WO2005013401A1 - 燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置 - Google Patents

燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置 Download PDF

Info

Publication number
WO2005013401A1
WO2005013401A1 PCT/JP2004/010724 JP2004010724W WO2005013401A1 WO 2005013401 A1 WO2005013401 A1 WO 2005013401A1 JP 2004010724 W JP2004010724 W JP 2004010724W WO 2005013401 A1 WO2005013401 A1 WO 2005013401A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
voltage
operating point
power
point tracking
Prior art date
Application number
PCT/JP2004/010724
Other languages
English (en)
French (fr)
Inventor
Kimiyoshi Kobayashi
Yutaka Sekine
Hideki Fujimoto
Tetsuji Kitamori
Original Assignee
Shindengen Electric Manufacturing Co.,Ltd.
Shindengen Kumamoto Techno Research Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co.,Ltd., Shindengen Kumamoto Techno Research Co.,Ltd. filed Critical Shindengen Electric Manufacturing Co.,Ltd.
Priority to US10/535,192 priority Critical patent/US7767328B2/en
Priority to EP04770987A priority patent/EP1650820B1/en
Priority to JP2005512504A priority patent/JP4326527B2/ja
Publication of WO2005013401A1 publication Critical patent/WO2005013401A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04225Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • H01M8/0488Voltage of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a power supply device for obtaining required electric power of a fuel cell, and in particular, always changes from the fuel cell even when a change in the external environment of the fuel cell installation location, that is, a change in temperature or the like occurs.
  • the present invention relates to a fuel cell optimal operating point tracking system in a power supply device capable of supplying the maximum output power.
  • a fixed voltage arbitrarily set is used by predicting the output voltage of the fuel cell DMFC in advance so that the maximum power can be obtained (for example, see Patent Document 1).
  • Patent document 1 JP-A-11-341699
  • the power generation state of a fuel cell varies greatly not only with the temperature but also with the chemical reaction of the fuel used in the fuel cell and the like. Can be considered.
  • the power peak with respect to the load current is expected to change S, and the initial observation point does not become the maximum power peak after a lapse of time, and although the maximum power actually exists at other peaks, However, there is a problem that the observed peak value is mistaken for the maximum power.
  • the present invention has been made in view of the above-described problems, and detects an optimum operating voltage of a fuel cell in consideration of not only temperature dependence of output characteristics but also a chemical reaction, and optimizes the fuel cell.
  • a power supply device using a fuel cell that enables operation. Absence 3 Solution
  • an output voltage of the fuel cell is varied to monitor a power state, and operation is performed from an input voltage at a maximum power point.
  • the fuel cell maximum power search function and the fuel cell maximum power search function are operated so that the responsiveness is improved by starting the operation.
  • the power state is monitored, and the power operation is constantly maintained in a stable state.
  • a fuel cell optimum operating point tracking operation function is provided in which the maximum power is monitored by giving a small voltage change amount near the current operating voltage value to track the optimum operating point.
  • the fuel cell maximum power search function includes a fuel cell output voltage variation command means for varying the output voltage at the time of startup of the fuel cell up to the maximum voltage of the maximum power point tracking control.
  • the fuel cell output voltage variation command means sets a maximum command voltage and a minimum command voltage, and varies the initial command voltage output at the time of starting the fuel cell from the initial command voltage to the maximum command voltage. The voltage is varied from the voltage to the minimum command voltage.
  • the fuel cell maximum power search function includes a fuel cell output power measuring means for measuring an electric power state by varying an output voltage when the fuel cell is started.
  • the fuel cell maximum power search function includes a fuel cell maximum power point determination / storage unit that monitors the output power of the fuel cell at startup and determines the maximum power point of the fuel cell output power. .
  • the fuel cell maximum power point determination 'storage means if the maximum power point is detected continuously even when the command voltage is varied, the voltage at which the command voltage in the continuous range becomes the maximum is stored at the maximum power point. Is to be determined.
  • the fuel cell maximum power search function In the fuel cell maximum power search function, a specified voltage update interval is set, and after the specified voltage update interval, the maximum value of the fuel cell output power at the time of starting the fuel cell and the stored value of the output voltage. And a timer means for measuring the power state by changing the output voltage of the fuel cell to the maximum voltage of the maximum power point tracking control.
  • the fuel cell maximum power search function includes a power supply start detecting means for measuring an electric power state by varying an output voltage of the fuel cell at the time of starting the fuel cell to a maximum voltage of maximum power point tracking control. It is prepared.
  • the fuel cell maximum power search function monitors the power state at the maximum point of the fuel cell output power at the time of starting the fuel cell, and provides a small voltage change amount near the current operating voltage value. There is provided an optimum operating point change command means for monitoring the optimum operating point by monitoring the power.
  • the fuel cell optimum operating point tracking operation function includes a fuel cell output voltage change command means for changing the output voltage when activated by the fuel cell maximum power search function to the maximum voltage of the maximum power point tracking control. It is.
  • the fuel cell optimum operating point tracking operation function includes a fuel cell output power measuring means for measuring an electric power state by changing an output voltage when the fuel cell is activated by the fuel cell maximum power search function.
  • the fuel cell optimal operating point tracking operation function monitors the output power when the fuel cell is started by the fuel cell maximum power search function, and determines the maximum power point of the fuel cell output power. ⁇ Equipped with storage means.
  • the fuel cell maximum power point determination 'storage means if the maximum power point is detected continuously even when the command voltage is varied, the voltage at which the command voltage in the continuous range becomes the maximum is stored at the maximum power point. Is to be determined.
  • a designated voltage update interval is set, and the fuel cell output power at the time of starting by the fuel cell maximum power search function is set at each designated voltage update interval.
  • Timer means is provided for clearing the maximum point and the stored value of the output voltage, and varying the output voltage of the fuel cell to the maximum voltage of the maximum power point tracking control to measure the power state.
  • the fuel cell optimal operating point tracking operation function monitors the power state at the maximum point of the fuel cell output power when activated by the fuel cell maximum power search function, and constantly maintains the power supply operation in a stable state.
  • the optimal operation to monitor the maximum power and track the optimal operating point by giving a small voltage change near the current operating voltage value Point change command means.
  • the output voltage of the fuel cell is monitored, and when the output voltage of the fuel cell falls below the output stop voltage of the fuel cell, a stop output signal is output to stop the power supply device.
  • An intermittent operation prevention function for setting a state is provided.
  • the intermittent operation preventing function includes a fuel cell output voltage measuring means for measuring a fuel cell output voltage during the operation of the fuel cell optimum operating point tracking operation function.
  • the intermittent operation preventing function is for determining whether to stop the output of the fuel cell when the fuel cell output voltage falls below the fuel cell output stop voltage during the operation of the fuel cell optimal operating point tracking operation function.
  • a fuel cell output stop determining means for determining the force is provided.
  • the intermittent operation preventing function includes timer means for controlling the intermittent operation when the output of the fuel cell stops during the operation of the fuel cell optimal operating point tracking operation function. Further, the timer means sets a restart wait time after the fuel cell is stopped, measures an output voltage of the fuel cell after the restart wait time, and when the output voltage becomes higher than the restart voltage. In addition, an operation output signal is output to put the fuel cell into an operating state.
  • the intermittent operation preventing function includes a fuel cell output start determining means for determining whether or not the fuel cell stopped during the operation of the fuel cell optimal operating point tracking operation function can be restarted.
  • a fuel cell optimal operating point tracking and holding function is provided which can extend the specified voltage update interval when the output voltage fluctuation of the fuel cell falls below the set voltage fluctuation amount during a certain period of time.
  • the fuel cell optimum operating point tracking holding function includes a fuel cell optimum operating point tracking means having the fuel cell maximum power search function and the fuel cell optimum operating point tracking operation function.
  • the fuel cell optimal operating point tracking holding function is a fuel cell output voltage control value for determining whether the output voltage fluctuation of the fuel cell falls below or exceeds a set voltage fluctuation during a certain period of time. Variation determination means is provided.
  • the fuel cell optimal operating point tracking and holding function is capable of controlling the output voltage fluctuation of the fuel cell to one.
  • the specified voltage update interval is extended when the set voltage fluctuation amount falls below the set voltage fluctuation amount during the fixed time, and when the output voltage fluctuation of the fuel cell exceeds the set voltage fluctuation amount during the fixed time period, the specified voltage update period
  • timer means for initializing the interval and operating the fuel cell optimum operating point tracking means to start.
  • the fuel cell optimal operating point tracking and holding function is provided with a reference unit time, and for each reference unit time, the output voltage fluctuation of the fuel cell falls short of the set voltage fluctuation amount, and a continuous operation is performed.
  • the setting is made such that the amount of change in the set voltage falls below the predetermined time.
  • the fuel cell optimum operating point tracking and holding function is provided with a reference unit time, and a counter is provided for counting that the output voltage fluctuation of the fuel cell falls below the set voltage fluctuation amount at each reference unit time.
  • the power supply device equipped with the fuel cell optimal operating point tracking system monitors the power state by varying the output voltage of the fuel cell, and starts the operation from the input voltage at the maximum power point.
  • the maximum power search function for the fuel cell and the maximum power search function for the fuel cell are periodically operated to monitor the power state, and the power operation is constantly maintained in a stable state.
  • a fuel cell optimal operating point tracking system equipped with a fuel cell optimal operating point tracking function that monitors the maximum power by applying a small voltage change amount near the current operating voltage value and tracks the optimal operating point It is prepared.
  • the power state is monitored by varying the output voltage at the time of startup of the fuel cell, and the operation is started at the voltage at the maximum power point.
  • the power state is monitored by periodically varying the output voltage of the fuel cell, and the operation is started at the voltage at the maximum power point, whereby the stable power supply of the fuel cell can be realized. There is.
  • the fuel cell maximum power search function measures the power state by varying the output voltage of the fuel cell when the fuel cell is started up to the maximum voltage of the maximum power point tracking control.
  • Power supply startup detection means to clear the maximum value of the fuel cell output power at the start of the fuel cell and the stored value of the output voltage at the specified voltage update interval, and increase the output voltage of the fuel cell to the maximum power. There is no need to measure the power state by varying the voltage to the maximum for point tracking control, and it is possible to measure the operating point to the maximum power point even when the power is limited by the load. .
  • the output voltage of the fuel cell is monitored, and when the output voltage becomes lower than the stop voltage of the fuel cell output, a stop output signal is output to put the power supply device into a stop state.
  • Providing the function has the effect of controlling the time of intermittent oscillation and realizing stable power supply of the fuel cell.
  • the specified voltage update interval can be extended so that the maximum operating point tracking can be performed. There is an effect that the operation state can be stabilized by reducing the number of times.
  • FIG. 1 is a block diagram of a best mode for carrying out the invention in a power supply device according to the present invention.
  • FIG. 2 is a flowchart of a fuel cell maximum power search function.
  • FIG. 3 is an operation waveform diagram in a fuel cell maximum power search function.
  • FIG. 4 is an operation waveform diagram of the fuel cell maximum power search function.
  • FIG. 5 is an operation waveform diagram in the same fuel cell maximum power search function.
  • FIG. 6 is an operation waveform diagram in the same fuel cell maximum power search function.
  • FIG. 7 is an operation waveform diagram in the same fuel cell maximum power search function.
  • FIG. 8 is an operation waveform diagram in the same fuel cell maximum power search function.
  • FIG. 9 is an operation waveform diagram in the same fuel cell maximum power search function.
  • FIG. 10 is an operation waveform diagram of the fuel cell maximum power search function.
  • FIG. 11 is a block diagram of an embodiment having a fuel cell maximum power search function different from the embodiment shown in FIG. 1.
  • FIG. 12 is a flowchart of the embodiment shown in FIG. 11;
  • FIG. 13 is a flowchart of a fuel cell optimal operating point tracking operation function.
  • FIG. 14 is an operation waveform diagram in the fuel cell optimal operating point tracking operation function.
  • FIG. 15 is a block diagram of a best mode for performing an intermittent oscillation preventing operation according to the present invention.
  • FIG. 16 is a flowchart of the embodiment shown in FIG.
  • FIG. 17 is a flowchart of the embodiment shown in FIG.
  • FIG. 18 is a view showing a best mode for performing an optimum operating point tracking holding operation according to the present invention.
  • FIG. 19 is a flowchart of the embodiment shown in FIG. 18.
  • FIG. 20 is a circuit diagram of a power supply device provided with a conventional optimal operating point tracking circuit.
  • FIG. 1 shows a block diagram of the best mode for carrying out the present invention.
  • the power supply device shown in FIG. 1 is shown as an example in which a DC-DC converter 2 is used as a power supply device connected to the fuel cell 1.
  • This power supply has a load 3 connected to the output side.
  • This power supply has a fuel cell optimal operating point tracking system and is connected to the converter 2.
  • the fuel cell optimal operating point tracking system has a fuel cell maximum power search function and a fuel cell optimal operating point tracking operation function.
  • FIG. 1 shows a specific configuration for fulfilling these functions, and the details of the configuration will be described below.
  • the fuel cell optimum operating point tracking system includes a fuel cell output voltage change command circuit 11 that changes the voltage output by the fuel cell 1 when the converter 2 is started up to the maximum voltage of the maximum power point tracking control.
  • the fuel cell output voltage fluctuation command circuit 11 sets the maximum command voltage and the minimum command voltage, fluctuates from the initial command voltage output at the time of startup to the maximum command voltage, and furthermore, from this maximum command voltage to the minimum command voltage. It is made to fluctuate.
  • the fuel cell optimal operating point tracking system includes a fuel cell output power measurement circuit 12 that measures the power state by varying the output voltage with a fuel cell output voltage variation command circuit 11.
  • This fuel cell optimal operating point tracking system monitors the power state by varying the output voltage in the fuel cell output voltage variation command circuit 11 and the output power measured by the fuel cell output power measurement circuit 12, And a storage circuit 13 for determining the maximum power point of the fuel cell.
  • the fuel cell maximum power point determination 'storage circuit 13 stores a command in a continuous range when the maximum power point is continuously detected even when the output voltage is varied by the fuel cell output voltage variation command circuit 11. The voltage at which the voltage becomes maximum is determined as the maximum power point.
  • the fuel cell optimal operating point tracking system includes a timer circuit 14 for periodically starting the fuel cell output voltage fluctuation command circuit 11 and the fuel cell output power measurement circuit 12.
  • the timer circuit 14 sets a designated voltage update interval, and at each designated voltage update interval, determines the maximum power point of the fuel cell and the maximum value of the fuel cell output power of the storage circuit 13 and the stored value of the output voltage.
  • the fuel cell output voltage fluctuation command circuit 11 and The fuel cell output power measurement circuit 12 is started, and the power state is measured by varying the output voltage of the fuel cell to the maximum voltage of the maximum power point tracking control.
  • the fuel cell optimal operating point tracking system receives a command from the fuel cell output voltage fluctuation command circuit 11 indicating that the output voltage fluctuation has ended, and determines the power state in the fuel cell maximum power point determination and storage circuit 13.
  • the optimum operating point fluctuation is monitored by monitoring the power supply operation and keeping the power supply operation always in a stable state.
  • a command circuit 15 is provided.
  • FIG. 3 and 4 show operation waveform diagrams of the fuel cell maximum power search at startup
  • FIGS. 5 to 10 show operation waveform diagrams of the fuel cell maximum power search during normal operation.
  • the timer circuit 14 is activated to clear the stored value of the maximum output power of the fuel cell (S2). At the same time, the stored value of the fuel cell output voltage at the maximum point of the fuel cell output power is cleared (S3).
  • the timer circuit 14 is activated, and the fuel cell output voltage change command circuit 11 is operated to change the fuel cell output voltage (S4).
  • the fuel cell output power measurement circuit 12 measures the changed fuel cell output power (S5). Whether or not the measured fuel cell output power is larger than the fuel cell output power maximum point storage value is determined by the maximum power point determination and storage circuit 13 (S6).
  • the fuel cell output power is determined as the fuel cell output power maximum point and the fuel cell maximum power point determination is stored. It is stored in the circuit 13 (S7).
  • the command in the continuous range The voltage with the highest voltage is determined as the maximum power point. Also, the fuel cell output voltage at the maximum point of the fuel cell output power is stored in the fuel cell maximum power point determination and storage circuit 13 (S8), and it is determined whether or not the fuel cell output voltage fluctuation has been completed (S8). S9). When the fuel cell output voltage fluctuation is completed, the fuel cell output voltage is changed to the maximum power storage point (S1 0), the operation process of the fuel cell maximum power search ends (S11).
  • the fuel cell output voltage fluctuation command circuit 11 operates again to change the fuel cell output voltage (S4).
  • the fuel cell output power measurement circuit 12 measures the changed fuel cell output power (S5). Conversely, when the fuel cell output voltage fluctuation ends, the fuel cell output voltage is changed to the maximum power storage point (S10), and the operation processing of the fuel cell maximum power search ends (S11).
  • the power state is monitored by the fuel cell maximum power search function by periodically operating the timer circuit 14.
  • the timer circuit 14 As shown in FIG. 5, when it is determined that the fuel cell output power measured at the point (c + 1) where the maximum power point does not fluctuate is smaller than the stored value of the fuel cell output power maximum point measured at the point c, The point c, which is determined to be the fuel cell output power maximum point stored value, continues to be the operating point.
  • the maximum power point is continuously detected even when the output voltage is changed, the voltage at which the command voltage in the continuous range becomes maximum is determined as the maximum power point.
  • the maximum power point is continuously detected even when the output voltage is changed by the fuel cell output voltage change command circuit 11, the voltage at which the command voltage in the continuous range becomes the maximum is determined. It is set to determine the maximum power point, which is optimal, but if a continuous range of the maximum power point can be determined, for example, set the voltage at the center of the continuous range to be determined as the maximum power point You can also. The same applies to the following embodiments.
  • Fig. 11 shows the specific configuration.
  • This fuel cell optimal operating point tracking system is, similarly to the above-described embodiment, a fuel cell output voltage fluctuation command circuit 1 that varies the voltage output by the fuel cell 1 when the converter 2 is started up to the maximum voltage of the maximum power point tracking control. 1, a fuel cell output voltage fluctuation command circuit 11 that measures the power state by varying the output voltage, and a fuel cell output voltage fluctuation command circuit 11 that varies the output voltage to change the power state.
  • the output power measured by the fuel cell output power measurement circuit 12 is monitored to determine the maximum power point of the output power of the fuel cell.
  • the maximum power point of the fuel cell is determined.
  • the storage circuit 13 and the fuel cell output voltage fluctuation command circuit 11 are used.
  • the power state is monitored by the fuel cell maximum power point determination storage circuit 13 and the power supply operation is not always maintained in a stable state.
  • Et al., Karoete are a optimum operating point variation command circuit 15 to maximum power monitored by applying a small voltage fluctuation of the operating voltage value near the current tracking the optimum operating point.
  • a major feature of the present embodiment is that a power-on detection circuit 16 is provided instead of the timer circuit 14.
  • the power supply startup detection circuit 16 measures the power state by varying the output voltage of the fuel cell at the time of startup of the fuel cell up to the maximum voltage of the maximum power point tracking control.
  • the power supply activation detection circuit 16 When the power supply is activated (S101), the power supply activation detection circuit 16 is activated and clears the stored value of the fuel cell output power measured last time (S102). Subsequently, the power supply start detection circuit 16 is started, and the fuel cell output voltage change command circuit 11 is operated to change the fuel cell output voltage (S103). The changed fuel cell output power is measured by the fuel cell output power measurement circuit 12 (S104). Whether the measured fuel cell output power is greater than the fuel cell output power measured last time is determined by the maximum power point determination and storage circuit 13 (S105).
  • the fuel cell output power voltage point measured last time is set as the fuel cell maximum power point as the fuel cell maximum power point. The determination is stored in the storage circuit 13 (S106).
  • the fuel cell output power measured at point (a + 1) was smaller than the fuel cell output power maximum point storage value measured at point a.
  • the point a is regarded as the maximum power point, and is set as a subsequent operation point, and the operation process of the fuel cell maximum power search ends (S109).
  • the maximum power point determination and the storage circuit 13 determine whether the measured fuel cell output power is greater than the fuel cell output power measured last time (S105). If it is determined that the measured output voltage is smaller than the measured fuel cell output power, it is determined whether the fuel cell output voltage fluctuation has ended (S107). If it is determined that the fuel cell output voltage fluctuation has not been completed, the measured fuel cell output power is stored as the previous fuel cell output power value (S108), and the fuel cell output voltage fluctuation command circuit 11 It operates to change the fuel cell output voltage (S103). The fuel cell output power thus measured is measured by the fuel cell output power measurement circuit 12 (S104). Conversely, fuel cell output voltage fluctuation ends If so, the operation process of the fuel cell maximum power search ends (S109).
  • the responsiveness was improved by varying the voltage of the battery at startup and monitoring the power state, and starting operation at the voltage at the maximum power point. .
  • the power state is periodically operated by the power supply start detection circuit 16 and the power state is monitored by the fuel cell maximum power search function.
  • the fuel cell maximum power search function As shown in FIG. 5, when it is determined that the fuel cell output power measured at the point where the maximum power point fluctuates (c + 1) is smaller than the stored value of the fuel cell output power maximum point measured at the point c, The point c determined to be the fuel cell output power maximum point stored value continues to be the operating point.
  • point c is regarded as the maximum power point. None, then the operating point.
  • the output power of the fuel cell measured at the point (c + 1) is measured at the point c. It becomes larger than the fuel cell output power, and the (c + 1) point becomes the operating point.
  • the output power of the fuel cell measured at point c is larger than the output power of the fuel cell measured at point (c-11).
  • the point c-1) is the operating point.
  • the fuel cell output power measured at point (c + 1) becomes larger than the fuel cell output power measured at point c, and point (c + 1) becomes the operating point. Conversely, as shown in Fig. 10, when the load decreases, the output power of the fuel cell measured at point c is larger than the output power of the fuel cell measured at point (c-1). Is the operating point.
  • the fuel cell maximum power search function is configured to measure the power state by varying the output voltage of the fuel cell at the time of starting the fuel cell to the maximum voltage of the maximum power point tracking control.
  • the power start-up detection circuit 16 that clears the maximum value of the fuel cell output power and the stored value of the output voltage at the start of the fuel cell at the specified voltage update interval, and increases the output voltage of the fuel cell to the maximum power It is not necessary to measure the power state by fluctuating to the maximum voltage of the point tracking control, and the operating point to the maximum power point can be measured even when the power is limited by the load.
  • the power activation detection circuit 16 is provided, but the timer circuit 14 may be provided.
  • the fuel cell output voltage fluctuation command circuit 11 and the fuel cell output power measurement circuit 12 are periodically started to track the output voltage of the fuel cell to the maximum power point, as in the above embodiment.
  • the power state may be measured by varying the control voltage up to the maximum voltage.
  • FIG. 14 is an operation waveform diagram for the operation processing of tracking the optimum operation point.
  • the timer is counted up (S 21), and the timer circuit 14 is activated to clear the stored value of the fuel cell maximum output power (S 22). At the same time, the stored value of the fuel cell output voltage at the maximum point of the fuel cell output power is also cleared (S23).
  • the timer circuit 14 activates the fuel cell output voltage fluctuation command circuit 11 and the fuel cell output power measurement circuit 12, and the fuel cell output power measurement circuit 12 measures the current fuel cell output power. Then, the current fuel cell output power is stored in the maximum power point determination storage circuit 13 (S24). Further, as shown in FIG. 14, the current fuel cell output voltage is stored as Vn in the maximum power point determination 'storage circuit 13 (S25), and the fuel cell output voltage is changed to (Vn + A Vn) (S26).
  • the changed fuel cell output power is measured by the fuel cell output power measurement circuit 12, and the maximum power point determination 'storage circuit 13 stores the fuel cell output power (S27). Further, as shown in FIG. 14, the fuel cell output voltage change command circuit 11 changes the fuel cell output voltage to (Vn-A Vn) (S28), and uses the changed fuel cell output power as a fuel cell output power meter. The maximum power point is determined by the measurement circuit 12 and the fuel cell output power is stored by the storage circuit 13 (S29).
  • the fuel cell output voltage of the fuel cell output power measured by S24, S27 and S29 is When the output voltage is changed to the maximum point of the fuel cell output power, or when there are a plurality of maximum power points, the output voltage is changed to the point where the command voltage becomes the highest (S30), and the process ends (S31). By repeating this, the power supply operation is always maintained in a stable state, and the maximum operating power is monitored and the optimum operating point is tracked.
  • FIG. 15 is a block diagram of a power supply device provided with the intermittent operation prevention function.
  • the intermittent operation preventing function includes a fuel cell output voltage measuring circuit 21 that measures the fuel cell output voltage while the converter 2 is operating.
  • the intermittent operation prevention function determines whether to stop the output of the fuel cell 1 when the fuel cell output voltage measured by the fuel cell output voltage measurement circuit 21 becomes lower than the fuel cell output stop voltage.
  • a fuel cell output stop determination circuit 22 for determining whether or not the fuel cell output is stopped.
  • the fuel cell output stop determination circuit 22 is configured to oscillate an output stop signal to the converter 2 when the output of the fuel cell 1 is stopped.
  • the intermittent operation preventing function includes a timer circuit 23 for controlling the time of the intermittent oscillation of the fuel cell 1.
  • the timer circuit 23 is configured to set a restart wait time after the converter 2 is stopped, and to measure the output voltage of the fuel cell 1 after the restart wait time.
  • a fuel cell output start determination circuit 25 is provided for inputting data of a measurement value obtained by measuring the output voltage of the fuel cell 1 by the fuel cell output voltage measurement circuit 21. .
  • the fuel cell output start determination circuit 25 determines whether the output voltage of the fuel cell 1 after the restart waiting time is possible or not, and when it is determined that the output voltage is equal to or higher than the restart voltage of the fuel cell 1, the operation is started. It is configured to output an output signal to put converter 2 into operation.
  • the intermittent operation prevention in the fuel cell optimum operating point tracking system configured as described above
  • the stop operation process will be described with reference to the flowchart shown in FIG.
  • the battery voltage rises, and if it is determined that the fuel cell can be operated, the intermittent operation is started (S41).
  • the output voltage of the fuel cell 1 is measured by the fuel cell output voltage measurement circuit 21 (S42).
  • Whether or not the output of the fuel cell 1 is stopped is determined by the fuel cell output stop determination circuit 22 (S43).
  • the fuel cell output voltage measured by the fuel cell output voltage measurement circuit 21 is equal to or lower than the fuel cell output stop voltage. The determination is made by the stop determination circuit 22 (S44).
  • the fuel cell output stop signal is oscillated to the converter 2 (S45), and the fuel cell output stop signal is sent to the timer circuit 23 to start the timer count for intermittent operation. Then (S46), the process ends (S51).
  • FIG. 17 is a flowchart showing an operation process when the intermittent operation timer count is started.
  • the intermittent operation timer count is started (S61)
  • the intermittent operation timer is counted by the timer circuit 23 (S62).
  • the timer circuit 23 determines whether or not the timer count has increased (S63).
  • the process of one count of the intermittent operation timer ends (S64).
  • the stop output signal is output and the converter 2 can be stopped.
  • the fuel cell output voltage is equal to or higher than the fuel cell output stop voltage
  • the intermittent operation timer is counting (S47), and if the intermittent operation timer is not counted, It is determined whether the fuel cell 1 is outputting (S48). If the fuel cell 1 has not been output, it is determined again whether the fuel cell output voltage is equal to or higher than the fuel cell output stop voltage (S49). If the fuel cell output voltage is equal to or higher than the fuel cell output stop voltage, the fuel cell The output of 1 is started (S50), and the operation process for preventing the intermittent operation ends (S51).
  • the fuel cell optimal operating point tracking system when the output voltage fluctuation of the fuel cell 1 falls below the set voltage fluctuation amount during a certain time, the designated voltage update interval is extended.
  • An optimum operating point tracking and holding function is provided. This optimal operating point tracking hold function allows the output voltage fluctuation to change to the set voltage fluctuation when the specified voltage update interval is extended. It is also set so that it can be changed to the original specified voltage update interval when the moving amount exceeds the moving amount.
  • FIG. 18 shows a block diagram of a power supply device provided with this optimum operating point tracking holding function.
  • the optimum operation point tracking holding function includes an optimum operation point tracking circuit 31 that tracks the optimum operation point.
  • the optimal operating point tracking circuit 31 has a fuel cell maximum power search function and a fuel cell optimal operating point tracking operation function, and has almost the same circuit configuration as the fuel cell optimal operating point tracking system shown in FIG. It is best to have.
  • the optimum operating point tracking circuit 31 tracks the optimum operating point, and transmits the optimum operating point tracking information to the converter 2.
  • the optimum operating point tracking and holding function is provided with a fuel cell output voltage control value fluctuation detection circuit 32.
  • the fuel cell output voltage control value fluctuation detection circuit 32 receives the optimum operation point tracking information from the optimum operation point tracking circuit 31, detects the control value fluctuation, and sets the fuel cell output voltage fluctuation during a certain period of time. A force that is smaller or larger than the voltage fluctuation amount is determined.
  • the optimal operating point holding means includes a counter 33, and when the output voltage fluctuation determined by the fuel cell output voltage control value fluctuation detection circuit 32 falls below the set voltage fluctuation amount, the counter 33 counts. It is so.
  • This optimal operating point holding means includes a timer circuit 34. If the output voltage fluctuation detected by the fuel cell output voltage control value fluctuation detection circuit 32 falls below the set voltage fluctuation for a certain period and the counter counts the specified number of times continuously, the set voltage When the output voltage fluctuation detected by the fuel cell output voltage control value fluctuation detection circuit 32 exceeds the set voltage fluctuation, the specified voltage update interval is extended. It is configured to initialize the update interval.
  • the optimum operating point information tracked by the optimum operating point tracking circuit 31 is transmitted to the converter 2 and also transmitted to the fuel cell output voltage control value fluctuation detection circuit 32.
  • the fuel cell output voltage control value fluctuation detection circuit 32 that has received the optimum operating point information detects the fluctuation of the control value and It is determined whether the fluctuation of the control value of the battery output voltage exceeds or falls below the set voltage fluctuation for a certain period (S73).
  • the fuel cell output voltage control value fluctuation detection circuit 32 determines that there is no fluctuation, and this information is stored in the counter.
  • the counter 33 counts the number of times the fuel cell output voltage does not fluctuate (S75).
  • the fuel cell output voltage control value fluctuation detection circuit 32 determines whether the fluctuation of the control value of the fuel cell output voltage is higher or lower than the set voltage fluctuation for a certain period (S73). When the change in the voltage control value exceeds the set voltage change amount for a certain period, the fuel cell output voltage control value change detection circuit 32 determines that there is a change.
  • This information is transmitted to the timer circuit 34, and the timer circuit 34 initializes the operation processing for holding the optimum operating point of the fuel cell (S74). That is, when the designated voltage update interval is extended in the operation processing for maintaining the optimal operating point of the fuel cell, the original state is restored. As described above, the operation process of maintaining the optimal operating point of the fuel cell is temporarily terminated (S79), and the operational process of maintaining the optimal operating point of the fuel cell is started again (S71).
  • the timer circuits 14, 23, and 34 in the above-described embodiment may be configured to oscillate a reference clock and adjust the timing in synchronization with the reference clock.
  • the power supply device according to the above-described embodiment is described using a DC-DC converter.
  • the present invention can be applied to other power supply devices, for example, when a DC-AC inverter is used.
  • the power state is monitored by varying the output voltage of the fuel cell at the time of startup, and the operation is started at the voltage at the maximum power point, thereby taking into account temperature changes and chemical reactions.
  • the operating voltage for supplying the fluctuating maximum output power of the fuel cell can be tracked.
  • the fuel cell maximum power search function is provided with a power supply start detection means for measuring the power state by changing the output voltage of the fuel cell at the time of starting the fuel cell to the maximum voltage of the maximum power point tracking control.
  • a power supply start detection means for measuring the power state by changing the output voltage of the fuel cell at the time of starting the fuel cell to the maximum voltage of the maximum power point tracking control.
  • the specified voltage update interval can be extended so that the maximum operating point tracking can be performed. By reducing the number of times, the operation state can be stabilized.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 本発明は、出力特性に温度依存性のみならず、化学反応を考慮して燃料電池の最適動作電圧を検出して、燃料電池の最適動作を可能にする燃料電池最適動作点追尾システムを提供する。電源装置(2)の起動時に燃料電池(1)が出力した電圧を燃料電池出力電圧変動指令手段(11)で最大電力点追尾制御の最大電圧まで変動させ、燃料電池出力電力計測手段(12)でその電力状態を計測し、この燃料電池出力電力計測手段により計測した出力電力を燃料電池最大電力点判定手段(13)でモニターして、燃料電池の出力電力の最大電力点を判定して、最適動作点変動指令手段(15)で電源動作を常に安定した状態に維持しながら、加えて、現状の動作電圧値近傍の微小電圧変化量を与えることで最大電力モニターして最適動作点を追尾するように構成してあることを特徴とする燃料電池最適動作点追尾システム。

Description

明 細 書
燃料電池を用いた電源装置における燃料電池最適動作点追尾シ 、及びこの燃料電池最適動作点追尾システムを備えた電源装置
技術分野
[0001] 本発明は、燃料電池の所要の電力を得る電源装置に関するもので、特に燃料電池 設置場所の外部環境の変化、即ち、温度などの変化が生じた場合にも、常に燃料電 池から最大出力電力を給電できるようにする電源装置における燃料電池最適動作点 追尾システムに関するものである。
背景技術
[0002] 燃料電池から発電の状態に応じて、できる限り大きな電力を給電するようにした従 来の例えば、図 20で示す DCZDCコンバータ装置の最適動作点追尾回路は、装置 の入力電源として接続される燃料電池 DMFCの出力電圧を予め最大電力が得られ るように予測して任意設定した固定電圧が使用される(例えば、特許文献 1参照)。 特許文献 1 :特開平 11-341699号公報
発明の開示
発明が解決しょうとする課題
[0003] しかし、この場合には、燃料電池の周囲温度や発電に伴う発熱でプラス方向に変 化する電池の最大電力給電のための最適動作電圧を追尾することが不可能である。
[0004] また、燃料電池の発電状況は、温度のみならず、燃料電池に使用する燃料の化学 反応などで大きく変化するため、例えば、最大電力ピーク値は、経時変化により複数 存在するような状態が考えられる。この場合、負荷電流に対する電力ピークは変化す ること力 S予想され、当初の観測点は経時変化後には、最大電力ピークとならず、実際 には他のピークに最大電力が存在するにも関わらず、観測されたピーク値を最大電 力と読み違えるという課題が生じる。
[0005] 本発明は、上記問題に鑑みてなされたものであり、出力特性に温度依存性のみな らず、化学反応を考慮して燃料電池の最適動作電圧を検出して、燃料電池の最適 動作を可能にする燃料電池を用いた電源装置を提供する。 休¾3 解決するための手段
[0006] 上記課題を解決するために、燃料電池の電力を入力とする電源装置において、前 記燃料電池の出力電圧を可変させて電力状態をモニターして、最大電力点の入力 電圧から動作を開始することで応答性を改善するように燃料電池最大電力サーチ機 能と、この燃料電池最大電力サーチ機能を動作させて電力状態をモニターし、電源 動作を常に安定した状態に維持しながら、力 0えて、現状の動作電圧値近傍の微小電 圧変化量を与えることで最大電力モニターして最適動作点を追尾する燃料電池最適 動作点追尾動作機能とを備えてある。
[0007] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における出力電圧 を最大電力点追尾制御の最大電圧まで変動させる燃料電池出力電圧変動指令手 段を備えてある。
また、前記燃料電池出力電圧変動指令手段は、最大指令電圧と最小指令電圧を 設定してあり、前記燃料電池の起動時に出力した初期指令電圧から前記最大指令 電圧まで変動させ、さらに、この最大指令電圧から前記最小指令電圧まで変動させ るようにしてある。
[0008] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における出力電圧 を変動させて電力状態を計測する燃料電池出力電力計測手段を備えてある。
[0009] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における出力電力 をモニターし、燃料電池の出力電力の最大電力点を判定する燃料電池最大電力点 判定 ·記憶手段を備えてある。
また、前記燃料電池最大電力点判定'記憶手段は、前記指令電圧を変動させても 最大電力点が連続で検出された場合は、連続した範囲の指令電圧が最大となる電 圧を最大電力点と判断するようにしてある。
[0010] 前記燃料電池最大電力サーチ機能は、指定電圧更新間隔を設定してあり、この指 定電圧更新間隔後に、前記燃料電池の起動時における燃料電池出力電力最大点 及びその出力電圧の記憶値をクリアして、前記燃料電池の出力電圧を最大電力点 追尾制御の最大電圧まで変動させて電力状態を計測するようにするタイマー手段を 備えてある。 又は、前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における燃 料電池の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態を 計測するようにする電源起動検出手段を備えてある。
[0011] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における燃料電池 出力電力最大点での電力状態をモニターして、現状の動作電圧値近傍の微小電圧 変化量を与えることで最大電力モニターして最適動作点を追尾する最適動作点変動 指令手段とを備えてある。
[0012] 前記燃料電池最適動作点追尾動作機能は、前記燃料電池最大電力サーチ機能 により起動した際における出力電圧を最大電力点追尾制御の最大電圧まで変動さ せる燃料電池出力電圧変動指令手段を備えてある。
[0013] 前記燃料電池最適動作点追尾動作機能は、前記燃料電池最大電力サーチ機能 により起動した際における出力電圧を変動させて電力状態を計測する燃料電池出力 電力計測手段を備えてある。
[0014] 前記燃料電池最適動作点追尾動作機能は、前記燃料電池最大電力サーチ機能 により起動した際における出力電力をモニターし、燃料電池の出力電力の最大電力 点を判定する燃料電池最大電力点判定 ·記憶手段を備えてある。
また、前記燃料電池最大電力点判定'記憶手段は、前記指令電圧を変動させても 最大電力点が連続で検出された場合は、連続した範囲の指令電圧が最大となる電 圧を最大電力点と判断するようにしてある。
[0015] 前記燃料電池最適動作点追尾動作機能は、指定電圧更新間隔を設定してあり、こ の指定電圧更新間隔毎に、前記燃料電池最大電力サーチ機能により起動した際に おける燃料電池出力電力最大点及びその出力電圧の記憶値をクリアして、前記燃 料電池の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態を 計測するようにするタイマー手段を備えてある。
[0016] 前記燃料電池最適動作点追尾動作機能は、前記燃料電池最大電力サーチ機能 により起動した際における燃料電池出力電力最大点での電力状態をモニターして、 電源動作を常に安定した状態に維持しながら、力 Qえて、現状の動作電圧値近傍の微 小電圧変化量を与えることで最大電力モニターして最適動作点を追尾する最適動作 点変動指令手段とを備えてある。
[0017] 前記電源装置が動作中において、燃料電池出力電圧を監視し、燃料電池出力電 圧が燃料電池出力停止電圧以下になった場合に、停止出力信号を出力して前記電 源装置を停止状態にする間欠動作防止機能を設けてある。
[0018] 前記間欠動作防止機能は、前記燃料電池最適動作点追尾動作機能の動作中に おける燃料電池出力電圧を計測する燃料電池出力電圧計測手段を備えてある。
[0019] 前記間欠動作防止機能は、前記燃料電池最適動作点追尾動作機能の動作中に 燃料電池出力電圧が燃料電池出力停止電圧以下になった場合に、燃料電池の出 力を停止するか否力を判定する燃料電池出力停止判定手段を備えてある。
[0020] 前記間欠動作防止機能は、前記燃料電池最適動作点追尾動作機能の動作中に 燃料電池の出力が停止した際に、間欠動作を制御するタイマー手段を備えてある。 また、前記タイマー手段は、前記燃料電池を停止状態にした後、再起動待ち時間 を設定し、この再起動待ち時間後に前記燃料電池の出力電圧を測定し、再起動電 圧以上になった場合に、運転出力信号を出力して前記燃料電池を動作状態にする ように構成してある。
[0021] 前記間欠動作防止機能は、前記燃料電池最適動作点追尾動作機能の動作中に 停止した燃料電池の再起動が可能か否かを判定する燃料電池出力開始判定手段と を備えてある。
[0022] 前記燃料電池の出力電圧変動が一定時間の間に設定電圧変動量を下回った場 合に、指定電圧更新間隔を広げることができる燃料電池最適動作点追尾保持機能 を設けてある。
[0023] 前記燃料電池最適動作点追尾保持機能は、前記燃料電池最大電力サーチ機能と 前記燃料電池最適動作点追尾動作機能とを備えた燃料電池最適動作点追尾手段 を備えてある。
[0024] 前記燃料電池最適動作点追尾保持機能は、前記燃料電池の出力電圧変動が一 定時間の間に設定電圧変動量を下回ったか若しくは上回った力、を判定する燃料電 池出力電圧制御値変動判定手段を備えてある。
[0025] 前記燃料電池最適動作点追尾保持機能は、前記燃料電池の出力電圧変動が一 定時間の間に設定電圧変動量を下回った場合に、指定電圧更新間隔を広げ、前記 燃料電池の出力電圧変動が一定時間の間に設定電圧変動量を上回った場合には 、前記指定電圧更新間隔を初期化して、前記燃料電池最適動作点追尾手段が起動 するように操作するタイマー手段を備えてある。
[0026] 前記燃料電池最適動作点追尾保持機能は、基準単位時間を設け、この基準単位 時間毎に前記燃料電池の出力電圧変動が前記設定電圧変動量を下回ったことを力 ゥントし、連続して規定の回数をカウントした時点で前記一定時間の間に設定電圧変 動量を下回った場合とするように設定してある。
また、前記燃料電池最適動作点追尾保持機能は、基準単位時間を設け、この基準 単位時間毎に前記燃料電池の出力電圧変動が前記設定電圧変動量を下回ったこと をカウントするカウンタを設けてある。
[0027] また、燃料電池最適動作点追尾システムを備えた電源装置は、前記燃料電池の出 力電圧を可変させて電力状態をモニターして、最大電力点の入力電圧から動作を開 始することで応答性を改善するように燃料電池最大電力サーチ機能と、この燃料電 池最大電力サーチ機能を定期的に動作させて電力状態をモニターし、電源動作を 常に安定した状態に維持しながら、力 0えて、現状の動作電圧値近傍の微小電圧変 化量を与えることで最大電力モニターして最適動作点を追尾する燃料電池最適動作 点追尾動作機能とを設けた燃料電池最適動作点追尾システムを備えてある。
発明の効果
[0028] 本発明によれば、燃料電池の起動時の出力電圧を可変させて電力状態をモニター し、最大電力点の電圧で動作を開始することで、温度変化及び化学反応を考慮して 、変動する燃料電池の最大出力電力を給電する動作電圧を追尾することができる効 果がある。
[0029] また、定期的に燃料電池の出力電圧を可変させて電力状態をモニターし、最大電 力点の電圧で動作を開始することで、安定した燃料電池の電力供給を実現すること ができる効果がある。
[0030] また、燃料電池最大電力サーチ機能は、燃料電池の起動時における燃料電池の 出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態を計測するよ うにする電源起動検出手段を備えたことにより、指定電圧更新間隔毎に燃料電池の 起動時における燃料電池出力電力最大点及びその出力電圧の記憶値をクリアして、 燃料電池の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態 を計測する必要がなくなるとともに、負荷による電力制限を受けた場合であっても、最 大電力点への動作点を計測することができる効果がある。
[0031] また、電源装置が動作中において、燃料電池出力電圧を監視し、燃料電池出力停 止電圧以下になった場合に、停止出力信号を出力して電源装置を停止状態にする 間欠動作防止機能を設けたことで、間欠発振の時間をコントロールし、安定した燃料 電池の電力供給を実現することができる効果がある。
[0032] また、燃料電池の出力電圧変動が一定時間の間に設定電圧変動量を下回った場 合に、指定電圧更新間隔を広げることができるように設定したことで、最大動作点追 尾の回数を減らして動作状態の安定化を図ることができる効果がある。
図面の簡単な説明
[0033] [図 1]本発明に係る電源装置における発明を実施するための最良の形態のブロック 図である。
[図 2]燃料電池最大電力サーチ機能におけるフローチャートである。
[図 3]燃料電池最大電力サーチ機能における動作波形図である。
[図 4]同じく燃料電池最大電力サーチ機能における動作波形図である。
[図 5]同じく燃料電池最大電力サーチ機能における動作波形図である。
[図 6]同じく燃料電池最大電力サーチ機能における動作波形図である。
[図 7]同じく燃料電池最大電力サーチ機能における動作波形図である。
[図 8]同じく燃料電池最大電力サーチ機能における動作波形図である。
[図 9]同じく燃料電池最大電力サーチ機能における動作波形図である。
[図 10]同じく燃料電池最大電力サーチ機能における動作波形図である。
[図 11]図 1図示実施形態とは異なる燃料電池最大電力サーチ機能を備えた実施形 態のブロック図である。
[図 12]図 11図示実施形態のフローチャートである。
[図 13]燃料電池最適動作点追尾動作機能におけるフローチャートである。 [図 14]燃料電池最適動作点追尾動作機能における動作波形図である。
園 15]本発明に係る間欠発振防止動作を行うための最良の形態のブロック図である
[図 16]図 15図示実施形態のフローチャートである。
[図 17]同じく図 15図示実施形態のフローチャートである。
[図 18]本発明に係る最適動作点追尾保持動作を行うための最良の形態
である。
[図 19]図 18図示実施例のフローチャートである。
[図 20]従来の最適動作点追尾回路を備えた電源装置の回路図である。
符号の説明
1 燃料電池
2 コンバータ
3 負荷
11 燃料電池出力電圧変動指令回路
12 燃料電池出力電力計測回路
13 燃料電池出力電力最大電力点判定 ·記憶回路
14 タイマー回路
15 動作点変動指令回路
16 電源起動検出回路
21 燃料電池出力電圧計測手段
22 燃料電池出力停止判定回路
23 タイマー回路
24 燃料電池出力開始判定回路
31 最適動作点追尾回路
32 燃料電池出力電圧制御値変動検出回路
33 回数カウンタ
34 タイマー回路
発明を実施するための最良の形態 [0035] 発明を実施するための最良の形態のブロック図を図 1に示す。図 1図示の電源装置 は、燃料電池 1に接続される電源装置に DC— DCコンバータ 2を用いた例として示し てある。この電源装置は出力側に負荷 3を接続してある。この電源装置は燃料電池 最適動作点追尾システムを備え、コンバータ 2に接続してある。
[0036] この燃料電池最適動作点追尾システムは燃料電池最大電力サーチ機能と燃料電 池最適動作点追尾動作機能とを有する。これら機能を果たすための具体的構成に っレ、て図 1に示し、構成の詳細にっレ、ては以下で説明する。
[0037] この燃料電池最適動作点追尾システムは、コンバータ 2の起動時に燃料電池 1が 出力した電圧を最大電力点追尾制御の最大電圧まで変動させる燃料電池出力電圧 変動指令回路 11を備えてある。この燃料電池出力電圧変動指令回路 11は、最大指 令電圧と最小指令電圧を設定し、立上げ時に出力した初期指令電圧から最大指令 電圧まで変動させ、さらに、この最大指令電圧から最小指令電圧まで変動させるよう にしてある。
[0038] この燃料電池最適動作点追尾システムは、燃料電池出力電圧変動指令回路 11で 出力電圧を変動させて電力状態を計測する燃料電池出力電力計測回路 12を備え てある。
[0039] この燃料電池最適動作点追尾システムは、燃料電池出力電圧変動指令回路 11で 出力電圧を変動させて電力状態を、燃料電池出力電力計測回路 12により計測した 出力電力をモニターし、燃料電池の出力電力の最大電力点を判定する燃料電池最 大電力点判定 ·記憶回路 13を備えてある。
[0040] この燃料電池最大電力点判定'記憶回路 13は、燃料電池出力電圧変動指令回路 11で出力電圧を変動させても最大電力点が連続で検出された場合は、連続した範 囲の指令電圧が最大となる電圧を最大電力点と判断するようにしてある。
[0041] この燃料電池最適動作点追尾システムは、燃料電池出力電圧変動指令回路 11及 び燃料電池出力電力計測回路 12を定期的に起動させるタイマー回路 14を備えてあ る。また、このタイマー回路 14は指定電圧更新間隔を設定してあり、この指定電圧更 新間隔毎に、燃料電池最大電力点判定 ·記憶回路 13の燃料電池出力電力最大点 及びその出力電圧の記憶値をクリアして、燃料電池出力電圧変動指令回路 11及び 燃料電池出力電力計測回路 12を起動させて、燃料電池の出力電圧を最大電力点 追尾制御の最大電圧まで変動させて電力状態を計測するようにしてある。
[0042] この燃料電池最適動作点追尾システムは、燃料電池出力電圧変動指令回路 11よ り出力電圧の変動が終了したことの指令を受けて、燃料電池最大電力点判定 ·記憶 回路 13で電力状態をモニターして、電源動作を常に安定した状態に維持しながら、 加えて、現状の動作電圧値近傍の微小電圧変動量を与えることで最大電力モニター して最適動作点を追尾する最適動作点変動指令回路 15を備えてある。
[0043] 以上のように構成してある燃料電池最適動作点追尾システムにおける燃料電池最 大電力サーチ機能における動作処理について図 2で示すフローチャートを用いて説 明する。また、起動時の燃料電池最大電力サーチの動作波形図を図 3及び図 4に示 し、通常運転時の燃料電池最大電力サーチの動作波形図を図 5乃至図 10に示す。
[0044] 電源が起動すると(S1)、タイマー回路 14が起動して、燃料電池出力電力最大点 の記憶値をクリアする(S2)。これとともに、燃料電池出力電力最大点の燃料電池出 力電圧記憶値もクリアする(S3)。
[0045] 続いて、タイマー回路 14が起動して、燃料電池出力電圧変動指令回路 11が作動 して、燃料電池出力電圧を変動させる(S4)。この変動させた燃料電池出力電力を燃 料電池出力電力計測回路 12が計測する(S5)。計測した燃料電池出力電力が燃料 電池出力電力最大点記憶値より大きいか否力、を最大電力点判定 ·記憶回路 13で判 定する(S6)。
[0046] この際、計測した燃料電池出力電力が燃料電池出力電力最大点記憶値以下と判 定した場合は、この燃料電池出力電力が燃料電池出力電力最大点として燃料電池 最大電力点判定'記憶回路 13で記憶する(S7)。
[0047] 図 4図示の波形図に示すように、燃料電池出力電圧変動指令回路 11で燃料電池 の出力電圧を変動させても最大電力点が連続で検出された場合は、連続した範囲 の指令電圧が最大となる電圧を最大電力点と判断する。また、燃料電池出力電力最 大点の燃料電池出力電圧についても、燃料電池最大電力点判定 ·記憶回路 13で記 憶し (S8)、燃料電池出力電圧変動が終了したか否かを判断する(S9)。燃料電池出 力電圧変動が終了した場合は、燃料電池出力電圧を最大電力記憶点へ変動し (S1 0)、燃料電池最大電力サーチの動作処理が終了する(S 11)。
[0048] 逆に、図 3図示の波形図で示すように、(a + 1)点で計測した燃料電池出力電力が 、 a点で計測した燃料電池出力電力最大点記憶値より小さいと判定した場合は、燃 料電池出力電圧変動が終了したか否かを判断する(S9)。燃料電池出力電圧変動 が終了した場合は、燃料電池出力電圧を最大電力記憶点へ変動し (S 10)、燃料電 池最大電力サーチの動作処理が終了する(S 11)。
[0049] 燃料電池出力電圧変動が終了していない場合は、再度、燃料電池出力電圧変動 指令回路 11が作動して、燃料電池出力電圧を変動させる(S4)。この変動させた燃 料電池出力電力を燃料電池出力電力計測回路 12が計測する(S5)。逆に、燃料電 池出力電圧変動が終了した場合は、燃料電池出力電圧を最大電力記憶点へ変動し (S 10)、燃料電池最大電力サーチの動作処理が終了する(S l l)。
[0050] 以上より、図 3及び図 4に示すように、起動時電池の電圧を可変させて電力状態を モニターして、最大電力点の電圧で動作を開始することで応答性が改善された。
[0051] また、本実施形態においては、通常運転時においても、タイマー回路 14で定期的 に作動させて、燃料電池最大電力サーチ機能により、電力状態をモニターする。図 5 に示すように、最大電力点の変動がなぐ(c + 1)点で計測した燃料電池出力電力が 、 c点で計測した燃料電池出力電力最大点記憶値より小さいと判定した場合は、燃 料電池出力電力最大点記憶値と判断された c点が、継続して動作点となる。また、図 6で示すように、出力電圧を変動させても最大電力点が連続で検出された場合は、 連続した範囲の指令電圧が最大となる電圧を最大電力点と判断する。
[0052] 図 7に示すように、燃料電池の発電能力より負荷が大きぐ燃料電池の発電能力が 増加した場合は、(c + 1)点で計測した燃料電池出力電力が、 c点で計測した燃料電 池出力電力より大きくなり、(c + 1)点が動作点となる。逆に、図 8に示すように、燃料 電池の発電能力が減少した場合は、 c点で計測した燃料電池出力電力が、(c-1)点 で計測した燃料電池出力電力より大きいため、(c_l)点が動作点となる。
[0053] 図 9に示すように、燃料電池の発電能力より負荷が小さぐ負荷が増加した場合は、
(c + 1)点で計測した燃料電池出力電力が、 c点で計測した燃料電池出力電力より 大きくなり、(c + 1)点が動作点となる。逆に、図 10に示すように、負荷が減少した場 合は、 c点で計測した燃料電池出力電力が、(c一 1 )点で計測した燃料電池出力電力 より大きいため、(c_l)点が動作点となる。
[0054] 以上より、図 5乃至図 10に示すように、タイマー回路 14で定期的に作動させて電力 状態をモニターし安定動作を行うことができる。タイマー回路 14で定期的に作動させ た場合は、電源が起動したときと同様に、図 2図示のフローチャートで示すような動作 処理を行う。
[0055] なお、本実施形態では、燃料電池出力電圧変動指令回路 11で出力電圧を変動さ せても最大電力点が連続で検出された場合、連続した範囲の指令電圧が最大となる 電圧を最大電力点と判断するように設定してあり、これが最適ではあるが、最大電力 点の連続した範囲が確定できれば、例えば、連続した範囲の中央の電圧を最大電力 点と判断するように設定することもできる。以下の実施形態においても同様である。
[0056] 続いて、図 1とは異なる燃料電池最大電力サーチ機能を有する実施形態について 説明する。具体的構成について図 11に示す。この燃料電池最適動作点追尾システ ムは、前記実施形態と同様に、コンバータ 2の起動時に燃料電池 1が出力した電圧を 最大電力点追尾制御の最大電圧まで変動させる燃料電池出力電圧変動指令回路 1 1と、燃料電池出力電圧変動指令回路 11で出力電圧を変動させて電力状態を計測 する燃料電池出力電力計測回路 12と、燃料電池出力電圧変動指令回路 11で出力 電圧を変動させて電力状態を、燃料電池出力電力計測回路 12により計測した出力 電力をモニターし、燃料電池の出力電力の最大電力点を判定する燃料電池最大電 力点判定 ·記憶回路 13と、燃料電池出力電圧変動指令回路 11より出力電圧の変動 が終了したことの指令を受けて、燃料電池最大電力点判定'記憶回路 13で電力状 態をモニターして、電源動作を常に安定した状態に維持しながら、カロえて、現状の動 作電圧値近傍の微小電圧変動量を与えることで最大電力モニターして最適動作点 を追尾する最適動作点変動指令回路 15とを備えてある。
[0057] 本実施形態は、大きな特徴はタイマー回路 14に替えて、電源起動検出回路 16を 備えてあることに特徴を有する。この電源起動検出回路 16は、燃料電池の起動時に おける燃料電池の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力 状態を計測するようにしてある。 [0058] 以上のように構成してある燃料電池最適動作点追尾システムにおける燃料電池最 大電力サーチ機能における動作処理について図 12で示すフローチャートを用いて 説明する。
[0059] 電源が起動すると(S101)、電源起動検出回路 16が起動して、前回計測した燃料 電池出力電力の記憶値をクリアする(S102)。続いて、電源起動検出回路 16が起動 して、燃料電池出力電圧変動指令回路 11が作動して、燃料電池出力電圧を変動さ せる(S103)。この変動させた燃料電池出力電力を燃料電池出力電力計測回路 12 が計測する(S104)。計測した燃料電池出力電力が前回計測した燃料電池出力電 力より大きいか否力を最大電力点判定 ·記憶回路 13で判定する(S105)。
[0060] この際、計測した燃料電池出力電力が前回計測した燃料電池出力電力以下と判 定した場合は、前回計測した燃料電池出力電力電圧点が燃料電池出力電力最大点 として燃料電池最大電力点判定'記憶回路 13で記憶する(S 106)。
[0061] 図 4図示の波形図に示すように、燃料電池出力電圧変動指令回路 11で燃料電池 の出力電圧を変動させても最大電力点が連続で検出された場合は、前回計測した 燃料電池出力電力電圧点、図 4においては b点を最大電力点とみなし、その後の動 作点とし、燃料電池最大電力サーチの動作処理が終了する(S109)。
[0062] 逆に、図 3図示の波形図で示すように、(a + 1)点で計測した燃料電池出力電力が 、 a点で計測した燃料電池出力電力最大点記憶値より小さいと判定した場合は、 a点 を最大電力点とみなし、その後の動作点とし、燃料電池最大電力サーチの動作処理 が終了する(S109)。
[0063] 計測した燃料電池出力電力が前回計測した燃料電池出力電力より大きいか否かを 最大電力点判定 ·記憶回路 13で判定し (S105)、この際、計測した燃料電池出力電 力が前回計測した燃料電池出力電力より小さいと判定した場合は、燃料電池出力電 圧変動が終了したか否力、を判断する(S107)。燃料電池出力電圧変動が終了して レ、ないと判断した場合は、計測した燃料電池出力電力を前回の燃料電池出力電力 値として記憶し (S108)、再度、燃料電池出力電圧変動指令回路 11が作動して、燃 料電池出力電圧を変動させる(S103)。この変動させた燃料電池出力電力を燃料電 池出力電力計測回路 12が計測する(S104)。逆に、燃料電池出力電圧変動が終了 した場合は、燃料電池最大電力サーチの動作処理が終了する(S 109)。
[0064] 以上より、図 3及び図 4に示すように、起動時電池の電圧を可変させて電力状態を モニターして、最大電力点の電圧で動作を開始することで応答性が改善された。
[0065] また、本実施形態においては、通常運転時においても、電源起動検出回路 16で定 期的に作動させて、燃料電池最大電力サーチ機能により、電力状態をモニターする 。図 5に示すように、最大電力点の変動がなぐ(c + 1)点で計測した燃料電池出力 電力が、 c点で計測した燃料電池出力電力最大点記憶値より小さいと判定した場合 は、燃料電池出力電力最大点記憶値と判断された c点が、継続して動作点となる。ま た、図 6で示すように、出力電圧を変動させても最大電力点が連続で検出された場合 は、前回計測した燃料電池出力電力電圧点、図 6においては c点を最大電力点とみ なし、その後の動作点とする。
[0066] 図 7に示すように、燃料電池の発電能力より負荷が大きぐ燃料電池の発電能力が 増加した場合は、(c + 1)点で計測した燃料電池出力電力が、 c点で計測した燃料電 池出力電力より大きくなり、(c + 1)点が動作点となる。逆に、図 8に示すように、燃料 電池の発電能力が減少した場合は、 c点で計測した燃料電池出力電力が、(c一 1)点 で計測した燃料電池出力電力より大きいため、(c-1)点が動作点となる。
[0067] 図 9に示すように、燃料電池の発電能力より負荷が小さぐ負荷が増加した場合は、
(c + 1)点で計測した燃料電池出力電力が、 c点で計測した燃料電池出力電力より 大きくなり、(c + 1)点が動作点となる。逆に、図 10に示すように、負荷が減少した場 合は、 c点で計測した燃料電池出力電力が、(c一 1 )点で計測した燃料電池出力電力 より大きいため、(c_l)点が動作点となる。
[0068] 以上より、本実施例では、燃料電池最大電力サーチ機能に、燃料電池の起動時に おける燃料電池の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力 状態を計測するようにする電源起動検出回路 16を設けたことにより、指定電圧更新 間隔毎に燃料電池の起動時における燃料電池出力電力最大点及びその出力電圧 の記憶値をクリアして、燃料電池の出力電圧を最大電力点追尾制御の最大電圧まで 変動させて電力状態を計測する必要がなくなるとともに、負荷による電力制限を受け た場合であっても、最大電力点への動作点を計測することができる。 [0069] なお、本実施形態では、電源起動検出回路 16を設けたが、タイマー回路 14を設け てもよレ、。タイマー回路 14を設けた場合は、前記実施形態と同様に、燃料電池出力 電圧変動指令回路 11及び燃料電池出力電力計測回路 12を定期的に起動させて、 燃料電池の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態 を計測するように構成するとよい。タイマー回路 14で定期的に作動させた場合は、電 源が起動したときと同様に、図 12図示のフローチャートで示すような動作処理を行う
[0070] 続いて、現状の動作電圧値近傍の微小電圧変動量土 Δ νορを与えることで最大電 力モニターして最適動作点を追尾する燃料電池最適動作点追尾動作機能における 動作処理について、図 13で示すフローチャートを用いて説明する。また、この最適動 作点を追尾するの動作処理についての動作波形図を図 14に示してある。
[0071] 燃料電池最大電力サーチの動作処理が終了すると、タイマーカウントアップされ (S 21)、タイマー回路 14が起動して、燃料電池出力電力最大点の記憶値をクリアする( S22)。これとともに、燃料電池出力電力最大点の燃料電池出力電圧記憶値もクリア する(S23)。
[0072] 続いて、タイマー回路 14が燃料電池出力電圧変動指令回路 11及び燃料電池出 力電力計測回路 12を起動させて、燃料電池出力電力計測回路 12で現状の燃料電 池出力電力を計測し、最大電力点判定'記憶回路 13で現状の燃料電池出力電力を 記憶する(S24)。さらに、図 14に示すように、最大電力点判定'記憶回路 13で現状 の燃料電池出力電圧を Vnとして記憶し (S25)、燃料電池出力電圧変動指令回路 1 1で燃料電池出力電圧を (Vn+ A Vn)へ変動させる(S26)。
[0073] 続いて、変動させた燃料電池出力電力を燃料電池出力電力計測回路 12で計測し 、最大電力点判定'記憶回路 13で燃料電池出力電力を記憶する(S27)。さらに、図 14に示すように、燃料電池出力電圧変動指令回路 11で燃料電池出力電圧を (Vn - A Vn)へ変動させて(S28)、変動させた燃料電池出力電力を燃料電池出力電力計 測回路 12で計測し、最大電力点判定'記憶回路 13で燃料電池出力電力を記憶する (S29)。
[0074] 燃料電池出力電圧を S24、 S27及び S29により計測した燃料電池出力電力の中の 燃料電池出力電力最大点へ変動させて、もしくは、最大電力点が複数存在した場合 、指令電圧が一番大きくなる点へ変動させて(S30)、処理が終了する(S31)。これを 繰り返すことにより、電源動作を常に安定した状態に維持しながら、最大電力モニタ 一して最適動作点を追尾する。
[0075] 続レ、て、燃料電池の電力給電を停止させると、電池電圧は上昇し、動作可能と判 另 IJされる可能性がある。このとき、間欠動作に入ってしまう。そこで、本実施例に係る 燃料電池最適動作点追尾システムでは、コンバータ 2が動作中において、燃料電池 出力電圧を監視し、燃料電池出力電圧が燃料電池出力停止電圧以下になった場合 に、停止出力信号を出力してコンバータ 2を停止状態にする間欠動作防止機能を設 けてある。この間欠動作防止機能を設けた電源装置のブロック図を図 15に示す。
[0076] この間欠動作防止機能は、コンバータ 2が動作中に燃料電池出力電圧を計測する 燃料電池出力電圧計測回路 21を備えてある。また、この間欠動作防止機能は、この 燃料電池出力電圧計測回路 21で計測した燃料電池出力電圧が、燃料電池出力停 止電圧以下になった場合に、燃料電池 1の出力を停止するか否かを判定する燃料 電池出力停止判定回路 22を備えてある。この燃料電池出力停止判定回路 22は燃 料電池 1の出力を停止する場合に、コンバータ 2に出力停止信号を発振するように構 成してめる。
[0077] この間欠動作防止機能は、燃料電池 1の間欠発振の時間を制御するタイマー回路 23を備えてある。このタイマー回路 23は、コンバータ 2を停止状態にした後、再起動 待ち時間を設定し、この再起動待ち時間後に燃料電池 1の出力電圧を測定するよう に構成してある。
[0078] タイマー回路 23で設定した再起動待ち時間後に、燃料電池出力電圧計測回路 21 で燃料電池 1の出力電圧を計測した計測値のデータを入力する燃料電池出力開始 判定回路 25を備えてある。この燃料電池出力開始判定回路 25では、再起動待ち時 間後の燃料電池 1の出力電圧が可能か否かを判定し、燃料電池 1の再起動電圧以 上になったと判定した場合に、運転出力信号を出力してコンバータ 2を運転状態に するように構成してある。
[0079] 以上のように構成してある燃料電池最適動作点追尾システムにおける間欠動作防 止の動作処理について図 16で示すフローチャートを用いて説明する。燃料電池の 電力給電が停止して、電池電圧は上昇し、動作可能と判別されると、間欠動作が開 始される(S41)。これにより、燃料電池出力電圧計測回路 21で燃料電池 1の出力電 圧を計測する(S42)。燃料電池 1の出力が停止しているか否かを、燃料電池出力停 止判定回路 22で判定する(S43)。
[0080] 続いて、燃料電池 1の出力が停止していない場合は、燃料電池出力電圧計測回路 21で計測した燃料電池出力電圧が、燃料電池出力停止電圧以下か否かを、燃料電 池出力停止判定回路 22で判定する(S44)。燃料電池出力電圧が、燃料電池出力 停止電圧以下の場合は、燃料電池出力停止信号をコンバータ 2に発振する(S45)と ともに、燃料電池出力停止信号をタイマー回路 23に間欠動作用タイマーカウントを 開始して(S46)、処理が終了する(S51)。
[0081] 間欠動作用タイマーカウントをスタートさせた場合の動作処理についてのフローチ ヤートを図 17に示す。間欠動作用タイマーカウントを開始すると(S61)、タイマー回 路 23で間欠動作用タイマーカウントする(S62)。タイマーカウントがアップしたか否か をタイマー回路 23で判定し (S63)、タイマーカウントアップすると、間欠動作用タイマ 一カウントの処理は終了する(S64)。以上より、コンバータ 2が動作中において、燃 料電池出力電圧が燃料電池出力停止電圧以下になった場合に、停止出力信号を 出力してコンバータ 2を停止状態にすることができる。
[0082] 一方、燃料電池出力電圧が燃料電池出力停止電圧以上の場合は、間欠動作用タ イマ一カウント中か否かを判定し (S47)、間欠動作用タイマーカウントがされていなけ れば、燃料電池 1が出力しているか否かを判定する(S48)。燃料電池 1が出力され ていなければ、再度、燃料電池出力電圧が燃料電池出力停止電圧以上か否かを判 定し (S49)、燃料電池出力電圧が燃料電池出力停止電圧以上ならば、燃料電池 1 の出力を開始し (S50)、間欠動作防止の動作処理を終了する(S51)。
[0083] さらに、本実施例に係る燃料電池最適動作点追尾システムでは、燃料電池 1の出 力電圧変動が一定時間の間に設定電圧変動量を下回った場合に、指定電圧更新 間隔を広げることができる最適動作点追尾保持機能を設けてある。この最適動作点 追尾保持機能は、指定電圧更新間隔を広げた場合に、出力電圧変動が設定電圧変 動量を上回った段階で、元の指定電圧更新間隔に変更できるようにも設定してある。 この最適動作点追尾保持機能を設けた電源装置のブロック図を図 18に示す。
[0084] この最適動作点追尾保持機能は、最適動作点を追尾する最適動作点追尾回路 31 を備えてある。なお、この最適動作点追尾回路 31は燃料電池最大電力サーチ機能 と燃料電池最適動作点追尾動作機能とを備えてあり、図 1に示した燃料電池最適動 作点追尾システムとほぼ同じ回路構成であることが最適である。
[0085] この最適動作点追尾回路 31で最適動作点を追尾してコンバータ 2に最適動作点 追尾情報を送信する。また、この最適動作点追尾保持機能は燃料電池出力電圧制 御値変動検出回路 32を設けてある。この燃料電池出力電圧制御値変動検出回路 3 2は最適動作点追尾回路 31から最適動作点追尾情報を受信し、制御値の変動を検 出し、燃料電池の出力電圧変動が一定時間の間に設定電圧変動量を下回ったカ诺 しくは上回った力を判定するようにしてある。
[0086] この最適動作点保持手段はカウンタ 33を備え,燃料電池出力電圧制御値変動検 出回路 32が判定した出力電圧変動が設定電圧変動量を下回った場合に、このカウ ンタ 33によりカウントされるようにしてある。
[0087] この最適動作点保持手段はタイマー回路 34を備えてある。燃料電池出力電圧制 御値変動検出回路 32が検出した出力電圧変動が一定期間設定電圧変動量を下回 り、カウンタで連続して規定の回数をカウントした場合は、一定時間の間に設定電圧 間変動量を下回ったと判断して、指定電圧更新間隔を広げ、逆に燃料電池出力電 圧制御値変動検出回路 32が検出した出力電圧変動が設定電圧変動量を上回った 場合には、指定電圧更新間隔を初期化するように構成してある。
[0088] 以上のように構成してある燃料電池最適動作点追尾システムにおける燃料電池最 適動作点保持の動作処理について図 19で示すフローチャートを用いて説明する。 燃料電池最適動作点追尾の保持動作が開始されると (S71)、最適動作点追尾回路 31で最適動作点を追尾する(S72)。
[0089] 最適動作点追尾回路 31で追尾した最適動作点情報をコンバータ 2に送信するとと もに、燃料電池出力電圧制御値変動検出回路 32に送信する。最適動作点情報を受 信した燃料電池出力電圧制御値変動検出回路 32は、制御値の変動を検出し、燃料 電池出力電圧の制御値の変動が一定期間設定電圧変動量を上回るかそれとも下回 るかを判定する(S73)。
[0090] 続いて、燃料電池出力電圧の制御値の変動が一定期間設定電圧変動量を下回つ た場合、燃料電池出力電圧制御値変動検出回路 32は変動無しと判断し、この情報 はカウンタ 33に送信され、このカウンタ 33で燃料電池出力電圧変動の無し回数カウ ントがされる(S75)。
[0091] 続いて、このカウントが燃料電池出力電圧変動の無し回数が規定の回数以上か否 力を判定する(S76)。規定の回数以下の場合は、燃料電池最適動作点保持の動作 処理が一旦終了し (S 79)、再度、燃料電池最適動作点保持の動作処理が開始され る(S71)。
[0092] 一方、カウンタ 33でカウントされた無し回数が規定の回数以上の場合は、タイマー 回路 34にこの情報が送信され、指定電圧更新間隔を広げる(S77)。また、タイマー 回路 34は燃料電池出力電圧変動無し回数をクリアする(S78)。以上より、燃料電池 最適動作点保持の動作処理が一旦終了し (S79)、再度、燃料電池最適動作点保持 の動作処理が開始される(S71)。このように、指定電圧更新間隔を広げることにより、 最大動作点追尾の回数を減らして動作状態の安定化を図ることができる。
[0093] 逆に、燃料電池出力電圧制御値変動検出回路 32で、燃料電池出力電圧の制御 値の変動が一定期間設定電圧変動量を上回るかそれとも下回るかを判定し (S73)、 燃料電池出力電圧の制御値の変動が一定期間設定電圧変動量を上回った場合、 燃料電池出力電圧制御値変動検出回路 32は変動有りと判断する。
[0094] この情報はタイマー回路 34に送信され、タイマー回路 34で燃料電池最適動作点 保持の動作処理は初期化される(S74)。即ち、燃料電池最適動作点保持の動作処 理で指定電圧更新間隔を広げた場合は、元の状態になる。以上より、燃料電池最適 動作点保持の動作処理が一旦終了し (S79)、再度、燃料電池最適動作点保持の動 作処理が開始される(S71)。
[0095] なお、前述した実施例におけるタイマー回路 14, 23, 34を、基準クロックを発振し、 タイミングをこの基準クロックに同期して図るように構成してあるとよい。
[0096] また、前述した実施例における電源装置は、 DC— DCコンバータを用いて説明して いる力 その他電源装置の場合、例えば DC— ACインバータを用いる場合にも本発 明を適用することができる。
[0097] また、前述した実施例における燃料電池最適動作点追尾システムは、マイコンを想 定して説明しているが、このようなシステムをその他の手段、例えば回路に組み込ん で構成してもよい。
産業上の利用可能性
[0098] 本発明によれば、燃料電池の起動時の出力電圧を可変させて電力状態をモニター し、最大電力点の電圧で動作を開始することで、温度変化及び化学反応を考慮して
、変動する燃料電池の最大出力電力を給電する動作電圧を追尾することができる。
[0099] また、定期的に燃料電池の出力電圧を可変させて電力状態をモニターし、最大電 力点の電圧で動作を開始することで、安定した燃料電池の電力供給を実現すること ができる。
[0100] また、燃料電池最大電力サーチ機能は、燃料電池の起動時における燃料電池の 出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態を計測するよ うにする電源起動検出手段を備えたことにより、指定電圧更新間隔毎に燃料電池の 起動時における燃料電池出力電力最大点及びその出力電圧の記憶値をクリアして、 燃料電池の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態 を計測する必要がなくなるとともに、負荷による電力制限を受けた場合であっても、最 大電力点への動作点を計測することができる。
[0101] また、電源装置が動作中において、燃料電池出力電圧を監視し、燃料電池出力停 止電圧以下になった場合に、停止出力信号を出力して電源装置を停止状態にする 間欠動作防止機能を設けたことで、間欠発振の時間をコントロールし、安定した燃料 電池の電力供給を実現することができる。
[0102] また、燃料電池の出力電圧変動が一定時間の間に設定電圧変動量を下回った場 合に、指定電圧更新間隔を広げることができるように設定したことで、最大動作点追 尾の回数を減らして動作状態の安定化を図ることができる。

Claims

請求の範囲
[1] 燃料電池の電力を入力とする電源装置において、前記燃料電池の出力電圧を可変 させて電力状態をモニターして、最大電力点の入力電圧から動作を開始することで 応答性を改善するように燃料電池最大電力サーチ機能と、この燃料電池最大電力サ ーチ機能を動作させて電力状態をモニターし、電源動作を常に安定した状態に維持 しながら、カロえて、現状の動作電圧値近傍の微小電圧変化量を与えることで最大電 力モニターして最適動作点を追尾する燃料電池最適動作点追尾動作機能とを備え てあることを特徴とする燃料電池最適動作点追尾システム。
[2] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における出力電圧 を最大電力点追尾制御の最大電圧まで変動させる燃料電池出力電圧変動指令手 段を備えてあることを特徴とする請求項 1記載の燃料電池最適動作点追尾システム。
[3] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における出力電圧 を変動させて電力状態を計測する燃料電池出力電力計測手段を備えてあることを特 徴とする請求項 1記載の燃料電池最適動作点追尾システム。
[4] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における出力電力 をモニターし、燃料電池の出力電力の最大電力点を判定する燃料電池最大電力点 判定 ·記憶手段を備えてあることを特徴とする請求項 1記載の燃料電池最適動作点
[5] 前記燃料電池最大電力点判定 ·記憶手段は、前記指令電圧を変動させても最大電 力点が連続で検出された場合は、連続した範囲の指令電圧が最大となる電圧を最 大電力点と判断するようにしてあることを特徴とする請求項 4記載の燃料電池最適動 作点追尾システム。
[6] 前記燃料電池最大電力サーチ機能は、指定電圧更新間隔を設定してあり、この指 定電圧更新間隔後に、前記燃料電池の起動時における燃料電池出力電力最大点 及びその出力電圧の記憶値をクリアして、前記燃料電池の出力電圧を最大電力点 追尾制御の最大電圧まで変動させて電力状態を計測するようにするタイマー手段を 備えてあることを特徴とする請求項 1記載の燃料電池最適動作点追尾システム。
[7] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における燃料電池 の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態を計測する ようにする電源起動検出手段を備えてあることを特徴とする請求項 1記載の燃料電池 最適動作点追尾システム。
[8] 前記燃料電池最大電力サーチ機能は、前記燃料電池の起動時における燃料電池 出力電力最大点での電力状態をモニターして、現状の動作電圧値近傍の微小電圧 変化量を与えることで最大電力モニターして最適動作点を追尾する最適動作点変動 指令手段とを備えてあることを特徴とする請求項 1記載の燃料電池最適動作点追尾 システム。
[9] 前記燃料電池最適動作点追尾動作機能は、前記燃料電池最大電力サーチ機能に より起動した際における出力電圧を最大電力点追尾制御の最大電圧まで変動させる 燃料電池出力電圧変動指令手段を備えてあることを特徴とする請求項 1記載の燃料 電池最適動作点追尾システム。
[10] 前記燃料電池最適動作点追尾動作機能は、前記燃料電池最大電力サーチ機能に より起動した際における出力電圧を変動させて電力状態を計測する燃料電池出力電 力計測手段を備えてあることを特徴とする請求項 1記載の燃料電池最適動作点追尾 システム。
[11] 前記燃料電池最適動作点追尾動作機能は、前記燃料電池最大電力サーチ機能に より起動した際における出力電力をモニターし、燃料電池の出力電力の最大電力点 を判定する燃料電池最大電力点判定'記憶手段を備えてあることを特徴とする請求 項 1記載の燃料電池最適動作点追尾システム。
[12] 前記燃料電池最大電力点判定 ·記憶手段は、前記指令電圧を変動させても最大電 力点が連続で検出された場合は、連続した範囲の指令電圧が最大となる電圧を最 大電力点と判断するようにしてあることを特徴とする請求項 11記載の燃料電池最適 動作点追尾システム。
[13] 前記燃料電池最適動作点追尾動作機能は、指定電圧更新間隔を設定してあり、こ の指定電圧更新間隔毎に、前記燃料電池最大電力サーチ機能により起動した際に おける燃料電池出力電力最大点及びその出力電圧の記憶値をクリアして、前記燃 料電池の出力電圧を最大電力点追尾制御の最大電圧まで変動させて電力状態を 計測するようにするタイマー手段を備えてあることを特徴とする請求項 1記載の燃料 電池最適動作点追尾システム。
[14] 前記燃料電池最適動作点追尾動作機能は、前記燃料電池最大電力サーチ機能に より起動した際における燃料電池出力電力最大点での電力状態をモニターして、電 源動作を常に安定した状態に維持しながら、力 Qえて、現状の動作電圧値近傍の微小 電圧変化量を与えることで最大電力モニターして最適動作点を追尾する最適動作点 変動指令手段とを備えてあることを特徴とする請求項 1記載の燃料電池最適動作点 追尾システム。
[15] 前記電源装置が動作中において、燃料電池出力電圧を監視し、燃料電池出力電圧 が燃料電池出力停止電圧以下になった場合に、停止出力信号を出力して前記電源 装置を停止状態にする間欠動作防止機能を設けてあることを特徴とする請求項 1記 載の燃料電池最適動作点追尾システム。
[16] 前記間欠動作防止機能は、前記燃料電池最適動作点追尾動作機能の動作中にお ける燃料電池出力電圧を計測する燃料電池出力電圧計測手段を備えてあることを 特徴とする請求項 15記載の燃料電池最適動作点追尾システム。
[17] 前記間欠動作防止機能は、前記燃料電池最適動作点追尾動作機能の動作中に燃 料電池出力電圧が燃料電池出力停止電圧以下になった場合に、燃料電池の出力 を停止するか否かを判定する燃料電池出力停止判定手段を備えてあることを特徴と する請求項 15記載の燃料電池最適動作点追尾システム。
[18] 前記間欠動作防止機能は、前記燃料電池最適動作点追尾動作機能の動作中に燃 料電池の出力が停止した際に、間欠動作を制御するタイマー手段を備えてあること を特徴とする請求項 15記載の燃料電池最適動作点追尾システム。
[19] 前記タイマー手段は、前記燃料電池を停止状態にした後、再起動待ち時間を設定し 、この再起動待ち時間後に前記燃料電池の出力電圧を測定し、再起動電圧以上に なった場合に、運転出力信号を出力して前記燃料電池を動作状態にするように構成 してあることを特徴とする請求項 18記載の燃料電池最適動作点追尾システム。
[20] 前記間欠動作防止機能は、前記燃料電池最適動作点追尾動作機能の動作中に停 止した燃料電池の再起動が可能か否かを判定する燃料電池出力開始判定手段とを 備えてあることを特徴とする請求項 15記載の燃料電池最適動作点追尾システム。
[21] 前記燃料電池の出力電圧変動が一定時間の間に設定電圧変動量を下回った場合 に、指定電圧更新間隔を広げることができる燃料電池最適動作点追尾保持機能を 設けてあることを特徴とする請求項 1記載の燃料電池最適動作点追尾システム。
[22] 前記燃料電池最適動作点追尾保持機能は、前記燃料電池最大電力サーチ機能と 前記燃料電池最適動作点追尾動作機能とを備えた燃料電池最適動作点追尾手段 を備えてあることを特徴とする請求項 21記載の燃料電池最適動作点追尾システム。
[23] 前記燃料電池最適動作点追尾保持機能は、前記燃料電池の出力電圧変動が一定 時間の間に設定電圧変動量を下回ったか若しくは上回った力を判定する燃料電池 出力電圧制御値変動判定手段を備えてあることを特徴とする請求項 21記載の燃料 電池最適動作点追尾システム。
[24] 前記燃料電池最適動作点追尾保持機能は、前記燃料電池の出力電圧変動が一定 時間の間に設定電圧変動量を下回った場合に、指定電圧更新間隔を広げ、前記燃 料電池の出力電圧変動が一定時間の間に設定電圧変動量を上回った場合には、 前記指定電圧更新間隔を初期化して、前記燃料電池最適動作点追尾手段が起動 するように操作するタイマー手段を備えてあることを特徴とする請求項 21記載の燃料 電池最適動作点追尾システム。
[25] 前記燃料電池最適動作点追尾保持機能は、基準単位時間を設け、この基準単位時 間毎に前記燃料電池の出力電圧変動が前記設定電圧変動量を下回ったことをカウ ントし、連続して規定の回数をカウントした時点で前記一定時間の間に設定電圧変 動量を下回った場合とするように設定してあることを特徴とする請求項 21記載の燃料 電池最適動作点追尾システム。
[26] 前記燃料電池最適動作点追尾保持機能は、基準単位時間を設け、この基準単位時 間毎に前記燃料電池の出力電圧変動が前記設定電圧変動量を下回ったことをカウ ントするカウンタを設けてあることを特徴とする請求項 25記載の燃料電池最適動作点 追尾システム。
[27] 燃料電池の電力を入力とする電源装置において、前記燃料電池の出力電圧を可変 させて電力状態をモニターして、最大電力点の入力電圧から動作を開始することで 応答性を改善するように燃料電池最大電力サーチ機能と、この燃料電池最大電力サ ーチ機能を定期的に動作させて電力状態をモニターし、電源動作を常に安定した状 態に維持しながら、カロえて、現状の動作電圧値近傍の微小電圧変化量を与えること で最大電力モニターして最適動作点を追尾する燃料電池最適動作点追尾動作機能 とを設けてあることを特徴とする請求項 1記載の燃料電池最適動作点追尾システムを 備えた電源装置。
PCT/JP2004/010724 2003-08-01 2004-07-28 燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置 WO2005013401A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/535,192 US7767328B2 (en) 2003-08-01 2004-07-28 Fuel cell optimum operation point tracking system in power supply device using fuel cell and power supply device provided with this fuel cell optimum operation point tracking system
EP04770987A EP1650820B1 (en) 2003-08-01 2004-07-28 Fuel cell optimum operation point tracking system in power supply device using fuel cell, and power supply device provided with this fuel cell optimum operation point tracking system
JP2005512504A JP4326527B2 (ja) 2003-08-01 2004-07-28 燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003285196 2003-08-01
JP2003-285196 2003-08-01

Publications (1)

Publication Number Publication Date
WO2005013401A1 true WO2005013401A1 (ja) 2005-02-10

Family

ID=34113870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/010724 WO2005013401A1 (ja) 2003-08-01 2004-07-28 燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置

Country Status (5)

Country Link
US (1) US7767328B2 (ja)
EP (1) EP1650820B1 (ja)
JP (1) JP4326527B2 (ja)
KR (1) KR100670491B1 (ja)
WO (1) WO2005013401A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010220A (ja) * 2006-06-28 2008-01-17 Shindengen Electric Mfg Co Ltd 燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置
CN111009673A (zh) * 2019-11-06 2020-04-14 沈阳化工大学 一种微生物燃料电池的粒子群最大功率跟踪方法
CN112135749A (zh) * 2018-05-07 2020-12-25 纬湃科技有限责任公司 用于操作机动车辆的高电压车载动力系统的方法以及高电压车载动力系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110913B2 (ja) * 2007-02-28 2012-12-26 三洋電機株式会社 電源装置
WO2010025752A1 (de) * 2008-09-05 2010-03-11 Daimler Ag Verfahren zum betreiben eines systems aus wenigstens einem elektrischen verbraucher und einer brennstoffzellenanordnung
JP2010067485A (ja) * 2008-09-11 2010-03-25 Panasonic Corp 燃料電池に供給する燃料の流量を制御する方法と燃料供給装置、それを用いた燃料電池システム
FR2993226B1 (fr) * 2012-07-13 2015-12-18 Commissariat Energie Atomique Motorisation de vehicule automobile incluant une pile a combustible et un systeme de stockage d'energie
US9093677B2 (en) * 2012-09-17 2015-07-28 Korea Institute Of Energy Research Apparatus and method for managing stationary fuel cell system
US9577274B2 (en) 2012-09-17 2017-02-21 Korea Institute Of Energy Research Apparatus and method for managing fuel cell vehicle system
CN104078692B (zh) * 2013-11-27 2016-05-11 中科宇图天下科技有限公司 应用于微生物燃料电池的控制装置及控制方法
CN111509264B (zh) * 2020-04-21 2022-06-14 电子科技大学 一种空冷型燃料电池最佳工作点的恒功率测试方法
DE102020123937A1 (de) 2020-09-15 2022-03-17 Audi Aktiengesellschaft Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Brennstoffzellen-Fahrzeug mit einer solchen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245826A (ja) * 1996-02-29 1997-09-19 Aqueous Res:Kk 燃料電池スタックの運転状態判別方法及び運転制御方法
JPH1126002A (ja) * 1997-07-03 1999-01-29 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池の保護制御装置
JP2002171671A (ja) * 2000-12-04 2002-06-14 Mitsubishi Electric Corp 無瞬断自立移行発電システム
JP2003086211A (ja) * 2001-06-28 2003-03-20 Honda Motor Co Ltd 燃料電池電源装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2709873B1 (fr) 1993-09-06 1995-10-20 Imra Europe Sa Générateur de tension à pile à combustible.
JP2002141073A (ja) * 2000-10-31 2002-05-17 Nissan Motor Co Ltd 移動体用燃料電池システム
JP2004362946A (ja) 2003-06-05 2004-12-24 Matsushita Electric Ind Co Ltd 燃料電池システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09245826A (ja) * 1996-02-29 1997-09-19 Aqueous Res:Kk 燃料電池スタックの運転状態判別方法及び運転制御方法
JPH1126002A (ja) * 1997-07-03 1999-01-29 Ishikawajima Harima Heavy Ind Co Ltd 燃料電池の保護制御装置
JP2002171671A (ja) * 2000-12-04 2002-06-14 Mitsubishi Electric Corp 無瞬断自立移行発電システム
JP2003086211A (ja) * 2001-06-28 2003-03-20 Honda Motor Co Ltd 燃料電池電源装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010220A (ja) * 2006-06-28 2008-01-17 Shindengen Electric Mfg Co Ltd 燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置
CN112135749A (zh) * 2018-05-07 2020-12-25 纬湃科技有限责任公司 用于操作机动车辆的高电压车载动力系统的方法以及高电压车载动力系统
US11760229B2 (en) 2018-05-07 2023-09-19 Vitesco Technologies GmbH Method for operating a high-voltage on-board power system of a motor vehicle, and high-voltage on-board power system
CN112135749B (zh) * 2018-05-07 2024-04-12 纬湃科技有限责任公司 用于操作机动车辆的高电压车载动力系统的方法以及高电压车载动力系统
CN111009673A (zh) * 2019-11-06 2020-04-14 沈阳化工大学 一种微生物燃料电池的粒子群最大功率跟踪方法

Also Published As

Publication number Publication date
US7767328B2 (en) 2010-08-03
US20060029844A1 (en) 2006-02-09
EP1650820A4 (en) 2009-06-03
KR20060035577A (ko) 2006-04-26
KR100670491B1 (ko) 2007-01-16
EP1650820A1 (en) 2006-04-26
JPWO2005013401A1 (ja) 2006-09-28
JP4326527B2 (ja) 2009-09-09
EP1650820B1 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
JP6474950B2 (ja) 電動機器システム
WO2005013401A1 (ja) 燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置
JP5690698B2 (ja) 電動工具用バッテリパック
JP2009118440A (ja) 携帯電話端末および通信システム
KR100303271B1 (ko) 전력소비를감소시키기위한클록공급장치
JP2008022641A (ja) バックアップ電源装置
JP2002374633A (ja) 蓄電装置
CN111044912B (zh) 休眠监测系统和方法
KR102167429B1 (ko) 에너지 저장 장치의 과방전 방지 및 재기동 장치 및 방법
JP2006280028A (ja) 携帯電子機器、携帯電子機器の電源の制御回路及び制御方法
JP5515273B2 (ja) 半導体集積回路装置及び電池パック
WO2005011033A1 (ja) 燃料電池発電システム
JP2002354697A (ja) 蓄電装置の管理システム
JPH11252812A (ja) バッテリ放電制御方法および装置
JP2010051080A (ja) 携帯型電子機器の電源制御回路および電源制御方法
JPH1078835A (ja) 携帯端末装置
JP2004194481A (ja) 電池充電制御装置及び電池充電装置
JPH116885A (ja) 発電手段を備えた電子機器
JP2000292841A (ja) カメラ
JP4993957B2 (ja) 燃料電池を用いた電源装置における燃料電池最適動作点追尾システム、及びこの燃料電池最適動作点追尾システムを備えた電源装置
JPH06315234A (ja) 電池の充電方法
JP2014155422A (ja) 充電制御装置、電子機器、および充電制御プログラム
JP2962359B1 (ja) 半導体集積回路
CN114137423B (zh) 电子设备、充电电池的劣化检测方法及记录介质
JP2001037099A (ja) バッテリーバックアップ方式

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005512504

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006029844

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10535192

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020057009828

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1020057009846

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2004770987

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10535192

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2004770987

Country of ref document: EP

Ref document number: 1020057009846

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020057009846

Country of ref document: KR