magnet
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009094126A
Other languages
Japanese (ja)
Other versions
JP2010245394A (en
Inventor
篤 菊川
吉村  公志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009094126A priority Critical patent/JP5223761B2/en
Publication of JP2010245394A publication Critical patent/JP2010245394A/en
Application granted granted Critical
Publication of JP5223761B2 publication Critical patent/JP5223761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

本発明は、表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性を向上させる方法に関する。   The present invention relates to a method for improving the salt water resistance of a rare earth permanent magnet having an Al film containing Mg deposited on its surface.

Nd−Fe−B系永久磁石に代表されるR−Fe−B系永久磁石やSm−Fe−N系永久磁石に代表されるR−Fe−N系永久磁石などの希土類系永久磁石は、資源的に豊富で安価な材料が用いられ、かつ、高い磁気特性を有していることから、特にR−Fe−B系永久磁石は今日様々な分野で使用されている。しかしながら、希土類系永久磁石は反応性の高い希土類金属:Rを含むため、大気中で酸化腐食されやすく、何の表面処理をも行わずに使用した場合には、わずかな酸やアルカリや水分などの存在によって表面から腐食が進行して錆が発生し、それに伴って、磁気特性の劣化やばらつきを招く。さらに、錆が発生した磁石を磁気回路などの装置に組み込んだ場合、錆が飛散して周辺部品を汚染する恐れがある。
上記の点に鑑み、希土類系永久磁石に優れた耐食性を付与することを目的として、その表面にAl被膜を蒸着法などの気相めっき法によって成膜することが行われている。Al被膜は耐食性に優れていることに加え、部品組み込み時に必要とされる接着剤との接着信頼性に優れている(接着剤が本質的に有する破壊強度に達するまでに被膜と接着剤との間で剥離が生じにくい)ので、強い接着強度が要求される希土類系永久磁石に対して広く適用されおり、表面にAl被膜を有する希土類系永久磁石は、各種モータなどに組み込まれて使用されている。
Rare earth permanent magnets such as R—Fe—B permanent magnets represented by Nd—Fe—B permanent magnets and R—Fe—N permanent magnets represented by Sm—Fe—N permanent magnets are In particular, R-Fe-B based permanent magnets are used in various fields today because they use abundant and inexpensive materials and have high magnetic properties. However, since rare earth permanent magnets contain a highly reactive rare earth metal: R, they are susceptible to oxidative corrosion in the atmosphere. When used without any surface treatment, a slight amount of acid, alkali, moisture, etc. Corrosion proceeds from the surface due to the presence of rust, and rust is generated, resulting in deterioration and variation in magnetic properties. Furthermore, when a magnet in which rust is generated is incorporated in an apparatus such as a magnetic circuit, the rust may be scattered to contaminate peripheral components.
In view of the above points, for the purpose of imparting excellent corrosion resistance to a rare earth-based permanent magnet, an Al coating is formed on the surface thereof by a vapor deposition method such as a vapor deposition method. In addition to being excellent in corrosion resistance, the Al coating has excellent adhesion reliability with the adhesive required when assembling the parts (the coating film and adhesive are required to reach the breaking strength inherent in the adhesive). Is widely applied to rare earth permanent magnets that require strong adhesive strength, and rare earth permanent magnets having an Al coating on the surface are used in various motors. Yes.

各種モータの中でも、自動車用モータに組み込まれる希土類系永久磁石は、使用環境の温度変化が激しく、かつ、寒冷地域においては道路に散布される凍結防止剤に含まれる塩素イオンに晒されたり、海岸近辺では塩水に晒されたりすることから、最も過酷な使用環境にある磁石と言える。従って、自動車用モータに組み込まれる希土類系永久磁石には、最も過酷な耐食性試験である塩水噴霧試験を行っても優れた耐食性を発揮することが要求されるが、残念ながらAl被膜の耐塩水性は必ずしも十分なものではない。表面にAl被膜を有する希土類系永久磁石の耐塩水性を向上させる方法としては、Al被膜の表面に、化成処理被膜を積層形成したり(特許文献1)、金属酸化物被膜を積層形成したり(特許文献2)する方法が考えられるが、それでもなお耐塩水性が十分でないといった問題がある。このような問題に対処するため、本発明者は、特許文献3において、希土類系永久磁石に耐塩水性を付与する方法として、磁石の表面にMgを3質量%〜10質量%含むAl被膜を蒸着形成する方法を提案した。この方法は、希土類系永久磁石に耐塩水性を付与する方法として優れたものであることは自他共に認めるところであるが、昨今、希土類系永久磁石にはさらなる耐塩水性の向上が求められている。   Among various motors, rare earth permanent magnets incorporated in motors for automobiles are subject to severe changes in the temperature of the usage environment, and in cold regions, they are exposed to chlorine ions contained in anti-freezing agents sprayed on the road, Since it is exposed to salt water in the vicinity, it can be said that the magnet is in the most severe use environment. Therefore, rare earth permanent magnets incorporated in motors for automobiles are required to exhibit excellent corrosion resistance even in the salt spray test, which is the most severe corrosion resistance test. Not always enough. As a method for improving the salt water resistance of a rare earth permanent magnet having an Al film on its surface, a chemical conversion film is formed on the surface of the Al film (Patent Document 1), or a metal oxide film is formed ( Although the method of patent document 2) can be considered, there still exists a problem that salt water resistance is not enough. In order to cope with such a problem, the present inventor disclosed in Patent Document 3 as a method for imparting salt water resistance to a rare earth permanent magnet by depositing an Al coating containing 3% by mass to 10% by mass of Mg on the surface of the magnet. A method of forming was proposed. Although this method has been recognized as an excellent method for imparting salt water resistance to rare earth permanent magnets, it has recently been recognized that rare earth permanent magnets are required to be further improved in salt water resistance.

特開2000−150216号公報JP 2000-150216 A 特開2000−232011号公報JP 2000-233201 A 特開2005−191276号公報Japanese Patent Laying-Open No. 2005-191276

そこで本発明は、表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性向上方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for improving the salt water resistance of a rare earth permanent magnet having a surface on which an Al coating containing Mg is deposited.

本発明者は、上記の点に鑑みて鋭意研究を重ねた結果、希土類系永久磁石の表面に蒸着形成したMgを含むAl被膜の表面を結露させることにより、被膜中のMgを被膜表面に染み出させることで、その耐塩水性が向上することを見出した。   As a result of intensive research in view of the above points, the present inventors have made the surface of the Al coating containing Mg deposited on the surface of the rare earth-based permanent magnet condense, so that the Mg in the coating is stained on the coating surface. It was found that the salt water resistance is improved by making it come out.

上記の知見に基づいて完成された本発明の表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性向上方法は、請求項1記載の通り、Mgを含むAl被膜の表面を結露させることにより、被膜中のMgを被膜表面に染み出させることを特徴とする。
また、請求項2記載の方法は、請求項1記載の方法において、結露粒径が10μm以上となるように被膜表面を結露させることを特徴とする。
また、請求項3記載の方法は、請求項1または2記載の方法において、少なくとも被膜表面の温度が10℃〜80℃である、表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石を、露点温度が15℃〜85℃の環境(但し露点温度は被膜表面の温度よりも高いことを条件とする)に曝露することにより、被膜表面を結露させることを特徴とする。
The method for improving the salt water resistance of a rare earth permanent magnet in which an Al coating containing Mg is vapor-deposited on the surface of the present invention, which has been completed based on the above findings, is characterized in that the surface of the Al coating containing Mg is condensed on the surface according to claim 1. By making it, Mg in the film is oozed out to the surface of the film.
The method according to claim 2 is characterized in that in the method according to claim 1, the surface of the coating film is condensed so that the condensation particle diameter is 10 μm or more.
The method according to claim 3 is the method according to claim 1 or 2, wherein the rare earth permanent magnet is formed by vapor-depositing an Al film containing Mg on the surface, the temperature of the film surface being at least 10 ° C to 80 ° C. The film surface is condensed by exposure to an environment having a dew point temperature of 15 ° C. to 85 ° C. (provided that the dew point temperature is higher than the temperature of the film surface).

本発明によれば、表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性向上方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the salt water resistance improvement method of the rare earth-type permanent magnet which vapor-deposited and formed Al film containing Mg on the surface can be provided.

希土類系永久磁石の表面にMgを含むAl被膜を蒸着形成するために用いることができる蒸着装置の一例の模式的正面図である。It is a typical front view of an example of the vapor deposition apparatus which can be used in order to vapor-deposit and form Al film containing Mg on the surface of a rare earth system permanent magnet. 実施例1におけるMgを含むAl被膜の表面を結露させる前の被膜表面の元素マッピングを電界放出形走査電子線顕微鏡とエネルギー分散型X線分析装置を使用して行った結果である。It is the result of having performed the elemental mapping of the film surface before dew condensation on the surface of the Al film containing Mg in Example 1 using a field emission scanning electron microscope and an energy dispersive X-ray analyzer. 同、結露させた後の被膜表面の元素マッピングの結果である。It is the result of element mapping of the film surface after dew condensation.

本発明の表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性向上方法は、Mgを含むAl被膜の表面を結露させることにより、被膜中のMgを被膜表面に染み出させることを特徴とするものである。本発明によれば、Mgを含むAl被膜の表面を結露させることで、被膜中のMgがそのイオン化傾向の高さやAlとの電位差腐食などに基づいて被膜から溶出して表面に染み出す現象を利用し、塩素イオンや塩水の磁石内部への浸入経路となりうる、蒸着被膜特有の柱状晶組織に由来する微細な結晶間空隙や被膜欠陥が存在する場合における当該欠陥に、被膜表面に染み出したMgを入り込ませたり、このような部分を被膜表面に染み出したMgで被覆したりすることにより、塩素イオンや塩水の磁石内部への浸入を効果的に阻止することができる。   The method for improving the salt water resistance of a rare earth permanent magnet in which an Al coating containing Mg is vapor-deposited on the surface of the present invention causes the Mg in the coating to exude to the coating surface by dew condensation on the surface of the Al coating containing Mg. It is characterized by. According to the present invention, by dew condensation on the surface of the Al coating containing Mg, the phenomenon that Mg in the coating elutes from the coating and oozes out to the surface based on its high ionization tendency and potential difference corrosion with Al. When there are minute intercrystalline voids or film defects derived from the columnar crystal structure unique to the deposited film, which can be used as a penetration path into the magnet of chlorine ions or salt water, the defects ooze out on the film surface. By allowing Mg to enter or covering such a portion with Mg oozing out on the surface of the coating, it is possible to effectively prevent the penetration of chlorine ions or salt water into the magnet.

本発明における希土類系永久磁石の表面へのMgを含むAl被膜の蒸着形成は、自体公知の方法で行うことができるが、望ましい方法としては、Mgを含むAlワイヤーを蒸着材料として加熱した溶融蒸発部に連続供給しながら蒸発させることで蒸着形成する方法が挙げられる。この方法は、Al被膜に含ませるMg量(例えば3質量%〜10質量%が望ましい。Mg量が少なすぎると耐塩水性が発揮されない恐れがあり、Mg量が多すぎると被膜中に高い応力分布が発生することで磁石と被膜との密着性が阻害される恐れがある)の制御が容易であり、例えば、特開2001−32062号公報に記載されているような表面処理装置を用いて行うことができる。図1はその模式的正面図であり、図略の真空排気系に連なる処理室(真空槽)1内の下部には、Mgを含むAl10を蒸発させる溶融蒸発部であるハース(蒸着材料を溶融させるための容器)2が、支持テーブル3上に立設されたハース支持台4上に複数個配設されている。また、処理室1内の上方には網状部材で形成された籠状の被処理物保持部5が回転軸6を中心に回転自在に2個並設されている。支持テーブル3の下方内部には、Mgを含むAlワイヤー11が繰り出しリール20に巻回保持されている。繰り出しリール20へのMgを含むAlワイヤー11の巻回方向を水平方向としているのは、ワイヤーの送り方向、即ち、鉛直方向と直交させることによって、送り出されるワイヤーがねじれたりぶれたりすることを防止するためである。Mgを含むAlワイヤー11の先端は、ハース2の内面に向かって臨ませた耐熱性の保護チューブ21によってハース2の上方に案内されている。保護チューブ21の一部には切り欠き窓22が設けられており、この切り欠き窓22に対応して設けられた一対の繰り出しギヤー23によって、Mgを含むAlワイヤー11をハース2内に所定の繰り出し速度で送り出し自在としている。この表面処理装置によれば、被処理物保持部5内に希土類系永久磁石30を収容し、矢示したように被処理物保持部5を回転させるとともに、Mgを含むAlワイヤー11を図略の加熱手段によって所定温度に加熱したハース2に連続供給しながらMgを含むAl10を蒸発させることで、被処理物保持部5内の希土類系永久磁石30の表面にMgを含むAl被膜を蒸着形成することができる。   The Al film containing Mg on the surface of the rare earth permanent magnet according to the present invention can be formed by vapor deposition using a method known per se. However, as a desirable method, melt evaporation by heating an Al wire containing Mg as a vapor deposition material is preferable. There is a method of forming a vapor deposition by evaporating while continuously supplying to the part. In this method, the amount of Mg contained in the Al coating (for example, 3% by mass to 10% by mass is desirable. If the amount of Mg is too small, salt water resistance may not be exhibited. If the amount of Mg is too large, high stress distribution in the coating The adhesion between the magnet and the coating may be hindered), and is performed using, for example, a surface treatment apparatus as described in JP-A-2001-32062. be able to. FIG. 1 is a schematic front view thereof. In a lower portion of a processing chamber (vacuum chamber) 1 connected to an unillustrated vacuum exhaust system, a hearth (melting deposition material is melted) for evaporating Al10 containing Mg. A plurality of containers 2) are arranged on a hearth support 4 standing on a support table 3. In addition, two bowl-shaped workpiece holding parts 5 formed of a net-like member are arranged in parallel above the processing chamber 1 so as to be rotatable around a rotation shaft 6. An Al wire 11 containing Mg is wound around a supply reel 20 inside the lower side of the support table 3. The winding direction of the Al wire 11 containing Mg on the feeding reel 20 is set to the horizontal direction, and the wire being fed is prevented from being twisted or shaken by being orthogonal to the feeding direction, that is, the vertical direction. It is to do. The tip of the Al wire 11 containing Mg is guided above the hearth 2 by a heat-resistant protective tube 21 facing the inner surface of the hearth 2. A cutout window 22 is provided in a part of the protective tube 21, and a pair of feeding gears 23 provided in correspondence with the cutout window 22 causes the Al wire 11 containing Mg to enter the hearth 2 in a predetermined manner. Feeding is possible at the feeding speed. According to this surface treatment apparatus, the rare earth permanent magnet 30 is accommodated in the workpiece holder 5, the workpiece holder 5 is rotated as indicated by the arrow, and the Al wire 11 containing Mg is omitted. The Al film containing Mg is deposited on the surface of the rare earth permanent magnet 30 in the workpiece holding part 5 by evaporating Al10 containing Mg while continuously supplying to the hearth 2 heated to a predetermined temperature by the heating means. can do.

Alワイヤーに含ませるMg濃度は、3質量%〜10質量%が望ましい。3質量%未満であると希土類系永久磁石の表面に蒸着形成されるAl被膜に含まれるMg量が少なくなり、Al被膜の耐塩水性の向上に寄与するMg濃化相が形成されにくくなることで、Al被膜に優れた耐塩水性を付与できなくなる恐れがある一方、10質量%を超えるとワイヤーの硬度が高まることにより、ワイヤーを溶融蒸発部内に繰り出す作業性が悪くなったり、溶融蒸発部内で溶融されていない蒸着材料がスプラッシュを引き起こしたりする恐れがあるからである。なお、処理室内に酸素が存在すると、蒸着材料を溶融させた段階や蒸発させた段階で、蒸着材料や希土類系永久磁石の表面が酸化し、磁石の表面に密着性に優れたMgを含むAl被膜を形成することができない場合や、Mgが酸化することで、Al被膜に含まれるMg量が蒸着材料に含まれるMg量よりも減少する場合があるので、この点には留意すべきである。   As for Mg density | concentration included in Al wire, 3 mass%-10 mass% are desirable. If it is less than 3% by mass, the amount of Mg contained in the Al coating deposited on the surface of the rare earth-based permanent magnet is reduced, making it difficult to form a Mg-concentrated phase that contributes to improving the salt water resistance of the Al coating. There is a possibility that excellent salt water resistance cannot be imparted to the Al coating. On the other hand, if it exceeds 10% by mass, the hardness of the wire increases, so that the workability of feeding the wire into the melting and evaporating part deteriorates, or the melting occurs in the melting and evaporating part. This is because an undeposited vapor deposition material may cause a splash. If oxygen is present in the processing chamber, the surface of the vapor deposition material or rare earth permanent magnet is oxidized at the stage of melting or evaporating the vapor deposition material, and Al containing Mg with excellent adhesion to the magnet surface. It should be noted that when the film cannot be formed or when Mg is oxidized, the amount of Mg contained in the Al film may be less than the amount of Mg contained in the vapor deposition material. .

以上の点に鑑みれば、Mgを含むAlワイヤーは水素を含むものが望ましい。蒸着材料を蒸発させた際、処理室内に水素を供給することができるので、別途の手段で処理室外部から水素を供給しなくても、処理室内を還元性雰囲気にして、例えば10−3Pa以上といったような酸素分圧下であっても、溶融させた段階や蒸発させた段階の蒸着材料の酸化を防止することができるからである。Mgを含むAlワイヤーの水素含有量は、1ppm〜20ppmが望ましく、2ppm〜10ppmがより望ましい。1ppm未満であると処理室内に水素を十分に供給することができない恐れがある一方、20ppmを超えると溶融蒸発部において水素がボイリングしてスプラッシュを引き起こす恐れがあるからである。 In view of the above points, it is desirable that the Al wire containing Mg contains hydrogen. When the vapor deposition material is evaporated, hydrogen can be supplied into the processing chamber. Therefore, even if hydrogen is not supplied from the outside of the processing chamber by a separate means, the processing chamber is made a reducing atmosphere, for example, 10 −3 Pa. This is because even under an oxygen partial pressure as described above, it is possible to prevent the vapor deposition material from being oxidized at the melted or evaporated stage. The hydrogen content of the Al wire containing Mg is desirably 1 ppm to 20 ppm, and more desirably 2 ppm to 10 ppm. This is because if it is less than 1 ppm, hydrogen may not be sufficiently supplied into the processing chamber, while if it exceeds 20 ppm, hydrogen may boiler in the melt-evaporating section and cause splash.

溶融蒸発部の加熱温度は、1300℃〜1500℃が望ましい。1300℃未満であると蒸着材料を効率よく溶融させることができない恐れがあるからである。蒸着材料を効率よく溶融させることができないと、Alの蒸気圧とMgの蒸気圧の違い(Mgの方が蒸気圧が高い)が、蒸着形成されるAl被膜の金属組成に多大な影響を与え、Al被膜に含まれるMg量が、Alワイヤーに含まれるMg量と大きく異なるといった現象が起こり、意図した金属組成のAl被膜を蒸着形成することができない場合がある。一方、1500℃を超えると周辺温度が高くなり過ぎることでワイヤーが軟化して図1における保護チューブ21の内部で詰まるなどするので、これを溶融蒸発部に円滑に連続供給することができなくなる恐れがあるからである。   As for the heating temperature of a fusion | melting evaporation part, 1300 to 1500 degreeC is desirable. This is because if it is lower than 1300 ° C., the vapor deposition material may not be efficiently melted. If the vapor deposition material cannot be efficiently melted, the difference between the vapor pressure of Al and the vapor pressure of Mg (Mg has a higher vapor pressure) will greatly affect the metal composition of the deposited Al film. A phenomenon occurs in which the amount of Mg contained in the Al coating is significantly different from the amount of Mg contained in the Al wire, and the Al coating having the intended metal composition may not be formed by vapor deposition. On the other hand, if the temperature exceeds 1500 ° C., the ambient temperature becomes too high and the wire softens and becomes clogged inside the protective tube 21 in FIG. Because there is.

Mgを含むAlワイヤーの溶融蒸発部への送り出し速度は、1g/分〜10g/分が望ましく、2g/分〜5g/分がより望ましい。1g/分未満であると蒸着材料を効率よく溶融させることができない恐れがある一方、10g/分を超えると溶融蒸発部内で溶融された蒸着材料が多くなり過ぎることでスプラッシュを引き起こす恐れがあるからである。   The feed rate of the Al wire containing Mg to the melt evaporation part is preferably 1 g / min to 10 g / min, and more preferably 2 g / min to 5 g / min. If it is less than 1 g / min, the vapor deposition material may not be efficiently melted, whereas if it exceeds 10 g / min, the amount of the vapor deposition material melted in the melt-evaporating part may increase, causing splash. It is.

なお、Mgを含むAl被膜を希土類系永久磁石の表面に蒸着形成する方法は、真空蒸着法のように蒸着材料を単に加熱によって蒸発させて被膜を蒸着形成する方法であってもよいし、イオンプレーティング法のように蒸発したものをイオン化させて被膜を蒸着形成する方法であってもよい。   In addition, the method of vapor-depositing and forming an Al film containing Mg on the surface of the rare earth-based permanent magnet may be a method of vapor-depositing and forming a film by simply evaporating a vapor deposition material, such as a vacuum vapor deposition method. A method of vaporizing and forming a film by ionizing the evaporated material, such as a plating method, may be used.

以上説明したように、希土類系永久磁石の表面へのMgを含むAl被膜の蒸着形成は、Mgを含む水素含有Alワイヤーを、加熱した溶融蒸発部に連続供給しながら蒸発させることで、容易に行うことができる。しかしながら、希土類系永久磁石の表面へのこのようなAl被膜の蒸着形成は、Mgを含むAlインゴットを用いた電子ビーム加熱による蒸着法(EB蒸着法)によっても行うことができる。但し、EB蒸着法による場合、スプラッシュを引き起こす恐れが強く、また、処理室外部から水素を供給するといった手段を講じなければ、Al被膜に含まれるMg量が、蒸着材料に含まれるMg量よりも減少しやすいこと、高い蒸気圧を有するMgは、溶融した蒸着材料から蒸発しやすいので、溶融した蒸着材料の金属組成が経時的に変化しやすいことなどの点には留意すべきである。   As explained above, vapor deposition formation of an Al film containing Mg on the surface of a rare earth-based permanent magnet is facilitated by evaporating a hydrogen-containing Al wire containing Mg while continuously supplying it to a heated melt evaporation part. It can be carried out. However, deposition of such an Al film on the surface of a rare earth permanent magnet can also be performed by a deposition method (EB deposition method) by electron beam heating using an Al ingot containing Mg. However, in the case of the EB vapor deposition method, there is a strong possibility of causing splash, and unless measures are taken such as supplying hydrogen from outside the processing chamber, the amount of Mg contained in the Al coating is greater than the amount of Mg contained in the vapor deposition material. It should be noted that Mg having a high vapor pressure tends to be reduced, and that the metal composition of the molten vapor deposition material is likely to change with time because Mg is easily evaporated from the vapor deposition material.

Mgを含むAl被膜の膜厚は、0.1μm〜50μmが望ましい。0.1μm未満であると十分な耐塩水性を付与することができない恐れがある一方、50μmを超えると磁石の小型化や有効体積の確保が困難になり、また、コストの面からも望ましくないからである。Al被膜の膜厚は、より望ましくは3μm〜25μmである。   The film thickness of the Al coating containing Mg is preferably 0.1 μm to 50 μm. If it is less than 0.1 μm, sufficient salt water resistance may not be imparted. On the other hand, if it exceeds 50 μm, it is difficult to reduce the size of the magnet and secure an effective volume, and it is not desirable from the viewpoint of cost. It is. The film thickness of the Al coating is more desirably 3 μm to 25 μm.

なお、蒸着形成したAl被膜に対してピーニング処理することで耐塩水性の向上を図ることができる。この作用は、投射材をAl被膜の表面に衝突させることにより、Al被膜の緻密性が高まることによるものと考えられる。ピーニング処理は、例えば、投射材としてガラスビーズやスチールボールなどのAl被膜と同等以上の硬度を有する球状硬質粉末を使用し(中でもガラスビーズが好適である)、投射材を0.1MPa〜0.5MPaの投射圧でAl被膜に対して1分〜60分程度投射するようにして行えばよい。投射圧が0.1MPa未満であるとピーニング処理することの効果が十分に得られない恐れがある一方、投射圧が0.5MPaを超えるとAl被膜の面粗度の悪化を招く恐れがある。   In addition, salt water resistance can be improved by peening the deposited Al film. This action is considered to be due to the fact that the denseness of the Al coating is increased by causing the projection material to collide with the surface of the Al coating. In the peening treatment, for example, a spherical hard powder having a hardness equal to or higher than that of an Al coating such as glass beads or steel balls is used as a projection material (in particular, glass beads are suitable), and the projection material is 0.1 MPa to 0.00 MPa. What is necessary is just to carry out by projecting about 1 minute-60 minutes with respect to an Al film with the projection pressure of 5 MPa. If the projection pressure is less than 0.1 MPa, the effect of peening may not be sufficiently obtained, while if the projection pressure exceeds 0.5 MPa, the surface roughness of the Al coating may be deteriorated.

本発明では、以上のようにして希土類系永久磁石の表面に蒸着形成したMgを含むAl被膜の表面を結露させることにより、被膜中のMgを被膜表面に染み出させる。Mgを含むAl被膜の表面を結露させる方法は特段限定されるものではなく、例えば、少なくとも被膜表面の温度が10℃〜80℃である、表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石を、露点温度が15℃〜85℃の環境(但し露点温度は被膜表面の温度よりも高いことを条件とする)に曝露することにより、被膜表面を結露させる方法が挙げられる。この方法は、磁石の少なくとも被膜表面の温度と被膜表面を結露させる環境の露点温度の差を利用するものであるが、少なくとも被膜表面の温度が10℃〜80℃の磁石を別の環境から予め設定された被膜表面を結露させる環境に移すことで実施してもよいし、少なくとも被膜表面の温度が10℃〜80℃の磁石が置かれた環境の温度を、磁石の温度が追従できないような速度で上昇させることによって被膜表面を結露させる環境に変化させることで実施してもよい。被膜中のMgを効果的に溶出させて磁石表面に染み出させるためには、結露粒径が10μm以上となるように被膜表面を結露させることが望ましい。磁石の少なくとも被膜表面の温度と被膜表面を結露させる環境の露点温度の差が大きいほど結露粒径は大きくなる傾向にある。従って、両者の差は5℃以上であることが望ましい。また、被膜表面を結露させておく時間は、1分間〜48時間が望ましい。結露させておく時間を長くすることによって被膜中のMgを十分に磁石表面に染み出させることができる。一方、結露させておく時間を必要以上に長くすると、凝集した水蒸気が蒸着被膜特有の柱状晶組織に由来する微細な結晶間空隙や被膜欠陥が存在する場合における当該欠陥を通じて磁石表面に達し、磁石が腐食する原因となる恐れがあるので注意を要する。かかる観点からは、被膜表面の結露は、結露前後の磁石の残留磁束密度を比較すると、結露による残留磁束密度の低下が1.0%以下であることを条件に行うことが望ましい。なお、磁石の温度は、被膜表面のみならずその内部に至るまで全体が必ずしも10℃〜80℃である必要はないが、全体を一定の温度とすることにより、磁石が被膜表面を結露させる環境に曝露された後の磁石の急速な温度上昇を抑制し、磁石の温度が露点温度を超えることによる被膜表面の結露の蒸発を遅延させることができる。また、磁石の少なくとも被膜表面の温度と被膜表面を結露させる環境を制御し、被膜表面の結露とその蒸発が繰り返し行われるようにしてもよい。   In the present invention, the surface of the Al coating containing Mg deposited on the surface of the rare earth-based permanent magnet as described above is condensed to allow Mg in the coating to ooze out on the coating surface. The method of dew condensation on the surface of the Al coating containing Mg is not particularly limited. For example, the rare earth permanent film in which the temperature of the coating surface is 10 ° C. to 80 ° C. and the Al coating containing Mg is deposited on the surface. Examples include a method in which the surface of the coating film is condensed by exposing the magnet to an environment having a dew point temperature of 15 ° C. to 85 ° C. (provided that the dew point temperature is higher than the temperature of the coating surface). This method utilizes the difference between at least the temperature of the surface of the magnet and the dew point temperature of the environment in which the surface of the film is condensed. At least a magnet having a surface temperature of 10 ° C. to 80 ° C. is preliminarily removed from another environment. It may be carried out by moving the set film surface to an environment where condensation occurs, or at least the temperature of the environment where a magnet with a surface of the film surface of 10 ° C to 80 ° C is placed cannot follow the temperature of the magnet. You may implement by changing to the environment which condenses the film surface by raising at a speed | rate. In order to effectively elute Mg in the coating and ooze out on the surface of the magnet, it is desirable that the coating surface is condensed so that the condensation particle size is 10 μm or more. The condensation particle size tends to increase as the difference between the temperature of at least the surface of the magnet and the dew point temperature of the environment that condenses the surface of the magnet increases. Therefore, the difference between the two is desirably 5 ° C. or more. Further, the time during which the coating surface is dewed is preferably 1 minute to 48 hours. By increasing the time for which the condensation is performed, Mg in the coating can be sufficiently oozed out on the magnet surface. On the other hand, if the time for condensation is made longer than necessary, the condensed water vapor reaches the magnet surface through the defects in the case where there are fine intercrystalline voids and film defects derived from the columnar crystal structure unique to the deposited film, and the magnet Be careful as it may cause corrosion. From this point of view, it is desirable that the condensation on the surface of the coating is performed under the condition that the decrease in the residual magnetic flux density due to condensation is 1.0% or less when the residual magnetic flux density before and after the condensation is compared. The temperature of the magnet does not necessarily have to be 10 ° C. to 80 ° C. until reaching the inside as well as the surface of the coating, but the environment in which the magnet condenses the coating surface by keeping the whole constant. It is possible to suppress rapid temperature rise of the magnet after being exposed to, and to delay evaporation of condensation on the coating surface due to the magnet temperature exceeding the dew point temperature. Further, the temperature of at least the surface of the film and the environment in which the film surface is condensed may be controlled so that the condensation and evaporation of the film surface are repeatedly performed.

なお、希土類系永久磁石の表面に蒸着形成したMgを含むAl被膜の表面を結露させる操作は、人為的に設定した環境を使用して行ってもよいが、被膜表面の結露は、自然発生的に起こるものであってもよい。例えば、露点温度が10℃〜80℃の環境は、梅雨時期の工場や倉庫の内部などにおいて形成される場合があるので、表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石がこのような環境に置かれ、その後の気象の変化などによる温度変化によって被膜表面が結露するような態様であってもよい。また、例えば日本とタイ、インドネシア、シンガポール、フィリピン、マレーシアなどの東南アジア諸国との間での磁石の輸送においては、通常、その途中で磁石は0℃〜40℃の環境から当該環境の温度よりも高い露点温度の環境に移されることから、このような環境の変化によって被膜表面が結露するような態様であってもよい。   In addition, although the operation of condensing the surface of the Al coating containing Mg deposited on the surface of the rare earth-based permanent magnet may be performed using an artificially set environment, the condensation on the coating surface is spontaneous. It may happen. For example, an environment with a dew point temperature of 10 ° C. to 80 ° C. may be formed in a factory or warehouse in the rainy season, so a rare earth permanent magnet with an Al coating containing Mg deposited on the surface is like this. It is possible to adopt a mode in which the coating surface is condensed by a change in temperature caused by a change in weather after that. For example, in the transportation of magnets between Japan and Southeast Asian countries such as Thailand, Indonesia, Singapore, Philippines, Malaysia, etc., the magnets usually move from 0 ° C to 40 ° C in the middle of the environment. Since the film is transferred to an environment having a high dew point temperature, the coating surface may be condensed due to such a change in the environment.

なお、本発明が適用される希土類系永久磁石としては、例えば、R−Fe−B系焼結磁石が挙げられるが、これに限定されるものではない。   The rare earth permanent magnet to which the present invention is applied includes, for example, an R—Fe—B sintered magnet, but is not limited thereto.

以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれに限定して解釈されるものではない。なお、以下の実施例は、例えば、米国特許4770723号公報や米国特許4792368号公報に記載されているようにして、公知の鋳造インゴットを粉砕し、微粉砕後に成形、焼結、熱処理、表面加工を行うことによって得られた17Nd−1Pr−75Fe−7B組成(at%)の42mm×20mm×2mm寸法の焼結磁石(以下、磁石体試験片と称する)を用いて行った。また、蒸着装置は、図1に示したような、直径355mm×長さ1200mmのステンレス製メッシュ金網で作製された円筒形バレルを真空槽内に左右平行に2個有し、円筒形バレルを回転させるとともに、ワイヤー状蒸着材料を溶融蒸発部に連続供給しながら蒸着処理が行えるものを使用した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is limited to this and is not interpreted. In the following examples, as described in, for example, US Pat. No. 4,770,723 and US Pat. No. 4,792,368, a known cast ingot is pulverized, and after fine pulverization, molding, sintering, heat treatment, surface processing This was performed using a sintered magnet (hereinafter referred to as a magnet body test piece) having a size of 42 mm × 20 mm × 2 mm having a composition (at%) of 17Nd-1Pr-75Fe-7B obtained by performing the above. In addition, the vapor deposition device has two cylindrical barrels made of stainless steel mesh wire with a diameter of 355 mm and a length of 1200 mm as shown in FIG. In addition, a material capable of performing a vapor deposition process while continuously supplying a wire vapor deposition material to the melt evaporation part was used.

(実施例1)
磁石体試験片に対し、サンドブラスト加工を行い、前工程の表面加工で生じた試験片の表面の酸化層を除去した。この酸化層が除去された磁石体試験片を各円筒形バレル内に1.5kgずつ収容し、真空槽内を1×10−1Paになるまで真空排気した後、Arガスを真空槽内の全圧が1.0Paになるように供給した。その後、バレルの回転軸を6.0rpmで回転させながら、バイアス電圧0.5kVの条件下、15分間グロー放電を行って磁石体試験片の表面を清浄化した。
続いて、Arガス圧1.0Pa、バイアス電圧1.0kVの条件下、蒸着材料として水素含有量が5ppmのMgを5質量%含むAlワイヤー(JIS A5356に準拠するもの)をワイヤー送り速度3.9g/分で連続供給しながら、これを加熱して蒸発させ(ハース温度:1400℃)、30分間蒸着を行い、磁石体試験片の表面にMgを含むAl被膜を蒸着形成した。
以上のようにして得られた、Mgを含むAl被膜を表面に有する磁石体試験片をブラスト加工装置に投入し、窒素ガスからなる加圧気体とともに、投射材として平均粒径が120μmでモース硬度が6の球状ガラスビーズ粉末を、投射圧0.15MPaにて5分間投射して、Mgを含むAl被膜に対してショットピーニングを行った。蛍光X線膜厚計(SFT−7000:セイコー電子社製)を使用して測定したショットピーニングを行ったMgを含むAl被膜の膜厚は7.3μmであった。なお、磁石体試験片とともに円筒形バレル内に収容したガラス板(35mm×10mm×1mm)の表面に蒸着形成されたAl被膜の組成を原子発光分析装置(ICPS−7500:島津製作所社製)を用いて測定したところ、Al被膜に含まれるMg量は6.2質量%であった。こうして得られたMgを含むAl被膜を表面に有する磁石体試験片に対し、35℃−5%NaCl−pH7.0条件(JIS Z 2371に準拠)の塩水噴霧試験(以下同じ)を行い、発錆の有無を観察した。その結果、試験開始から240時間経過後も発錆は観察されず、優れた耐塩水性を発揮した。この磁石体試験片のMgを含むAl被膜の表面の元素マッピングを電界放出形走査電子線顕微鏡(S−4300:日立ハイテクノロジーズ社製)とエネルギー分散型X線分析装置(Genesis2000:EDAX社製)を使用して行った結果を図2に示す(左は二次電子線像であり、中央はAlの分布であり、右はMgの分布である。以下同じ)。
次に、室温環境にあるMgを含むAl被膜を表面に有する磁石体試験片を、恒温恒湿試験機(LH−112:タバイエスペック社製)によって形成した露点温度が76℃の環境(温度が80℃で相対湿度が90%の湿潤雰囲気)に曝露し、被膜表面を24時間結露させた。その結果、曝露開始から5分後には被膜の全面が結露し、結露粒径は測定すると10μm以上であった。被膜表面を24時間結露させた磁石体試験片を装置から取り出し、大気中で自然乾燥させた後、塩水噴霧試験を行い、発錆の有無を観察した。その結果、試験開始から300時間経過後も発錆は観察されず、耐塩水性の向上が認められた。この磁石体試験片のMgを含むAl被膜の表面の元素マッピングの結果を図3に示す。図3から明らかなように、被膜表面を結露させたことで被膜中のMgが溶出して被膜表面に染み出し、Mgの表面分布量が多くなることがわかった。このことから、被膜表面を結露させたことによって耐塩水性が向上したのは、被膜表面に染み出したMgが、蒸着被膜特有の柱状晶組織に由来する微細な結晶間空隙や被膜欠陥が存在する場合における当該欠陥に作用し、これらに入り込んだりこれらを被覆したりすることで、被膜全体の耐塩水性を補強したことによるものと推察された。なお、被膜表面を結露させたことによる磁石の磁気特性の劣化は実用上、問題にならない程度であった(結露による残留磁束密度の低下:0.5%未満)。
Example 1
The magnetic body test piece was subjected to sand blasting to remove the oxide layer on the surface of the test piece generated by the surface processing in the previous step. The magnet body test piece from which the oxide layer has been removed is accommodated in each cylindrical barrel by 1.5 kg, and the vacuum chamber is evacuated to 1 × 10 −1 Pa, and then Ar gas is evacuated in the vacuum chamber. The total pressure was supplied at 1.0 Pa. Thereafter, glow discharge was performed for 15 minutes under the condition of a bias voltage of 0.5 kV while rotating the rotating shaft of the barrel at 6.0 rpm to clean the surface of the magnet specimen.
Subsequently, under conditions of Ar gas pressure of 1.0 Pa and bias voltage of 1.0 kV, an Al wire containing 5% by mass of Mg having a hydrogen content of 5 ppm as a vapor deposition material (compliant with JIS A5356) is fed at a wire feed speed of 3. While being continuously supplied at 9 g / min, this was heated and evaporated (Haas temperature: 1400 ° C.), and vapor deposition was performed for 30 minutes to form an Al film containing Mg on the surface of the magnet specimen.
The magnetic body test piece having the Al coating film containing Mg on the surface, obtained as described above, was put into a blasting apparatus, and a pressurized gas composed of nitrogen gas and a Mohs hardness with an average particle diameter of 120 μm as a projection material No. 6 spherical glass bead powder was projected at a projection pressure of 0.15 MPa for 5 minutes, and shot peening was performed on the Al coating containing Mg. The film thickness of the Al coating film containing Mg subjected to shot peening measured using a fluorescent X-ray film thickness meter (SFT-7000: manufactured by Seiko Denshi Co., Ltd.) was 7.3 μm. In addition, an atomic emission analyzer (ICPS-7500: manufactured by Shimadzu Corporation) was used to determine the composition of an Al film deposited on the surface of a glass plate (35 mm × 10 mm × 1 mm) housed in a cylindrical barrel together with a magnet body test piece. When used and measured, the amount of Mg contained in the Al coating was 6.2% by mass. A salt spray test (hereinafter the same) of 35 ° C.-5% NaCl-pH 7.0 condition (according to JIS Z 2371) was performed on the magnet body test piece having the Al coating containing Mg thus obtained on the surface. The presence or absence of rust was observed. As a result, no rusting was observed even after 240 hours from the start of the test, and excellent salt water resistance was exhibited. The elemental mapping of the surface of the Al coating containing Mg of the magnet body test piece was performed using a field emission scanning electron microscope (S-4300: manufactured by Hitachi High-Technologies Corporation) and an energy dispersive X-ray analyzer (Genesis 2000: manufactured by EDAX). FIG. 2 shows the result obtained by using (the left is a secondary electron beam image, the center is the distribution of Al, and the right is the distribution of Mg. The same applies hereinafter).
Next, a magnet body test piece having an Al coating containing Mg in a room temperature environment on a surface is formed by a constant temperature and humidity tester (LH-112: manufactured by Tabay Espec Co., Ltd.). (Wet atmosphere with a relative humidity of 90% at 80 ° C.), and the coating surface was condensed for 24 hours. As a result, the entire surface of the film was condensed after 5 minutes from the start of exposure, and the dew particle size was measured to be 10 μm or more. A magnet test piece having the coating surface dewed for 24 hours was taken out of the apparatus and allowed to dry naturally in the air, and then a salt spray test was conducted to observe the presence or absence of rusting. As a result, no rusting was observed even after 300 hours from the start of the test, and an improvement in salt water resistance was observed. FIG. 3 shows the result of elemental mapping on the surface of the Al coating containing Mg of this magnet body test piece. As is apparent from FIG. 3, it was found that the condensation on the coating surface caused the Mg in the coating to elute and ooze out on the coating surface, resulting in an increase in the surface distribution of Mg. From this, the salt water resistance was improved by dew condensation on the surface of the coating because Mg exuded on the surface of the coating had fine intercrystalline voids and coating defects derived from the columnar crystal structure unique to the deposited coating. It was presumed that the salt water resistance of the entire coating was reinforced by acting on the defects in the case and entering or covering them. The deterioration of the magnetic properties of the magnet due to the condensation on the surface of the coating was practically insignificant (reduction in residual magnetic flux density due to condensation: less than 0.5%).

本発明は、表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性向上方法を提供することができる点において産業上の利用可能性を有する。   INDUSTRIAL APPLICABILITY The present invention has industrial applicability in that it can provide a method for improving the salt water resistance of a rare earth permanent magnet having an Al film containing Mg deposited on the surface.

1 処理室
2 ハース(溶融蒸発部)
3 支持テーブル
4 ハース支持台
5 被処理物保持部
6 回転軸
10 Mgを含むAl(溶融した蒸着材料)
11 Mgを含むAlワイヤー
20 繰り出しリール
21 保護チューブ
22 切り欠き窓
23 繰り出しギヤー
30 希土類系永久磁石
1 Processing chamber 2 Hearth (melting and evaporating part)
DESCRIPTION OF SYMBOLS 3 Support table 4 Hearth support stand 5 To-be-processed object holding part 6 Rotating shaft 10 Al containing Mg (molten vapor deposition material)
11 Al wire containing Mg 20 Feeding reel 21 Protective tube 22 Notch window 23 Feeding gear 30 Rare earth permanent magnet

Claims (3)

表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石の耐塩水性向上方法であって、Mgを含むAl被膜の表面を結露させることにより、被膜中のMgを被膜表面に染み出させることを特徴とする方法。   A method for improving the salt water resistance of a rare earth permanent magnet in which an Al coating containing Mg is vapor-deposited on the surface, wherein the surface of the Al coating containing Mg is allowed to dew, so that the Mg in the coating oozes out to the coating surface. Feature method. 結露粒径が10μm以上となるように被膜表面を結露させることを特徴とする請求項1記載の方法。   The method according to claim 1, wherein the film surface is dewed so that the dew condensation particle size is 10 μm or more. 少なくとも被膜表面の温度が10℃〜80℃である、表面にMgを含むAl被膜を蒸着形成した希土類系永久磁石を、露点温度が15℃〜85℃の環境(但し露点温度は被膜表面の温度よりも高いことを条件とする)に曝露することにより、被膜表面を結露させることを特徴とする請求項1または2記載の方法。


A rare earth permanent magnet having an Al film containing Mg on the surface deposited at least at a coating surface temperature of 10 ° C. to 80 ° C. in an environment having a dew point temperature of 15 ° C. to 85 ° C. (however, the dew point temperature is the temperature of the coating surface) 3. The method according to claim 1 or 2, wherein the coating surface is condensed by exposing to a higher temperature.


JP2009094126A 2009-04-08 2009-04-08 Method for improving salt water resistance of rare earth permanent magnets with Al film containing Mg deposited on the surface Active JP5223761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009094126A JP5223761B2 (en) 2009-04-08 2009-04-08 Method for improving salt water resistance of rare earth permanent magnets with Al film containing Mg deposited on the surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009094126A JP5223761B2 (en) 2009-04-08 2009-04-08 Method for improving salt water resistance of rare earth permanent magnets with Al film containing Mg deposited on the surface

Publications (2)

Publication Number Publication Date
JP2010245394A JP2010245394A (en) 2010-10-28
JP5223761B2 true JP5223761B2 (en) 2013-06-26

Family

ID=43098057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009094126A Active JP5223761B2 (en) 2009-04-08 2009-04-08 Method for improving salt water resistance of rare earth permanent magnets with Al film containing Mg deposited on the surface

Country Status (1)

Country Link
JP (1) JP5223761B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942444B2 (en) * 1993-07-09 1999-08-30 スガ試験機株式会社 Weather resistance test equipment
JP2000282262A (en) * 1999-03-30 2000-10-10 Nippon Steel Corp Hot dip aluminum plated steel sheet excellent in corrosion resistance
JP4529260B2 (en) * 1999-09-27 2010-08-25 日立金属株式会社 R-Fe-B permanent magnet and method for producing the same
JP2005191276A (en) * 2003-12-25 2005-07-14 Neomax Co Ltd Rare earth-based permanent magnet excellent in saline water resistance, and saline water resistance imparting method thereto
JP5056267B2 (en) * 2007-08-24 2012-10-24 日立金属株式会社 Rare earth permanent magnet having Al coating containing Mg on its surface and method for producing the same

Also Published As

Publication number Publication date
JP2010245394A (en) 2010-10-28

Similar Documents

Publication Publication Date Title
KR100607294B1 (en) Surface treating process, surface treating apparatus, vapor-depositing material, and rare earth metal-based permanent magnet with surface treated
JP5263153B2 (en) R-Fe-B based sintered magnet having a deposited film of aluminum or its alloy on the surface and method for producing the same
JP5056267B2 (en) Rare earth permanent magnet having Al coating containing Mg on its surface and method for producing the same
JP4241901B2 (en) Rare earth permanent magnet manufacturing method
JP4529763B2 (en) Method of forming a deposition film of Al or its alloy on the surface of a workpiece
JP2005191276A (en) Rare earth-based permanent magnet excellent in saline water resistance, and saline water resistance imparting method thereto
JP5223761B2 (en) Method for improving salt water resistance of rare earth permanent magnets with Al film containing Mg deposited on the surface
JP5326730B2 (en) Method for producing rare earth permanent magnets with excellent salt water resistance
JP2006118055A (en) Surface treatment apparatus and surface treated rare earth based permanent magnet
JP2005226125A (en) Method for producing magnetic particle
JP5423438B2 (en) Method for improving denseness of metal film formed by vapor deposition
JP2007154310A (en) Vacuum deposition method for forming alloy film on surface of piece by vapor deposition
JP5381577B2 (en) Method for producing corrosion-resistant R—Fe—B sintered magnet
JP2005105311A (en) SURFACE TREATMENT METHOD FOR OBJECT TO BE TREATED, SURFACE-TREATED RARE EARTH PERMANENT MAGNET AND METHOD FOR INCREASING HARDNESS OF Al COATING FILM
JP4691833B2 (en) Method for producing rare earth-based permanent magnet having metal-deposited coating on its surface
JP4729815B2 (en) Method for supplying hydrogen gas into the processing chamber of a vapor deposition apparatus
JP2011216674A (en) Method of manufacturing rare-earth-based permanent magnet having vapor-deposited film of aluminum or alloy thereof on surface
JP4483574B2 (en) Deposition film forming method
JP2004076162A (en) Surface treatment method and surface treated rare earth based permanent magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130225

R150 Certificate of patent or registration of utility model

Ref document number: 5223761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160322

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350