JPS62156233A - Electron beam melting method - Google Patents

Electron beam melting method

Info

Publication number
JPS62156233A
JPS62156233A JP29935285A JP29935285A JPS62156233A JP S62156233 A JPS62156233 A JP S62156233A JP 29935285 A JP29935285 A JP 29935285A JP 29935285 A JP29935285 A JP 29935285A JP S62156233 A JPS62156233 A JP S62156233A
Authority
JP
Japan
Prior art keywords
melting
electron beam
active metal
metal
sponge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29935285A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanayama
金山 宏志
Tatsuhiko Sodo
龍彦 草道
Tetsuhiro Muraoka
村岡 哲弘
Toshio Onoe
尾上 俊雄
Yuji Koyama
佑二 児山
Yoshikatsu Okuyama
奥山 義勝
Takashi Nishimura
孝 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP29935285A priority Critical patent/JPS62156233A/en
Publication of JPS62156233A publication Critical patent/JPS62156233A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To prevent the decrease of a yield by splashing in a melting stage by erecting a wall material made of a spongy active metal to enclose the electron beam irradiation area of a melting vessel for the spongy active metal. CONSTITUTION:The spongy active metal G is continuously supplied from a hopper 3 into a water-cooled vessel 4 in a shielding case 1 and the inside of the case 1 is evacuated by a vacuum evacuation system 5. The active metal G is melted by electron beam irradiating devices 2a, b and a molten metal M is fed from one end of the vessel 4 to a water-cooled casting mold 8 by which the molten metal is successively cooled and solidified. The solidified metal is continuously drawn by an ingot drawing device 9. The wall material 7 made of the spongy active metal is erected in the upper part of the vessel 4 so as to enclose the region to be irradiated by the electron beam from the device 2a. The small drops of the molten metal splashed during melting are captured by the material 7.

Description

【発明の詳細な説明】 [産業上の利用分計] 本発明は、スポンジTiの如きスポンジ状活性金属を含
む原料に電子ビームを照射して溶解しTi等の活性金属
鋳塊を製造するに当たり、スプラッシュと呼ばれる溶滴
飛散現象による製品歩留。
[Detailed Description of the Invention] [Industrial Applicability] The present invention is applicable to manufacturing an ingot of active metal such as Ti by irradiating and melting a raw material containing a sponge-like active metal such as Ti sponge with an electron beam. , product yield due to droplet scattering phenomenon called splash.

りの低下をはじめとする種々の問題点を効果的に防止す
ることのできる電子ビーム溶解方法に関するものである
The present invention relates to an electron beam melting method that can effectively prevent various problems such as a decrease in heat retention.

[従来の技術] Ti等の活性金属の溶解には従来よりVAR′(真空ア
ーク再溶解)法が汎用されている。即ちVAR法とは、
活性金属を電極状に成形し高真空下(10−”〜10−
3torr程度)で該電極と水冷るつぼ内溶渇間にアー
クを発生させ、これにより電極を溶解させる方法である
。ところがこの方法では、アーク溶解に先立ってTi等
の活性金属製電極を製造する必要があり、工程が煩雑で
生産性及び経済性が低いという難点があった。
[Prior Art] The VAR' (vacuum arc remelting) method has been widely used for melting active metals such as Ti. In other words, the VAR method is
The active metal is formed into an electrode shape and heated under high vacuum (10-” to 10-
In this method, an arc is generated between the electrode and the water-cooled crucible at a pressure of about 3 torr), thereby melting the electrode. However, in this method, it is necessary to manufacture an electrode made of an active metal such as Ti prior to arc melting, and the process is complicated, resulting in low productivity and low economic efficiency.

一方真空技術の進歩及び電子ビーム照射装誼の大型化に
伴い電子ビーム溶解法を利用した鋳塊製造法が提案され
注目を集めている。即ち電子ビーム溶解・鋳造法とは、
高真空下(10−2〜10−6torr程度)で溶解原
料に電子ビームを照射して溶解し順次水冷鋳型へ供給し
ていく方法であり、この方法であれば粒状原料やスクラ
ップ等をそのままの形態で溶解することができ、VAR
法で必須とされる電極製造工程等が全く不要である。し
かも電磁場制御により電子ビームを自由方向に走査させ
ることができるので、異形の鋳塊でも容易に溶製するこ
とができる。
On the other hand, as vacuum technology advances and electron beam irradiation equipment becomes larger, an ingot manufacturing method using electron beam melting has been proposed and is attracting attention. In other words, the electron beam melting and casting method is
This is a method in which molten raw materials are irradiated with an electron beam under high vacuum (approximately 10-2 to 10-6 torr), melted, and sequentially supplied to a water-cooled mold. With this method, granular raw materials and scraps are left as they are. Can be dissolved in form, var
There is no need for any electrode manufacturing process required by the law. Moreover, since the electron beam can be scanned in any direction by electromagnetic field control, even irregularly shaped ingots can be easily melted.

この様に電子ビーム溶解・鋳造法は種々の特長を有して
いるが、反面溶解原料が制限されるという欠点があり、
特にスポンジTtの如きスポンジ状活性金属を溶解原料
として用いた場合には、溶解工程で溶湯が発泡状態を呈
しつつ飛散するという極めて好ましくない現象(スプラ
ッシュ現象)が発生し、溶湯の歩留り低下を招くばかり
でなく飛散した溶滴が溶解炉の内壁や電子ビーム照射装
置等に付着して操業上のトラブルを誘発し、メンテナン
ス作業を煩雑且つ困難なものにしている。
As described above, the electron beam melting and casting method has various advantages, but on the other hand, it has the disadvantage that the raw materials for melting are limited.
In particular, when a sponge-like active metal such as sponge Tt is used as a melting raw material, an extremely undesirable phenomenon (splash phenomenon) in which the molten metal becomes foamy and scatters during the melting process occurs, leading to a decrease in the yield of the molten metal. In addition, the scattered droplets adhere to the inner wall of the melting furnace, the electron beam irradiation device, etc., causing operational troubles and making maintenance work complicated and difficult.

即ちスポンジTiやスポンジZrの様なスポンジ状活性
金属を製造する最も一般的な方法は、例えばスポンジT
iの場合ではTiO2を塩素化してT i C14とし
た後MgやNa等で還元する方法である。このうちMg
で還元する方法を採用した場合、T i C14中の塩
素分はMgCl2等として分離される訳であるが、得ら
れるスポンジTi粗製物中にはMgCl2等や未反応の
Mgが不純物として多量混入してくる為、これらの不純
物を除去する為精製(真空蒸留等)が行われる。
That is, the most common method for producing sponge-like active metals such as sponge Ti and sponge Zr is, for example, sponge T.
In the case of i, TiO2 is chlorinated to form T i C14 and then reduced with Mg, Na or the like. Of these, Mg
When the reduction method is adopted, the chlorine content in TiC14 is separated as MgCl2, etc., but the resulting sponge Ti crude product contains a large amount of MgCl2, etc. and unreacted Mg as impurities. Therefore, purification (vacuum distillation, etc.) is performed to remove these impurities.

しかしこの様な精製処理を行なった場合でも、スポン9
T1M製物中には依然として約11000pp程度のM
gC1,等が除去しきれずに残留する。一方T i C
14を金属Naで還元する方法を採用した場合はスポン
ジTi粗製物中に多量のNaC1が混入してくるので、
これを純水中に長時間浸漬してNaC1の除去が行なわ
れる。しかしこうして得たスポンジTi精製物中には、
Mg還元法の場合と同様約2000 pI)m程度のN
aC1(塩化物)が除去しきれずに残留する。
However, even when such purification treatment is performed, spon9
There is still about 11,000 pp of M in T1M products.
gC1, etc. remain without being completely removed. On the other hand, T i C
If the method of reducing 14 with metallic Na is adopted, a large amount of NaCl will be mixed into the sponge Ti crude product, so
This is immersed in pure water for a long time to remove NaCl. However, in the sponge Ti purified product obtained in this way,
As in the case of the Mg reduction method, about 2000 pI)m of N
aC1 (chloride) remains without being completely removed.

この様にMg還元法、Na還元法の何れの方法を採るに
しても、スポンジTi精製物中には約1000〜200
0 ppm程度の塩化物(M g C12やNaC1)
が含まれている。またこうした不純塩化物の混入はスポ
ンジTiに限られるものではなく、スポンジZrの様な
他のスポンジ状活性金属にしても同様である。
In this way, no matter which method is used, Mg reduction method or Na reduction method, about 1000 to 200
Chloride (M g C12 and NaC1) around 0 ppm
It is included. Further, the contamination of impurity chlorides is not limited to sponge Ti, but also applies to other sponge-like active metals such as sponge Zr.

この様な塩化物を含むスポンジ状活性金属を電子ビーム
溶解・鋳造用原料として使用すると、溶解時の熱で塩化
物が蒸発して発泡するが、電子ビーム溶解・鋳造法では
電子ビームを発生させる必要上溶解雰囲気をVAR法よ
りも更に高い真空状態にしなければならない為、塩化物
の蒸発・発泡現象(スプラッシュ現象)は非常に顕著と
なり、その結果溶湯の歩留りが低下し更には飛散した溶
滴が溶解炉内壁や電子ビーム照射装置等に付着して操業
上のトラブルを招く。
When such a sponge-like active metal containing chloride is used as a raw material for electron beam melting and casting, the chloride evaporates and foams due to the heat during melting, but in the electron beam melting and casting method, an electron beam is generated. Because the melting atmosphere must be in a higher vacuum state than in the VAR method, the evaporation and foaming phenomenon (splash phenomenon) of chloride becomes very noticeable, resulting in a decrease in the yield of molten metal and furthermore, the formation of scattered droplets. can adhere to the inner walls of the melting furnace, electron beam irradiation equipment, etc., causing operational troubles.

その為スポンジ状活性金属を含む原料を使用する場合、
電子ビーム溶解・鋳造法を適用することは実質的に困難
であると考えられている。
Therefore, when using raw materials containing sponge-like active metals,
It is considered that it is substantially difficult to apply the electron beam melting/casting method.

[発明が解決しようとする問題点] 本発明はこうした事情に着目してなされたものであって
、その目的は、原料としてスポンジ状活性金属を使用し
た場合でもスプラッシュ現象による歩留り低下を生ずる
ことなく、且つ安定した操業性等を保障し得る様な電子
ビーム溶解方法を提供しようとするものである。
[Problems to be Solved by the Invention] The present invention has been made in view of these circumstances, and its purpose is to solve the problem without causing a drop in yield due to the splash phenomenon even when a sponge-like active metal is used as a raw material. The purpose of the present invention is to provide an electron beam melting method that can ensure stable operability, etc.

[問題点を解決する為の手段] 上記目的を達成し得た電子ビーム溶解方法とは、スポン
ジ状活性金属を電子ビーム溶解するに当たり、スポンジ
状活性金属の溶解用容器における電子ビーム照射領域を
囲繞する如く上記活性金属製の壁材を立設し、溶解時に
飛散する溶湯の小滴を上記壁材で捕集するところにその
要旨が存在するものである。また上記活性金属製の壁材
のまわりに耐熱性壁材を立設し、上記溶湯の小滴を上記
活性金属製壁材で捕集する方法も上記電子ビーム溶解方
法と同一の目的を達成することができる。
[Means for Solving the Problems] The electron beam melting method that achieves the above purpose is that when melting a sponge-like active metal with an electron beam, the electron beam irradiation area in a container for melting the sponge-like active metal is surrounded. The gist of this method is that the wall material made of the active metal is erected and the small droplets of molten metal scattered during melting are collected by the wall material. Furthermore, a method in which a heat-resistant wall material is erected around the active metal wall material and small droplets of the molten metal are collected by the active metal wall material can also achieve the same purpose as the electron beam melting method. be able to.

[作用] スポンジ状活性金属を溶解する際に生ずるスブラッシュ
現象が当該金属中に含まれる塩化物に起因するものであ
ることは先に説明した通りであるが、本発明者等がこう
したスプラッシュ現象に伴う溶湯の飛散状況や歩留り低
下等を定量的に把握すべく次の様な実験を行なった。
[Function] As explained above, the splash phenomenon that occurs when dissolving a sponge-like active metal is caused by the chloride contained in the metal. The following experiments were conducted to quantitatively understand the molten metal scattering situation and yield decline associated with this process.

まず第7図(概略断面説明図、図中1はシールドケース
、2は電子ビーム照射装置、3は原料供給ホッパー、4
は原料溶解用容器、5は真空排気系統、Bは電子ビーム
、Gはスポンジ状活性金属、Mは金属溶湯を夫々示す)
に示す様な設備を用い、残留塩化物量の異なる数種類の
スポンジTiを使用した場合における溶融金属の歩留り
を調べた。結果は第8図に示す通りであり、スポンジT
i中の残留塩化物量(ppm )と歩留り(%)とは明
らかに反比例の関係を有しており、残留塩化物量が増加
するにつれて歩留りは急激に低下してくる。従って歩留
りを高める為にはスポンジ状活性金属中の残留塩化物量
を少なくすればよい訳であるが、前述の如くスポンジ状
活性金属中の残留塩化物量を1000〜2000 pp
m以下にまで低減することは非常に困難であるので、相
当量の塩化物を含むスポンジ状活性金属を使用した場合
でも高歩留りを確保することのできる技術を開発する必
要がある。
First, Fig. 7 (schematic cross-sectional explanatory diagram, in which 1 is a shield case, 2 is an electron beam irradiation device, 3 is a raw material supply hopper, 4 is a
5 is a container for dissolving raw materials, 5 is a vacuum exhaust system, B is an electron beam, G is a sponge-like active metal, and M is a molten metal.)
Using the equipment shown in Figure 1, the yield of molten metal was investigated when several types of Ti sponges with different amounts of residual chloride were used. The results are shown in Figure 8, and the sponge T
There is clearly an inverse relationship between the amount of residual chloride (ppm) in i and the yield (%), and as the amount of residual chloride increases, the yield rapidly decreases. Therefore, in order to increase the yield, it is sufficient to reduce the amount of residual chloride in the active metal sponge.
Since it is very difficult to reduce the amount of chloride to below m, it is necessary to develop a technique that can ensure a high yield even when using a sponge-like active metal containing a considerable amount of chloride.

次にスプラッシュ現象によって生ずる溶湯の飛散状況を
明確にする為、第9図(概略説明図、図中1〜5.B、
G、Mは前記と同じ意味、6は円筒形金網を示す)に示
す様な装置を使用してスポンジTiの電子ビーム溶解を
行ない、スプラッシュ現象に伴う金属飛散量の高さ方向
の分布を調べたところ、第10図に示す結果が得られた
。この図からも明らかな様に、溶融金属の飛散付着量は
原料溶解用容器4の上面位置で最も多く、上方に行くに
従って減少していることが分かる。またこの図によると
、水冷容器4の内径に対応する高さを超える位置では、
飛散金属の付着は殆んど見られなくなる。
Next, in order to clarify the scattering situation of molten metal caused by the splash phenomenon, Figure 9 (schematic explanatory diagram, 1 to 5.B in the figure,
G and M have the same meanings as above, and 6 indicates a cylindrical wire mesh).) Sponge Ti was melted with an electron beam using an apparatus as shown in Fig. 6, and the distribution of the amount of metal scattering in the height direction due to the splash phenomenon was investigated. As a result, the results shown in FIG. 10 were obtained. As is clear from this figure, the amount of molten metal scattered and deposited is greatest at the upper surface of the raw material melting container 4, and decreases as it goes upward. Also, according to this figure, at a position exceeding the height corresponding to the inner diameter of the water-cooled container 4,
Almost no adhesion of scattered metal can be seen.

これらの結果からも明らかな様に、スプラッシュ現象に
伴う溶融金属の飛散は、電子ビームの照射される金属溶
解用容器4の上方部に、電子ビーム照射領域を囲繞する
如く飛散防止壁を設けることによって防止することが可
能である。該飛散防止壁は、上記第10図の結果から示
唆される様に少なくとも水冷容器4の内径に対応する高
さのものであればよいということができる。但しそれだ
けでは、シールドケース内部での溶融金属の飛散が防止
されるだけで、歩留り向上には直結しない。そこで本発
明では上記飛散防止壁を上記活性金属製壁材によって構
成し、溶解時に飛散する溶湯の小滴を該壁材で捕集する
こととし、該溶湯小滴を回収するに当たっては以下の如
き工程を追加することにした。
As is clear from these results, scattering of molten metal due to the splash phenomenon can be prevented by providing a scattering prevention wall surrounding the electron beam irradiation area in the upper part of the metal melting container 4 where the electron beam is irradiated. It is possible to prevent this by As suggested by the results shown in FIG. 10 above, it is sufficient that the scattering prevention wall has a height corresponding to at least the inner diameter of the water-cooled container 4. However, this only prevents the molten metal from scattering inside the shield case, and does not directly lead to an improvement in yield. Therefore, in the present invention, the above-mentioned scattering prevention wall is constituted by the above-mentioned active metal wall material, and the small droplets of molten metal that are scattered during melting are collected by the wall material. I decided to add a process.

(八)溶解終了後小滴が付着した該壁材を回収して再溶
解する。具体的には溶解終了後、チタン(スポンジTi
を用いた)の小滴が付着したチタン製壁材をコンパクト
に折り畳み、上記溶解用容器4内に収納した後再び電子
ビーム溶解を行なった。
(8) After the dissolution is completed, the wall material to which the droplets have adhered is collected and redissolved. Specifically, after dissolving, titanium (sponge Ti
The titanium wall material to which the small droplets of (using the above) were attached was folded into a compact size and placed in the melting container 4, and then subjected to electron beam melting again.

こうした構成を採用することによってスポンジ状活性金
属の溶製歩留りを約5%高めることができる。即ち第1
1図に示す如く水冷構造の原料溶解用容器4の開口部上
方にチタン製壁材7を立設しくその他の符号は第5.7
図と同じ)スポンジTi(塩化物量:約101000p
pの電子ビーム溶解を行ない、上述の如くチタン製壁材
7の再溶解を行なった。この時のTiの溶解歩留りは9
8.8%と非常に高い値を示し、チタン壁材7なしの実
験で得た溶解歩留り(94,1%)に対し4.7ポイン
トも向上することが確認された。殊にTiヤZrの様な
活性金属は非常に高価であり、溶解歩留りの向上がたと
え数%といえどもその経済的利益はすこぶる大きい、溶
湯の小滴が付着した回収活性全屈壁材を溶解すgに当た
っては、その時期として溶解炉における操業性の関係か
ら溶解後を選び、具体的作業として、活性金属壁を回収
しておき、別の溶解時に溶解用容器に装入するといった
過程を経て溶解する。。
By employing such a configuration, the yield of sponge-like active metal can be increased by about 5%. That is, the first
As shown in Figure 1, a titanium wall material 7 is erected above the opening of the raw material dissolving container 4 having a water-cooled structure.
Same as the figure) Sponge Ti (chloride amount: approx. 101000p
Then, the titanium wall material 7 was remelted as described above. The dissolution yield of Ti at this time was 9
It showed a very high value of 8.8%, and it was confirmed that the dissolution yield was improved by 4.7 points compared to the melting yield obtained in the experiment without titanium wall material 7 (94.1%). In particular, active metals such as Ti and Zr are very expensive, and even if the melting yield is improved by only a few percent, the economic benefit is extremely large. For g, we chose the period after melting from the viewpoint of operability in the melting furnace, and the specific work involved collecting the active metal wall and charging it into a melting container during another melting process. do. .

CB)上記活性金属製壁材の外側に耐熱性壁材を設け、
スポンジ状活性金属を溶解後溶湯の小滴が付着した活性
金属製壁材に直接電子ビームを照射して溶解し、溶湯ブ
ール内に滴下させる。この場合活性金属壁材の外側に耐
熱性壁材を設置するのは、電子ビームで活性金属壁材を
溶解する際に電子ビームが活性金属壁材外に照射された
場合を考慮したからである。この方法においては、上記
耐熱性壁材を設置することが必要ではあるが、溶湯小滴
の付着した活性金属壁材を回収したり、或はこれを溶解
容器内に装入するといった手間が省ける。
CB) providing a heat-resistant wall material on the outside of the active metal wall material,
After melting the sponge-like active metal, the active metal wall material to which small droplets of molten metal have adhered is directly irradiated with an electron beam to melt it and drop it into the molten metal boule. In this case, the heat-resistant wall material is installed outside the active metal wall material in consideration of the case where the electron beam is irradiated outside the active metal wall material when melting the active metal wall material with the electron beam. . In this method, although it is necessary to install the above-mentioned heat-resistant wall material, it eliminates the trouble of collecting the active metal wall material with molten metal droplets attached or charging it into the melting container. .

尚本発明では上記活性金属壁材の立設によって、スポン
ジ状活性金属を用いた場合にさけることのできないスプ
ラッシュ現象による溶湯の飛散を防止したところに特徴
を有するものであるが、該壁材で囲まれる上方適所に塩
化物捕集用トラップを設けて溶解時に発生するMgC1
,やNaC1を捕集除去したり、或は該壁材で囲繞され
た原料溶解用電子ビームの照射領域を別系統の真空排気
系統に接続して吸引しMgCl2やNaC1を系外へ吸
引排気する様にすれば、これら塩化物に由来する他の問
題点についても可及的に防止することができる。
The present invention is characterized in that the above active metal wall material is erected to prevent the molten metal from scattering due to the splash phenomenon that cannot be avoided when using a sponge-like active metal. A trap for collecting chloride is installed in the upper part of the surrounding area to collect MgC1 generated during dissolution.
, and NaCl are collected and removed, or the irradiation area of the raw material melting electron beam surrounded by the wall material is connected to a separate vacuum exhaust system and suctioned to suck and exhaust MgCl2 and NaCl out of the system. By doing so, other problems caused by these chlorides can be prevented as much as possible.

[実施例] 本発明は、溶解材と同じ金属製壁材を用いることによっ
て、溶解・鋳造時における歩留り向上効果を達成し得た
ものであるが、その−例[前記(A)相当の方法コを第
1図を用いて示す。即ち第1図において1はシールドケ
ース、2a、2bは電子ビーム照射装置、3は原料供給
ホッパー、4は水冷容器、5は真空排気系統、7は溶解
材と同一成分組成の金属壁、8は水冷鋳型、9は鋳片引
抜装置、Bは電子ビーム、Gはスポンジ状活性金属、M
は金属溶湯、lは鋳片を夫々示し、スポンジ状活性金属
Gを水冷容器4内へ連続的に供給しつつ電子ビームBを
照射して溶解し、溶融金属Mは水冷容器4の他端から水
冷鋳型8へ送って順次冷却凝固させ、鋳片引抜装置9に
より連続的に引抜いて行く。このとき、図示する如くス
ポンジ状活性金属溶解用電子ビーム照射装置2aからの
電子ビーム照射領域を囲繞する如く水冷容器4の上部に
上記金属壁7を立設し、スポンジ状活性金属溶解時のス
プラッシュ現象によフて飛散する溶融金属を上記金属壁
7によって捕集し、溶解終了後詰金属壁を回収し、別の
溶解時にスポンジ状活性金属Gと共に溶解するようにし
てやれば、前述の如く歩留りの向上が可能となる。尚電
子ビーム照射装置2aから照射される電子ビームは、水
冷容器4内及び水冷鋳型8表層部の活性金属Mを保熱し
、活性金RMの円滑な流れを保障する役割りを果たすが
、この時点ではもはやスプラッシュ現象を起こすことは
ないので、水冷金属壁等を配設する必要はない。
[Example] The present invention achieves the yield improvement effect during melting and casting by using the same metal wall material as the melting material. This is shown using Figure 1. That is, in FIG. 1, 1 is a shield case, 2a and 2b are electron beam irradiation devices, 3 is a raw material supply hopper, 4 is a water cooling container, 5 is a vacuum exhaust system, 7 is a metal wall having the same composition as the melting material, and 8 is a Water-cooled mold, 9 is slab drawing device, B is electron beam, G is sponge-like active metal, M
denotes a molten metal, and l denotes a slab. Sponge-like active metal G is continuously supplied into the water-cooled container 4 and irradiated with an electron beam B to melt it, and the molten metal M is supplied from the other end of the water-cooled container 4. The slab is sent to a water-cooled mold 8 to be sequentially cooled and solidified, and then continuously pulled out by a slab drawing device 9. At this time, as shown in the figure, the metal wall 7 is erected on the upper part of the water-cooled container 4 so as to surround the electron beam irradiation area from the electron beam irradiation device 2a for dissolving the sponge-like active metal, and the splash when melting the sponge-like active metal is erected. If the molten metal scattered due to the phenomenon is collected by the metal wall 7, the packed metal wall is collected after melting, and is melted together with the sponge-like active metal G during another melting, the yield can be improved as described above. Improvement is possible. Note that the electron beam irradiated from the electron beam irradiation device 2a serves to retain heat of the active metal M in the water-cooled container 4 and the surface layer of the water-cooled mold 8, and to ensure smooth flow of the activated gold RM. Since the splash phenomenon no longer occurs, there is no need to install a water-cooled metal wall or the like.

尚第1図に示した11は、金属壁7の上方開口部に必要
により設けられる塩化物捕集用トラップを示す。即ちス
プラッシュ現象がスポンジ状活性金属中に残留している
塩化物(MgC1□やNaC1)(7)i発によって発
生することは先に述べた通りであるが、これらの塩化物
はシールドケース1の内壁に付着して高真空引きを阻害
したり、或は真空排気系の油拡散ポンプやロータリーポ
ンプ等のオイルを汚染するといった多くのトラブルを引
き起こす。殊にMgCL、は吸湿性が高いので、操業中
断時にケーシング内を大気に曝らすと急速に吸湿し、操
業再開時の真空引きを著じるしく阻害する。こうした塩
化物付着による問題を回避する為本例では、図示する如
く金属壁7で囲繞された上方開口部に塩化物捕集用トラ
ップ11を配設し、塩化物を吸着除去し得るように構成
している。
Reference numeral 11 shown in FIG. 1 indicates a chloride trap provided at the upper opening of the metal wall 7, if necessary. That is, as mentioned above, the splash phenomenon is caused by the chlorides (MgC1□ and NaC1) (7)i remaining in the sponge-like active metal, but these chlorides are It causes many problems such as adhering to the inner wall and obstructing high vacuum drawing, or contaminating the oil in the oil diffusion pump, rotary pump, etc. of the vacuum exhaust system. In particular, MgCL has a high hygroscopicity, so if the inside of the casing is exposed to the atmosphere during a suspension of operation, it will rapidly absorb moisture, which will significantly inhibit evacuation when restarting operation. In order to avoid such problems caused by chloride adhesion, in this example, a chloride trap 11 is disposed in an upper opening surrounded by a metal wall 7 as shown in the figure, so that chloride can be adsorbed and removed. are doing.

第2図は本発明が用いられた他の装置例を示す概略断面
図であり、本質的な構成は第1図の例と同じである。但
し本例では水冷容器4と鋳型8の間に溶融金属貯留容器
1oを設け、水冷容器4で溶融した活性金属溶湯を一旦
該貯留容器1oに受けた後注入口10aから鋳型8へ流
し込む様にしている。電子ビーム照射装置2b、2cは
夫々溶?WM保熱用として使用される。尚第1.2図で
は溶湯注入口4a(又は10a)に対し1つの水冷鋳型
8を配設し1本の鋳片lを製造する例を示したが、必要
によっては溶湯注入口4a(又は10a)を複数箇所に
設けて複数の水冷鋳型へ注人できる様にし、複数本の鋳
片を並行して製造し得る様にすることも可能である。こ
の様な装置においても前記金属壁7を設けてやれば、上
記歩留り向上効果を享受することができる。
FIG. 2 is a schematic sectional view showing another example of an apparatus in which the present invention is used, and the essential configuration is the same as the example of FIG. 1. However, in this example, a molten metal storage container 1o is provided between the water-cooled container 4 and the mold 8, and the active metal molten metal melted in the water-cooled container 4 is once received in the storage container 1o and then poured into the mold 8 from the injection port 10a. ing. Are the electron beam irradiation devices 2b and 2c melted? Used for WM heat retention. Although Fig. 1.2 shows an example in which one water-cooled mold 8 is disposed for the molten metal injection port 4a (or 10a) to produce one slab l, if necessary, the molten metal injection port 4a (or It is also possible to provide 10a) at a plurality of locations so that the casting can be poured into a plurality of water-cooled molds, so that a plurality of slabs can be manufactured in parallel. Even in such an apparatus, if the metal wall 7 is provided, the above-mentioned yield improvement effect can be enjoyed.

第3及び4図は前記(B)相当の実施例を示す為の概略
断面説明図であり、溶解容器4上に水冷金属壁15を立
設し、その内側にさらに活性金属壁7を設置し、その中
でスポンジ状活性金属を溶解後溶湯の不適が付着した活
性金属壁7に電子ビームを照射して溶解し、溶湯ブール
内に滴下させる方法である。
3 and 4 are schematic cross-sectional explanatory views to show an embodiment corresponding to (B) above, in which a water-cooled metal wall 15 is erected on the melting container 4, and an active metal wall 7 is further installed inside the water-cooled metal wall 15. After melting the active metal in the form of a sponge, an electron beam is irradiated onto the active metal wall 7 to which the molten metal has adhered, melting the active metal, and dropping the activated metal into the molten metal boule.

第5及び6図は前記(B)相当の更に他の実施例を示す
概略断面説明図であり、スポンジ状活性金属の電子ビー
ム溶解工程で発生する塩化物の除去方式に変更が加えら
れている他は第3.4図の場合と実質的に同じである。
5 and 6 are schematic cross-sectional explanatory diagrams showing still another embodiment corresponding to (B) above, in which a change has been made to the method for removing chloride generated in the electron beam melting process of the sponge-like active metal. The other details are substantially the same as those in FIG. 3.4.

即ちこれらの例では、水冷容器4上に立設される水冷金
属壁15により電子ビーム加熱溶融領域を封鎖すると共
に、上方適所に排気ライン12を接続して脱塩化物専用
の真空排気系統13に連結し、スポンジ状活性金属の溶
融工程で生ずる塩“化物を順次系外へ排出し得る様に構
成している。図中14は塩化物除去用のトラップを示し
、真空排気系統13が塩化物により汚染されるの防止す
る為に配設されている。この場合トラップ14をカセッ
トタイプの着脱可能なものとしておけば塩化物の吸着量
が飽和した時点での交換作業を簡単に行なうことができ
るので好ましい。尚活性金属壁7に付着した不適を回収
するに当たっては、該活性金属壁7に電子ビームを直接
照射し上記活性金属壁7を溶融することによって行なう
ことはすでに述べた通りである。
That is, in these examples, the electron beam heating and melting region is sealed off by a water-cooled metal wall 15 erected on the water-cooled container 4, and an exhaust line 12 is connected to a suitable position above to connect to a vacuum exhaust system 13 dedicated to dechlorination. The structure is such that the chlorides generated in the process of melting the sponge-like active metal can be sequentially discharged from the system. In the figure, 14 indicates a trap for removing chlorides, and the vacuum exhaust system 13 removes chlorides. In this case, if the trap 14 is a removable cassette type, it can be easily replaced when the amount of chloride adsorbed is saturated. This is preferable.As already mentioned, in order to recover the debris adhering to the active metal wall 7, the active metal wall 7 is directly irradiated with an electron beam to melt the active metal wall 7.

また本発明を説明するに当たり用いた第1〜6図の装置
も電子ビーム溶解・鋳造装置として本発明の範囲内に含
まれることは言う迄もない。
It goes without saying that the apparatus shown in FIGS. 1 to 6 used in explaining the present invention is also included within the scope of the present invention as an electron beam melting/casting apparatus.

[発明の効果] 本発明は以上の様に構成されているので、スポンジ状活
性金属を含む原料を用いた連続鋳造における原料溶解工
程で生じるスプラッシュ現象による歩留り低下その他の
問題を効果的に防止することができ、原料の溶解から鋳
造に亘る一連の工程を高生産性のもとて円滑に遂行する
ことができ、且つ溶解・鋳造装置のメンテナンス性も向
上することができる。
[Effects of the Invention] Since the present invention is configured as described above, it is possible to effectively prevent yield reduction and other problems caused by the splash phenomenon that occurs in the raw material melting process in continuous casting using raw materials containing sponge-like active metals. A series of processes from melting raw materials to casting can be carried out smoothly with high productivity, and the maintainability of the melting/casting equipment can also be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜6図は本発明方法が用いられた装置の概略断面説
明図、第7.9.11図は予備実験法を示す説明図、第
8図はスポンジTi中の残留塩化物量と溶解時の歩留り
の関係を示すグラフ、第10図は金属溶解用容器上に立
設した金網の高さ方向位置と金属付着量の関係を示すグ
ラフである。 1・・・シールドケース 2・・・電子ビーム照射装置 3・・・原料供給ホッパー 4・・・原料溶解用容器(水冷容器) 5・・・真空排気系統   6・・・金網7・・・溶解
材と同じ金属製壁材 8・・・水冷鋳型     9・・・鋳片引抜装置代理
人  弁理士 植 木 久 −::、、3.、、、:几
」r′ 第1図 第3図 金、@付着量(q/ex’ )
Figures 1 to 6 are schematic cross-sectional explanatory diagrams of the apparatus in which the method of the present invention is used, Figures 7, 9, and 11 are explanatory diagrams showing the preliminary experimental method, and Figure 8 is the amount of residual chloride in sponge Ti and the time of dissolution. FIG. 10 is a graph showing the relationship between the height direction position of the wire mesh placed upright on the metal melting container and the amount of metal deposited. 1... Shield case 2... Electron beam irradiation device 3... Raw material supply hopper 4... Container for dissolving raw material (water-cooled container) 5... Vacuum exhaust system 6... Wire mesh 7... Melting Wall material made of the same metal as the material 8...Water-cooled mold 9...Slab drawing device representative Patent attorney Hisashi Ueki -::,,3. ,,,: 几'r' Fig. 1 Fig. 3 Gold, @ adhesion amount (q/ex')

Claims (2)

【特許請求の範囲】[Claims] (1)スポンジ状活性金属を電子ビーム溶解するに当た
り、スポンジ状活性金属の溶解用容器における電子ビー
ム照射領域を囲繞する如く上記活性金属製の壁材を立設
し、溶解時に飛散する溶湯の小滴を上記壁材で捕集する
ことを特徴とする電子ビーム溶解方法。
(1) When melting a sponge-like active metal with an electron beam, a wall material made of the above-mentioned active metal is erected to surround the electron beam irradiation area in the container for melting the sponge-like active metal, and small pieces of molten metal are scattered during melting. An electron beam melting method characterized in that the droplets are collected by the above-mentioned wall material.
(2)スポンジ状活性金属を電子ビーム溶解するに当た
り、スポンジ状活性金属の溶解用容器における電子ビー
ム照射領域を囲繞する如く耐熱性壁材を立設し、その内
側にさらに上記活性金属製の壁材を設置し、溶解時に飛
散する溶湯の小滴を上記活性金属製の壁材で捕集するこ
とを特徴とする電子ビーム溶解方法。
(2) When melting a sponge-like active metal with an electron beam, a heat-resistant wall material is erected to surround the electron beam irradiation area in the container for melting the sponge-like active metal, and a wall made of the active metal is further placed inside the heat-resistant wall material. An electron beam melting method characterized in that small droplets of molten metal scattered during melting are collected by the active metal wall material.
JP29935285A 1985-12-27 1985-12-27 Electron beam melting method Pending JPS62156233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29935285A JPS62156233A (en) 1985-12-27 1985-12-27 Electron beam melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29935285A JPS62156233A (en) 1985-12-27 1985-12-27 Electron beam melting method

Publications (1)

Publication Number Publication Date
JPS62156233A true JPS62156233A (en) 1987-07-11

Family

ID=17871443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29935285A Pending JPS62156233A (en) 1985-12-27 1985-12-27 Electron beam melting method

Country Status (1)

Country Link
JP (1) JPS62156233A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493591A1 (en) * 1990-07-19 1992-07-08 Axel Johnson Metals, Inc. Vacuum processing of reactive metal
JPH04504142A (en) * 1990-07-19 1992-07-23 アクセル ジョンソン メタルズ インコーポレイテッド Reactive metal vacuum processing method and apparatus
EP0571605A1 (en) * 1991-12-16 1993-12-01 Axel Johnson Metals, Inc. Vacuum processing of particulate reactive metal
JP2009079790A (en) * 2007-09-25 2009-04-16 Toho Titanium Co Ltd Electron-beam melting furnace for metal and metal melting method using the same
JP2020139220A (en) * 2019-03-01 2020-09-03 東邦チタニウム株式会社 Hearth, electron beam melting furnace, and production method of cast product

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0493591A1 (en) * 1990-07-19 1992-07-08 Axel Johnson Metals, Inc. Vacuum processing of reactive metal
JPH04504142A (en) * 1990-07-19 1992-07-23 アクセル ジョンソン メタルズ インコーポレイテッド Reactive metal vacuum processing method and apparatus
EP0493591A4 (en) * 1990-07-19 1994-06-08 Johnson Axel Metals Vacuum processing of reactive metal
EP0571605A1 (en) * 1991-12-16 1993-12-01 Axel Johnson Metals, Inc. Vacuum processing of particulate reactive metal
EP0571605A4 (en) * 1991-12-16 1994-02-23 Axel Johnson Metals, Inc.
JP2009079790A (en) * 2007-09-25 2009-04-16 Toho Titanium Co Ltd Electron-beam melting furnace for metal and metal melting method using the same
JP2020139220A (en) * 2019-03-01 2020-09-03 東邦チタニウム株式会社 Hearth, electron beam melting furnace, and production method of cast product

Similar Documents

Publication Publication Date Title
US5972282A (en) Straight hearth furnace for titanium refining
EP0796820B1 (en) Process and apparatus for refining silicon
US5222547A (en) Intermediate pressure electron beam furnace
US5100463A (en) Method of operating an electron beam furnace
JP3537798B2 (en) Electron beam melting method for metallic materials
JPH07309614A (en) Method for purifying silicon
JPS62156233A (en) Electron beam melting method
JPS6277429A (en) Electron beam melting method
JP2008190024A (en) Method for producing titanium sponge
US2763542A (en) Method of producing refractory metals
JPS6277427A (en) Electron beam melting and casting apparatus
JP3485086B2 (en) Method and apparatus for purifying aluminum or aluminum alloy
JP2021091922A (en) Vapor deposition material and method for manufacturing the same
JP4134836B2 (en) Method for refining aluminum or aluminum alloy
JP3195156B2 (en) Manufacturing method of titanium
JPH04504283A (en) Medium pressure electron beam furnace
US4242136A (en) Process for producing metallic zirconium
JPS6277430A (en) Electron beam melting and casting apparatus
JPH06504325A (en) Vacuum processing of particulate reactive metals
JPS6277428A (en) Electron beam melting method for material containing spongy active metal
JP3464380B2 (en) Continuous vacuum purification method and device for aluminum alloy scrap
JP3398318B2 (en) Manufacturing method of titanium ingot
CN109207741B (en) Refining method and device for metallic aluminum
JP2784324B2 (en) Manufacturing method of titanium
JPH0622533Y2 (en) Vacuum melting device