WO2005015256A1 - Bestimmung der position eines transportgutes durch kombination lokaler, absoluter positionsmessung und relativer positionsmessung - Google Patents

Bestimmung der position eines transportgutes durch kombination lokaler, absoluter positionsmessung und relativer positionsmessung Download PDF

Info

Publication number
WO2005015256A1
WO2005015256A1 PCT/EP2004/051603 EP2004051603W WO2005015256A1 WO 2005015256 A1 WO2005015256 A1 WO 2005015256A1 EP 2004051603 W EP2004051603 W EP 2004051603W WO 2005015256 A1 WO2005015256 A1 WO 2005015256A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport
goods
determining
transported
arrangement according
Prior art date
Application number
PCT/EP2004/051603
Other languages
English (en)
French (fr)
Inventor
Steffen Armbruster
Günter DOEMENS
Peter Gulden
Martin Vossiek
Leif Wiebking
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2005015256A1 publication Critical patent/WO2005015256A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Definitions

  • the invention relates to determining the position of a transport good.
  • Radio-based positioning systems such as those from DE
  • 101 55 251 AI are known, are based on the fact that either the position of transponders relative to a known base station or the position of the base station relative to known transponder positions is measured. This enables the position of a means of transport in a hall to be determined, for example.
  • the object of the invention is to enable the position of a transport good to be determined.
  • an arrangement for determining the position of a transport good has means for determining the position of a transport means for the transport good and means for determining the position of the transport good relative to the transport means. So it is absolutely the position of the means of transport, for example, in one
  • the means of transport can be, for example, a crane, vehicle, trolley, pallet truck,
  • the cargo can be any object.
  • the means for determining the position of the means of transport preferably have transponders and / or a base station. With such position radar systems, positions can be determined precisely and inexpensively even over long distances.
  • the base station is arranged on the mobile means of transport in the form of a local position radar (LPR) and the transponders are arranged at known positions in space.
  • LPR local position radar
  • This procedure allows a large number of transponders to be arranged inexpensively and skillfully in the room, which enables the base station to be determined very precisely.
  • the base station can still have a
  • Radio interface via which it can transmit unprocessed measurement data down to the positions that it has already calculated itself, can be connected to a center for detecting positions of one or more means of transport.
  • the means for determining the position of the goods to be transported are means which do not require any measuring elements to be fastened to the goods to be transported.
  • the means for determining the position of the goods to be transported are fundamentally different than the means for determining the position of the means of transport. While the latter have transponders or similar active units, such measuring elements are currently not used in the former. This has the great advantage that it is not necessary to attach a measuring element to the large number of items to be transported, which is moreover exposed to a particularly high risk of destruction on the item to be transported.
  • the means for determining the position of the transported goods can be or have imaging means that point to electromagnetic and / or acoustic waves based. They are preferably optical means, which in particular have a camera.
  • a particularly expedient distance determination in the area of near and medium distances can take place if the means for determining the position of the transport goods have an illumination source for projecting a light pattern onto the transport goods and / or the transport means.
  • the means for determining the position of the goods to be transported can have a, in particular intensity-modulated, illumination source and a light receiver with a photoelectric mixing element.
  • the means for determining the position of the goods to be transported can have a, in particular pulsed, lighting source and a shutter.
  • the means for determining the position of the goods to be transported have a laser scanner.
  • the means for determining the position of the goods to be transported are means for detecting the surroundings of the means of transport and for detecting the position of the goods to be transported and / or the means of transport relative to Environment.
  • the arrangement can also have means for identifying the goods to be transported, for example by reading in a barcode.
  • a method for determining the position of a transport good with means for determining the position of a means of transport determines the position of the means of transport and means for determining the position of the goods to be transported determines the position of the goods to be transported relative to the means of transport.
  • FIG. 1 shows a means of transport with means for determining the position of the means of transport and means for determining the position of a transport good relative to the means of transport;
  • Figure 2 shows an arrangement for generating light patterns.
  • the absolute position of a transport good is determined by the combination of passive methods for the relative location of the transport good compared to a means of transport and active methods for determining the position of the means of transport. If necessary, the relative position can also be communicated to a base unit, which then connects it to an absolute position. Precise knowledge of the absolute position of the goods being transported is technically necessary, for example, in warehousing systems and merchandise management systems.
  • Methods based on microwaves, ultrasound and on an optical basis are suitable for determining the position of the goods to be transported relative to the means of transport. If, above all, the distance between the goods to be transported and the means of transport in low lateral resolution is required, then the position is preferred using ultrasound methods, for example according to Vossiek, M., Magori, V. and Emert, H .: “An Ultrasonic Sensor System for Location Gauging and Recognition of Small Work Pieces ", Sensor 95, 1995, pages 505-510 or radar method, for example according to Vossiek, M., Gulden, P. and Christmann, M.: “Signal Processing for Commercial Radar Sensors", 3rd International Workshop of Commcercial Radio Sensors and Communication Techniques, Linz, Austria. Radar-based methods have the advantage of a longer range, but ultrasound-based systems are currently even cheaper to implement.
  • Trigonometry or light pattern projection are based. Examples of this can be found in Boverie, S., Joc, JML, Devy, M., Mengel, P. and Zittlau D .: "3D-Perception for Vehicle Inner Space Monitoring", Advanced Microsystems for Automotive Applications 2000, Volume 1, pages 157 to 172, Gruss, A., Carley, R. and Kanade, T .: "Integrated Sensor and Range-Finding Analog Signal Processor", IEEE Journal of Solid-State Circuits, 1991, volume 26 (3), pages 184 to 191 and Schwarte, R.: "A decade of 3D image acquisition - objectives, progress, future prospects", conference on optical shape acquisition, Stuttgart, page 18.
  • Scanning systems can be used for the runtime-based methods. They can be used to take precise 3D and 2D images. In addition to a certain sensitivity to vibrations, the disadvantage here is above all the high technical outlay for the mechanics, which leads to high costs. Applications are therefore preferably used which have pixels arranged in line or matrix form for distance measurement. Among other things, this can be done
  • Shutter method according to DE 198 33 207 AI and DE 197 57 595 AI, charge swing method according to DE 197 04 496 AI, MSM-based Method according to Gulden, P., Becker, B. and Vossiek, M.: "Novel Optical Distance Sensor Based on MSM Technology", in IEEE Sensors 2002, Orlando, Florida, Volume 1 or CCD-based method according to Lange, R., Seitz, Biber, A. and Schwarte R.: “Time-of-Flight Range Imaging with a Custom solid-state Image Sensor", SPIE: EUROPTO Conference on Laser Metrology and Inspection, Kunststoff, Volume 3823, pages 180-191.
  • Such an arrangement can also be used to record the environment around the means of transport in addition to the goods to be transported.
  • an automatic depositing or sorting of a transport good at a certain destination can advantageously be achieved.
  • the data can also be used, for example, in conjunction with other systems for the fully or semi-automatic operation of the means of transport.
  • the use of such an arrangement for load detection in forklift systems in warehouse facilities is particularly advantageous.
  • each forklift is equipped with an active base station, which determines the absolute position of the forklift relative to transponders arranged as markers in the hall.
  • it is of particular interest to determine the position of the load on the fork relative to the forklift.
  • an automatic or semi-automatic operation can be achieved, the security by recognizing
  • Active lighting 3 arranged forklift 1 projects a light pattern onto the transport goods 2.
  • Two cameras 4 arranged on the forklift 1 take the light pattern projected onto the surface of the transport goods 2 to determine the relative position of the transport goods 2 relative to the
  • the forklift 1 also has a base station 5 which transmits base signals, as a result of which transponders distributed in hall 6 are excited to transmit transponder signals, by means of which the absolute position of the means of transport 1 in the hall can be determined.
  • a light pattern preferably a grid pattern
  • the cameras 4 record the pattern in the wavelength range corresponding to the lighting. Background light is also advantageously suppressed by using a suitable interference filter.
  • T-shaped or lattice-like structures adapted to the recognition task can be used as the projection pattern. Rectangular grids are particularly easy to produce. This is done, for example, using a laser diode and suitable projection optics. In the case of particularly strong background lighting, the lighting can additionally be modulated and then separated from the background light which is not or not modulated with the same frequency.
  • the evaluation of the image values can preferably be carried out by means of the microcomputer system already present in the base station 5. In technically demanding
  • the normal environmental situation is learned first and then the transport item position is calculated from the comparison of the image and the environmental situation. Arrangements with two measuring cameras are preferably used in order to obtain more precise values and to generate a larger measuring range, in particular in the close range.
  • An arrangement can also provide for the use of line systems with run-time measurement, for example on a scanner, shutter, PMD or MSM basis. It is technically advantageous to use several line systems and to arrange the lines in such a way that any 2-D measurement values can lie on a grid pattern.
  • Figure 2 shows such an arrangement.
  • active lighting 7 with line modules 8 projects a light pattern 9 with projection lines onto the transport goods 2.
  • Any grid pattern can be used as the light pattern.
  • a rectangular or strip-shaped one is particularly easy to implement. If a measuring room that is close to the measuring device is required, the Lines are also placed apart from each other,

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control And Safety Of Cranes (AREA)
  • Control Of Conveyors (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Bestimmung der Position eines Transportgutes durch Kombination lokaler, absoluter Positionsmessung und relativer Positionsmessung Zum Bestimmen der Position eines Transportguts wird die absolute Position eines Transportmittels für das Transportgut sowie die Position des Transportguts relativ zum Transportmittel bestimmt.

Description

Beschreibung
Bestimmung der Position eines Transportgutes durch Kombination lokaler, absoluter Positionsmessung und relativer Positionsmessung
Die Erfindung betrifft das Bestimmen der Position eines Transportgutes .
Funkbasierte Ortungssysteme, wie sie beispielsweise aus DE
101 55 251 AI bekannt sind, beruhen darauf, dass entweder die Position von Transpondern relativ zu einer bekannten Basisstation oder die Position der Basisstation relativ zu bekannten Transponderpositionen gemessen wird. Dadurch lässt sich beispielsweise die Position eines Transportmittels in einer Halle bestimmen.
Davon ausgehend liegt der Erfindung die Aufgabe zugrunde, das Bestimmen der Position eines Transportgutes zu ermöglichen.
Diese Aufgabe wird durch die in den unabhängigen Patentansprüchen angegebenen Erfindungen gelöst. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Dementsprechend weist eine Anordnung zum Bestimmen der Position eines Transportgutes Mittel zum Bestimmen der Position eines Transportmittels für das Transportgut und Mittel zum Bestimmen der Position des Transportgutes relativ zum Transportmittel auf. Es wird also zuerst absolut die Position des Transportmittels beispielsweise in einer
Fabrikhalle bestimmt. Danach wird die relative Lage des Transportguts gegenüber dem Transportmittel ermittelt und daraus schließlich auf die absolute Position des Transportguts geschlossen. Das Transportmittel kann beispielsweise ein Kran, Fahrzeug, Trolley, Hubwagen,
Gabelstapler, Automated Guided Vehicle oder dergleichen sein. Das Transportgut kann jedes beliebige Objekt sein. Die Mittel zum Bestimmen der Position des Transportmittels weisen vorzugsweise Transponder und/oder eine Basisstation auf. Mit solchen Positionsradarsystemen lassen sich auch über größere Entfernungen präzise und kostengünstig Positionen bestimmen .
Besondere Vorteile ergeben sich, wenn in Form eines lokalen Positionsradars (LPR) die Basisstation am mobilen Transportmittel angeordnet ist und die Transponder an bekannten Positionen im Raum angeordnet sind. Durch dieses Vorgehen lässt sich eine Vielzahl von Transpondern kostengünstig und geschickt im Raum anordnen, was eine sehr präzise Positionsbestimmung der Basisstation ermöglicht. Die Basisstation kann dabei weiterhin über eine
Funkschnittstelle, über die sie unbearbeitete Messdaten bis hin zur bereits von ihr selbst berechneten Positionen übertragen kann, mit einer Zentrale zur Erfassung von Positionen eines oder mehrerer Transportmitteln verbunden sein.
Besonders vorteilhaft ist es auch, wenn die Mittel zum Bestimmen der Position des Transportguts Mittel sind, die keine am Transportgut zu befestigenden Messelemente benötigen. Kontraintuitiv sind damit die Mittel zum Bestimmen der Position des Transportguts prinzipiell anders aufgebaut als die Mittel zum Bestimmen der Position des Transportmittels. Während letztere über Transponder oder ähnliche aktive Einheiten verfügen, wird bei ersteren auf derlei Messelemente gerade verzichtet. Dabei ergibt sich der große Vorteil, dass an der Vielzahl von Transportgütern nicht jeweils ein Messelement befestigt werden muss, das am Transportgut darüber hinaus in besonders hohem Maße einem Zerstörungsrisiko ausgesetzt ist.
Die Mittel zum Bestimmen der Position des Transportguts können bildgebende Mittel sein oder aufweisen, die auf elektromagnetischen und/oder akustischen Wellen basieren. Vorzugsweise sind sie optische Mittel, die insbesondere eine Kamera aufweisen.
Eine besonders zweckmäßige Entfernungsbestimmung im Bereich naher und mittlerer Distanzen kann erfolgen, wenn die Mittel zum Bestimmen der Position des Transportguts eine Beleuchtungsquelle zur Projektion eines Lichtmusters auf das Transportgut und/oder das Transportmittel aufweisen.
Alternativ oder ergänzend können die Mittel zum Bestimmen der Position des Transportguts eine, insbesondere intensitatsmodulierte, Beleuchtungsquelle und einen Lichtempfanger mit fotoelektrischem Mischelement aufweisen.
Alternativ oder ergänzend können die Mittel zum Bestimmen der Position des Transportguts eine, insbesondere gepulste, Beleuchtungsque] le und einen Shutter aufweisen.
Eine weitere Alternative oder Ergänzung besteht darin, dass die Mittel zum Bestimmen der Position des Transportguts einen Laserscanner aufweisen.
Darüber hinaus kann es als Rangierhilfe, zum Erkennen von Gefahrensituationen oder beim Ablegen des Transportgutes nutzlich sein, wenn die Mittel zum Bestimmen der Position des Transportguts Mittel zum Erfassen der Umgebung des Transportmittels und Mittel zum Erkennen der Position des Transportguts und/oder des Transportmittels relativ zur Umgebung aufweisen.
Die Anordnung kann auch Mittel zum Identifizieren des Transportguts aufweisen, indem etwa ein Barcode eingelesen wird.
In einem Verfahren zum Bestimmen der Position eines Transportguts wird mit Mitteln zum Bestimmen der Position eines Transportmittels die Position des Transportmittels und mit Mitteln zum Bestimmen der Position des Transportguts die Position des Transportguts relativ zum Transportmittel bestimmt.
Weitere Vorteile und Merkmale der Erfindung ergeben sich aus der Beschreibung eines Ausführungsbeispiels anhand der Zeichnung. Dabei zeigt:
Figur 1 ein Transportmittel mit Mitteln zum Bestimmen der Position des Transportmittels und Mitteln zum Bestimmen der Position eines Transportguts relativ zum Transportmittel;
Figur 2 eine Anordnung zum Erzeugen von Lichtmustern.
Die absolute Position eines Transportguts wird durch die Kombination von passiven Verfahren zur Relativortung des Transportguts gegenüber einem Transportmittel und aktiven Verfahren zur Bestimmung der Position des Transportmittels ermittelt. Gegebenenfalls kann auch die relative Position an eine Basiseinheit kommuniziert werden, die diese dann mit einer absoluten Position verbindet. Die genaue Kenntnis der absoluten Position des Transportguts ist zum Beispiel in Lagerhaltungssystemen und Warenwirtschaftssystemen technisch notwendig.
Zum Bestimmen der Position des Transportguts relativ zum Transportmittel eignen sich Verfahren auf Basis von Mikrowellen, Ultraschall und auf optischer Basis. Wird vor allem der Abstand der Transportgüter zum Transportmittel in geringer lateraler Auflösung benötigt, dann wird die Position bevorzugt mit Ultraschallverfahren beispielsweise nach Vossiek, M., Magori, V. und Emert, H.: "An Ultrasonic Sensor System for Location Gauging and Recognition of Small Work Pieces", Sensor 95, 1995, Seiten 505 - 510 oder Radarverfahren beispielsweise nach Vossiek, M., Gulden, P. und Christmann, M. : "Signal Processing for Commercial Radar Sensors", 3rd International Workshop of Commcercial Radio Sensors and Communication Techniques, Linz, Österreich aufgelöst. Dabei weisen radarbasierte Verfahren den Vorteil einer größeren Reichweite auf, ultraschallbasierte Systeme sind dagegen zurzeit noch kostengünstiger zu realisieren.
In den meisten technischen Anwendungen wird die Relativposition des Transportgutes jedoch zusätzlich in guter lateraler Auflösung benötigt. In diesem Fall ist die
Verwendung optischer Verfahren technisch vorteilhaft, da nur diese entsprechend gute laterale Auflösung bieten. Dabei kann ein beliebiges Verfahren zur dreidimensionalen Vermessung verwendet werden. Es können Verfahren nach dem Laufzeitprinzip verwendet werden oder Verfahren, die auf
Trigonometrie bzw. Lichtmusterprojektion beruhen. Beispiele hierfür finden sich in Boverie, S., Quellec, J. M. L., Devy, M. , Mengel, P. und Zittlau D.: "3D-Perception for Vehicle Inner Space Monitoring", Advanced Microsystems for Automotive Applications 2000, Band 1, Seiten 157 bis 172, Gruss, A. , Carley, R. und Kanade, T.: "Integrated Sensor and Range- Finding Analog Signal Processor", IEEE Journal of Solid-State Circuits, 1991, Band 26 (3), Seiten 184 bis 191 und Schwarte, R. : "Ein Jahrzehnt 3D Bilderfassung - Zielsetzungen, Fortschritte, Zukunftsperspektiven", Fachtagung Optische Formerfassung, Stuttgart, Seite 18.
Bei den laufzeitbasierten Verfahren kommen etwa scannende Systeme in Frage. Mit ihnen können sowohl präzise 3D- als auch 2D-Bilder aufgenommen werden. Nachteilig ist dabei neben einer gewissen Erschütterungsempfindlichkeit vor allem der hohe technische Aufwand für die Mechanik, der zu hohen Kosten führt. Daher werden bevorzugt Anwendungen verwendet, die in Zeilen- oder Matrizenform angeordnete Pixel zur Entfernungsmessung besitzen. Dies können unter anderem
Shutter-Verfahren nach DE 198 33 207 AI und DE 197 57 595 AI, Ladungsschaukelverfahren nach DE 197 04 496 AI, MSM-basierte Verfahren nach Gulden, P., Becker, B. und Vossiek, M. : "Novel Optical Distance Sensor Based on MSM Technology", in IEEE Sensors 2002, Orlando, Florida, Band 1 oder CCD-basierte Verfahren nach Lange, R., Seitz, Biber, A. und Schwarte R. : "Time-of-Flight Range Imaging with a Custom solid-state Image Sensor", SPIE: EUROPTO Conference on Laser Metrology and Inspection, Munich, Band 3823, Seiten 180-191.
In vielen Fallen ist jedoch die Entfernungsbestimmung über Laufzeiten nicht notwendig. Es kann auf Verfahren wie Stereometrie zur ckgegriffen werden, insbesondere Stereometrie mit aktiver Beleuchtung. Diese Verfahren extrahieren die Tiefeninformation aus den geometrischen Gegebenheiten bzw. der Abbildung der Projektion auf eine Kamera. Insbesondere mit aktiver strukturierter Beleuchtung sind gute Ergebnisse zu erwarten. Vorteilhaft sind dabei an die Ausdehnung der zu erkennenden Transportguter angepasste Muster zu verwenden. Es können beispielsweise T- oder Kreuzmuster verwendet werden, die den Vorteil eines geringen technischen Aufwandes bieten. Falls die Erkennungsaufgabe mehr Messpunkte erfordert, können verschiedenartige Gitterstrukturen projiziert werden, insbesondere auch rechteckformige. Grundsatzlich bieten diese Verfahren zudem den Vorteil einer möglichen Fusion mit einer Bild- /Objekterkennung, wodurch eine technische Vereinfachung erreicht wird, sowie die gegen ber scannenden Systemen kostengünstigere Realisierung.
Eine solche Anordnung lasst sich zudem dazu verwenden, neben dem Transportgut auch die Umgebung um das Transportmittel zu erfassen. Dadurch lasst sich vorteilhaft ein automatisches Ablegen bzw. Einsortieren eines Transportguts an einem bestimmten Zielort erreichen. Gegebenenfalls können die Daten auch beispielsweise im Zusammenspiel mit anderen Systemen zum voll- oder halbautomatischen Betrieb des Transportmittels verwendet werden . Besonders vorteilhaft ist die Anwendung einer solchen Anordnung zur Lasterkennung bei Gabelstaplersystemen in Hallenlagern. Dementsprechend ist jeder Gabelstapler mit einer aktiven Basisstation ausgestattet, die die absolute Position des Gabelstaplers relativ zu als Wegmarken in der Halle angeordneten Transpondern bestimmt. Hier ist es von besonderem Interesse, die Position der Last auf der Gabel relativ zum Gabelstapler zu bestimmen. Dadurch kann beispielsweise ein automatischer oder halbautomatischer Betrieb erreicht, die Sicherheit durch das Erkennen von
Instabilität erhöht sowie der Warenfluss allgemein verbessert werden.
In Figur 1 erkennt man einen Gabelstapler 1, der ein Transportgut 2 auf seiner Gabel transportiert. Eine am
Gabelstapler 1 angeordnete aktive Beleuchtung 3 projiziert ein Lichtmuster auf das Transportgut 2. Zwei am Gabelstapler 1 angeordnete Kameras 4 nehmen das auf die Oberfläche des Transportguts 2 projizierte Lichtmuster zur Bestimmung der relativen Position des Transportguts 2 gegenüber dem
Transportmittel 1 auf. Der Gabelstapler 1 verfügt weiterhin über eine Basisstation 5, die Basissignale aussendet, wodurch in der Halle 6 verteilte Transponder zum Aussenden von Transpondersignalen angeregt werden, durch die die absolute Position des Transportmittels 1 in der Halle bestimmt werden kann.
Bei dieser Anordnung wird mittels der Lichtquelle 3 in Form eines Scheinwerfers bevorzugt im Infrarotbereich ein Lichtmuster, vorzugsweise ein Gittermuster, auf die Gabel und/oder den Dorn des Gabelstaplers 1 und das Transportgut projiziert. Die Kameras 4 nehmen das Muster im in der Beleuchtung entsprechenden Wellenlängenbereich auf. Vorteilhaft wird zudem Hintergrundlicht durch den Einsatz eines geeigneten Interferenzfilters unterdrückt.
Gegebenenfalls können zusätzliche, retroreflektierende Marken zur Erhöhung der Erkennungsleistung auf der Gabel und/oder dem Dorn, dem Tragegestell oder sonstigen Teilen des Transportmittels angebracht werden. Als Projektionsmuster können verschiedene, der Erkennungsaufgabe angepasste, T- förmige oder gitterartige Strukturen verwendet werden. Besonders einfach sind dabei rechteckige Gitter zu erzeugen. Dies geschieht beispielsweise mittels einer Laserdiode und geeigneter Projektionsoptik. Für den Fall besonders starker Hintergrundbeleuchtung kann zusätzlich die Beleuchtung moduliert werden und anschließend vom nicht bzw. nicht mit der gleichen Frequenz modulierten Hintergrundlicht getrennt werden .
Die Auswertung der Bildwerte kann dabei bevorzugt mittels des bereits in der Basisstation 5 vorhandenen Mikrorechner- Systems ausgeführt werden. In technisch anspruchsvollen
Fällen kann sie auch mittels separater Hardware erfolgen. Dabei wird zuerst die normale Umgebungssituation eingelernt und anschließend die Transportgutposition aus dem Vergleich der Aufnahme und der Umgebungssituation berechnet. Bevorzugt werden dabei Anordnungen mit zwei Messkameras verwendet, um genauere Werte zu erhalten, sowie einen größeren Messbereich insbesondere im Nahbereich zu erzeugen.
Eine Anordnung kann auch die Verwendung von Zeilensystemen mit LaufZeitmessung beispielsweise auf Scanner-, Shutter-, PMD- oder MSM-Basis vorsehen. Dabei ist es technisch vorteilhaft, mehrere Zeilensysteme zu verwenden, und die Zeilen so anzuordnen, dass beliebige 2-D-Messwerte auf einem Gittermuster zu liegen kommen.
Figur 2 zeigt eine solche Anordnung. Darin projiziert eine aktive Beleuchtung 7 mit Zeilenmodulen 8 ein Lichtmuster 9 mit Projektionszeilen auf das Transportgut 2. Es können beliebige Gittermuster als Lichtmuster verwendet werden. Besonders einfach ist jedoch ein rechteckiges bzw. streifenförmiges zu realisieren. Falls ein bis dicht an das Messgerät heranreichender Messraum gewünscht wird, können die Zeilen auch voneinander entfernt angebracht werden,

Claims

Patentansprüche
1. Anordnung zum Bestimmen der Position eines Transportguts (2) mit - Mitteln (5) zum Bestimmen der Position eines Transportmittels (1) ,
- Mitteln (3, 4, 7, 8) zum Bestimmen der Position des Transportguts (2) relativ zum Transportmittel (1).
2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Mittel (5) zum Bestimmen der Position des
Transportmittels Transponder und eine Basisstation aufweisen.
3. Anordnung nach Anspruch 2, dadurch gekennzeichnet, dass die Basisstation (5) am mobilen Transportmittel (1) angeordnet ist und die Transponder an bekannten Positionen im
Raum (6) angeordnet sind.
4. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (3, 4, 7, 8) zum Bestimmen der Position des Transportguts Mittel sind, die keine am Transportgut zu befestigenden Messelemente benötigen.
5. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (3, 4, 7, 8) zum Bestimmen der Position des Transportguts bildgebende Mittel aufweisen, die auf elektromagnetischen und/oder akustischen Wellen basieren.
6. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (3, 4, 7, 8) zum Bestimmen der Position des Transportguts optische Mittel und insbesondere eine Kamera aufweisen .
7. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (3, 4, 7, 8) zum Bestimmen der Position des Transportguts eine Beleuchtungsquelle zur Projektion eines Lichtmusters (9) auf das Transportgut (2) und/oder das Transportmittel (1) aufweisen.
8. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (3, 4, 7, 8) zum Bestimmen der Position des Transportguts eine, insbesondere intensitätsmodulierte, Beleuchtungsquelle und einen Lichtempfänger mit fotoelektrischem Mischelement aufweisen.
9. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (3, 4, 7, 8) zum Bestimmen der Position des Transportguts eine, insbesondere gepulste, Beleuchtungsquelle und einen Shutter aufweisen.
10. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (3, 4, 7, 8) zum Bestimmen der Position des Transportguts einen Laserscanner aufweisen.
11. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Mittel (3, 4, 7, 8) zum Bestimmen der Position des Transportguts Mittel zum Umfassen der Umgebung des
Transportmittels (1) aufweisen und Mittel zum Erkennen der Position des Transportmittels (1) und/oder des Transportguts (2) relativ zur Umgebung.
12. Verfahren zum Bestimmen der Position eines Transportguts (2), bei dem
- mit Mitteln (5) zum Bestimmen der Position eines Transportmittels die Position des Transportmittels (1) bestimmt wird,
- mit Mitteln (3, 4, 7, 8) zum Bestimmen der Position des Transportguts die Position des Transportguts (2) relativ zum Transportmittel (1) bestimmt wird.
PCT/EP2004/051603 2003-08-06 2004-07-26 Bestimmung der position eines transportgutes durch kombination lokaler, absoluter positionsmessung und relativer positionsmessung WO2005015256A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10336085.9 2003-08-06
DE10336085A DE10336085A1 (de) 2003-08-06 2003-08-06 Bestimmung der Postion eines Transportgutes durch Kombination lokaler, absoluter Positionsmessung und relativer Positionsmessung

Publications (1)

Publication Number Publication Date
WO2005015256A1 true WO2005015256A1 (de) 2005-02-17

Family

ID=34129496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2004/051603 WO2005015256A1 (de) 2003-08-06 2004-07-26 Bestimmung der position eines transportgutes durch kombination lokaler, absoluter positionsmessung und relativer positionsmessung

Country Status (2)

Country Link
DE (1) DE10336085A1 (de)
WO (1) WO2005015256A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018209731A1 (de) 2018-06-15 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Kollisionsvermeidung zwischen Fahrzeugen und Objekten
DE102018209732A1 (de) 2018-06-15 2019-12-19 Bayerische Motoren Werke Aktiengesellschaft Überwachungseinrichtung für ein Kraftfahrzeug mit RFID-Erkennungssystem
DE102019120022A1 (de) * 2019-07-24 2021-01-28 Jungheinrich Aktiengesellschaft Flurförderzeug mit einer Objekterkennung
DE102021114067A1 (de) * 2021-05-31 2022-12-01 Jungheinrich Aktiengesellschaft Flurförderzeug mit einer optischen Überwachungseinrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5672820A (en) * 1995-05-16 1997-09-30 Boeing North American, Inc. Object location identification system for providing location data of an object being pointed at by a pointing device
WO1999026083A1 (en) * 1997-11-13 1999-05-27 3Dv Systems Ltd. Three dimension imaging by dual wavelength triangulation
US5960413A (en) * 1996-03-05 1999-09-28 Amon; James A. Portable system for inventory identification and classification
US6088106A (en) * 1997-10-31 2000-07-11 Lap Gmbh Laser Applikationen Method for the contact-free measurement of the distance of an object according to the principle of laser triangulation
US6211506B1 (en) * 1979-04-30 2001-04-03 Diffracto, Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
WO2002075350A1 (en) * 2001-03-20 2002-09-26 Danaher Motion Särö AB Method and device for determining an angular position of a reflector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6211506B1 (en) * 1979-04-30 2001-04-03 Diffracto, Ltd. Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5672820A (en) * 1995-05-16 1997-09-30 Boeing North American, Inc. Object location identification system for providing location data of an object being pointed at by a pointing device
US5960413A (en) * 1996-03-05 1999-09-28 Amon; James A. Portable system for inventory identification and classification
US6088106A (en) * 1997-10-31 2000-07-11 Lap Gmbh Laser Applikationen Method for the contact-free measurement of the distance of an object according to the principle of laser triangulation
WO1999026083A1 (en) * 1997-11-13 1999-05-27 3Dv Systems Ltd. Three dimension imaging by dual wavelength triangulation
WO2002075350A1 (en) * 2001-03-20 2002-09-26 Danaher Motion Särö AB Method and device for determining an angular position of a reflector

Also Published As

Publication number Publication date
DE10336085A1 (de) 2005-03-10

Similar Documents

Publication Publication Date Title
DE19531632B4 (de) Entfernungsmeßgerät
EP1788467B1 (de) Schutzeinrichtung
EP2082930B1 (de) Behandlungsanlage und Behandlungsverfahren für Landfahrzeuge, insbesondere Autowaschanlage
EP1159636A1 (de) Ortsauflösendes abstandsmesssystem
EP1641704A1 (de) Bewegliche sensoreinrichtung am lastmittel eines gabelstaplers
DE102007023888A1 (de) Vorrichtung und Verfahren zur Fussgängererkennung
EP1901093A1 (de) Aufnahme von Entfernungsbildern
EP1681533A1 (de) Verfahren und geodätisches Gerät zur Vermessung wenigstens eines Zieles
EP0396865A2 (de) Optisches Radar
DE102017117162A1 (de) Sensor und Verfahren zur Erfassung und Abstandsbestimmung von Objekten
EP3789842B1 (de) Verfahren zur lokalisierung eines fahrzeugs sowie fahrzeug zur durchführung des verfahrens
EP3809157B1 (de) Entfernungsmessender optoelektronischer sensor und verfahren zur erfassung eines zielobjekts
WO2005015256A1 (de) Bestimmung der position eines transportgutes durch kombination lokaler, absoluter positionsmessung und relativer positionsmessung
DE102016003934A1 (de) Verfahren zur Navigation eines Kraftfahrzeugs in einer Navigationsumgebung und Navigationsmarker
DE102004026090A1 (de) Messsystem zur dreidimensionalen Bilderfassung
DE102009046597A1 (de) Verfahren und Einrichtung für die Störungsverminderung bei einem Lidarsystem
DE4341645C2 (de) Verfahren zur Echtzeit-Messung von dynamischen dreidimensionalen Verformungen eines Meßobjektes
EP3825731B1 (de) Optoelektronischer sicherheitssensor und verfahren zur sicheren bestimmung der eigenen position
DE102019213515A1 (de) Laserdistanzmesseinrichtung
DE102015118080B4 (de) Erfassung einer Bewegung eines Landfahrzeugs und Landfahrzeug mit Bewegungserfassungsvorrichtung
DE102019216195A1 (de) Vorrichtung und Verfahren zur Bestimmung einer räumlichen Position und Orientierung
DE102019200518A1 (de) Beweger, Bewegersteuersystem, Verfahren zum Erfassen von Objekten durch Beweger, Bewegungssystem und Verfahren zum Steuern von Bewegern
EP3837637B1 (de) Identifikationseinrichtung, identifikationssystem und verfahren zur identifikation eines objekts
WO2023247304A1 (de) Verfahren zum betreiben eines lidar-systems, lidar-system und fahrzeug mit wenigstens einem lidar-system
DE3725896A1 (de) Verfahren und vorrichtung zum feststellen der position eines fahrzeugs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase