WO2005015122A1 - Verfahren zur bestimmung der brechzahl bei interferometrischen längenmessungen und interferometeranordnung hierfür - Google Patents

Verfahren zur bestimmung der brechzahl bei interferometrischen längenmessungen und interferometeranordnung hierfür Download PDF

Info

Publication number
WO2005015122A1
WO2005015122A1 PCT/DE2004/001321 DE2004001321W WO2005015122A1 WO 2005015122 A1 WO2005015122 A1 WO 2005015122A1 DE 2004001321 W DE2004001321 W DE 2004001321W WO 2005015122 A1 WO2005015122 A1 WO 2005015122A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
measuring
measuring beams
interferometer
frequencies
Prior art date
Application number
PCT/DE2004/001321
Other languages
English (en)
French (fr)
Inventor
Bernd Bodermann
Original Assignee
BUNDESREPUBLIK DEUTSCHLAND, vertr. durch DAS BUNDESMINISTERIUM FÜR WIRTSCHAFT UND ARBEIT, dieses vertreten durch DEN PRÄSIDENTEN DER PHYSIKALISCH-TECHNISCHEN BUNDESANSTALT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BUNDESREPUBLIK DEUTSCHLAND, vertr. durch DAS BUNDESMINISTERIUM FÜR WIRTSCHAFT UND ARBEIT, dieses vertreten durch DEN PRÄSIDENTEN DER PHYSIKALISCH-TECHNISCHEN BUNDESANSTALT filed Critical BUNDESREPUBLIK DEUTSCHLAND, vertr. durch DAS BUNDESMINISTERIUM FÜR WIRTSCHAFT UND ARBEIT, dieses vertreten durch DEN PRÄSIDENTEN DER PHYSIKALISCH-TECHNISCHEN BUNDESANSTALT
Priority to EP04738770A priority Critical patent/EP1649242B1/de
Priority to US10/564,449 priority patent/US7420689B2/en
Priority to DE502004005036T priority patent/DE502004005036D1/de
Publication of WO2005015122A1 publication Critical patent/WO2005015122A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02015Interferometers characterised by the beam path configuration
    • G01B9/02027Two or more interferometric channels or interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/45Multiple detectors for detecting interferometer signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/60Reference interferometer, i.e. additional interferometer not interacting with object

Definitions

  • the invention relates to a method for determining the refractive index and / or compensation of the influence of refractive index in interferometric length measurements with the aid of an interferometer, which is acted on with at least two measuring beams with at least defined frequencies that are approximately in a harmonic relationship to one another, at the output of which interferometric phases for the at least two measuring beams are evaluated, a multiplication of the interferometric phases corresponding to the harmonic ratio of the frequencies of the measuring beams being carried out and at least one phase difference of the phase values formed in this way being considered.
  • the invention further relates to an interferometer arrangement for carrying out the method with at least one coherent radiation source for generating at least two measuring beams with defined, approximately harmonious frequencies and an interferometer, the output signals of which reach a beam splitter separating the measuring beams, the separated measuring beams opto-electronic converters arrive and at least one of the output signals of the opto-electrical converters is fed to a multiplier corresponding to the harmonic ratio of the frequencies of the measuring beams.
  • the influence of the refractive index on the measurement can be eliminated by carrying out the interferometric measurement with two defined different wavelengths. Since the refractive index depends on the wavelength, while the physical path length is independent of the wavelength, information about the physical path length and the refractive index can be separated.
  • US 4,948,254 describes a device which works according to this dispersion method.
  • the two wavelengths are supplied by an argon ion laser in combination with a frequency doubler crystal.
  • a fundamental wave and a frequency-doubled wave two waves are obtained for the interferometry, which are basically phase-locked.
  • the doubler crystal is located at the beginning of the measuring section on the measuring arm of a two-beam interferometer.
  • the running fundamental wave creates a collinear harmonic in the crystal. Both waves pass through the measuring section.
  • the fundamental wave When returning through the crystal, the fundamental wave generates a second harmonic, which has a phase difference compared to the first harmonic due to the dispersion in the medium. This phase difference, which has to be measured, represents the measurement signal.
  • phase difference is only slightly dependent on other influences, such as the position and state of motion of the interferometer, so that the phase difference represents a usable measurement signal for an accurate measurement.
  • the problem is that one exact determination of the phases is complex and subject to fundamental measurement uncertainties.
  • No. 5,404,222 describes a similar system in which the doubler crystal is passed through before the light used enters the interferometer. There is also a frequency doubling at the output of the interferometer.
  • a so-called superheterodyne interferometer is known from US Pat. No. 5,838,485 to improve the measurement accuracy.
  • a two-wavelength interferometer with harmonically correlated optical waves is used to compensate for the influence of the refractive index using the dispersion method.
  • the superheterodyne interferometer With the superheterodyne interferometer, the interferometric phases of the optical fundamental and harmonic waves are each mapped to high-frequency heterodyne frequencies.
  • the interferometric phase of the fundamental wave heterodyne signal is doubled. The difference between this doubled phase and the phase of the heterodyne signal of the harmonic is proportional to the dispersion.
  • the advantage of the superheterodyne interferometer is that the sensitivity of the refractive index compensation to the mechanical stability of the interferometer is significantly lower.
  • the achievable accuracy of the measurement is, however, limited by the determination of the phase difference.
  • the phase measurements for the high-frequency signals have to be carried out 1 or 2 orders of magnitude more precisely than with the actual length measurement.
  • To determine the phase difference it is necessary to measure two independent phases. Possible nonlinearities in the phase measurement influence the measurement uncertainty.
  • the difference phase changes periodically with the measuring section, so that the determination of the refractive index is not unambiguous.
  • a further change is to determine the refractive index Measuring section required.
  • the method is therefore only suitable for refractive index-compensated displacement measurements, but not for refractive index-compensated position measurements, for example in an absolute measuring interferometer.
  • the present invention is based on the object of improving a method and an apparatus of the type mentioned at the outset in such a way that more precise compensation of the influences of the refractive index is possible for precision length measurements.
  • the method of the type mentioned at the outset is characterized in that the frequency of at least one of the measuring beams is variable and that a control signal for changing the frequency of the measuring beam which can be changed in frequency is formed from the phase difference formed, with which the frequency is controlled so that the phase difference becomes zero.
  • a device of the type mentioned at the outset is further characterized in that at least one of the measuring beams has a variable frequency control by means of a frequency control. It is possible to use a phase comparator for the phases of the output signals of the opto-electrical converters to generate a control signal representing a phase difference and to supply the frequency control to form a control loop for the interferometric phases.
  • an interferometric phase-locked loop is implemented, which ensures that the integral optical wavelengths of the two beams circulating in the interferometer are correlated exactly along the measurement path.
  • the correlation corresponds to the harmonic frequency ratio of the fields of the two-frequency radiation source.
  • the frequency of one of the measuring beams is adjusted by a certain frequency amount, the offset frequency.
  • the difference frequency between the exactly harmonic frequency ratio and the frequency set by the control loop is a direct measure of the integral refractive index on the measuring section.
  • the offset frequency is easy to measure and is in particular independent of the length of the measuring section and the mechanical instabilities of the interferometer.
  • the measurement of the refractive index can be traced back to a frequency measurement, in principle a higher measurement accuracy is achieved, since frequencies are physical quantities that can be measured very precisely. Furthermore, in contrast to the measurement of a periodic phase, the frequency measurement is a priori unambiguous and in principle measurable without effect modulation.
  • the measurement of the offset frequency is preferably carried out in that at least one reference beam is generated with a frequency that corresponds approximately to the frequency of one of the measurement beams and is coupled to the frequency of another measurement beam and that a frequency difference between the frequency of the reference beam and the frequency of the corresponding measurement beam is measured.
  • the method according to the invention and the interferometer arrangement according to the invention can be modified by using the superheterodyne principle.
  • the superimposed measuring beams in a reference branch of the interferometer can be modulated with high frequencies that are in the same harmonic relationship to one another as the frequencies of the measuring beams.
  • different polarization components can also be used, it being possible for one polarization component to be shifted relative to the other by ⁇ / 2 by means of a ⁇ delay plate. This ensures that signal components that are not zero and are therefore easy to measure are always available for an accurate evaluation.
  • Figure 1 is a schematic representation of an interferometer arrangement according to the invention
  • Figure 2 is a schematic representation of an embodiment of the interferometer arrangement according to the invention as a superheterodyne interferometer with two laser sources
  • Figure 3 shows a variant of the embodiment of Figure 2 with a single laser source.
  • a laser L1 is provided as a coherent radiation source, which emits a laser beam with the frequency v, as the reference beam and with a second frequency v 2 as the first measuring beam.
  • SHG second harmonic generator
  • a second laser source L2 emits a laser beam with a third frequency v 3 , which corresponds to the frequency v.
  • the output frequency of the laser L2 can be controlled by a frequency controller 11.
  • the frequency control can be an acousto-optical modulator (AOM), but also a frequency control input of a laser L2 that can be tuned in frequency.
  • AOM acousto-optical modulator
  • the output beam of the laser L1 reaches a dichroic beam splitter DST 1 1, which deflects the beam of the laser L1 with the frequency v.
  • a reference beam As a reference beam and passes the beam with the frequency v 2 as the first measuring beam.
  • the first measuring beam v 2 passes through a second dichroic beam splitter DST12 and arrives in an interferometer 13.
  • the frequency v 3 »of the second laser L2 is influenced by the frequency control 11 and emerges as frequency v 3 from the frequency control 11 as a second measuring beam. It is divided into two parts by a neutral beam splitter ST1 1, one of which is deflected out of the beam path and directed onto a mirror S1 1, whereby the partial beam reaches another neutral beam splitter ST12, whereby the deflected part of the second measuring beam v 3 is collinear the reference beam deflected by the dichroic beam splitter DST1 1 is superimposed.
  • the beam part of the second measurement beam v 3 transmitted through the beam splitter ST1 1 is collinearly superimposed on the first measurement beam v 2 via a mirror S12 and the dichroic beam splitter DST12, so that both measurement beams v 2 , v 3 reach a beam splitter ST13 of the interferometer 13.
  • the neutral beam splitter ST13 divides the incoming measuring beam (formed from the superimposed measuring beams vv 2 ) into a reference arm directed to a reference mirror S13 and one with a A measuring arm of the interferometer 13 formed in a measuring mirror S14.
  • the beams reflected by the reference mirror S13 and the measuring mirror S14 are superimposed by the beam splitter ST13 and reach a dichroic beam splitter DST13 at the output of the interferometer 13.
  • phasen2 and ⁇ 3 generated by the measuring beams v 2 , v 3 are separated and processed by means of suitable evaluation electronics 14, 15.
  • n 2 , n 3 is the integral refractive index along the distance L at the optical frequency v 2 or v 3 and c represents the (vacuum) speed of light.
  • the interferometric phase ⁇ 3 is multiplied by the factor N and the phase thus formed is compared with the phase ⁇ 2 in a phase comparator 17 by the difference
  • control amplifier 18 which is a PI amplifier (proportional integral amplifier) in the exemplary embodiment shown, and is fed to the frequency control stage 11 in such a way that it serves as a control criterion
  • An interferometric phase locked loop is thus implemented, which ensures that the integral optical wavelengths of the two beams circulating in the interferometer along the measuring path L of the interferometer 13 are correlated exactly according to
  • the physical path length difference L in the interferometer thus results in ⁇ _ ⁇ c _ ⁇ ⁇ c _ c- ⁇ 2 - (v 2 + N- Av-N- A- Av) ⁇ 4 ⁇ - yV ⁇ ⁇ , v 2 + N- ⁇ v ⁇ 4 - ⁇ -v 2 ⁇ v 2 + N- Av) v 2 + N-Av-NA- Av 2
  • both the refractive index and the refractive index fluctuations along the distance to be measured can be measured during a displacement measurement of the measuring mirror S14 or during a position measurement compensate with high precision.
  • the first laser L1 emits the frequencies v 1 # v 2
  • the second laser L2 is designed as a frequency-tunable laser and therefore emits the frequency v 3 .
  • the optical frequency difference is converted electrically by the photodetector 21 and evaluated electrically in the frequency counter FZ.
  • the second measuring beam v 3 is only superimposed in the measuring beam v 2 via the mirror S22 and the beam splitter ST23 and is guided in this form to the interferometer 13 '.
  • the superimposed beams are also guided via a mirror S23 to an acousto-optical modulator (AOM) 20, which shifts at least parts of the two beams in a defined frequency.
  • AOM acousto-optical modulator
  • the frequency of the beam of the optical frequency v 2 is shifted by the (radio) frequency 2 ⁇
  • the frequency of the beam of the optical frequency v 3 is shifted by the frequency ⁇ .
  • the frequencies ⁇ , 2 ⁇ are conducted via a high-frequency generator 21 to a control input of the AOM 20.
  • the two optical beams pass through the AOM in a collinear fashion. Since, according to the exemplary embodiment shown, the optical frequencies v 3 and v 2 form the same frequency ratio as the high frequencies ⁇ and 2 ⁇ in a very good approximation, the Bragg condition in the AOM is simultaneously in one spatial direction for the optical frequency v 3 and the high frequency ⁇ electronically and optically filtered, as will be explained below, and therefore does not interfere with the measurement method described here.
  • the reflector 21 is designed as a mirrored roof edge prism.
  • the reflected measurement beams are collinearly superimposed with the reference beams modulated by the AOM 20.
  • the dichroic beam splitter DST22 separates the beams into two partial beams, which are converted into electrical signals by means of photodetectors PD23 and PD24.
  • the portion passing through the dichroic beam splitter DST22 has a beat of the frequency 2 ⁇ . This is extracted from the electrical signal with the frequency 2 ⁇ by means of a suitable bandpass filter BP21. Analogously, the beams reflected at the dichroic beam splitter DST22 generate a beat signal of the frequency ⁇ on the detector PD23, which in turn is extracted from the detector signal by means of a suitable bandpass filter BP22 of the frequency ⁇ .
  • the interferometric phase shift between the reference beam and the measurement beam, which is generated by shifting the reflector 21, is mapped to an equally large phase shift of the heterodyne frequency. Since v 2 is approximately 2 - v 3 and thus also applies to the optical wavelengths ⁇ 3 «2 - ⁇ 2 , in the double heterodyne interferometer described here the resulting phase shift of the heterodyne signal of frequency 2 ⁇ is approximately when the reflector 21 is shifted twice the resulting phase shift of the heterodyne signal of frequency ⁇ .
  • phase shift is doubled with the aid of a high-frequency frequency doubler 22 and the phase of the doubled signal is compared with the phase of the heterodyne signal of the frequency 2 ⁇ using a phase comparator DBM in the form of a double balanced mixer.
  • the live komperator contains a downstream low-pass filter with a suitable cut-off frequency ⁇ 4 ⁇ .
  • the path length difference ⁇ L must be the condition for the ambiguous output signal of the DBM, a larger frequency difference ⁇ v to be set than the maximum difference frequency ⁇ v max . In this case, regulation is clearly possible with only one ⁇ v.
  • phase ⁇ 2 required for this can be obtained using known techniques, for example using a commercially available I / Q demodulator 24.
  • FIG. 2 A possible modification of the embodiment of the invention according to FIG. 2, which manages with only one laser L1, is shown in FIG.
  • Such broadband frequency shifters with voltage controlled microwave driver (VCO) 35 are commercially available. Otherwise, the exemplary embodiment essentially corresponds to FIG. 2, the measure for the frequency difference serving as the measurement signal directly resulting from the frequency of the VCO 35.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Automation & Control Theory (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Zur Bestimmung der Brechzahl und/oder Kompensation des Brechzahleinflusses bei interferometrischen Längenmessungen mit Hilfe eines mit wenigstens zwei Messstrahlen (v2, v3) mit wenigstens definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen beaufschlagten Interferometers (13, 13'), an dessen Ausgang interferometrisch Phasen für die wenigstens zwei Messstrahlen (v2, v3) ausgewertet werden, wobei eine dem harmonischen Verhältnis der Frequenzen der Messstrahlen (v2, v3) entsprechende Multiplikation der interferometrischen Phasen vorgenommen und wenigstens eine Phasendifferenz der so gebildeten Phasenwerte betrachtet wird, wird vorgesehen, dass wenigstens einer der Messstrahlen (v3) in seiner Frequenz variierbar ist und dass aus der gebildeten Phasendifferenz ein Steuersignal zur Veränderung der Frequenz des in seiner Frequenz veränderbaren Messstrahls (v3) gebildet wird, mit dem die Frequenz so geregelt wird, dass die Phasendifferenz zu Null wird. Hierdurch kann die Ermittlung der Brechzahl oder die Längenmessung durch eine Messung einer Frequenzdifferenz erfolgen.

Description

Verfahren zur Bestimmung der Brechzahl bei interferometrischen Längenmessungen und Interferometeranordnung hierfür
Die Erfindung betrifft ein Verfahren zur Bestimmung der Brechzahl und/oder Kompensation des Brechzahleinflusses bei interferometrischen Längenmessungen mit Hilfe eines mit wenigstens zwei Messstrahlen mit wenigstens definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen beaufschlagten Interferometers, an dessen Ausgang interferometrisch Phasen für die wenigstens zwei Messstrahlen ausgewertet werden, wobei eine dem harmonischen Verhältnis der Frequenzen der Messstrahlen entsprechende Multiplikation der interferometrischen Phasen vorgenommen und wenigstens eine Phasendifferenz der so gebildeten Phasenwerte betrachtet wird.
Die Erfindung betrifft ferner eine Interferometeranordnung zur Durchführung des Verfahrens mit wenigstens einer kohärenten Strahlenquelle zur Generierung wenigstens zweier Messstrahlen mit definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen und einem Interferometer, dessen Ausgangssignale auf einen die Messstrahlen trennenden Strahlteiler gelangen, wobei die getrennten Messstrahlen auf opto-elektronische Wandler gelangen und wenigstens eines der Ausgangssignale der opto-elektrischen Wandler einem dem harmonischen Verhältnis der Frequenzen der Messstrahlen entsprechenden Multiplikator zugeführt wird. Es ist bekannt, Abstandsmessungen bzw. Messungen von Längenände- rungen physikalischer Längen mit Hilfe eines Interferometers durchzuführen. Bei einer derartigen Messung wird die optische Weglänge gemessen, die sich aus der physikalischen Weglänge und der integralen Brechzahl des Mediums auf der gemessenen Weglänge zusammensetzt. Der Ein- fluss der Brechzahl auf die Messung kann dadurch eliminiert werden, dass die interferometrische Messung mit zwei definierten unterschiedlichen Wellenlängen durchgeführt wird. Da die Brechzahl von der Wellenlänge abhängt, die physikalische Weglänge hingegen von der Wellenlänge unabhängig ist, lassen sich so Informationen über die physikalische Weglänge und die Brechzahl voneinander trennen.
US 4,948,254 beschreibt eine Vorrichtung, die nach dieser Dispersionsmethode arbeitet. Die beiden Wellenlängen werden von einem Argon- Ionen-Laser in Kombination mit einem Frequenzverdopplerkristall geliefert. Durch die Verwendung einer Grundwelle und einer frequenzverdoppelten Welle erhält man für die Interferometrie zwei Wellen, die grundsätzlich phasenstarr sind. Der Verdopplerkristall befindet sich am Anfang der Messstrecke am Messarm eines Zweistrahl-Interferometers. Die hin- laufende Grundwelle erzeugt im Kristall eine kollinear laufende Oberwelle. Beide Wellen durchlaufen die Messstrecke. Beim Rücklauf durch den Kristall erzeugt die Grundwelle eine zweite Oberwelle, die aufgrund der Dispersion im durchlaufenden Medium eine Phasendifferenz gegenüber der ersten Oberwelle aufweist. Diese Phasendifferenz, die gemessen werden muss, stellt das Messsignal dar. Sie ist ein Maß für die Dispersion und damit für die Brechzahlen. Die Phasendifferenz ist nur gering von anderen Einflüssen, wie Position und Bewegungszustand des Interferometers abhängig, sodass die Phasendifferenz ein brauchbares Messsignal für eine genaue Messung darstellt. Problematisch ist allerdings, dass eine genaue Bestimmung der Phasen aufwändig und mit prinzipiellen Messunsicherheiten belastet ist.
US 5,404,222 beschreibt ein ähnliches System, bei dem der Verdoppler- kristall vor dem Eintritt des verwendeten Lichts in das Interferometer durchlaufen wird. Außerdem findet eine Frequenzverdopplung am Ausgang des Interferometers statt.
Zur Verbesserung der Messgenauigkeit ist beispielsweise aus US 5,838,485 ein sogenanntes Superheterodyn-Interferometer bekannt. Auch hier wird ein Zwei-Wellenlängen-Interferometer mit harmonisch kor- relierten optischen Wellen verwendet, um die Kompensation des Brechzahleinflusses mittels der Dispersionsmethode durchzuführen. Bei dem Superheterodyn-Interferometer werden die interferometrischen Phasen der optischen Grund- und Oberwelle jeweils auf Hochfrequenz- Heterodynfrequenzen abgebildet. Die interferometrische Phase des Hete- rodynsignals der Grund welle wird verdoppelt. Die Differenz dieser verdoppelten Phase und der Phase des Heterodynsignals der Oberwelle ist proportional zur Dispersion. Der Vorteil der Superheterodyn- Interferometer besteht darin, dass die Empfindlichkeit der Brechzahlkompensation bezüglich der mechanischen Stabilität des Interferometers wesentlich geringer ist. Die erzielbare Genauigkeit der Messung wird jedoch durch die Bestimmung der Phasendifferenz begrenzt. Die Phasenmessungen müssen für die Hochfrequenzsignale um 1 bis 2 Größenordnungen genauer erfolgen als bei der eigentlichen Längenmessung. Für die Bestimmung der Phasendifferenz ist die Messung zweier unabhängiger Phasen notwendig. Möglichen Nichtlinearitäten bei der Phasenmessung beeinflussen die Messunsicherheit. Die Differenzphase ändert sich periodisch mit der Messstrecke, sodass die Brechzahlbestimmung nicht ein- deutig ist. Weiter ist zur Bestimmung der Brechzahl eine Änderung der Messstrecke erforderlich. Das Verfahren ist somit nur für brechzahlkompensierte Verschiebemessungen, nicht jedoch für brechzahlkompensierte Positionsmessungen, beispielsweise in einem absolut messenden Interferometer, geeignet.
Aus US 2002/0001086 A1 ist es ferner bekannt, ein Zwei-Wellenlängen- Interferometer mit einem Refraktometer zu kombinieren, das in der Nähe der interferometrisch zu messenden Strecke plaziert ist. Das Refraktometer, das beispielsweise aus einem abgeglichenen Interferometer fester Weglängen besteht, wobei die Referenzstrecke im Vakuum und die Messtrecke in der Umgebungsluft verläuft, dient der Messung der Langzeitänderungen der Brechzahl und kann bei sich ändernder Luftzusammensetzung zur Bestimmung der inversen Dispersion A benutzt werden. Mit dieser Ergänzung kann die Brechzahl absolut und eindeutig bestimmt werden.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs erwähnten Art so zu verbessern, dass eine genauere Kompensation der Brechzahleinflüsse für Präzisionslän- genmessungen möglich ist.
Zur Lösung dieser Aufgabe ist erfindungsgemäß das Verfahren der eingangs erwähnten Art dadurch gekennzeichnet, dass wenigstens einer der Messstrahlen in seiner Frequenz variierbar ist und dass aus der gebilde- ten Phasendifferenz ein Steuersignal zur Veränderung der Frequenz des in seiner Frequenz veränderbaren Messstrahls gebildet wird, mit dem die Frequenz so geregelt wird, dass die Phasendifferenz zu Null wird.
Zur Lösung der Aufgabe ist erfindungsgemäß ferner eine Vorrichtung der eingangs erwähnten Art dadurch gekennzeichnet, dass wenigstens einer der Messstrahlen in seiner Frequenz mittels einer Frequenzsteuerung vari- ierbar ist und dass mittels eines Phasenvergleichers für die Phasen der Ausgangssignale der opto-elektrischen Wandler ein eine Phasendifferenz repräsentierendes Steuersignal generiert und der Frequenzsteuerung zur Bildung eines Regelkreises für die interferometrischen Phasen zugeleitet wird.
Erfindungsgemäß wird ein interferometrischer Phasenregelkreis realisiert, der dafür sorgt, dass die integralen optischen Wellenlängen der beiden im Interferometer umlaufenden Strahlen entlang der Messstrecke exakt harmonisch korreliert sind. Die Korrelation entspricht dem harmonischen Frequenzverhältnis der Felder der Zwei-Frequenz-Strahlungsquelle. Hierfür wird die Frequenz eines der Messstrahlen um einen gewissen Frequenzbetrag, der Offset-Frequenz, verstellt. Die Differenzfrequenz zwischen dem exakt harmonischen Frequenzverhältnis und der durch den Regelkreis eingestellten Frequenz ist ein direktes Maß für die integrale Brechzahl auf der Messstrecke. Die Offset-Frequenz lässt sich leicht messen und ist insbesondere unabhängig von der Länge der Messstrecke und von mechanischen Instabilitäten des Interferometers. Da die Messung der Brechzahl erfindungsgemäß auf eine Frequenzmessung zurück- führbar ist, wird prinzipiell eine höhere Messgenauigkeit errreicht, da Frequenzen sehr genau messbare physikalisch Größen sind. Weiterhin ist die Frequenzmessung im Gegensatz zur Messung einer periodischen Phase a priori eindeutig und prinzipiell ohne Effektmodulation messbar.
Die Messung der Offset-Frequenz erfolgt vorzugsweise dadurch, dass wenigstens ein Referenzstrahl mit einer Frequenz erzeugt wird, die etwa der Frequenz eines der Messstrahlen entspricht und mit der Frequenz eines anderen Messstrahls gekoppelt ist und dass eine Frequenzdifferenz zwischen der Frequenz des Referenzstrahls und der Frequenz des ent- sprechenden Messstrahis gemessen wird. Das erfindungsgemäße Verfahren und die erfindungsgemäße Interferome- ter-Anordnung können durch die Anwendung des Superheterodyn- Prinzips modifiziert werden. Insbesondere können dabei den überlagerten Messstrahlen in einem Referenzzweig des Interferometers Hochfrequen- zen aufmoduliert werden, die im gleichen harmonischen Verhältnis zueinander wie die Frequenzen der Messstrahlen stehen.
In einer weiteren Modifikation der vorliegenden Erfindung können auch unterschiedliche Polarisationskomponenten verwendet werden, wobei eine Polarisationskomponente gegenüber der anderen um π/2 mittels einer λ-Verzögerungsplatte verschoben werden kann. Dadurch wird erreicht, dass für eine genaue Auswertung immer Signalanteile zur Verfügung stehen, die nicht Null sind und daher gut messbar sind.
Die Erfindung soll im Folgenden anhand von in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert werden. Es zeigen:
Figur 1 eine schematische Darstellung einer erfindungsgemäßen In- terferometeranordnung
Figur 2 eine schematische Darstellung einer Ausführungsform der erfindungsgemäßen Interferometeranordnung als Superheterodyn-Interferometer mit zwei Laserquellen
Figur 3 eine Variante der Ausführungsform gemäß Figur 2 mit einer einzigen Laserquelle.
In der Ausführungsform gemäß Figur 1 ist ein Laser L1 als kohärente Strahlungsquelle vorgesehen, der einen Laserstrahl mit der Frequenz v, als Referenzstrahl und mit einer zweiten Frequenz v2 als ersten Messstrahl aussendet. Der Laser L1 kann beispielsweise ein Second Harmonic Generator (SHG) Laser sein, der neben seiner Fundamentalfrequenz v, auch ein frequenzverdoppeltes Feld v2 = 2v1 emittiert. Die Anwendung der Erfindung ist aber nicht auf eine Frequenzverdopplung beschränkt. Wesentlich ist eine harmonische Korrelierung der Frequenzen in der allgemeinen Form k1 - v, = k2- v2, wobei k1 , k2 natürliche Zahlen sind. In einer bevorzugten, einfach zu realisierenden Form gilt v2 = N - VT (N natürliche Zahl > 1 ).
Eine zweite Laserquelle L2 emittiert einen Laserstrahl mit einer dritten Frequenz v3, die der Frequenz v, entspricht.
In dem dargestellten Ausführungsbeispiel ist die Ausgangsfrequenz des Lasers L2 durch eine Frequenzsteuerung 1 1 steuerbar. Die Frequenzsteu- erung kann ein akustooptischer Modulator (AOM), aber auch ein Frequenzsteuereingang eines in der Frequenz abstimmbaren Lasers L2 sein.
Der Ausgangsstrahl des Lasers L1 gelangt auf einen dichroitischen Strahlteiler DST 1 1 , der den Strahl des Lasers L1 mit der Frequenz v., als Referenzstrahl ablenkt und den Strahl mit der Frequenz v2 als ersten Messstrahl durchlässt. Der erste Messstrahl v2 durchläuft einen zweiten dichroitischen Strahlteiler DST12 und gelangt in ein Interferometer 13.
Die Frequenz v3» des zweiten Lasers L2 wird durch die Frequenzsteuerung 1 1 beeinflusst und tritt als Frequenz v3 aus der Frequenzsteuerung 1 1 als zweiter Messstrahl aus. Er wird durch einen neutralen Strahlteiler ST1 1 in zwei Anteile geteilt, von denen einer aus dem Strahlengang abgelenkt und auf einen Spiegel S1 1 geleitet wird, wodurch der Teilstrahl auf einen weiteren neutralen Strahlteiler ST12 gelangt, wodurch der abgelenkte Anteil des zweiten Messtrahls v3 kollinear dem von dem dichroitischen Strahlteiler DST1 1 abgelenkten Referenzstrahl überlagert wird. Der überlagerte Messstrahl gelangt auf einen Fotodetektor PD1 1. Stimmen die Frequenzen v3 und v überein, entsteht eine Differenzfrequenz Δv = 0. Liegt jedoch eine Frequenzabweichung vor, wird eine Schwingungsfrequenz Δv = | v, - v3 | mit Hilfe eines Frequenzzählers FZ gemessen.
Der durch den Strahlteiler ST1 1 transmittierte Strahlenteil des zweiten Messstrahls v3 wird über einen Spiegel S12 und den dichroitischen Strahlteiler DST12 dem ersten Messstrahl v2 kollinear überlagert, sodass beide Messstrahlen v2, v3 auf einen Strahlteiler ST13 des Interferometers 13 gelangen. Der neutrale Strahlteiler ST13 teilt den ankommenden Messstrahl (gebildet aus den überlagerten Messstrahlen v v2) in einen auf einen Referenzspiegel S13 geleiteten Referenzarm und einen mit ei- nem Messspiegel S14 gebildeten Messarm des Interferometers 13. Die vom Referenzspiegel S13 und vom Messspiegel S14 reflektierten Strahlen werden durch den Strahlteiler ST13 überlagert und gelangen auf einen dichroitischen Strahlteiler DST13 am Ausgang des Interferometers 13. Durch den dichroitischen Strahiteiler DST13 werden die beiden Frequenzen v1 f v3 voneinander getrennt, da die Frequenz v3 durch den dichroitischen Strahlteiler DST13 auf den Fotodetektor PD13 abgelenkt wird, während die Frequenz v2 des ersten Messstrahls durch den dichroitischen Strahlteiler DST13 hindurchläuft und auf einen Photodetektor PD12 ge- langt.
Mittels einer der bekannten Methoden zur Detektion der interferometrischen Phase werden die von den Messstrahlen v2, v3 erzeugten Phasen Φ2 und Φ3 mittels geeigneter Auswerteelektroniken 14, 15 separiert und verarbeitet.
Für die Phasen gilt
Aπ - L
Φ2 = n2-v2 und
φ3 = 4^-J ^-v3
wobei n2, n3 die integrale Brechzahl entlang der Strecke L bei der optischen Frequenz v2 bzw. v3 ist und c die (Vakuum-)Lichtgeschwindigkeit darstellt.
Da die Frequenzen v2 und v3' harmonisch zu v2 = N v3' korreliert und der Frequenzregelbereich der Frequenzsteuerung 1 1 nur kleine Änderun- gen der Frequenz bewirkt, wie unten noch näher erläutert wird, gilt v2 « N v3'.
Dann gilt auch
Figure imgf000012_0001
In einer Multiplikationsstufe 16 wird die interferometrische Phase Φ3 mit dem Faktor N multipliziert und die so gebildete Phase mit der Phase Φ2 in einem Phasenkomperator 17 verglichen, indem die Differenz
ΔΦ= Φ2-N - Φ3
gebildet wird. Dieses Differenzsignal wird über einen Regelverstärker 18, der im dargestellten Ausführungsbeispiel ein Pl-Verstärker (Proportionalintegral-Verstärker) ist, verstärkt und der Frequenzsteuerstufe 11 so zugeleitet, dass als Regelkriterium
ΔΦ = 0
gilt. Somit wird ein interferometrischer Phasenregelkreis realisiert, der dafür sorgt, dass die integralen optischen Wellenlängen der beiden im Interferometer umlaufenden Strahlen entlang der Messstrecke L des Interferometers 13 exakt harmonisch korreliert sind gemäß
N - λ7=λ,, mit λ,=- λ,=- v2-n2 v33 Damit lässt sich aus der Kenntnis der optischen Frequenz v2 und der Messung der Frequenzdifferenz Δv in dem Frequenzzähler FZ die integrale Brechzahl n2 aus v2+N- Av n, = v2+N- Δv- -N- A - Av
berechnet. Die in diesem Ausdruck enthaltene inverse Dispersion A, die als n2-l A= n2-n3
definiert ist, lässt sich für Messstrecken in Luft normaler Zusammensetzung aus der so genannten modifizierten Edlen Formel berechnen (vgl. G. Bönsch, E. Potulski „Measurement of the refractive index of air and comparison with modified Edlen's formulae", Metrologia 35 (1998), 133- 139) bestimmen oder mit Hilfe einer geeigneten Vorrichtung messen (vgl. z.B. US 2002/0001086 A1 ).
Die physikalische Weglängendifferenz L im Interferometer ergibt sich da- mit zu ι _ ϊc _ Φι c _ c-φ2-(v2+N- Av-N- A- Av) ~ 4π- yVτ ~ , v2+N- Δv ~ 4 - π-v2{v2+N- Av) v2+N-Av-N-A- Av 2
Daher lassen sich mit der Erfindung bei einer Verschiebemessung des Messspiegels S14 oder bei einer Positionsmessung sowohl die Brechzahl als auch die Brechzahlfluktuationen entlang der zu messenden Strecke mit hoher Präzision kompensieren. Bei dem in Figur 2 dargestellten Ausführungsbeispiel emittiert der erste Laser L1 die Frequenzen v1# v2, während der zweite Laser L2 als in seiner Frequenz abstimmbarer Laser ausgebildet ist und daher die Frequenz v3 abstrahlt. Zur Messung der Fre- quenzdifferenz Δv = IVs-v sind - wie in Figur 1 - der dichroitische Strahlteiler DST21 , die neutralen Strahlteiler ST 21 und ST22 und der Spiegel S21 vorgesehen. Die optische Frequenzdifferenz wird durch den Photodetektor 21 elektrisch umgesetzt und in dem Frequenzzähler FZ elektrisch ausgewertet. Der zweite Messstrahl v3 wird über den Spiegel S22 und den Strahlteiler ST23 erst im Messstrahl v2 überlagert und in dieser Form auf das Interferometer 13' geleitet. Durch den Neutralstrahlteiler ST 23 werden die überlagerten Strahlen aber auch über einen Spiegel S23 auf einen akustooptischen Modulator (AOM) 20 geführt, der zumindest Teile der beiden Strahlen in der Frequenz definiert verschiebt. Hierbei wird die Frequenz des Strahls der optischen Frequenz v2 um die (Radio-) Frequenz 2Ω und die Frequenz des Strahls der optischen Frequenz v3 um die Frequenz Ω verschoben. Hierzu werden die Frequenzen Ω, 2Ω über einen Hochfrequenzgenerator 21 auf einen Steuereingang des AOM 20 geleitet. Die beiden optischen Strahlen durchlaufen kollinear den AOM. Da gemäß dem dargestellten Ausführungsbeispiel die optischen Frequenzen v3 und v2 in sehr guter Näherung das gleiche Frequenzverhältnis bilden wie die Hochfrequenzen Ω, und 2Ω, ist die Bragg-Bedingung im AOM in einer Raumrichtung gleichzeitig für die optische Frequenz v3 und die Hochfrequenz Ω elektronisch und optisch gefiltert, wie unten noch erläutert wird, und stört daher das hier beschriebene Messverfahren nicht.
Die beiden im Strahlteiler ST23 kollinear überlagerten Teilstrahlen, die direkt in das Interferometer 13' geleitet werden, treten durch den Strahl- teiler ST24 hindurch und werden an einem innerhalb der Mess-Weglänge L verschiebbaren Reflektor 21 reflektiert und durch den Strahlteiler ST24 auf einen dichroitischen Strahlteiler 22 geleitet. In dem dargestellten Ausführungsbeispiel ist der Reflektor 21 als verspiegeltes Dachkantenprisma ausgeführt. Am Ausgang des Strahlteilers 24 sind die reflektierten Messstrahlen mit den durch den AOM 20 modulierten Referenzstrahlen kollinear überlagert. Der dichroitische Strahlteiler DST22 separiert die Strahlen in zwei Teilstrahlen, die mittels Photodetektoren PD23 und PD24 in elektrische Signale umgesetzt werden. Der durch den dichroitischen Strahlteiler DST22 hindurchtretende Anteil weist eine Schwebung der Frequenz 2 Ω auf. Diese wird mittels eines geeigneten Bandpassfilters BP21 aus dem elektrischen Signal mit der Frequenz 2 Ω extrahiert. Analog erzeugen die an dem dichroitischen Strahlteiler DST22 reflektierten Strahlen auf dem Detektor PD23 ein Schwebungssignal der Frequenz Ω, das aus dem Detektorsignal wiederum mittels eines geeigneten Band- passfilters BP22 der Frequenz Ω extrahiert wird.
Bei diesem Heterodyn-Interferometer wird die durch eine Verschiebung des Reflektors 21 erzeugte interferometrische Phasenverschiebung zwischen Referenz- und Messstrahl auf eine gleich große Phasenverschie- bung der Heterodynfrequenz abgebildet. Da v2 ungefähr 2 - v3 und damit auch für die optischen Wellenlängen λ3«2 -λ2 gilt, ist in dem hier beschriebenen Doppel-Heterodyn-Interferometer bei einer Verschiebung des Reflektors 21 die resultierende Phasenverschiebung des Heterodynsignals der Frequenz 2 Ω etwa doppelt so groß wie die resultierende Phasenver- Schiebung des Heterodynsignals der Frequenz Ω. Die letztere Phasenverschiebung wird mit Hilfe eines Hochfrequenz-Frequenzverdopplers 22 verdoppelt und die Phase des verdoppelten Signals mit einem Phasen- komperator DBM in Form eines doppelt balancierten Mischers mit der Phase des Heterodynsignals der Frequenz 2 Ω verglichen. Der Phasen- komperator enthält ein nachgeschaltetes Tiefpassfilter mit geeigneter Grenzfrequenz < < 4 Ω.
Die Frequenz des vom Laser L2 emittierten Strahls v3 wird mit Hilfe eines Pl-Reglers 23 soweit verändert, dass das Ausgangssignal des Phasen- komperator DBM verschwindet, sodass für die optischen Wellenlängen gilt λ3=2 - λ2. Um die Eindeutigkeit der Regelung herzustellen, die durch das periodische Ausgangssignal des DBM nicht für sich sichergestellt ist, kann man eine kleine Weglängendifferenz ΔL der Messlänge L des Inter- ferometers 13' einstellen. Die Weglängendifferenz ΔL muss so die Bedingung für das mehrdeutige Ausgangssignal des DBM eine größere einzustellende Frequenzdifferenz Δv als maximale Differenzfrequenz Δvmax vorgegeben wird. In diesem Falls ist die Regelung eindeutig mit nur einem Δv möglich.
Somit ist wieder ein interferometrischer Phasenregelkreis realisiert, der dafür sorgt, dass λ3=2 - λ2 gilt. Es gilt: v2+2 Av n, = v2+2 Av-2-A- Av
und für die physikalische Weglängendifferenz L im Interferometer c -φ2-(v2+2- Av - 2- A - Av L = 2 -π -v2-(v2+2 - Av)
Die hierfür benötigte Phase Φ2 kann mittels bekannter Techniken, etwa mittels einem kommerziell erhältlichen I/Q-Demodulator 24 gewonnen werden. Eine mögliche Modifikation der Ausführung der Erfindung gemäß Figur 2, die mit nur einem Laser L1 auskommt, ist in Figur 3 dargestellt. Der vom Laser L1 emittierte Strahl der Frequenz v^ wird mittels eines sehr breit- bandigen, beispielsweise akustooptischen Frequenzschiebers AOM 36 um die Frequenz Δv in der Frequenz verschoben, sodass v3 = v1 + Δv gilt.
Derartige breitbandige Frequenzschieber mit spannungsgesteuertem Mikrowellentreiber (VCO) 35 sind kommerziell erhältlich. Im Übrigen entspricht das Ausführungsbeispiel im Wesentlichen der Figur 2, wobei sich das als Messsignal dienende Maß für die Frequenzdifferenz unmittelbar aus der Frequenz des VCO 35 ergibt.

Claims

Ansprüche
1 . Verfahren zur Bestimmung der Brechzahl und/oder Kompensation des Brechzahleinflusses bei interferometrischen Längenmessungen mit Hilfe eines mit wenigstens zwei Messstrahlen (v2, v3) mit wenigstens definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen beaufschlagten Interferometers (13, 13'), an dessen Ausgang interferometrisch Phasen für die wenigstens zwei Messstrahlen (v2, v3) ausgewertet werden, wobei eine dem harmonischen Verhältnis der Frequenzen der Messstrahlen (v2, v3) entsprechende Multiplikation der interferometrischen Phasen vorgenommen und wenigstens eine Phasendifferenz der so gebildeten Phasenwerte betrachtet wird, dadurch gekennzeichnet, dass wenigstens einer der Messstrahlen (v3) in seiner Frequenz va- riierbar ist und dass aus der gebildeten Phasendifferenz ein Steuersignal zur Veränderung der Frequenz des in seiner Frequenz veränderbaren Messstrahls (v3) gebildet wird, mit dem die Frequenz so geregelt wird, dass die Phasendifferenz zu Null wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass wenigstens ein Referenzstrahl (v,) mit einer Frequenz erzeugt wird, die etwa der Frequenz eines der Messstrahlen (v3) entspricht und mit der Frequenz eines anderen Messstrahls (v2) gekoppelt ist und dass eine Frequenzdifferenz zwischen der Frequenz des Referenz- Strahls (v und der Frequenz des entsprechenden Messstrahls (v3) gemessen wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass einer der Messstrahlen (v2) und der Referenzstrahl (v durch eine kohärente Strahlenquelle (L1 ) mit einem Frequenzmultiplizierer generiert werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass beide Messstrahlen (v2, v3) mittels eines Frequenzschiebers (36) aus einem Strahl einer kohärenten Strahlenquelle (L1 ) abgeleitet werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass den überlagerten Messstrahlen (v2, v3) in einem Referenzzweig des Interferometers (13') Hochfrequenzen (Ω, 2Ω) aufmoduliert werden, die im gleichen harmonischen Verhältnis zu- einander wie die Frequenzen eines der Messstrahlen (v2) zu dem Referenzstrahl (v,).
6. Interferometeranordnung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 5, mit wenigstens einer kohärenten Strahlenquelle (L1 , L2) zur Generierung wenigstens zweier Messstrahlen (v2, v3) mit definierten, etwa in einem harmonischen Verhältnis zueinander stehenden Frequenzen und einem Interferometer (13, 13'), dessen Ausgangssignale auf einen die Messstrahlen trennenden Strahlteiler (DST 13, DST 22, DST 32) gelangen, wo- bei die getrennten Messstrahlen auf opto-elektronische Wandler (PD12, PD13; PD22, PD23; PD32, PD33) gelangen und wenigstens eines der Ausgangssignale der opto-elektrischen Wandler einem dem harmonischen Verhältnis der Frequenzen der Messstrahlen (v2,v3) entsprechenden Multiplikator (16, 22, 32) zugeführt wird, dadurch gekennzeichnet, dass wenigstens einer der Mess- strahlen (v3) in seiner Frequenz mittels einer Frequenzsteuerung (18, 23, 35) variierbar ist und dass mittels eines Phasenverglei- chers (17, DBM) für die Phasen der Ausgangssignale der opto- elektrischen Wandler (PD12, PD13, PD22, PD23; PD32, PD33) ein eine Phasendifferenz repräsentierendes Steuersignal generiert und der Frequenzsteuerung (18, 23, 35) zur Bildung eines Regelkreises für die interferometrischen Phasen (Φ2, Φ3) zugeleitet wird.
7. Interferometeranordnung nach Anspruch 6, dadurch gekennzeich- net, dass die kohärente Strahlungsquelle (L1 , L2) zur Generierung wenigstens eines Referenzstrahls (v,) ausgelegt ist, dessen Frequenz etwa der Frequenz eines der Messstrahlen (v3) entspricht und mit der Frequenz eines anderen Messstrahls (v2) harmonisch gekoppelt ist.
8. Interferometeranordnung nach Anspruch 6 oder 7, gekennzeichnet durch einen einer kohärenten Strahlenquelle (L1 , L2) zugeordneten Frequenzmultiplizierer.
9. Interferometeranordnung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass in einem Referenzzweig des Interferometers (13, 13') ein Frequenzmodulator (30) eingesetzt ist dessen Steuerung mit einem Hochfrequenzgenerator für zwei Hochfrequenzen (Ω, 2 Ω) verbunden ist, deren Frequenzen im Verhältnis der Frequenzen der Messstrahlen (v2, v3) zueinander stehen.
PCT/DE2004/001321 2003-07-25 2004-06-24 Verfahren zur bestimmung der brechzahl bei interferometrischen längenmessungen und interferometeranordnung hierfür WO2005015122A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP04738770A EP1649242B1 (de) 2003-07-25 2004-06-24 Verfahren zur bestimmung der brechzahl bei interferometrischen längenmessungen und interferometeranordnung hierfür
US10/564,449 US7420689B2 (en) 2003-07-25 2004-06-24 Method for determining the refractive index during interferometric length measurement and interferometric arrangement therefor
DE502004005036T DE502004005036D1 (de) 2003-07-25 2004-06-24 Verfahren zur bestimmung der brechzahl bei interferometrischen längenmessungen und interferometeranordnung hierfür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10334350.4 2003-07-25
DE10334350A DE10334350B3 (de) 2003-07-25 2003-07-25 Verfahren zur Bestimung der Brechzahl bei interferometrischen Längenmessungen und Interferometeranordnung hierfür

Publications (1)

Publication Number Publication Date
WO2005015122A1 true WO2005015122A1 (de) 2005-02-17

Family

ID=33560270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2004/001321 WO2005015122A1 (de) 2003-07-25 2004-06-24 Verfahren zur bestimmung der brechzahl bei interferometrischen längenmessungen und interferometeranordnung hierfür

Country Status (5)

Country Link
US (1) US7420689B2 (de)
EP (1) EP1649242B1 (de)
AT (1) ATE373810T1 (de)
DE (2) DE10334350B3 (de)
WO (1) WO2005015122A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7292347B2 (en) * 2005-08-01 2007-11-06 Mitutoyo Corporation Dual laser high precision interferometer
KR20100020001A (ko) * 2007-05-25 2010-02-19 가부시키가이샤 니콘 측장 장치
DE102008009761A1 (de) * 2008-02-19 2009-08-27 Bayer Materialscience Ag Verfahren zur Herstellung von Isocyanaten
JP5216465B2 (ja) 2008-08-01 2013-06-19 株式会社ミツトヨ 変位測定装置、および変位測定方法
JP5602538B2 (ja) * 2010-03-03 2014-10-08 キヤノン株式会社 光波干渉計測装置
JP5704897B2 (ja) * 2010-11-11 2015-04-22 キヤノン株式会社 干渉計測方法および干渉計測装置
EP2662661A1 (de) * 2012-05-07 2013-11-13 Leica Geosystems AG Messgerät mit einem Interferometer und einem ein dichtes Linienspektrum definierenden Absorptionsmedium
DE102015203697B3 (de) * 2015-03-02 2016-04-28 Bundesrepublik Deutschland, vertr. durch das Bundesministerium für Wirtschaft und Energie, dieses vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Laser-Längenmesssystem
CN105737733A (zh) * 2016-02-04 2016-07-06 浙江理工大学 一种大范围绝对距离测量中空气折射率的修正方法
NL2034073B1 (en) * 2023-02-02 2024-08-23 Technische Univ Delft Interferometry using harmonically related wavelengths

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412474A (en) * 1992-05-08 1995-05-02 Smithsonian Institution System for measuring distance between two points using a variable frequency coherent source
WO1999042787A1 (en) * 1998-02-23 1999-08-26 Zygo Corporation Interferometer and method for measuring the refractive index and optical path length effects of air
US6014216A (en) * 1999-01-08 2000-01-11 Hewlett-Packard Company Architecture for air-turbulence-compensated dual-wavelength heterodyne interferometer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3877813A (en) * 1972-08-21 1975-04-15 Rockwell International Corp Self-compensating interferometer
JPH0198902A (ja) * 1987-10-12 1989-04-17 Res Dev Corp Of Japan 光波干渉測長装置
US5405222A (en) * 1993-08-10 1995-04-11 The Regents Of The University Of Michigan Revolute motion machine tool
US5404222A (en) * 1994-01-14 1995-04-04 Sparta, Inc. Interferametric measuring system with air turbulence compensation
US5764362A (en) * 1996-08-20 1998-06-09 Zygo Corporation Superheterodyne method and apparatus for measuring the refractive index of air using multiple-pass interferometry
US5838485A (en) * 1996-08-20 1998-11-17 Zygo Corporation Superheterodyne interferometer and method for compensating the refractive index of air using electronic frequency multiplication
US6219144B1 (en) * 1997-10-02 2001-04-17 Zygo Corporation Apparatus and method for measuring the refractive index and optical path length effects of air using multiple-pass interferometry
US6407816B1 (en) * 1998-02-23 2002-06-18 Zygo Corporation Interferometer and method for measuring the refractive index and optical path length effects of air
US6417927B2 (en) * 1999-04-28 2002-07-09 Zygo Corporation Method and apparatus for accurately compensating both long and short term fluctuations in the refractive index of air in an interferometer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5412474A (en) * 1992-05-08 1995-05-02 Smithsonian Institution System for measuring distance between two points using a variable frequency coherent source
WO1999042787A1 (en) * 1998-02-23 1999-08-26 Zygo Corporation Interferometer and method for measuring the refractive index and optical path length effects of air
US6014216A (en) * 1999-01-08 2000-01-11 Hewlett-Packard Company Architecture for air-turbulence-compensated dual-wavelength heterodyne interferometer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BODERMANN B, FLÜGGE J, MEINERS-HAGEN K: "Improved second-harmonic two-wavelength interferometer with refractive index correction without effect modulation", PROCEEDINGS OF SPIE- RECENT DEVELOPMENTS IN TRACEABLE DIMENSIONAL MEASUREMENTS II, vol. 5190, no. 1, 4 August 2003 (2003-08-04) - 6 August 2003 (2003-08-06), SAN DIEGO, CA, USA, pages 339 - 346, XP002302631 *

Also Published As

Publication number Publication date
DE10334350B3 (de) 2005-02-03
US20070024859A1 (en) 2007-02-01
US7420689B2 (en) 2008-09-02
EP1649242A1 (de) 2006-04-26
EP1649242B1 (de) 2007-09-19
DE502004005036D1 (de) 2007-10-31
ATE373810T1 (de) 2007-10-15

Similar Documents

Publication Publication Date Title
DE69723709T2 (de) Superheterodyn-interferometer und verfahren zur kompensation des brechungsindexes von luft mittels elektronischer frequenzmultiplikation
DE69023279T2 (de) Längenmessgerät.
DE69725859T2 (de) Messen von Effekten des Brechungsindex eines Gases mit unterschiedlicher Vielfach - Interferometrie ( superheterodyn )
DE60100064T2 (de) Bestimmung der Eigenschaften eines optischen Gerätes
DE19542490C1 (de) Elektro-optisches Meßgerät für absolute Distanzen
EP0623802B1 (de) Absolutinterferometrisches Messverfahren mit einer Laserinterferometeranordnung
DE4039371C2 (de) Einrichtung zur Stabilisierung der Wellenlänge einer Laserdiode
EP0826254B1 (de) Optischer frequenzgenerator
DE69409601T2 (de) Interferometrisches Entfernungsmessgerät
DE202014101699U1 (de) Absolut-Entfernungs-Laserinterferometer
WO2009065463A1 (de) Interferometeranordnung und verfahren zu deren betrieb
WO2006089845A1 (de) Phasenrauschkompensation für interferometrische absolutdistanzmesser
DE69216464T2 (de) Apparat zum Messen der Wellenlängenvariation
EP1649242B1 (de) Verfahren zur bestimmung der brechzahl bei interferometrischen längenmessungen und interferometeranordnung hierfür
DE3136688A1 (de) Einrichtung zur messung der rotationsgeschwindigkeit
DE102019103871A1 (de) Formmesseinrichtung und Formmessverfahren
EP0612976B1 (de) Phasenmoduliertes Interferometer
WO1993005364A1 (de) Optischer sensor für rotationsbewegungen
DE4039955A1 (de) Anordnung mit zwei laserdioden zur erzeugung von licht mit zwei wellenlaengen
DE3528259A1 (de) Verfahren und anordnung zur interferometrischen laengenmessung mit halbleiterlasern als lichtquelle
DE4035373C2 (de) Faseroptischer Druck- oder Verschiebungsfühler
DE69202780T2 (de) Verfahren und Vorrichtung für interferometrische Absolutmessungen physikalischer Grössen.
EP0646766A2 (de) Verfahren und Anordnung zur Absolutinterferometrie mit durch Diodenlaser erzeugter Strahlung
EP1186896B1 (de) Verfahren und Vorrichtung zur elektrooptischen Messung elektrischer Spannung
DE19622412A1 (de) Positionsdetektor auf Grundlage optischer Interferometrie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004738770

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2004738770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007024859

Country of ref document: US

Ref document number: 10564449

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10564449

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2004738770

Country of ref document: EP